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Abstract

Background: Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in
both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross
developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that
ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In
insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone
receptor) and USP (Ultraspiracle).

Methods and Findings: We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR
dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE).
In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor)
homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a
mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent
transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A
or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic
B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the
presence of 20-hydroxy-ecdysone.

Conclusions: Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting
a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of
responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE
in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and
strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting
the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites.
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Introduction

Human filarial parasitic nematodes are responsible for two

chronic severely debilitating tropical diseases: lymphatic filariasis

and onchocerciasis. The global efforts in the treatment and control

of the spread of infection for both parasites so far have resulted in

limited success. Also, the widespread use of the few available

specific drugs for fighting these diseases raises the possibility of the

development of drug resistance [1]. With 140 million cases of

infection worldwide, and over a billion people at risk of

contracting these debilitating diseases [2], the development of a

wide range of therapeutic interventions and treatment options is

urgent.

Filarial parasites spend portions of their life cycle in obligate

mammalian and insect hosts. The completion of a successful life

cycle requires the passage of the developing nematode through

four molts, two in the mammalian host and two in the arthropod

host. The transmission of the parasite from one host to the other

initiates a rapid molt, indicating that the developmental cues that

trigger molting are closely tied to the integration of the parasitic

larva into a new host environment. Inhibition of molting would

result in the arrest of the life cycle in either the mammalian or

insect host and the prevention of both pathology and/or the

infective cycle. Thus, the study of the molting process in filarial

nematodes could point to specific targets for drug development.

www.plosntds.org 1 March 2010 | Volume 4 | Issue 3 | e625



Molting in ecdysozoans [3] has been best characterized in

insects. 20-hydroxyecdysone (20E) acts as the temporal signal to

initiate molting, regulates embryogenesis, and coordinates tissue-

specific morphogenetic changes in insects [4–6]. Ecdysone

signaling is regulated by the activity of a heterodimeric receptor

composed of two nuclear receptor proteins EcR and USP,

although the hormone binding function resides only within EcR

[7–10]. After ligand binding, EcR/USP activates a cascade of

gene expression whose end result is the execution of molting [11].

Three alternatively spliced mRNA isoforms of EcR have been

identified in Drosophila [12]. Mutations in these different EcR mRNA

isoforms result in a range of phenotypes that includes lethality at

the embryonic, larval and pupal stages, disruption of salivary gland

degeneration [13], aberrant neuronal remodeling during meta-

morphosis [14], and changes in female fecundity and vitellogenesis

[15].

EcR and USP, as well as a number of the proteins involved in

the ecdysone-signaling cascade, are members of the nuclear

receptor (NR) superfamily [10,16–18]. NRs are characterized by

significant amino acid sequence similarities in two key functional

domains: the DNA binding domain (DBD), which directs the

sequence-specific DNA-binding of the receptor, and the ligand

binding domain (LBD), which mediates dimerization, ligand

binding and transcriptional activation [19–20]. Some nuclear

receptors have been shown to interact with a number of small

molecule ligands such as metabolites and hormones, and these

interactions are important for regulation of their activity. Other

NRs are considered orphan receptors and are either not ligand-

regulated or their cognate ligands have yet to be identified [19].

Homologs of the insect NRs that function downstream of EcR and

USP have also been identified in filarial parasites (21, 22; Egaña,

Gissendanner and Maina, unpublished results) as well as in the

free-living nematode C. elegans [23–26]. Surprisingly, however,

homologs of EcR or RXR/USP are apparently absent in the

exceptionally large C. elegans NR family [23].

In filarial nematodes the molecular triggers of molting remain

largely unknown. As in insects, a possible candidate for a signal that

controls molting in B. malayi, the causative agent of lymphatic

filariasis, is the steroid hormone 20E. Both free and conjugated

ecdysteroids have been identified in the larvae of several parasitic

nematodes including Dirofilaria immitis and Onchocerca volvulus

[27–29]. In addition, ecdysteroids have been shown to exert

biological effects on several nematodes. For example, in Nematospir-

oides dubius [30] and Ascaris suum [31] molting can be stimulated in

vitro by low concentrations of ecdysteroids. Also, molting of third

stage larvae of D. immitis can be stimulated with 20E and RH5849,

an ecdysone agonist [32,33]. The arrest at the pachytene stage of

meiosis is abrogated when D. immitis ovaries are cultured in vitro with

ecdysone and B. pahangi adult females can be stimulated to release

microfilaria when cultured in vitro with ecdysone [34].

There appears to be a physiological connection between the

filarial parasite and its arthropod host that may involve ecdysteroid

signaling. Uptake of microfilaria (L1) by a feeding female mosquito

at the time of a bloodmeal coincides with an increase in the

production of mosquito ecdysteroids that results in the initiation of

mosquito oocyte maturation [35]. Concurrent with this increase in

ecdysteroid concentration in the mosquito host, larvae initiate a

molt transition from L1 to L2 and later from L2 to L3, the

infectious stage of the parasite. These observations suggest a

potential role for ecdysone in the regulation of molting and other

developmental processes in filarial nematodes.

We previously identified an rxr homolog in the dog filarial

parasitic nematode D. immitis and demonstrated its ability to

dimerize with an insect EcR and function in Schneider S2 cells

[36]. We extend this work here with the identification and

characterization of EcR and rxr homologs from B. malayi. Bma-EcR

and Bma-RXR share some of the biochemical properties of insect

EcR and RXR and show differences that appear to be nematode

specific.

Methods

Parasites, RNA isolation and reverse transcription
Brugia malayi adult males, females or L1 larvae (TRS Labs,

Athens, GA) were frozen in liquid nitrogen and ground with a

pestle and mortar. Total RNA was purified from the pulverized

tissue using RNAwiz (Ambion). RNA was quantified with a

spectrophotometer and its quality assessed by gel electrophoresis.

One mg of total RNA per isolation was reverse-transcribed using

the ProtoScript first strand cDNA synthesis kit (New England

Biolabs) following the manufacturer’s protocol.

Cloning of Bma-EcR, Ov-RXR and Bma-RXR
The genomic library from B. malayi in pBeloBAC vector gridded

on Nylon filters (Filarial Genome Network, FGN, (http://www.

nematodes.org/fgn/index.shtml) was screened using a cDNA

fragment from a D. immitis EcR homolog (Di-EcR) (C. Shea, J.

