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SUMMARY

While variations of seismic reflection amplitudes with incidence angle (AVA) and azimuth

have been widely used to provide information on geometric characteristics of fractures,

this attribute has, as of yet, not been linked to fracture interconnectivity, which tends

to govern the hydraulic property of the affected formation. This is due to limitations of

the forward models considered to represent the corresponding seismic responses. Based

on a poroelastic upscaling procedure and a subsequent plane-wave analysis, we show

for the first time that seismic reflection coefficients are highly sensitive to fracture inter-

connectivity. Moreover, our results suggest that crossplots of commonly employed AVA

coefficients can be used to delineate regions of fractured formations with higher or lower

fracture interconnectivity. This sensitivity is due to changes of the stiffening effect of the

fluid contained within interconnected fractures in response to wave-induced fluid pressure

diffusion (FPD), a physical process that has not been previously accounted for in seismic

reflection analyses.
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1 INTRODUCTION

Fractures are ubiquitous in the shallower parts of the Earth’s crust and they usually provide preferential

pathways for the flow of pore fluids. For this reason, the detection of fractures in general and the

assessment of their interconnectivity in particular are tasks of great importance with applications in

groundwater and contaminant hydrology, nuclear waste storage, CO2 sequestration, and hydrocarbon

exploration and production, amongst others (e.g., Liu et al. 2000; Nelson 2001; Maultzsch et al. 2003).

The seismic method constitutes a key tool to detect and characterize fractures in a non-invasive

manner and on a relatively large scale. In particular, variations of seismic reflection amplitudes with

incidence angle (AVA) and azimuth are often used to provide geometric information on fractures (e.g.,

Liu & Martinez 2012). In this context, there are some studies in the literature linking seismic and

hydraulic properties of fractured formations (e.g., Boadu 2000; Jakobsen et al. 2007; Ali & Jakobsen

2014). These works do, however, only consider the role played by the length, aperture, and orientation

of the fractures and neglect the influence of interconnectivity, which is a critical parameter controlling

the hydraulic properties of the formation (Berkowitz et al. 2000). In fact, regardless of the geometric

characteristics of the individual fractures, if their interconnectivity is low, the effective hydraulic prop-

erties of the formation will be controlled by the permeability of the embedding background material.

Despite its importance, as far as we know, there are no theoretical analyses or experiments explic-

itly linking AVA data to fracture interconnectivity, which is due to inherent limitations of the models

employed to represent the seismic response of these media. Indeed, in the context of the theory of

elasticity, fracture intersections are predicted to have negligible influence on the effective elastic prop-

erties and, therefore, on seismic data of fractured formations (Grechka & Kachanov 2006). Other

popular models consider the impact of fluid-pressure diffusion (FPD) between the fractures and the

embedding porous background rock, but do not account for fracture interconnectivity effects (e.g.,

Chapman 2009; Bakulin et al. 2000). However, when a seismic wave travels through a fluid-saturated

porous formation containing a fracture network, FPD within connected fractures can arise, affecting

significantly the characteristics of the propagating seismic wave (Rubino et al. 2013, 2017). Indeed,

Rubino et al. (2017) demonstrated that the presence of connected fractures tends to modify the veloc-

ity anisotropy of the probed formation in the seismic frequency band. These authors showed that, for

such frequencies, these fracture interconnectivity effects are not manifested as seismic attenuation or

dispersion, but in the form of variations of the compliance of connected fractures due to changes of

the stiffening effect of the fluid present in the fractures in response to FPD. That is, when a seismic

wave compresses a disconnected fluid-saturated fracture, it increases its fluid pressure. However, if the

fracture is connected to another one of different orientation, the fluid pressure increase will be lower,

which implies an increase of fracture compliance and a corresponding impact on the seismic velocity.
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The results of Rubino et al. (2017) therefore indicate that seismic data encode valuable information on

the interconnectivity of fracture networks, which is currently ignored and, potentially, misinterpreted.

In spite of this, the corresponding effects on seismic reflection data remain unexplored.

In this paper, we seek to shed some light on the sensitivity of seismic reflection data to the inter-

connectivity of fracture networks. To this end, we first use a numerical upscaling procedure based on

the theory of poroelasticity (Biot 1941) to determine the effective stiffness matrices of 2D models of

fractured formations and accounting for fracture interconnectivity effects. Next, we perform a plane-

wave analysis to determine the amplitudes of seismic waves reflected from the top of the considered

fractured formations, which are characterized by their effective stiffness matrices. We analyze the re-

sults for formations containing sets of conjugate fractures characterized by different orientations and

varying degrees of interconnectivity.

2 METHODOLOGY

We consider a plane P -wave incident on a fractured formation and compute the reflection coefficients

at its top boundary (Figure 1). The fractures are of mesoscopic scale, that is, they are much larger

than the grain and pore sizes, but much smaller than the prevailing seismic wavelengths. This implies

that the resolution of seismic data is insufficient for directly imaging the fractures, which, instead,

manifest themselves through an increase of the overall attenuation, dispersion, and anisotropy (e.g.,

Liu & Martinez 2012). To obtain the AVA response, we first employ a numerical upscaling procedure

(Rubino et al. 2016; Hunziker et al. 2018) to determine an effective anisotropic viscoelastic solid

representing the fractured formation. Next, we solve the anisotropic viscoelastic equations of motion

in the space-frequency domain for a plane P -wave incident at a given angle θ.

Due to the high computational cost of 3D numerical simulations, we consider a 2D scenario under

plane strain conditions normal to the x-y plane (Figure 1). This implies that the fractures have the

same strike and are sufficiently long in the z direction so that the strains along this axis are negligible

compared with those along the other two axes. From a practical point of view, the computed reflection

coefficients are representative for a seismic survey perpendicular to the strike of the fractures.

