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[1] Over the past decade, significant interest has been expressed in relating the spatial
statistics of surface-based reflection ground-penetrating radar (GPR) data to those of
the imaged subsurface volume. A primary motivation for this work is that changes in the
radar wave velocity, which largely control the character of the observed data, are expected
to be related to corresponding changes in subsurface water content. Although previous
work has indeed indicated that the spatial statistics of GPR images are linked to those of
the water content distribution of the probed region, a viable method for quantitatively
analyzing the GPR data and solving the corresponding inverse problem has not yet been
presented. Here we address this issue by first deriving a relationship between the 2-D
autocorrelation of a water content distribution and that of the corresponding GPR
reflection image. We then show how a Bayesian inversion strategy based on Markov chain
Monte Carlo sampling can be used to estimate the posterior distribution of subsurface
correlation model parameters that are consistent with the GPR data. Our results indicate
that if the underlying assumptions are valid and we possess adequate prior knowledge
regarding the water content distribution, in particular its vertical variability, this
methodology allows not only for the reliable recovery of lateral correlation model
parameters but also for estimates of parameter uncertainties. In the case where prior
knowledge regarding the vertical variability of water content is not available, the results
show that the methodology still reliably recovers the aspect ratio of the heterogeneity.

Citation: Irving, J., R. Knight, and K. Holliger (2009), Estimation of the lateral correlation structure of subsurface water content from

surface-based ground-penetrating radar reflection images, Water Resour. Res., 45, W12404, doi:10.1029/2008WR007471.

1. Introduction

[2] A critical problem in hydrological studies is the
accurate description of subsurface heterogeneity at a scale
relevant to the prediction of contaminant fate and transport.
To this end, geophysical methods offer the potential to
bridge a gap in terms of resolution and coverage between
traditional hydrological characterization techniques such as
borehole log and core analyses and pumping and tracer tests
[e.g., Rubin and Hubbard, 2005]. Of particular interest in
the recent past has been the idea of relating the lateral
correlation statistics of surface-based reflection ground-
penetrating radar (GPR) data to those of the water content
distribution of the probed region [e.g., Rea and Knight,
1998; Dafflon et al., 2006; Knight et al., 2007]. The primary
reasons for this interest are that (1) changes in water content
are widely recognized as the predominant cause of changes
in the radar wave velocity, and thus of GPR reflections, in
the subsurface; (2) in electrically resistive media, surface-
based GPR reflection surveys provide a quick and nonin-
vasive means of imaging the shallow subsurface with

unsurpassed resolution; and (3) geostatistical information
on subsurface heterogeneity is particularly useful for many
hydrological applications [e.g., Gelhar, 1993]. In the satu-
rated zone, information regarding the lateral correlation
structure of water content is equivalent to information
regarding lateral porosity variability, which is extremely
difficult to assess from borehole data alone yet is critically
important in hydrological studies because of its inherent ties
with storage and permeability. In the vadose zone, the
spatial distribution of water content is a complicated func-
tion of soil properties, boundary and initial conditions, and
distance from the water table. Nevertheless, being able to
estimate key aspects of the stochastic structure of water
content in unsaturated regions could provide important
information regarding the spatial distribution of soil tex-
tures, which tend to critically affect the unsaturated hydrau-
lic conductivity and thus vadose zone contaminant transport
processes [e.g., Hillel, 2007].
[3] A number of studies have explored the relationship