Richer and C. V. Maina, unpublished results) as a probe. Three

positive BACs were identified and the individual corresponding

bacterial clones were cultured. The inserts were confirmed to

contain identical or overlapping sequences by restriction digestion

analysis. One 11kb XbaI fragment identified by southern blot

hybridization with the Di-EcR probe was subcloned into Litmus 28i

and the insert was sequenced using GPSH-1 Genome Priming

System (NEB) as directed by the manufacturer. PCR primers were

designed to amplify Bma-EcR using sequence from the identified

exons [37]. The primers used to amplify the full ORF were: 59 –

GGC GCT AGC ATG ACT ACA GCA ACA GTA ACA TAT

CAT GAG TT – 39 (Nco-MMT-5); 59 – GGC CTC GAG CGA

Author Summary

Filarial parasites such as Brugia malayi and Onchocerca
volvulus are the causative agents of the tropical diseases
lymphatic filariasis and onchocerciasis, which infect 150
million people, mainly in Africa and Southeast Asia. Filarial
nematodes have a complex life cycle that involves
transmission and development within both mammalian
and insect hosts. The successful completion of the life
cycle includes four molts, two of which are triggered upon
transmission from one host to the other, human and
mosquito, respectively. Elucidation of the molecular
mechanisms involved in the molting processes in filarial
nematodes may yield a new set of targets for drug
intervention. In insects and other arthropods molting
transitions are regulated by the steroid hormone ecdysone
that interacts with a specialized hormone receptor
composed of two different proteins belonging to the
family of nuclear receptors. We have cloned from B. malayi
two members of the nuclear receptor family that show
many sequence and biochemical properties consistent
with the ecdysone receptor of insects. This finding
represents the first report of a functional ecdysone
receptor homolog in nematodes. We have also established
a transgenic hormone induction assay in B. malayi that can
be used to discover ecdysone responsive genes and
potentially lead to screening assays for active compounds
for pharmaceutical development.
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TTC TAT GGA TAG CCG GTT GAG GTT – 39 (Xho-GYP-3).

To determine the expression pattern and identify alternate isoforms

of Bma-EcR, adult female, male, L1, L2, L3 cDNA libraries (FGN)

were screened using the following primers: 59 – GGG TAA TTC

CTA CCA ACA GCT - 39(GNS); 59 – CAA GGG TCC AAT GAA

TTC ACG AT – 39 (GPL) corresponding to a fragment of the LBD

from amino acids GNSYQQ to REFIGPL’. Additional sequence to

extend the Bma-EcR isoforms identified was obtained by PCR,

combining the latter two primers with the T3 and T7 promoter

primers as their sequence is present in the library vector.

An O. volvulus L3 cDNA library (FGN) was screened by PCR

using the following primers: 59 – GAT CTT ATC TAT CTA

TGC CGA GAA ,– 39; 59 – TAC TTT GAC ATT TGC GGT

AAC GAC – 39 corresponding to the amino acid sequence

DLIYLCRE and RYRKCQSM of the conserved DNA binding

domain of DiRXR-1 respectively. Additional Ov-rxr sequence was

obtained by PCR using the same primers in combination with the

T7 and T3 promoter primers. Candidate clones were identified by

hybridization with a fragment of DiRXR-1 sequence. An

amplified fragment from this library contained sequence corre-

sponding to the Ov-rxr A/B and C domains.

Using BLAST, the Di-rxr-1 sequence [36] was used to screen the

B. malayi genome sequence available from The Institute for

Genomic Research (TIGR) parasites database (http://blast.jcvi.

org/er-blast/index.cgi?project = bma1). This analysis resulted in

the identification of several exons encoding an 1189 bp fragment

of open reading frame (ORF) that corresponded to a putative

homolog of rxr in Brugia (Bma-RXR). Based on the genomic

sequence we designed PCR primers and used them to amplify the

expected Bma-RXR mRNA using a nested PCR approach. One ml

of a reverse transcription reaction from female total RNA was used

as the template for the first round of PCR carried out with primers

59 – CGA TCT ATG CCC ATC AGA TTG-39 (LCP) and 59 –

CAC AAT GCA AGC TAA GAG ATC G – 39(RSL) at 46uC
annealing temperature. Six percent of the first round PCR

reaction was used as a template in a second round of PCR with

primers 59 – CGA TTT AAC TCC AAA TGG AAG TCG – 39

(DLT) and 5 9– AGC AAA GCG TTG AGT TTG TGT TGG –

39 (PTQ) at 47uC annealing temperature. Using the sequence

obtained, primers were designed to extend the 59 of the coding

sequence using a semi-nested PCR approach in combination with

the 59 splice leader SL1 primer. As above, two rounds of PCR

were employed, in the first round using the SL1 primer (59 – GGT

TTA ATT ACC CAA GTT TGA G - 39) and primer 59 – GAT

GCT CGA TCA CCG CAT ATT GCA CAA ATG - 39 (CAI) at

68uC annealing temperature and for the second round the SL1

primer and primer 59- TGG CAT ACA GTG TCA TAT TTG

GTG TTG TGC - 39 (STT) at 66uC annealing temperature. The

39 coding sequence was obtained by 39 RACE using the First

Choice RLM-RACE kit (Ambion) with Bma-RXR primers 59 –

GGC TCT AAT GCT ACC ATC ATT TAA TGA A - 39 (ALM),

and 59 – GAA GAT CAA GCT CGA TTA ATA AGA TTT

GGA - 39 (EDQ) following the manufacturer’s protocol. For each

amplified fragment several clones were sequenced. The positions

of the primers used are indicated by short arrows over the

corresponding amino acid sequence in the alignment Figures.

Northern blot analyses
Ten mg of total RNA from adult male, adult female and

microfilaria were used to carry out northern blot analyses using the

NorthernMax-Gly kit (Ambion). The Bma-EcR and Bma-RXR

probes were 1kb DNA fragments from the respective coding

regions labeled using random priming with the NEBlot kit (NEB)

and 32P-dATP (NEN-Dupont). The sizes of the hybridizing RNA

species were estimated using an RNA ladder that was run adjacent

to the samples as a reference.

Phylogenetic analyses
Predicted amino acid sequences of cloned cDNAs were aligned

with all nuclear receptor sequences from Swissprot and GenBank,

using Muscle [38] with default options. A complete phylogeny of

all the nuclear receptor super-family was built with PhyML [39].

Subsequently, phylogenies of the relevant sub-families were

constructed with 1000 bootstrap replicates. Well aligned sites

were selected with GBLOCKS [40], with relaxed options to allow

a few gaps per column of the alignment. In each case PhyML was

run with rate heterogeneity with 4 classes, parameter alpha

estimated from the data, BIONJ starting tree. Support for nodes

was estimated by Approximate Likelihood-Ratio Test (aLRT)

[41].

Protein-protein interaction by GST-pull-down assays
A cDNA fragment of Bma-EcR encoding aa 152–465 (upstream

of the C-domain to the end of the predicted ORF) was amplified

by PCR using primers 59 – AGC TTC CAT GGC AGC TGA

AGA AGG TCA ATC TAA TGG CGA CAG TGA GT – 39 (536

to 557 of EF362469) and Xho-GYP-3 (See cloning of Bma-EcR).

The fragment was cloned in frame with GST in the vector pGEX-

KG [42]. The fusion protein was produced in E. coli BL21 by

induction at 30uC with 0.1 mM IPTG and purified on

Glutathione Sepharose beads (Pharmacia) as directed by the

manufacturer. Recombinant Di-rxr-1 and Aausp (gift from A.