2.1 Effective properties of the fractured formation

We assume that there are no significant variations of the statistical properties of the geometric char-

acteristics of the fractures throughout the formation. This implies that the fractured formation be-

haves as a homogeneous medium with effective properties at the wavelength scale. The presence of

hydraulically-open fractures causes (i) a reduction of seismic velocities due to their large compli-
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Figure 1. (a) Schematic illustration of a homogeneous medium ΩU overlying a fractured formation ΩL whose

effective properties are obtained through a numerical upscaling procedure. (b) Blow-up depicting a representa-

tive elementary volume (REV) with partially interconnected mesoscopic fractures.

ances, (ii) anisotropy due to their elongated shapes and preferential orientations, and (iii) attenuation

and dispersion in response to FPD produced by their strong mechanical contrast with respect to the

embedding background (Rubino et al. 2013, 2014, 2017). These FPD processes occur not only be-

tween the fractures and the embedding porous background, but also within connected fractures, which

makes the seismic response of the media sensitive to fracture interconnectivity. All these effects can be

captured in the framework of viscoelasticity by using a frequency-dependent effective stiffness matrix

Ceff
ij (ω) (Rubino et al. 2016). In 2D and for the coordinate system defined in Figure 1, the effective

stress-strain relations can be described by
σ11
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with σij and εij being the elements of the stress and strain tensors at the wavelength scale. The prop-

agation of seismic waves though the fractured formation can be described by eq. 1, together with the

anisotropic viscoelastic equation of motion.

To determine the effective stiffness matrix Ceff
ij , we employ the implementation of Hunziker et al.

(2018) of the numerical upscaling procedure presented by Rubino et al. (2016). That is, we consider a

square sample representative of the formation of interest containing fractures in the mesoscopic scale

range, as schematically shown in Figure 1b. The fractures are modelled as highly compliant porous

media characterized by very high porosity and permeability and they are in hydraulic communication
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with the embedding porous background (Rubino et al. 2013). The sample is then subjected to three

relaxation tests that provide the required information on the effective viscoelastic representation of

the probed medium (Rubino et al. 2016; Hunziker et al. 2018). First, homogeneous time-harmonic

normal displacements of opposite direction are applied on the top and bottom boundaries. The second

test is similar to the previous one, but the normal displacements are applied to the lateral boundaries.

Finally, the third test consists of oscillatory shear displacements along the upper and lower boundaries

in opposite directions. Unless mentioned otherwise, for all these tests we consider periodic boundary

conditions for the solid displacement and the fluid pressure, and antiperiodic boundary conditions for

the traction and fluid flux.

The behavior of the probed fractured rock to the relaxation tests is obtained in the context of Biot’s

theory of quasistatic poroelasticity (Biot 1941), which naturally accounts for FPD effects. Locally, the

total stress equilibrium and Darcy’s law are then to be fulfilled simultaneously, which in the space-

frequency domain yields

∇ · σpm = 0, (2)

∇pf = −iω η
κ
w, (3)

where σpm ≡
(
σpm
ij

)
represents the total stress tensor of the porous medium, w the average relative

fluid displacement per unit volume of bulk material, pf the fluid pressure, κ the permeability, η the

viscosity of the pore fluid, and ω is the angular frequency. The stress-strain relations are given by (Biot

1962)

σpm
ij = 2µεpm

ij + δij (λc∇ · upm − αMζ) , (4)

pf = −αM ∇ · upm +Mζ, (5)

whereupm is the average solid displacement of the porous material, εpm
ij = 1

2

(
∂upm

i /∂xj + ∂upm
j /∂xi

)
the strain tensor, and ζ = −∇ · w is a measure of the local change in the fluid content. In equation

(4), µ is the shear modulus of the saturated material, which is equal to that of the dry frame µm. The

Biot effective stress coefficient α, the Biot modulus M , and the undrained Lamé parameter λc can be

computed as functions of the properties of the solid grains, dry matrix and pore fluid of the considered

material (e.g., Mavko et al. 1998).

The solid and relative fluid displacements in response to the three tests are numerically approx-

imated by solving equations 2 to 5 under corresponding boundary conditions. Under the assumption

that the fractured sample can be represented by an effective homogeneous anisotropic viscoelastic

solid, the volume averages of the stress and strain components resulting from each test are linked

through an effective stiffness matrix, as shown in equation 1. Please notice that, in this equation, we

should consider σij ≡< σpm
ij > and εij ≡< εpm

ij >, where <> denotes the volume average of the
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considered quantity. The effective stiffness matrix Ceff
ij is then computed, for each frequency, follow-

ing a least-squares procedure (Rubino et al. 2016). This upscaling procedure has been implemented as

a finite element code called “Parrot”, which is able to handle complex fracture geometries (Hunziker

et al. 2018; Favino et al. 2020).

2.2 Reflection coefficients at the top of the fractured formation

Once the effective viscoelastic properties of the fractured formation have been determined, we can

explore the characteristics of reflected seismic waves in the context of the theory of viscoelasticity.

With this aim, and assuming that the fractured formation and the overburden are much thicker than the

predominant seismic wavelengths, we consider a plane interface separating two halfspaces ΩU and ΩL

(Figure 1) to compute the reflection coefficients. For simplicity, we assume that the overburden ΩU

is elastic and isotropic, while the fractured medium ΩL can be viscoelastic and characterized by any

degree of anisotropy. Please notice that this medium is represented by the effective stiffness matrix

Ceff
ij , which accounts for FPD effects.

We consider that a plane, harmonic, homogeneous P -wave arrives at the interface from ΩU with

an incidence angle θ measured with respect to the normal (see Figure 1). This perturbation gener-

ates four waves at the interface: reflected compressional and shear waves in ΩU , and transmitted

quasi-compressional and quasi-shear waves in ΩL. The displacements in the upper halfspace are then

caused by the contribution of the incident and reflected waves, while in the lower halfspace they are

produced by the transmitted wavefield components. Such displacement vectors can be used to ob-

tain the components of the strain tensor in each halfspace and, through the use of the corresponding

stiffness matrix, the stress tensor for each media can be computed. By requiring the continuity of the

particle displacements and normal and tangential stresses at the interface, a linear system of equations

is obtained, which allows to obtain the amplitudes of the reflected and transmitted perturbations and,

thus, the reflection coefficients. The details of this procedure are outlined in Appendix A.