Raikhel, University of California Riverside) in pcDNA-3 (Invitro-

gen) were transcribed and translated in vitro in rabbit reticulocyte

lysates using the TNT T7 coupled transcription-translation system

(Promega) in the presence of 35S-Methionine (Amersham Biosci-

ences) as recommended by the manufacturer. Glutathione resin

beads loaded with 1 mg of GST:Bma-EcR fusion protein were

incubated for 1 h at 4uC with 5 ml of rabbit reticulocyte lysate

containing labeled proteins (Di-RXR-1 or AaUSP) in a total

volume of 10 ml of binding buffer (20 mM Tris, 1 mM EDTA,

1 mM DTT, 10% glycerol, 150 mM sodium chloride, 0.5 mg/ml

of BSA, complete protease inhibitor cocktail (Sigma). The beads

were washed twice with binding buffer and three times with buffer

without BSA, then incubated with 10 mM reduced glutathione to

elute the proteins, and centrifuged. Supernatants were mixed with

loading buffer and analyzed by SDS-PAGE. Signals were detected

by autoradiography of the dried gels.

DNA binding by electrophoretic mobility shift assays
(EMSA)

The ecdysone response element (PAL-1) described by Hu et al.

[43] was produced by annealing two synthetic oligonucleotides:

59 – TTG GAC AAG GTC AGT GAC CTC CTT GTT CT – 39

and its complement (with two overhanging Ts at each 39 end).

PAL-1 was labeled with 32P-dATP (NEN-Dupont) using Klenow

polymerase (New England Biolabs) and purified by spin column

G50 chromatography (Amersham Biosciences). A cDNA fragment

containing the complete coding region of Bma-EcRA was cloned in

pcDNA-3 (Invitrogen) using the NheI and XhoI restriction sites.

Two additional constructs containing Bma-EcRB and C respec-

tively were also cloned using the same strategy. The three Bma-EcR

isoforms were transcribed and translated in vitro in rabbit

reticulocyte lysates using the TNT T7 coupled transcription-

translation system (Promega) following the manufacturer’s proto-

col. The translation yield of each construct was assessed by

labeling a portion of the reaction with 35S-Methionine and

Brugia malayi Ecdysone Receptor
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analyzing the products after gel electrophoresis and autoradiog-

raphy. Binding reactions were performed at room temperature in

10mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM MgCl2, 0.5 mM

DTT, 0.025 mM EDTA, 4% glycerol, 0.2 mg/mL poly dI-poly-

dC, 0.13 mg/mL BSA, 0.05% NP40, with 13 fmol/ml labeled PAL-

1 and 3.5 mL TNT reaction mixture containing the corresponding

proteins (0.5 mLAaUSP and 1.5 or 2.5 mL Bma-EcR), in 15 mL

total volume for 20 min before loading in a 6% native TBE gel

(Invitrogen). Signals were detected by autoradiography of the

dried gels.

Constructs and transactivation assays in mammalian cells
To construct GAL4:Bma-EcR and VP16:Bma-RXR, the DEF

domains of Bma-EcR and Bma-RXR were PCR amplified and

cloned into pM and pVP16 vectors (EcR residues 259–565; RXR

residues 191 to 464) respectively (Clontech). The construct

VP16:Lm-HsRXREF (Chimera 9) has been previously described

[44]. pFRLUC, encoding firefly luciferase under the control of the

GAL4 response element (Stratagene Cloning Systems) was used as

a reporter.

Fifty thousand NIH 3T3 cells per well in 12-well plates were

transfected with 0.25 mg of receptor(s) and 1.0 mg of reporter

constructs using 4 ml of SuperFect (Qiagen). After transfection, the

cells were grown in medium containing ligands for 24–48 hours. A

second reporter, Renilla luciferase (0.1 mg), expressed under a

thymidine kinase constitutive promoter was cotransfected into cells

and was used for normalization. The cells were harvested, lysed and

the reporter activity was measured in an aliquot of lysate. Luciferase

activity was measured using Dual-luciferaseTM reporter assay

system from Promega Corporation (Madison, WI, USA). The

results are reported as averages of normalized luciferase activity and

the error bars correspond to the standard deviation from multiple

assays. The ligands used were: RG-102240, a synthetic stable

diacylhydrazine ecdysone agonist [N-(1,1-dimethylethyl)-N9-(2-eth-

yl-3-methoxybenzoyl)-3,5-dimethylbenzohydrazide] also known as

GS-E or RSL1, (RheoGene, New England Biolabs) and Ponaster-

one-A (Invitrogen). The ligands were applied in DMSO at the

indicated final concentrations and the final concentration of DMSO

was maintained at ,0.1%.

Constructs and transactivation assays in Brugia malayi
embryos

In order to construct an ecdysteroid response reporter for Brugia

malayi the repeat domain of the B. malayi 12 kDa small ribosomal

subunit gene promoter [45] (construct BmRPS12 (2641 to 21)/

luc) was replaced (in both orientations) with the PAL-1 EcRE

shown to be recognized by Bma-EcR in vitro. Previous studies have

shown that the repeat acts as a transcriptional enhancer. Outward

facing primers flanking the repeat domain containing synthetic

SpeI sites at their 59 ends were used in an inverse PCR reaction

employing BmRPS12 (2641 to 21) as a template [46]. The

resulting amplicons were purified using the QiaQuick PCR

cleanup kit (Qiagen). The purified amplicons were digested with

SpeI, gel purified, self-ligated and transformed into E. coli. The

resulting construct was designated BmRPS12 -rep. A double

stranded oligonucleotide consisting of five tandem repeats of the

EcRE: ctag(GGACAAGGTCAGTGACCTCCTTGTTC) 56
with SpeI overhangs was then ligated into the SpeI site of

BmRPS12 -rep. The insertions in the forward and reverse

orientations were designated BmRPS12-EcRE and BmRPS12-

EcRE-rev respectively.

Constructs were tested for promoter activity in transiently

transfected B. malayi embryos essentially as previously described

[47]. In brief, embryos were isolated from gravid female parasites

and transfected with BmRPS12-EcRE (or BmRPS12-EcRE-rev)

mixed with a constant amount of a transfection control, consisting

of the BmHSP70 promoter fragment driving the expression of

renilla luciferase (construct BmHSP70 (2659 to 21)/ren).

Following a rest of five minutes, the transfected embryos were

transferred to embryo culture media (RPMI tissue culture medium

containing 25 mM HEPES, 20% fetal calf serum, 20 mM glucose,

24 mM sodium bicarbonate, 2.5 mg ml-1 amphotericin B, 10

units ml-1 penicillin, 10 units ml-1 streptomycin and 40 mg ml/L

gentamycin), supplemented with 1 mM 20-OH ecdysone dissolved

in 50% ethanol or solvent control. Transfected embryos were

maintained in culture for 48 hours before being assayed for

transgene activity. Firefly luciferase activity was normalized to

renilla luciferase activity in each sample to control for variations in

transfection efficiency. Firefly/renilla activity ratios for each

sample were further normalized to the activity ratio from embryos

transfected in parallel in each experiment with the parental

construct BmRPS12 -rep. This permitted comparisons of data

collected in experiments carried out on different days.

Statistical analysis
Each construct was tested in two independent experiments, with

each experiment containing triplicate transfections of each

construct to be analyzed. The statistical significance of differences

noted between the activity in the control and experimental

transfections was determined using Dunnett’s test, as previously

described [47].

Sequence accession numbers
The nucleotide sequences for Bma-EcR isoform A, Bma-EcR

isoform C, Bma-RXR and Ovnhr-4 have been deposited in

the GenBank database under GenBankAccession Numbers:

EF362469, EF362470, EF362471, and EF362472.

Results

Bma-EcR cloning and genomic structure
A candidate EcR homolog was first identified from D. immitis

using degenerate PCR primers based on insect EcRs (C. Shea, J.

Richer and C.V. Maina, unpublished results). Using sequences

from the D. immitis EcR homolog, genomic libraries from B. malayi

available from the Filarial Genome Network (FGN) were screened.

A strongly hybridizing BAC was identified and sequenced. This

BAC contained a gene that encodes a protein with strong

similarities to the EcR branch of nuclear receptors (see below). We

designated this gene as Bma-EcR (to distinguish it from Bombyx mori

EcR [37]). Using sequences corresponding to the predicted Bma-

EcR exons, PCR primers were designed and used to screen larval

and adult cDNA libraries. This library survey revealed Bma-EcR

expression in L1, L3, and L4 larval stages, as well as in adult males

and females (data not shown). In the microfilaria (L1) library, using

primers from the putative ligand-binding domain (LBD) encoding

region, two alternatively spliced mRNA isoforms of Bma-EcR

(isoforms A and C) were identified (Fig. 1A). Bma-EcRA is the

isoform containing the longest ORF (597 a.a.) with an intact LBD.

Bma-EcRC contains exon 6 with a 29-nucleotide deletion that

results in a reading frame shift that generates a premature stop

codon and truncation of the LBD at helix 5 (Fig. 1). This is the

result of an alternative splice site within exon 6. In addition to

these confirmed isoforms, a splice site consensus sequence was

identified within exon 5 at the end of the DNA-binding domain

(DBD) that, if used, would result in the omission of ten amino acids

from the C-terminal extension of the DBD (indicated by an arrow

in Figure 1A). This type of spliced mRNA isoform has been

Brugia malayi Ecdysone Receptor
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Figure 1. Bma-EcR genomic structure and protein sequence similarity to other EcRs. (A)Schematic representation of the genomic structure
of Bma-EcR A and -C isoforms. The protein coding regions are shaded: DNA Binding Domain (DBD - light gray), Ligand Binding Domain (LBD - dark
gray), other coding regions (black). Non-coding regions are white. Alternative splicing of exon 6 results in isoform C which is spliced 29 nucleotides
downstream of the site used in isoform A (arrow A/C), changing the reading frame and prematurely terminating the LBD. An additional splice site in
exon 5 would generate the putative isoform B (arrow A/B) described in the text and in B below. (B) Protein sequence alignment of the DBD and LBD
of Bma-EcR with ecdysozoan EcRs and FXR. The DNA Binding Domain, T/A Box, LBD helices and AF2 region are underlined, and amino acid residue
numbers are indicated. Residues that are found in a majority of the EcRs shown are shaded in black. Residues that are biochemically similar are
shaded in gray. The position K397 where Bma-EcRC diverges from Bma-EcR A is indicated by an arrow labeled A/C. In Bma-EcR C, K397 is followed by
the sequence DITLLRHV and a termination codon. The 10 amino acids that would be omitted in putative isoform B are marked by the two
arrowheads and labeled (A/B). Position of PCR primers used for screening and cloning have been indicated by a small arrow labeled by the
corresponding 3 amino acid residue name (see experimental procedures for primer names). Primers MMT and GYP cover regions outside the
alignment.
doi:10.1371/journal.pntd.0000625.g001

Brugia malayi Ecdysone Receptor

www.plosntds.org 5 March 2010 | Volume 4 | Issue 3 | e625



identified in D. immitis (C. Shea, J. Richer and C. V. Maina,

unpublished results). We were unable to clone such an isoform

(EcRB) from B. malayi by RT-PCR. However, we cannot exclude

the possibility that Bma-EcRB is expressed in specific tissues or

developmental stages not represented in the libraries or RNA

used.

Sequence and phylogenetic analysis of Bma-EcR
Bma-EcR shows strongest similarity to the NR1H group of

nuclear receptors typified by the insect EcRs and mammalian

FXR and LXR receptors (Figs. 1B, 2). The strongest similarity is in

the DBD which contains the canonical C4 zinc finger structure of

nuclear receptors. This domain is 10 amino acids longer in Bma-

Figure 2. Phylogenetic analysis of Bma-EcR and related nuclear receptor sequences. Maximum Likelihood tree of EcR and related nuclear
receptors (NR1H group). The alignment with gaps includes 1139 sites. Numbers at key nodes are the fraction of aLRT support out of 1000 replicates.
Bma-EcR is indicated by the Brugia malayi label (boxed). The scale bar represents amino acid substitutions per site. Chordate and vertebrate
sequences were collapsed on this figure for readability. The complete EcR tree with all branches is shown in Fig. S2.
doi:10.1371/journal.pntd.0000625.g002
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EcR than in the homologous region of the other EcRs. However,

as indicated above, exclusion of these 10 amino acids by

alternative splicing of this site (isoform B) would result in a better

alignment of Bma-EcR with the other EcRs (Fig. 1B). The LBD

shows significant similarity in the regions encoding helices 3–10

[48]. An exception is found in the region of helix 11–12 (Fig. 1B).

Helix 12 of insect EcRs contains the AF2 motif, responsible for

ligand-dependent transcriptional activation. Although predictions

of secondary structure of the Bma-EcR LBD protein sequence

indicate helical folding of putative helices 3–10, no helical

propensity is predicted in the region of helix 12 (data not shown).

Immediately following the helix 12 region a glutamine-rich helical

segment is present. Glutamine-rich sequences are often associated

with transcription activation domains [49]. These differences

make Bma-EcR an unusual member of the receptor family that

perhaps uses a different mechanism for ligand-dependent

activation.

Global phylogenetic analysis (see Supporting Information Fig.

S1) places Bma-EcR with arthropod EcRs. The position of Bma-

EcR is strongly supported (99% aLRT support) in a phylogenetic

tree of the sub-family (Figures 2 and S2). The branch leading to

Bma-EcR is long, indicating a relatively derived sequence, but not

more derived than that of dipteran EcRs, for example. Separate

analysis of the DBD and LBD produced similar tree topologies,

especially concerning the position of Bma-EcR.

BmaEcR expression analysis
Northern blot analysis was used to establish the expression

pattern of Bma-EcR in Brugia adult females, males, and L1

microfilaria. The fragment used as the probe encompassed the

coding sequence common to both mRNA isoforms identified. A

predominant species of approximately 3.75–4 Kb was present in

all RNA samples tested (Fig. 3), which was consistent with our

detection by RT-PCR of the Bma-EcR isoforms in libraries from

those same stages, and implies the existence of longer 59 and/or 39

untranslated regions than are present in our cloned cDNA species.

Shorter minor RNA species are detectable which may indicate the

existence of additional isoforms (Fig. 3).