3 NUMERICAL ANALYSIS

In this Section, we apply the previously described methodology to obtain the AVA responses of for-

mations containing conjugate fractures. We consider different inclinations for the fractures and, in

particular, contrasting degrees of connectivity to highlight the role played by this important character-

istic of fracture networks.
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3.1 Physical and geometric properties of the fracture networks

To explore the sensitivity of AVA to fracture interconnectivity, we consider two end-member-type

models of fractured formations, which in the following are referred to as “low connectivity” and

“high connectivity”. These models have the same fracture density of 0.01, defined as the area covered

by the fractures divided by the total area of the sample, and differ only in terms of the degree of

interconnectivity. In the low connectivity case, we consider that, in the probed formation there are, on

average, less than 0.28 fracture intersections per square meter measured in the considered x-y plane

whereas, in the high connectivity case, more than 1.67 intersections. In both cases, the networks are

composed of equal, randomly distributed, rectangular fractures with a length of 1.5 m and an aperture

of 5 mm. Half of the fractures are oriented at an angle −α/2 with respect to the vertical, whereas

the remaining half at +α/2 , thus, forming intersection angles of α. Fracture sets of this type are

representative of conjugate shear fractures, which tend to be oriented at the same angle with respect

to the principal stress directions (e.g., Nelson 2001; Galvin et al. 2007). We focus the analysis on

this kind of fracture sets because they are very common in the crust and are considered to control

the fluid flow characteristics of the affected formation (e.g., Liu & Martinez 2012; Barton 2006).

Overlying the fractured formation, we consider a homogeneous medium having the properties of the

intact background that surrounds the fractures. The AVA response is then obtained at the interface

separating the two media.

As fracture networks are very complex, corresponding REVs tend to be very large and their di-

rect characterization can be computationally unfeasible. To deal with this issue, we consider samples

having sizes smaller than those of corresponding REVs and compute the reflection coefficients in a

Monte Carlo fashion, which provides the representative properties through averaging (Rubino et al.

2009). For the two end-member-type models, we then consider an ensemble of square samples of

6 m sidelength, which contain 50 fractures and only differ in terms of their fracture interconnectivity:

the low-connectivity samples contain less than 10 intersecting fractures, whereas the high-connectivity

ones contain more than 60 intersections. Like this, the two sets of fractures satisfy the previously given

definition of low and high connectivity models in terms of the average number of fracture intersections

per square meter. In addition, the considered distributions of fractures are periodic with respect to the

boundaries, in accordance with the boundary conditions considered in the upscaling procedure. Figure

2 shows two typical examples of the samples employed in the numerical analysis.

With respect to the physical properties to be employed in the numerical simulations, we con-

sider parameters representative of an isotropic tight sandstone for the intact background embedding

the fractures (Rubino et al. 2017). In this sense, the solid grains are characterized by a bulk mod-

ulus Kb
s =37 GPa and a density ρb

s =2650 Kg/m3. For the dry frame, we use a porosity φb=0.05, a
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Figure 2. Typical samples employed in the Monte Carlo analysis to compute the reflection coefficients of

fractured formations of contrasting degree of interconnectivity. Both samples have 50 fractures and, for this

particular example, half of them are inclined -30o and +30o with respect to the vertical direction, forming an

intersection angle α = 60o. The sample on the left has less than 10 fracture intersections, wheres the one on the

right more than 60 intersections.

permeability κb=10−5 mD, a drained-frame bulk modulus Kb
m=31.5 GPa, and a drained-frame shear

modulus µb
m=37.4 GPa. For the fractures, we assume that, at the grain level, the physical properties are

the same as those of the background. For the dry-frame properties, we use a bulk modulus K f
m = 0.04

GPa and a shear modulus µf
m= 0.02 GPa, while we set the porosity to φf=0.8 and the permeability to

κf=1000 D (Rubino et al. 2017). Both the background and the fractures are saturated with water with

a bulk modulus Kw=2.25 GPa, a density ρw=1090 Kg/m3, and a shear viscosity ηw=0.001 Pa · s. The

chosen mechanical properties are consistent with a fracture shear compliance ηT = 2.5× 10−10m/Pa,

and normal compliances ηdryN = 7.5×10−11m/Pa and ηundrainedN = 1.76×10−12 m/Pa for the dry and

undrained cases, respectively. Overall, these values are in agreement with compliances of meter-scale

fractures (Barbosa et al. 2019). On the other hand, the effective elastic properties of the homogeneous

region overlying the fractured formation are obtained using Gassmann’s equations, considering the

previously mentioned physical properties of the intact background.

Since conjugate shear fractures can be associated with a wide range of angles (e.g., Liu & Martinez

2012), we consider 3 different scenarios: α =45o, 60o, and 75o. For each value of α, we randomly

generate 40 samples for both the low and high connectivity models and compute the reflection coeffi-

cients for a frequency of 30 Hz. The mean values and variances of the resulting coefficients represent
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Figure 3. P -wave (left) and S-wave (right) reflection coefficients as a function of incidence angle for a fre-

quency of 30 Hz and a set of fractures characterized by intersection angles α of (a, b) 45o, (c, d) 60o and (e,

f) 75o. Red and blue depict the responses of the low- and high-connectivity scenarios, respectively. Thick solid

lines denote the average responses, whereas the bounding shaded areas indicate the corresponding standard

deviation intervals. Dashed lines denote the high-frequency limit (H.F.L.), or elastic, responses.

the statistical characteristics of the reflectivity of the studied fractured formations. To ensure conver-

gence in terms of the total number of realizations, we compute the standard deviations of the reflection

coefficients as a cumulative function of realizations. Convergence is reached when these parameters

stabilize at quasi-constant values (Rubino et al. 2009), which is indeed the case for the current study,

as shown in Appendix B.
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3.2 Results

The left-hand panels of Figure 3 show, for a frequency of 30 Hz, the average P -wave reflection co-

efficient as a function of incidence angle for the three fracture intersection angles considered. It can

be seen that in all cases for incidence angles above ∼20o or ∼30o, the reflection coefficient is higher

for the high-connectivity model. The discrepancies increase with both the incidence angle and the

fracture intersection angle α. For comparison, we also include the average reflection coefficients in

the high-frequency limit (dashed lines), which correspond to the elastic limit, for which FPD effects

are absent. We observe that, also in this case, there is a tendency towards increasing reflection coef-

ficients with fracture interconnectivity. However, the sensitivity is much smaller and would be hardly

observable in real data. This is expected, since Grechka & Kachanov (2006) showed that the degree of

fracture interconnectivity has a negligible effect on the effective seismic response in an elastic context.

In addition, these results show that the increase of the reflection coefficients with fracture intercon-

nectivity for a frequency of 30 Hz is mainly due to FPD effects. It is also interesting to notice that,

for the low-connectivity models, the reflection coefficients attain higher values than those in the high-

frequency limit. This observation suggests that the presence of some connected fractures is sufficient

for producing a noticeable effect.

The right-hand panels of Figure 3 show the average S-wave reflection coefficient for an incident

P -wave as a function of incidence angle. We observe that, also in this case, the reflection coefficient is

sensitive to fracture interconnectivity and that this sensitivity increases with increasing fracture inter-

section angle. Indeed, clear discrepancies between the responses can be seen, especially for incidence

angles above ∼10o. For instance, for α = 60o and incidence angles around 30o, the reflection coef-

ficient for the high-connectivity model is ∼0.21, while for the lower degree of interconnectivity it is

∼0.16. This shows that, for relatively low incidence angles, the discrepancies between the two sce-

narios can be significant, thus illustrating that seismic reflection data may be used to assess fracture

interconnectivity. In the high-frequency limit, the responses are again not sensitive to interconnectivity.

To understand the reasons for the changes in reflectivity associated with fracture interconnectivity,

we show in Table 1 the averages of the effective stiffness matrix components over the considered

40 realizations for a fracture intersection angle α = 60o. We observe that for both low and high

connectivity scenarios, < Ceff
16 > and < Ceff

26 > are very small, showing that the responses are mainly

controlled by < Ceff
11 >, < Ceff

22 >, < Ceff
12 > and < Ceff

66 >. Moreover, while the values of < Ceff
11 >,

< Ceff
22 >, and < Ceff

12 > do not change significantly with fracture interconnectivity, < Ceff
66 > was

reduced by almost 30% when comparing the low- and high-connectivity scenarios. This means that

the change of< Ceff
66 > with fracture interconnectivity is responsible for the discrepancies observed in

the reflection coefficients for the two end-member-type models. Although not shown here for brevity,
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Table 1. Average values of the components of the effective stiffness matrix over the considered 40 samples, for

a fracture intersection angle α = 60o. We consider both the low and high connectivity models, and a frequency

of 30Hz. Please notice that the symbol i denotes the imaginary unit.

Low Fracture Connectivity [GPa] High Fracture Connectivity [GPa]

< Ceff
11 > 49.27 + 0.13 i 49.78 + 0.25 i

< Ceff
22 > 53.71 + 0.15 i 53.58 + 0.24 i

< Ceff
66 > 18.53 + 1.01 i 12.97 + 0.95 i

< Ceff
12 > 26.88 - 0.07 i 26.77 -0.17 i

< Ceff
16 > -0.06 - 0.01 i 0.01 i

< Ceff
26 > -0.04 + 0.01 i 0.1 - 0.01 i

similar behaviours were obtained for the other fracture intersection angles considered in this work. In

particular, < Ceff
66 > was reduced by almost 11% for α = 45o when comparing the low- and high-

connectivity scenarios, whereas this reduction reached a value of 40% in the case of α = 75o. These

results also show that the impact of fracture connectivity on < Ceff
66 > increases with the value of α.

With respect to the physical reasons for the behaviours observed for the stiffness coefficients, it

has to be taken into account that in the case of low-permeability formations containing fractures and

for typical seismic frequencies, there is not enough time in a half wave cycle for hydraulic communi-

cation between the fractures and the background. This implies that the fractures behave as hydrauli-

cally sealed with respect to the background (Rubino et al. 2014). Therefore, when a seismic wave

compresses a disconnected fracture, it increases its fluid pressure, counteracting the associated defor-

mation of the fracture. This is referred to as the stiffening effect of the fracture fluid. However, in the

presence of connected fractures of different orientations, there is enough time for the fluid pressure

within the fractures to relax due to their typically very high permeabilities (Rubino et al. 2014). There-

fore, the stiffening effect of the fluid saturating connected fractures diminishes in comparison with the

corresponding unconnected case and, hence, can alter the effective stiffness coefficients. While this

effect does not have a significant impact on < Ceff
11 >, < Ceff

22 >, and < Ceff
12 > for the considered

models, it alters significantly the value of < Ceff
66 >. This can be understood by analyzing the fol-

lowing situations. When a simple shear test is applied to a sample containing unconnected conjugate

fractures, the fractures are strongly deformed. Since they behave as hydraulically sealed, high abso-

lute values of fluid pressure inside both fractures sets arise, thus counteracting the deformation and

increasing the overall rigidity. Due to the opposite orientations of the two fracture sets, there is an
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increase of pressure in one of the fracture sets, while the pressure decreases in the other one (Rubino

et al. 2017). Consequently, if these fractures are connected, the resulting pressure gradient triggers

fracture-to-fracture FPD, reducing the magnitude of the fluid pressure inside the connected fractures,

which diminishes the overall rigidity of the formation. This explains the drop of the value of < Ceff
66 >

for the high-connectivity models. On the other hand, in the case of an oscillatory horizontal or vertical

compression, the fluid pressure increases (or decreases) in all fracture and, therefore, the resulting

FPD in the presence of connected fractures is largely negligible. This implies that the stiffening effect

of the fracture fluid is not significantly affected by FPD and, therefore, < Ceff
11 >, < Ceff

22 >, and

< Ceff
12 > remain rather unaltered when comparing the two end-member-type models. The numerical

results also show that this poroelastic effect tends to increase with the intersection angle α. This is due

to the fact that as α increases, and as long as its value is below 90o, the fluid pressure gradient gener-

ated between the conjugate fractures in response to a shear perturbation tends to increase. Indeed, the

maximum discrepancies between the responses of the end-member-type models are expected to arise

for α = 90o. It is important to remark here that these results are strictly valid for conjugate fracture

sets equally inclined with respect to the vertical. Additional numerical simulations would be needed

to explore other scenarios, which will be considered in future works.