Bma-EcR dimerization with RXR and USP
EcRs heterodimerize with Ultraspiracle (USP) proteins to form

functional ecdysone receptors that bind to ecdysteroid ligands and

ecdysone response elements (EcREs) [35]. In order to test whether

Bma-EcR heterodimerizes with a canonical insect USP or its

filarial homologue Di-RXR-1 [36], an in vitro binding assay was

carried out. In vitro translated 35S-labeled Di-RXR-1 or Aedes aegypti

USP (AaUSP) were incubated with GST or GST:Bma-EcR fusion

proteins immobilized on glutathione-beads. Specific bands corre-

sponding to the full length AaUSP and Di-RXR-1 were detected

bound to GST:Bma-EcR (Fig. 4A). No binding to GST alone was

detected with either protein bait. While the in vitro translation of

AaUSP resulted in the production of a major protein species of the

predicted full length AaUSP (Fig. 4A, lane 1), in vitro translation of

Di-RXR-1 produced multiple protein species (Fig. 4 lane 4)

Figure 3. Bma-EcR expression in adult females, males and
microfilaria. Northern blot analysis of total RNA from B. malayi
females (F), L1 larvae (L1) and males (M) shows the presence of a
predominant RNA species of approximately 3.5–4 kb (marked by an
asterisk). The ethidium bromide-stained ribosomal RNA (below) reflects
the amount of total RNA loaded in each lane. The apparent difference in
mobility of the L1 sample is probably associated with electrophoresis
rather than actual mRNA size, as it is also observed in both ribosomal
RNA species detected by ethidium bromide (lower panel).
doi:10.1371/journal.pntd.0000625.g003

Brugia malayi Ecdysone Receptor

www.plosntds.org 7 March 2010 | Volume 4 | Issue 3 | e625



including one corresponding to full-length Di-RXR-1 (ca 55 kD),

which specifically bound to GST:Bma-EcR (Fig. 4A lane 6). These

results indicate that Bma-EcR protein, like EcR, is capable of

heterodimerization with USP protein in vitro.

BmaEcR DNA binding properties
Having established that Bma-EcR can dimerize with USP/

RXRs, we investigated the DNA binding properties of the two

isolated protein isoforms of Bma-EcR (Forms A and C) to a

palindromic ecdysone response element (PAL-1 EcRE) based on

the Drosophila hsp27 ecdysone response gene [43], using EMSA. In

addition to the cloned Bma-EcRA and Bma-EcRC mRNA isoforms,

a construct lacking the 10 amino acids downstream of the zinc

finger domain was engineered (putative Bma-EcRB). The three

Bma-EcR isoforms and AaUSP (as the heterodimerization

partner) were produced in rabbit reticulocyte lysates and their

relative amounts were estimated using 35S-met labeling and

autoradiography (Fig S3). An equal amount of AaUSP-containing

reticulocyte lysate was incubated with increasing amounts of each

Bma-EcR isoform preparation and 32P-labeled EcRE prior to

analysis by native polyacrylamide gel electrophoresis. AaUSP

produces a specific band with the EcRE as has been shown before

[50] (Fig. 4B, dot), which migrates faster than a nonspecific band

produced by the reticulocyte lysate (Fig. 4B, asterisk). Both Bma-

EcRA and -B produced an additional slower migrating band

consistent with a heterodimer bound to the probe (Fig. 4B, lanes

2–5, arrow). In contrast, no additional band is detected with Bma-

EcRC (Fig. 4B, lanes 6–7). This result is not unexpected given that

Bma-EcRC, which contains a premature stop codon and encodes

a protein with a truncated LBD, lacks essential structural features

for heterodimerization. Neither Bma-EcRA nor Bma-EcRB

bound substantially to the EcRE in the absence of AaUSP

(Fig. 4B, lanes 8–9). This in vitro analysis of Bma-EcR

heterodimerization with AaUSP and binding to an EcRE suggests

that Bma-EcR has DNA-binding properties similar to those of

ecdysone receptors.

Cloning of a B. malayi RXR homolog
The dimerization properties of Bma-EcR and the identification

of rxr [36] and EcR homologs in the dog filarial parasite D. immitis

pointed to the likelihood that an rxr homolog also exists in other

filarial nematodes. Using degenerate PCR primers we were able to

clone a fragment with high sequence similarity to Di-RXR-1 from

O. volvulus cDNA (see Experimental Procedures; sequence

deposited in GenBank ). In B. malayi, however, although we

searched for an RXR type receptor in the genomic libraries

available using Di-rxr-1 as a probe, no strongly hybridizing

sequences were detected. While this work was in progress genomic

data from the B. malayi genome project became available, which

provided us with an alternative route to clone the B. malayi RXR/

USP [51]. Using the sequence information from the other filarial

species as well as the Brugia malayi genome project we designed a

combined RT-PCR and RACE approach (described in detail in

Experimental Procedures) that allowed us to obtain clones for the

B. malayi homolog of RXR which we named Bma-RXR. The

longest cDNA sequence identified for Bma-RXR is 1398 bp and

encodes a 465 amino acid protein that has strong similarity to D.

immitis Di-RXR-1 (100% amino acid identity in the DBD and

83% in the LBD). The amino acid sequence similarity between the

B. malayi and D. immitis RXRs substantially deteriorates in the last

exon. Interestingly, the last exon corresponds to the helix 12

region of the LBD where the activation function AF-2 usually

resides (Fig. 5). This LBD region is also highly dissimilar between

the filarial nematode RXRs and their homologs in other non-

Figure 4. Bma-EcR heterodimerization with USP and DNA
binding. (A)GST or GST:Bma-EcR fusion protein immobilized on
glutathione agarose beads was incubated with 35S-labeled in vitro
translated mosquito USP (AaUSP) or D. immitis Di-RXR-1 as indicated.
After washing, the bound protein was detected by SDS-PAGE and
autoradiography. Lanes 1 and 4 correspond to AaUSP and Di-RXR-1,
respectively, which were used as the input in this assay. Lanes 2 and 5
correspond to beads coated with GST alone, exposed to AaUSP or Di-
RXR-1, respectively. Lanes 3 and 6 correspond to AaUSP and Di-RXR-1,
respectively, bound to GST:Bma-EcR. (B) Gel-shift analysis of Bma-EcR-A,
putative -B, and -C isoforms, combined with AaUSP on a palindromic
EcRE. Bma-EcR-A and -C heterodimerize with USP and bind the EcRE.
Increasing amounts of each Bma-EcR isoform (as indicated above the
triangles) were incubated with AaUSP and the DNA probe as indicated.
A specific band is observed when Bma-EcR-A or -B is combined with
AaUSP (arrow). Bma-EcRC shows no binding. A band corresponding to
AaUSP alone is indicated by a dot. No binding was observed in the
absence of AaUSP with either isoform. A non specific band from the
rabbit reticulocyte lysate (asterisk) is present in all lanes. Lane 1: only
USP. Lanes 2, 4 and 6: USP with 1 mL EcR. Lanes 3, 5, and 7: USP with
2 mL EcR. Lanes 8, 9 only the corresponding EcR. The higher intensity of
the EcRB band is likely the result of higher concentration of this protein
(see Fig. S3).
doi:10.1371/journal.pntd.0000625.g004
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nematode species. Notably the motif LIRVL consistent with the

RXR AF2 is found in Bma-RXR but not Di-RXR-1.