Another interesting aspect of the stiffness components shown in Table 1 and those obtained for

α = 45o and 75o is that their imaginary parts get very low values in comparison with the corresponding

real parts. This, in other words, implies that for the considered frequency, the effective response of

the fractured formation is essentially elastic, that is, seismic attenuation and velocity dispersion are

negligible. This is due to the fact that, for the seismic frequency band, the pore fluid is in relaxed state

inside the fractures and in the unrelaxed state in the embedding porous background. Consequently,

there is no energy dissipation associated with pore fluid movement for such frequencies. This implies

that the fracture interconnectivity effects are not manifested as seismic attenuation or dispersion for

the considered frequencies, but in the form of variations of the compliance of connected fractures. For

frequencies well below and well above the seismic frequency band, seismic attenuation and dispersion

due to fracture-background and fracture-fracture FPD, respectively, are expected to arise (Rubino et al.

2014).

3.3 Impact on AVA coefficients

For a seismic profile perpendicular to the azimuth of the fractures, the P -wave reflection coefficient

can be approximated by (Liu & Martinez 2012)

RCpp(θ) = A+B sin(θ)2 + C sin(θ)4, (6)
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Figure 4. Crossplot of AVA coefficients B and As (eqs. 6 and 7) for fracture intersection angles α of 45o, 60o,

and 75 o. Red and blue color denotes the results for the low- and high-connectivity scenarios, respectively.

where the AVA coefficientsA,B, andC are referred to as the intercept, the gradient, and the curvature,

respectively. In the case of the S-wave reflection coefficient, the following approximation can be used

(Liu & Martinez 2012)

RCps(θ) = AS sin(θ) +BS sin(θ)3, (7)
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where AS and BS are referred to as the near- and far-offset responses, respectively. These coefficients

are commonly extracted from seismic data and employed to provide fluid and lithology information

(e.g., Rüger 2002).

In order to explore the impact of the FPD effects related to fracture interconnectivity on these

AVA parameters, we determine, for each sample considered in this work, the set of parameters that

produces the best fit of the corresponding reflectivity curves with eqs. 6 and 7. Please notice that we

use the responses of the individual samples before averaging, to account for possible perturbations

of the AVA coefficients related to slight variations of fracture interconnectivity and interactions. This

analysis allows to verify that, while there are no significant differences in the values of A and C when

comparing different fracture interconnectivities, the other AVA parameters show measurable changes.

Indeed, we observe in a crossplot of coefficients B and As that, while in the case of α = 45o there

is an overlap between the clusters for low and high fracture interconnectivity, the clusters are clearly

separated for α = 60o and 75o (Figure 4 ). In the latter cases, higher values of the coefficients B and

AS are associated with higher degrees of fracture interconnectivity. These results therefore suggest that

for α ≥ 60o, these AVA coefficients could be used to delineate the regions of the probed formation

associated with higher or lower fracture interconnectivity. In this context it is important, however, to

take into account that when analyzing real seismic data to infer fracture interconnectivity, uncertainties

in the input parameters as well as errors in the data will inherently be present. Moreover, the fractures

are expected to be finite in the third dimension and their presence will give rise to azimuthal anisotropy.

These topics will be explored in future works.

4 CONCLUSIONS

In this work, we have computed seismic reflection coefficients at the top of a fractured formation,

considering sets of conjugate fractures characterized by different orientations and degrees of intercon-

nectivity. The effective elastic properties of the probed formations were determined in a poroelastic

framework that accounts for the effects of FPD between fractures and background as well as within

connected fractures. Our analysis demonstrates for the first time that the reflection coefficients are

sensitive to the degree of interconnectivity of the probed fracture network which, in turn, implies that

this key information can be retrieved from seismic data. Moreover, our results suggest that commonly

employed AVA coefficients can help to delineate the regions of a fractured network characterized by

higher interconnectivity. This previously unknown sensitivity of seismic reflectivity to fracture inter-

connectivity is related to variations of the stiffening effect of the fluid contained within connected

fractures due to wave-induced FPD, a physical process that should be accounted for when assessing

the AVA response of these media.
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APPENDIX A: MATHEMATICAL DERIVATION OF THE PROCEDURE FOR

OBTAINING THE SCATTERING COEFFICIENTS

A1 Plane waves in homogeneous, generically-anisotropic, viscoelastic media

We first consider the propagation of plane waves in a homogeneous, generically-anisotropic 2D medium.

In particular, we analyse propagation in the x − y plane under plane strain conditions, such that the

wave equation in the space-frequency domain can be written as

−ω2ρu1 −
∂σ11

∂x
− ∂σ12

∂y
= 0, (A.1)

−ω2ρu2 −
∂σ12

∂x
− ∂σ22

∂y
= 0, (A.2)

where ω is the angular frequency, ρ the mass density of the medium,u = (u1, u2) the particle displace-

ment vector, and σ the stress tensor. These equations are coupled through the stress-strain relations,

which in the considered generically-anisotropic case can be written as
σ11

σ22

σ12

 =


C11 C12 C16

C12 C22 C26

C16 C26 C66




ε11

ε22

2ε12

 , (A.3)

where ε = (εij) is the strain tensor and C = (Cij) is the stiffness matrix. The elements Cij can be

complex-valued and frequency-dependent to take into account viscoelastic behaviour of the material.

Let us now consider a plane wave of frequency ω propagating through a medium characterized by

the stiffness matrixC. As the associated displacement field is not necessarily polarized in the direction

of propagation or transverse to it, it is convenient to express the horizontal and vertical displacements

in the space-frequency domain as

u1 = Ae−ik·x, (A.4)

u2 = Be−ik·x, (A.5)

where k = (n, l) is the wave vector, x the position, and the complex-valued scalars A and B are

the amplitudes of the horizontal and vertical displacements, respectively. In the most general case, the

seismic wave can be inhomogeneous, that is, the propagation vector is not parallel to the attenuation

vector. For this reason, we express the wave vector as

k = kR − ikIm, (A.6)

where the vectors kR and kIm are real-valued and, while the former points in the direction normal to

the planes of constant phase, the latter is oriented in a direction normal to planes of constant amplitude.

Introducing the equalities A.3 in the equations A.1-A.2 and using the relations A.4-A.5 , we get
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the following system of equations[
−ω2ρ+ C11n

2 + 2C16nl + C66l
2
]
A+

[
C16n

2 + (C12 + C66)nl + C26l
2
]
B = 0, (A.7)[

C16n
2 + (C12 + C66)nl + C26l

2
]
A+

[
−ω2ρ+ C66n

2 + 2C26nl + C22l
2
]
B = 0. (A.8)

To obtain non-trivial solutions for A and B, the determinant of the linear system of equations A.7-A.8

has to be zero. Imposing this condition, we get

Pl4 +Ql3 +Rl2 + Sl + T = 0, (A.9)

with

P = C22C66 − C2
26, (A.10)

Q = 2n (C16C22 − C12C26) , (A.11)

R = n2
(
C11C22 + 2C16C26 − C2

12 − 2C12C66

)
− ω2ρ (C22 + C66) , (A.12)

S = 2n3 (C11C26 − C16C12)− 2ω2ρn (C16 + C26) , (A.13)

T = n4
(
C11C66 − C2

16

)
− ω2n2ρ (C11 + C66) + ω4ρ2. (A.14)

Equation A.9 is the dispersion relation and, given the properties of the medium and the horizontal

component of the wave vector n, it allows to determine the plausible values for its vertical compo-

nent l. Equation A.9 has four solutions, which correspond to the quasi-compressional and quasi-shear

waves traveling upwards and downwards in the medium. To decide whether one of the solutions corre-

sponds to a wave traveling upwards or downwards, we must compute the Umov-Poynting vector and

determine the direction in which the energy propagates.

According to equation A.7, the relationship between the amplitudes A and B can be written as

A = γB, (A.15)

with

γ =
−C16n

2 − (C12 + C66)nl − C26l
2

−ω2ρ+ C11n2 + 2C16nl + C66l2
. (A.16)

In the seismic reflection problem addressed in this work, we consider a P -wave incident on a fractured

formation having an effective velocity lower than that of the overlying medium. In this scenario,

the involved reflected and transmitted waves will have propagation directions relatively far from the

horizontal. Thus, for the P -waves involved in this work, equation A.15 can be used without producing

numerical issues since ||B|| >> 0. Conversely, numerical problems could arise for S-waves traveling

in a direction close to the vertical axis. For instance, if a plane S-wave travels vertically in a HTI

medium, B = 0 and γ → ∞. To avoid this potential problem in the case of the S-waves involved in
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this work, we express the relationship between the displacement amplitudes through

B = βA, (A.17)

with

β =
−ω2ρ+ C11n

2 + 2C16nl + C66l
2

−C16n2 − (C12 + C66)nl − C26l2
. (A.18)

When seismic waves propagate through anisotropic media, the direction in which the associated

energy travels does not necessarily coincide with the propagation direction (Carcione 2007). For this

reason, it is important to compute the Umov-Poynting vector, which quantifies the magnitude and

direction of the power flow associated with the seismic perturbation. The complex Umov-Poynting

vector is given by (Carcione 2007)

P = −1

2
Σ · v∗, (A.19)

where, in the considered 2D case,

Σ =

 σ11 σ12

σ12 σ22

 , (A.20)

and v∗ = −iωu∗ is the complex conjugate of the particle velocity. The time-average of the real

Umov-Poytning vector PR represents the magnitude and direction of the time-averaged power flow,

and satisfies < PR >= < (P ) (Carcione 2007). Therefore, to determine whether a given wave travels

upwards or downwards, we need to examine the real part < of the vertical component of the complex

Umov-Poytning vector. Using the expressions of the solid displacement in terms of the amplitudes A

and B, and the stress-strain relations, it is straightforward to show that the vertical component of P

can be expressed as

P2 =
ω

2

[
(C16n+ C66l) ||A||2 + (C26l + C66n)A∗B + (A.21)

(C12n+ C26l)AB
∗ + (C22l + C26n) ||B||2

]
.

For P -waves, expressing A in terms of B, this equation can be written as

P2 =
ω||B||2

2

[
(C16n+ C66l) ||γ||2 + (C26l + C66n) γ∗ + (A.22)

(C12n+ C26l) γ + C22l + C26n

]
.

Since ω||B||2/2 ≥ 0, the sign of

<
[

(C16n+ C66l) ||γ||2 + (C26l + C66n) γ∗ + (A.23)

(C12n+ C26l) γ + C22l + C26n

]
,

determines whether a given P -wave travels upwards or downwards. In the case of S-waves, following
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a similar procedure and expressing B in terms of A, it can be shown that the direction of propagation

is given by the sign of

<
[
C16n+ C66l + (C26l + C66n)β + (A.24)

(C12n+ C26l)β
∗ + (C22l + C26n) ||β||2

]
.

A2 Scattering coefficients at a plane interface

Let us consider a plane interface at y = 0 separating two halfspaces ΩU and ΩL (Figure 1), with the

y-axis pointing downwards. A plane homogeneous P -wave arrives at the interface from ΩU with an

angle θ measured with respect to its normal. This perturbation generates four waves at the interface:

reflected and transmitted quasi-P - and quasi-S-waves.

A2.1 Incident wave

We assume that the incident wave is compressional and homogeneous. Thus, the components of the

wave vector can be expressed as

n = kI sin θ, (A.25)

lI = kI cos θ, (A.26)

where kI is the wavenumber and θ the incidence angle. Using these expressions in equations A.9-A.14,

we get

Uk4
I + V k2

I +W = 0, (A.27)

with

U = (CU
11C

U
66 − (CU

16)2) sin θ4 + 2(CU
11C

U
26 − CU

16C
U
12) sin θ3 cos θ +

(CU
11C

U
22 + 2CU

16C
U
26 − (CU

12)2 − 2CU
12C

U
66) sin θ2 cos θ2 + (A.28)

2(CU
16C

U
22 − CU

12C
U
26) sin θ cos θ3 + (CU

22C
U
66 − (CU

26)2) cos θ4

V = −ω2ρU (CU
11 + CU

66) sin θ2 − 2ω2ρU (CU
16 + CU

26) sin θ cos θ − (A.29)

ω2ρU (CU
22 + CU

66) cos θ2

W = ω4ρ2
U , (A.30)

where, from now on, the super- and subscript U denote the value of any variable in ΩU . Equation A.27

is a biquadratic polynomial, whose four roots correspond to a quasi-P - and a quasi-S-wave traveling

upwards and another pair of quasi-P - and quasi-S-waves traveling downwards. The different types of
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waves can be identified computing their phase velocities (Carcione 2007)

V =
ω

kR
k̂R, (A.31)

where kR is the modulus of kR and k̂R its normalized vector.