Phylogenetic analysis of Bma-RXR
Similarly to Bma-EcR, global phylogenetic analysis places Bma-

RXR together with USPs and RXRs (Supplementary material Figs.

S1 and S2.). Using HNF4s as the outgroup, there is 100% aALRT

(approximate Likelihood Ratio Test ) support to place Bma-RXR in

the USP/RXR sub-family (Fig. 6). Relationships among arthropod

USP/RXRs and Bma-RXR are not well resolved (aALRTs under

50%), but Bma-RXR groups strongly with Di-RXR-1. The

grouping of Bma-RXR among USP/RXRs remains the same

whether the Schistosoma mansoni sequences are included or not in the

tree (data not shown). The Schistosoma sequences are extremely

divergent, to the extent of not being phylogenetically informative

[52,53], and branch at the base of the tree. While it is known that

dipteran and lepidopteran USPs evolve especially fast [53], Di-

RXR-1 and Bma-RXR appear to have evolved even faster.

Separate phylogenies of the DBD and LBD (not shown) indicate

that this is entirely due to a very derived LBD. This observation is

Figure 5. Protein sequence alignment of Bma-RXR with RXRs and USPs. RXR and USP sequences are shown above and below the filarial
sequences respectively. Residues that are identical in a majority of the USP/RXRs shown are shaded in black. Residues that are biochemically similar
are shadowed in gray. Functional regions (DBD, T/A Box and LBD helices) are underlined and amino acid residue numbers are indicated. Bma-RXR
residues shared with all RXRs or USPs, and the AF2 are boxed. PCR primers used in cloning and mentioned in the text are indicated using the same
labeling convention as in Fig. 1B.
doi:10.1371/journal.pntd.0000625.g005
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consistent with the alignment. The DBD on the other hand has

evolved slowly, like the DBDs of its homologs in other species.

Bma-RXR expression
Expression of Bma-RXR was analyzed in adult females, males,

and L1 larvae by Northen blot analysis (Fig. 7). A ,5kb RNA

species was clearly detected in female and male RNA samples.

Low levels of the ,5 kb Bma-RXR RNA species were also

observed in the L1 RNA sample. Two additional Bma-RXR bands

of approximately 3.75 kb and 3 kb were also detected in adult

females. The presence of Bma-RXR mRNA in males and L1 larvae

was in agreement with RT-PCR results (data not shown).

Figure 6. Phylogenetic analysis of Bma-RXR and related nuclear receptor sequences. Maximum Likelihood tree of Bma-RXR and related
nuclear receptors (NR2B group). The alignment with gaps includes 514 sites. Numbers at key nodes are aLRT support out of 1000 replicates. Bma-RXR
is indicated by the boxed label Brugia malayi. The scale bar represents amino acid substitutions per site. Vertebrate and outgroup sequences were
collapsed on this figure for readability. The complete RXR tree with all branches is shown in Fig. S2.
doi:10.1371/journal.pntd.0000625.g006
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Bma-EcR heterodimerization and ligand-dependence in
vivo

To further characterize the properties of Bma-EcR we tested

whether Bma-EcR, by virtue of its LBD, is capable of forming a

dimer with Bma-RXR, its putative native partner, to constitute a

functional receptor and transduce the hormonal signal of

ecdysteroids in a cellular context. The assay we employed takes

advantage of the fact that the LBD of nuclear receptors can

function in a modular fashion fused to heterologous DNA binding

domains such as the GAL4 DBD [43,44]. In order to test the

ability of Bma-EcR LBD to activate transcription of a reporter

gene in response to a particular hormone ligand, NIH 3T3 cells

were co-transfected with GAL4:Bma-EcR(LBD) in combination

with RXR LBDs fused to VP16. In addition to the Bma-

RXR(LBD) we tested human HsRXR and Hs-LmRXR(LBD) (a

chimeric human-locust LBD). The latter was selected because it

shows no constitutive dimerization and high ligand-dependent

activity when partnered with other ecdysone receptors [44] (and

Fig. S4). The transfected cells were tested for trans-activation in

the absence or presence of either the ecdysteroid Ponasterone-A or

the synthetic ecdysone agonist RSL1 by assaying luciferase

activity.

Significant transactivation was detected when GAL4:Bma-

EcR(LBD) was partnered with Bma-RXR(LBD) (Fig. 8A). The

addition of RSL1 (Fig. 8B) or Ponasterone A (data not shown) had

no further stimulatory effect on the detected activity. These data

demonstrate that Bma-EcR and Bma-RXR are bona fide nuclear

receptor partners and that, like their insect counterparts, they

avidly dimerize in the absence of ligand. The ligands apparently

cannot appreciably increase the heterodimer’s ability to activate

transcription above that of the VP16 activation domain in this

assay.

Significant ligand-dependent transcriptional activation of lucif-

erase was detected, however, when GAL4:Bma-EcR(LBD) was

partnered with the chimeric VP16:Hs-LmRXR and treated either

with Ponasterone-A or RSL1 (Fig. 8C). This is likely the result of

ligand-dependent dimerization of the two receptor LBD fusions

and subsequent trans-activation via the VP16 activation domain.

This result clearly demonstrates the ability of Bma-EcR LBD to

transduce the action of the ecdysteroid Ponasterone-A and the

ecdysteroid agonist, RSL1 in the transfected cells.

The dimerization and transactivation studies presented here

show that Bma-EcR is able to heterodimerize with Bma-RXR in a

cellular context and capable of triggering a transcriptional

response in an ecdysteroid-specific manner. These observations

taken together along with their expression profile suggest that

Bma-EcR and Bma-RXR have the prerequisite functional

properties to constitute a functional Brugia malayi ecdysone

receptor.

Ecdysone-dependent transcription in B. malayi: A
reporter assay

The existence of homologs for both protein components of

Ecdysone Receptor in B. malayi which possess functional dimeriza-

tion and DNA binding properties, and the earlier pharmacological

observations by H. Rees [33,34] suggest that ecdysone could

function as a transcriptional regulatory ligand in B. malayi. To

directly test this hypothesis, we employed a recently established

transient transformation technique to explore whether ecdysteroids

can activate transcription in B. malayi using a reporter assay. Recent

studies have demonstrated that the 59 UTR of the gene encoding

the 12 kDa small subunit ribosomal protein of B. malayi (BmRPS12)

was capable of acting as a promoter when used to drive the

expression of a luciferase reporter gene in transiently transfected B.