From the two resulting wavenumbers associated with quasi-P -waves, we choose the one that cor-

responds to a wave traveling downwards, that is, the wavenumber for which expression A.23 assumes

a value grater than zero. Like this, we determine the wavenumber kI of the incident wave and, using

equations A.25 and A.26 , the corresponding horizontal and vertical components, n and lI .

A2.2 Wavefields in the upper medium

The displacement field uI associated with the incident wave can be written as

uI1 = γIBIe
−i(nx+lIy), (A.32)

uI2 = BIe
−i(nx+lIy). (A.33)

For the reflected waves, using the superposition principle, the associated displacement field is

ur1 = urp1 + urs1 , (A.34)

ur2 = urp2 + urs2 , (A.35)

where urp and urs are the contributions of the reflected quasi-P - and quasi-S-waves. Therefore,

ur1 = γprBpre
−i(nx+lrpy) +Asre

−i(nx+lrsy), (A.36)

ur2 = Bpre
−i(nx+lrpy) + βsrAsre

−i(nx+lrsy). (A.37)

In these equations, we make use of Snell’s law, which indicates that the horizontal component of the

wave vector of the reflected waves is equal to that of the incident wave n. On the other hand, the

vertical components of the wave vectors of the reflected P - and S-waves, lrp and lrs , are obtained by

solving equation A.9 and choosing the corresponding roots, for which expressions A.23 and A.24,

respectively, assume negative values.

Employing the superposition principle, the displacement field in ΩU can thus be expressed by

uU1 = γIBIe
−i(nx+lIy) + γprBpre

−i(nx+lrpy) +Asre
−i(nx+lrsy), (A.38)

uU2 = BIe
−i(nx+lIy) +Bpre

−i(nx+lrpy) + βsrAsre
−i(nx+lrsy). (A.39)

Using these expressions to compute the components of the strain tensor and employing the resulting

expressions in the stress-strain relations (equation A.3), we evaluate the components σU22 and σU12 of
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the stress tensor at the interface y = 0

σU22(x, 0) = −ie−inx

{[
CU

12nγI + CU
22lI + CU

26(lIγI + n)
]
BI +[

CU
12nγpr + CU

22l
r
p + CU

26(lrpγpr + n)
]
Bpr + (A.40)[

CU
12n+ CU

22l
r
sβsr + CU

26(lrs + nβsr)
]
Asr

}
,

σU12(x, 0) = −ie−inx

{[
CU

16nγI + CU
26lI + CU

66(lIγI + n)
]
BI +[

CU
16nγpr + CU

26l
r
p + CU

66(lrpγpr + n)
]
Bpr + (A.41)[

CU
16n+ CU

26l
r
sβsr + CU

66(lrs + nβsr)
]
Asr

}
.

A2.3 Wavefields in the lower medium

In the lower halfspace, the displacement field is given by

uL1 = utp1 + uts1 , (A.42)

uL2 = utp2 + uts2 , (A.43)

where utp and uts are the contributions of the transmitted quasi-P - and quasi-S-waves. Please note

that, from now on, the super- and subscript L denote the value of any variable in ΩL. Employing the

general plane-wave solution for the particle displacements, we can write

uL1 =
[
γptBpte

−i(nx+ltpy) +Aste
−i(nx+ltsy)

]
, (A.44)

uL2 =
[
Bpte

−i(nx+ltpy) + βstAste
−i(nx+ltsy)

]
. (A.45)

In these expressions, we again make use of Snell’s law, that is, the horizontal components of the wave

vectors of the transmitted waves are equal to that of the incident wave n. The vertical components, on

the other hand, are obtained by solving equation A.9 and choosing the roots associated with quasi-P -

and quasi-S-waves for which expressions A.23 and A.24, respectively, assume positive values.

Following similar steps as before, the components of the stress tensor for the lower halfspace

computed at the interface can be expressed as

σL22(x, 0) = −ie−inx

{[
CL

12nγpt + CL
22l

t
p + CL

26(ltpγpt + n)
]
Bpt +

[
CL

12n+ CL
22l

t
sβst + CL

26(lts + nβst)
]
Ast

}
, (A.46)

σL12(x, 0) = −ie−inx

{[
CL

16nγpt + CL
26l

t
p + CL

66(ltpγpt + n)
]
Bpt +

[
CL

16n+ CL
26l

t
sβst + CL

66(lts + nβst)
]
Ast

}
. (A.47)
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A2.4 Continuity conditions and the reflection and transmission coefficients

The natural boundary conditions at the interface y = 0 are the continuity of the displacements and of

the stress components σ22 and σ12. Imposing these conditions, we get the following linear system of

equations, in which the unknown are the displacement amplitudes

γprBpr +Asr − γptBpt −Ast = −γIBI , (A.48)

Bpr + βsrAsr −Bpt − βstAst = −BI , (A.49)

[
CU

12nγpr + CU
22l

r
p + CU

26(lrpγpr + n)
]
Bpr +

[
CU

12n+ CU
22l

r
sβsr + CU

26(lrs + nβsr)
]
Asr −[

CL
12nγpt + CL

22l
t
p + CL

26(ltpγpt + n)
]
Bpt −

[
CL

12n+ CL
22l

t
sβst + CL

26(lts + nβst)
]
Ast = (A.50)

−
[
CU

12nγI + CU
22lI + CU

26(lIγI + n)
]
BI ,

[
CU

16nγpr + CU
26l

r
p + CU

66(lrpγpr + n)
]
Bpr +

[
CU

16n+ CU
26l

r
sβsr + CU

66(lrs + nβsr)
]
Asr −[

CL
16nγpt + CL

26l
t
p + CL

66(ltpγpt + n)
]
Bpt −

[
CL

16n+ CL
26l

t
sβst + CL

66(lts + nβst)
]
Ast = (A.51)

−
[
CU

16nγI + CU
26lI + CU

66(lIγI + n)
]
BI .