malayi embryos [45]. The BmRPS12 promoter contains 5 L copies

of an almost exact 44 nt repeat that acts as an enhancer element

[45]. This promoter construct driving the expression of firefly

luciferase (construct BmRPS12 (2641 to 21)/luc) was used to

develop a reporter for B. malayi in which the enhancer repeat

element was replaced with canonical ecdysone response elements

(EcREs). We constructed the EcRE-BmRPS12-luciferase reporter

Figure 7. Bma-RXR is expressed in B. malayi females, males and
microfilaria. Northern blot analysis of total RNA from females (F), L1
larvae (L1) and males (M) reveals 3 distinguishable RNA species of Bma-
RXR in females (marked by asterisks). The largest of the three (around
5 Kb) is also detected in males and at low levels in L1 larvae. The
ethidium bromide-stained ribosomal RNA (lower panel) reflects the
amount of total RNA loaded in each lane. The apparent difference in
mobility of the L1 sample is probably associated with electrophoresis as
suggested by the ethidium stained gel.
doi:10.1371/journal.pntd.0000625.g007
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(as described in Methods) using the PAL-1 element that Bma-ECR

is capable of binding in vitro (Fig. 4B). This construct was tested for

transcriptional activity in transfected B. malayi embryos, which were

exposed to 20-OH ecdysone (20-E), or solvent alone, before being

assayed for luciferase reporter activity. As shown in Fig. 9A

ecdysteroid treatment resulted in a significant increase of reporter

gene activity in cultures exposed to 20-E relative to control cultures

(transfected in parallel with the same construct but exposed to

solvent alone). This response to 20-E requires the presence of the

EcRE sequence, since a construct lacking the EcRE did not exhibit

any increase in luciferase activity in response to 20-E. Similarly, the

response was strictly dependent on hormone, as constructs

containing the EcRE produced levels of activity that were not

significantly different from those obtained with the construct lacking

the EcRE, in the absence of 20-E. Constructs containing the EcRE

in both orientations were equally responsive to 20-E treatment, in

keeping with previous studies demonstrating the symmetric nature

of the binding of nuclear hormone receptors to their cognate

response elements [43]. The response to the 20-OH ecdysone was

dose-dependent, reaching a plateau at 5 mM (Fig. 9B). These results

provide molecular evidence for the function of ecdysone in

transcriptional responses of B. malayi and reveal the functional

operation of a corresponding signaling system.

Discussion

Molting in ecdyzosoans has been studied most extensively in

insects. In insects EcR and USP initiate the transduction of the

molt-triggering signal [4,9]. Molting progression is mediated by

the expression and activation of a number of well-characterized

genes, including additional nuclear receptors [16,17,54,]. In

contrast, in nematodes molting initiation and the molecular

signaling responsible for its progression are only now starting to be

understood. An RNAi screen in C. elegans for genes that are

involved in molting has revealed a large number of ‘‘molting’’

genes, which encode proteins ranging from transcription factors

and intercellular signaling molecules to proteases and protease

inhibitors. However, no signal has been specifically identified as

being the putative molting trigger [55]. Expression profiles of C.

elegans ‘‘ecdysone cascade’’ nuclear receptors during molting cycles

parallel the expression of their homologs in insects [56], and nhr-

23, nhr-25, nhr-41, and nhr-85, the C. elegans orthologs of DHR3,

Ftz-F1, DHR78, and E75, respectively, have been shown to be

important for proper molting and/or dauer larva formation

[26,56–58]. The fact that the C. elegans genome contains no

identifiable homologs of EcR or rxr [23] and that no ecdysteroids

have been identified in this nematode, has led to the suggestion

that ecdysone itself is unlikely to be the molting hormone in this

free living nematode [55].

Our previous studies demonstrated the existence of an rxr

homolog in the canine filarial nematode D. immitis [36]. The

isolation of Di-rxr-1 indicated that, in contrast to C. elegans, filarial

nematodes might contain different sets of NRs. The isolation of

homologs of EcR and rxr in Brugia malayi presented here

Figure 9. Ecdysone-dependent transcriptional activation in B.
malayi embryos. (A) 20-E treatment causes a robust transcriptional
activation with mediated by a consensus EcRE embedded in a B. malayi
transcriptional reporter. Five copies of the EcRE used in the DNA
binding assay (Fig. 4) were cloned in both orientations with respect to
the direction of transcription in the BmRPS12-luciferase vector. Both
reporters (EcRE and EcRE-rev) and the vector alone (dRPS12) were
transformed into B. malayi embryos which were cultured in the
presence of 20-E (+) or solvent alone (2) for 48 hrs and processed for
luciferase assays. (B) 20-E causes a dose-response activation of the EcRE
reporter. B. malayi embryos transformed with the BmRPS12- EcRE
luciferase reporter were treated with the indicated concentrations of
20-OH ecdysone (in mM) or solvent alone (0). The luciferase activity
obtained from solvent only treatment with the empty vector was set to
100%.
doi:10.1371/journal.pntd.0000625.g009

Figure 8. Heterodimerization of BmaEcR / BmaRXR and ligand specific responses of BmaEcR in mammalian cells. (A) Increased
luciferase activity indicates constitutive heterodimerization of the Bma-EcR and Bma-RXR LBDs. The LBDs of BmaEcR and Bma-RXR were used in a
two-hybrid format to generate the fusions GAL4:Bma-EcR(LBD) and VP16:Bma-RXR(LBD). These were transfected alone or together in NIH-3T3 cells. A
reporter containing Luciferase downstream of the GAL4 response element was co-transfected in NIH-3T3 cells. (B) GAL4:Bma-EcR(LBD) and VP16:Bma-
RXR(LBD) were transfected together as above and the cells were treated with the indicated concentrations of RSL-1 or solvent alone (DMSO). No
significant activation in response to the ligand is observed. (C) Transactivation of the luciferase reporter indicates ligand dependent response of the
Bma-EcR LBD. GAL4:Bma-EcR(LBD) and VP16:HsLmRXR(LBD) were transfected in NIH-3T3 cells which were treated with DMSO or increasing
concentrations of RSL-1, or Ponasterone A (PonA) as indicated. HsLmRXR(LBD) is a chimeric LBD consisting of human and locust RXR LBDs. It shows
no constitutive dimerization with Bma-EcR (Fig. S4) or other EcR LBDs [44].
doi:10.1371/journal.pntd.0000625.g008
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demonstrates that filarial nematodes express both components of

the ecdysone receptor and these nuclear receptors show

dimerization, DNA binding, and hormone-binding characteristics

similar to those of the canonical insect ecdysone receptors. Our

phylogenetic analyses place the two receptors in the corresponding

branches of the superfamily tree. They also indicate a rapid

evolution of the LBDs. The LBDs of nematode RXRs are

extremely divergent, on a similar scale to that of Schistosoma RXR

LBD. Subsequent to our identification of EcR and rxr homologs in

Brugia, the sequencing of the genome was completed, identifying

additional putative nuclear receptors in the ecdysone signaling

cascade [51].

We cloned two Bma-EcR and one Bma-rxr mRNA isoforms.

Northern blot analyses revealed Bma-EcR and Bma-rxr expression

in adult males, females and L1s. In addition, RT-PCR analyses

indicate that Bma-EcR is also present in L1, L2 and L3 larval

stages. Since females contain developing embryos, it is not possible

to differentiate between embryonic and female-specific expression

of these two nuclear receptors in B. malayi. In insects EcR has been

shown to be critical for both embryonic development and

oogenesis [15,59,60] and in filarial nematodes ecdysone treatment

releases meiotic arrest and stimulates microfilaria release [34].

Expression of EcR and rxr homologs in B. malayi females points to

possible functions of the ecdysone receptor also in nematode

oogenesis and/or embryogenesis.

The expression pattern of Bma-RXR differs somewhat from the

expression pattern of the other filarial rxr identified to date, Di- rxr-

1, which is expressed in males but not females [36]. In insects the

rxr homologue ‘‘Ultraspiracle’’ (USP) is considered the main

functional partner of EcR and as such its expression overlaps

with that of EcR [5]. This also seems to be the case in B. malayi,

where we observed that at least one isoform of Bma-rxr has an

overlapping expression pattern with Bma-EcR. However, two other

Bma-rxr isoforms appear to be specifically expressed only in

females.

The sequence differences of B. malayi and D. immitis RXR may

mirror differences in expression patterns of the two RXR

homologues. Whether these differences in sequence and expres-

sion pattern correlate with differences in ligand interaction and/or

function remains an open question.

Both Bma-EcRA and a putative isoform B are able to bind a

canonical ecdysone response element (EcRE) when partnered with

USP. The question of whether isoform B exists in B. malayi (as in

D. immitis) remains unanswered. We have shown that such an

isoform is biochemically active, being able to dimerize with an

insect USP and bind EcRE in vitro. Furthermore, isoform B is the

most similar to the insect EcRs. Bma-EcRB contains a shorter (i.e.

canonical) ‘‘T-box’’ region than Bma-EcRA (Fig. 1). The ‘‘T-box’’

region has been described as being able to modulate DNA binding

to extended hormone response elements [61]. The presence of

possible sequence variation in the ‘‘T-box’’ region in these two

Bma-EcR variants could point to the possibility of differences in

isoform-specific interactions with DNA target sequences.

Bma-EcRC contains a truncated LBD, and it is similar in

organization to the estrogen-alpha variant Delta-5, which displays

dominant-negative activity [62]. As we have shown, isoform C is

unable to dimerize with a bona fide USP to bind the palindromic

EcRE. These data suggest that Bma-EcRC may carry out a novel

function that is independent of any interactions with an RXR

partner. Establishing the role of Bma-EcRC is the aim of future

investigations.

The sequence in the region of helices 11–12 in the LBD of B.

malayi and D. immitis EcR and RXR homologues is strikingly

divergent when compared to each other and to other EcRs and

RXRs respectively. The most prominent feature in Bma-EcR is

the absence of conserved helix 12 residues. This difference raises

the question of what constitutes a functional activation function

corresponding to AF2 in these nematode members of the nuclear

receptor family. Our transcriptional activation assay results clearly

show that the two receptors can dimerize and that the LBD of

Bma-EcR is capable of transducing an ecdysteroid signal in a

cellular context. Even though our analysis was carried out in a

heterologous system, this type of assay has been shown to be highly

informative for LBD-ligand interactions [44]. In this system,

however, strong constitutive dimerization of receptor partners can

obscure possible transcriptional effects of the ligand. Our results

obtained with the chimeric RXR-LBD (which confers low

constitutive dimerization) as a partner, indicate that the Bma-

EcR LBD does show an ecdysteroid response. Evidence of

hormone binding from these transactivation assays and the

absence of a recognizable AF2 motif in Bma-EcR suggest that

this receptor utilizes different features to achieve equivalent

transcriptional functions than its insect counterparts.

The identification of the putative ecdysone receptor compo-

nents presented here provides strong support to the long standing

hypothesis that ecdysteroids play a role in filarial nematode

embryogenesis and molting similar to their role in insects.[4,32].

Ecdysteroids have been detected in a number of nematodes

(reviewed by Barker and Rees, [32]). When in vitro cultivation of

Onchocerca volvulus microfilaria was attained, it was observed that

the addition of 20E to the culture media resulted in L1 larva

progressing to the infective L3 stage [63]. This observation is

consistent with the fact that after the bloodmeal, mosquitoes raise

their ecdysteroid level, which correlates with the subsequent rapid

molting of the ingested L1 larvae to the L2 stage. We attempted to

directly demonstrate that ecdysone can act as a transcriptional

trigger in vivo using a transient transformation reporter assay.

Indeed, significant activity was observed in response to ecdysone .

Our transgenic Brugia experiments confirm the in vivo functionality

of both a consensus EcRE and 20-hydroxyecdysone in measurable

transcriptional activity. Although we present no data to establish

that the observed activation is mediated by the receptor(s) we have

cloned, our results in conjunction with previous studies on this

subject confirm that filarial nematodes in particular, contain and

express the gene components of a functional ecdysone signaling

system that is quite similar to that of other ecdysozoa. The role of

this signaling system in filarial development will be the subject of

further studies. Furthermore, the existence of a functional

ecdysone signaling pathway in filarial nematodes does point to

the possibility of using a novel approach for the development of

drugs to fight filariasis based on testing of pre-existing compounds

that specifically target the ecdysone pathway [64].

Supporting Information

Figure S1 Phylogenetic tree of all Nuclear receptors. Maximum

likelihood phylogenetic tree generated with all nuclear receptor

sequences obtained from SwissProt and GenBank constructed as

described in the Methods. The positions of Bma-EcR and Bma-

RXR reported here are indicated by arrows. The accession

numbers and the statistical aLRT support for the branches are

indicated.

Found at: doi:10.1371/journal.pntd.0000625.s001 (0.23 MB TIF)

Figure S2 Sub-trees containing EcRs and RXRs. Sub-trees from

the phylogeny of Figure S1 containing all EcRs (left) or all RXRs

(right). The accession numbers and the statistical aLRT support

for the branches are indicated.

Found at: doi:10.1371/journal.pntd.0000625.s002 (0.27 MB TIF)
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Figure S3 In vitro translated proteins used in Figure 4. SDS-

PAGE of 35S-labeled in vitro translated proteins used in Figure 4

showing size and relative amounts of the three Bma-EcR isoforms

and AaUSP. One mL of each in vitro translated protein was

analyzed by autoradiography of the dried gel.

Found at: doi:10.1371/journal.pntd.0000625.s003 (0.13 MB TIF)

Figure S4 HsLmRXR-VP16 (LBD) chimera activates the

reporter upon RSL1 treatment only in the presence of a responsive

EcR heterodimer partner. Transactivation assay with the chimeric

VP16:Hs-LmRXR(LBD) used in Figure 8. The same construct

was transfected along with a Gal4: CfEcR(LBD) fusion or alone in

NIH-3T3 cells using the same experimental protocols as for

Figure 8. Activation of the reporter is observed only upon

induction with the ecdysone agonist RSL-1. CfEcR(LBD) encodes

the LBD of the ecdysteroid receptor from Choristoneura fumiferana

[44].

Found at: doi:10.1371/journal.pntd.0000625.s004 (0.07 MB

DOC)

Table S1 List of accession numbers for all EcR and RXR

sequences used in the phylogenetic analyses shown in Figures 2

and 6.

Found at: doi:10.1371/journal.pntd.0000625.s005 (0.07 MB

DOC)
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