This set of equations allows us to obtain the displacement amplitudes Bpr, Asr, Bpt, and Ast which,

in turn, can be used to determine the reflection and transmission coefficients.

In the analyses performed in this work, we consider that the upper medium is elastic and isotropic.

In this particular case, we can define the reflection and transmission coefficients in terms of the particle

displacements measured with respect to the direction of wave propagation (Mavko et al. 1998). In

order to do this, we write the displacement of the incident wave as

uI = CIVI , (A.52)

where

VI =

 γI√
1 + γ2

I

,
1√

1 + γ2
I

T

, (A.53)

is a unit vector parallel to the direction of wave propagation, and

CI = BI

√
1 + γ2

I . (A.54)

Similarly, for the reflected P -wave we can write the associated particle displacement as

urp = CrpVrp, (A.55)
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with

Vrp =

 −γpr√
1 + γ2

pr

,
−1√

1 + γ2
pr

T

, (A.56)

being a unit vector in the direction of the reflected P -wave, and

Crp = −
√

1 + γ2
prBpr. (A.57)

Analogously, the particle displacement associated with the reflected S-wave can be expressed as

urs = CrsVrs, (A.58)

with

Vrs =

(
1√

1 + β2
sr

,
βsr√

1 + β2
sr

)T

, (A.59)

Crs =
√

1 + β2
srAsr. (A.60)

We then define the reflection coefficients as the ratio of the particle displacement of the reflected

wave measured with respect to the direction of propagation and that corresponding to the incident

wave: RCpp = Crp/CI and RCps = Crs/CI . Using the expressions given by equations A.54, A.57

and A.60, we get

RCpp(ω, θ) = −Bpr

BI
, (A.61)

RCps(ω, θ) =

√
1 + β2

sr Asr√
1 + γ2

I BI

. (A.62)

These are the equations employed in this work to compute the reflection coefficients.

A3 Comparison of the proposed methodology with an analytical solution in the case of an

HTI viscoelastic formation

In order to provide an analysis on the correctness of the implementation of the proposed methodology,

we compare the reflection coefficients computed using the proposed methodology with those based on

an analytical solution for an HTI viscoelastic formation (Carcione 1997). In particular, we consider

the reflectivity problem at an interface separating an isotropic elastic overburden and an underlying

anisotropic viscoelastic halfspace. We assume that the latter corresponds to a fractured formation and

compare the reflection coefficients in the plane perpendicular to the strike of the fractures.

The complex-valued, frequency-dependent stiffness coefficients of the anisotropic medium are

computed based on equation 12 of the model of Guo et al. (2018) for a random distribution of planar

fractures embedded in a fluid-saturated porous background. For the latter, we consider for the solid
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Figure A.1. Comparison between (a, b) P -wave and (c, d) S-wave reflection coefficients computed using the

proposed methodology and those obtained with an analytical solution (Carcione 1997) for an HTI viscoelastic

medium overlain by an isotropic elastic medium.

grains a bulk modulus Kb
s = 37 GPa and a density ρbs = 2650 Kg/m3. For the dry frame, we use

a porosity φb = 0.15, a permeability κb = 1 mD, a drained-frame bulk modulus Kb
m = 13.5 GPa,

and a drained-frame shear modulus µbm = 20 GPa. For the fractures, we consider a specific fracture

surface per unit volume of 1 m−1 and we assume that, at the grain level, the physical properties are the

same as those of the background. For the dry-frame properties of the fractures, we consider normal

and tangential weaknesses equal to 0.2 and we set the porosity to φf = 0.8 and the permeability to

κf = 100 D. Both the background and the fractures are saturated with water with a bulk modulus

Kw=2.25 GPa, a density ρw=1090 Kg/m3, and a shear viscosity ηw = 0.001 Pa · s. The fractures

are assumed to be oriented in a way such that the effective medium has horizontal transverse isotropy

(HTI).

The properties of the overlaying isotropic elastic medium are computed based on Gassmann’s

equations (Mavko et al. 1998). We consider for the solid grains a bulk modulus Kb
s = 37 GPa and

a density ρbs = 2650 Kg/m3. For the dry frame, we use a porosity φb = 0.05, a drained-frame bulk

modulus Kb
m = 28.12 GPa, and a drained-frame shear modulus µbm = 30.4 GPa. The saturating pore

fluid has properties identical to those employed for the fractured medium.
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The resulting stiffness coefficients of the two media are then used in the reflectivity problem for

comparison with an analytical solution. We consider a single frequency of 130 Hz, which coincides

with the frequency of the maximal attenuation of the viscoelastic formation. Figure A.1 shows a com-

parison of the reflection coefficients obtained using the proposed methodology with those given by

equation 54 of Carcione (1997). We observe excellent agreement between the two approaches, thus

indicating that the proposed methodology has been correctly derived and implemented.

APPENDIX B: CONVERGENCE OF MONTE CARLO APPROACHES

Figures B.1 and B.2 show the standard deviations of the reflection coefficients as a cumulative function

of the number of realizations for all the scenarios considered in this paper and for incidence angles of

0o, 25o, 50o and 75o. We observe that, in all cases, the standard deviations show very small fluctuations

after 30 realizations, thus indicating that the convergences of the considered Monte Carlo analyses

approach (Rubino et al. 2009).
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Figure B.1. Standard deviations of the reflection coefficients as functions of the number of realizations in the

low-connectivity scenario for fracture intersection angles of (a, b) 45o, (c, d) 60o, and (e, f) 75o. Panels (a), (c),

and (e) correspond to the P -wave reflection coefficient, while panels (b), (d), and (f) show the responses for the

S-wave reflection coefficient. Colors denote different incidence angles.
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Figure B.2. Standard deviations of the reflection coefficients as functions of the number of realizations in the

high-connectivity scenario for fracture intersection angles of (a, b) 45o, (c, d) 60o, and (e, f) 75o. Panels (a), (c),

and (e) correspond to the P -wave reflection coefficient, while panels (b), (d), and (f) show the responses for the

S-wave reflection coefficient. Colors denote different incidence angles.