between the lateral correlation structure of seismic and radar
velocity fields and those of the corresponding seismic and
GPR reflection data [e.g., Gibson, 1991; Hurich, 1996;
Pullammanappallil et al., 1997; Line et al., 1998; Rea
and Knight, 1998; Bean et al., 1999; Knight et al., 2004;
Oldenborger et al., 2004; Dafflon et al., 2006; Carpentier
and Roy-Chowdhury, 2007; Knight et al., 2007]. Although
the seismic and GPR communities have to date worked
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largely independently of one another, it is important to
note that the results obtained are mutually transferrable
because of the strong mathematical analogies that exist
between seismic and electromagnetic wave propagation
[e.g., Carcione and Cavallini, 1995; Belina et al., 2009].
In the seismic literature, the current consensus appears to
be that, although there clearly exists a relationship between
the lateral correlation properties of seismic data and those
of the underlying velocity distribution for weakly scatter-
ing media, the nature of this relationship is largely unclear.
Work by Holliger et al. [1994] and Pullammanappallil et
al. [1997] initially suggested that the average lateral
correlation structures of both of these fields should be
equivalent. However, the more recent results of Bean et al.
[1999] and Carpentier and Roy-Chowdhury [2007] have
pointed out the fundamental dependence of the lateral
correlation properties of a seismic image on bandwidth
and on the vertical derivative operator that acts to create
reflection coefficients from an impedance field, respectively.
Clearly, such details concerning the physics of the experi-
ment must be considered in any strategy to estimate the
correlation structure of subsurface velocity from seismic
reflection data.
[4] Within the GPR community, similar research efforts

have led to corresponding results and conclusions. Rea
and Knight [1998] and Dafflon et al. [2006], for example,
saw very good agreement between the lateral geostatistics
of a cliff face photograph and those of a GPR image
collected along the top of the cliff. In both cases, the rather
weak assumption was made that the gray scale tones in the
photograph were representative of sediment grain size,
with the further assumption that finer-grained sediments
would be associated with higher water contents. Knight et
al. [2007] also observed similarities between the horizontal
correlation statistics of GPR data and neutron probe
measurements. However, Knight et al. [2004] and
Oldenborger et al. [2004] both noticed that the lateral
correlation structure of a GPR image is significantly
affected by its vertical resolution, which is controlled by
the GPR antenna frequency. Again, this suggests that the
elementary physics of the underlying wave propagation
phenomena must be accounted for in any correlation
analysis procedure. What is critically needed to further
research in both the seismic and GPR domains, therefore,
is (1) a consistent methodological framework linking the
lateral correlation properties of a reflection image to those
of the subsurface properties and (2) an appropriate
corresponding inversion strategy.
[5] Here, we address the above issue and present a new

approach for estimating the parameters describing the lateral
variability of water content from surface-based GPR reflec-
tion data. Our approach accounts for the essential details of
wave propagation phenomena and their effect on the corre-
lation structure of a GPR image, something which has been
missing in previous related efforts. We begin by deriving a
relatively simple relationship between the 2-D spatial auto-
correlation of a water content distribution and that of the
corresponding GPR image. Next, we pose the problem of
estimating the water content correlation model parameters
from the GPR data in the context of Bayesian geophysical
inverse theory and describe how Markov chain Monte Carlo
(MCMC) sampling can be effectively used in this regard.

Finally, we apply our methodology to a realistic synthetic
example as well as to field GPR data collected at two
different frequencies, and we assess and discuss the limi-
tations and potential of the technique.

2. Methodology

[6] To relate the 2-D spatial autocorrelation of a GPR
reflection image to that of the underlying water content
distribution, we begin with the assumption that the recorded
GPR data, after suitable processing, can be approximately
modeled by what is known as a primary reflectivity section
(PRS) [e.g., Gibson, 1991; Pullammanappallil et al., 1997;
Bean et al., 1999]. That is, we assume that the processed
and migrated/imaged GPR data can be treated as the
convolution product of a reflection coefficient distribution,
which is approximately obtained by vertical differentiation
of the underlying radar wave velocity distribution, with a
source wavelet function. In the depth domain, this is
expressed as follows:

d x; zð Þ ¼ r x; zð Þ * w zð Þ

� @

@z
v x; zð Þ * w zð Þ; ð1Þ

where the asterisk denotes the convolution operator, x and z
are the spatial coordinates, d(x,z) represents the processed
and depth-migrated GPR amplitude data, r(x,z) is the
reflection coefficient distribution, v(x,z) is the velocity
distribution, and w(z) is the source wavelet. The PRS is
composed of a series of 1-D, vertical incidence, primaries-
only GPR traces and can be regarded as the ideal GPR
image. The model is based on the assumptions that (1)
single scattering prevails, and thus the effects of multiple
scattering have either been removed by processing or are
sufficiently benign to be ignored, an assumption that is
indeed inherent to most seismic and GPR processing,
imaging, and interpretation strategies; (2) dispersion in the
GPR data is minor or has been corrected such that an
approximately constant wavelet shape can be assumed; and
(3) the GPR data have been properly migrated. Under these
conditions, which are widely regarded as quite realistic, the
PRS model is able to capture the essential features of a
migrated reflection GPR data set.
[7] One limitation of the PRS model in the context of this

study is its inability to account for the inherently limited
lateral resolution of real GPR data. It is well known that
horizontal resolution in an unmigrated GPR or seismic
reflection section is limited by the Fresnel zone, which
essentially describes the area on a subsurface reflector that
contributes to the recorded data [e.g., Berkhout, 1984]. The
radius of the Fresnel zone increases with depth and wave-
length, and hence, unmigrated reflection sections have a
horizontal resolution which worsens with increasing depth
and decreasing frequency. The process of migration acts to
collapse the size of the Fresnel zone to a uniform theoretical
value on the order of the dominant wavelength and thus to
improve the horizontal resolution everywhere in a reflection
image [e.g., Stolt and Benson, 1986]. For accurate estima-
tion of the horizontal correlation statistics of water content
under a wide range of scenarios, however, it is necessary to
take into account this lateral resolution limit of a migrated
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GPR image. We do this by modifying equation (1) to
include a horizontal resolution filter, h(x), as follows:

d x; zð Þ � @

@z
v x; zð Þ * w zð Þ * h xð Þ: ð2Þ

We have found that a simple Gaussian low-pass filter,
whose width is dependent on the dominant signal
wavelength, is a very effective choice for h(x). This filter
is of the form

h xð Þ ¼ exp � x2

2c2

� �
; ð3Þ

where c determines the filter width and is set such that the
distance between the two points where the Gaussian reaches
1% of its maximum amplitude is equal to the dominant
wavelength. Extensive tests that we have performed under a
range of realistic conditions and frequencies confirm that
GPR data modeled using equation (2) closely match their
corresponding finite difference modeled counterparts. Most
importantly, equation (2) captures very effectively the
overall statistical character of a GPR image and is thus
well suited for use in the correlation analysis methodology
presented here.
[8] In many cases, the relationship between radar wave

velocity and water content at a given site, considering the
vadose and saturated zones separately, can be adequately
described as linear. In Figure 1, we plot velocity versus
water content using the commonly used empirical relation
by Topp et al. [1980] and the complex refractive index
method (CRIM) model of Roth et al. [1990] for a variety of
matrix porosities. Although the relationship is clearly non-

linear over the entire range of water content values shown,
we see that over restricted ranges characteristic of many
field scenarios, a linear relationship is not a bad approxi-
mation. This is especially the case for ranges of higher water
content typically encountered in the saturated zone but is
also valid enough in many unsaturated settings for the
geostatistical work considered here. Considering a linear
relationship between radar velocity and water content with
constant of proportionality k, equation (2) can be rewritten
as follows:

d x; zð Þ � @

@z
k q x; zð Þ½ � * w zð Þ * h xð Þ; ð4Þ

where q(x,z) is water content. In other words, the GPR
response to the subsurface according to our modified PRS
model can be approximately formulated in terms of the
spatial structure of vertical changes in subsurface water
content convolved with the radar pulse and horizontal
resolution filter.
[9] Noting that the derivative operator in equation (4) will

yield the same result when applied to the mean-removed
water content distribution, and also that this operator can be
treated as a filter whose position in the equation can be
shifted to act on the wavelet, we obtain

d x; zð Þ � ~q x; zð Þ * f zð Þ * h xð Þ; ð5Þ

where ~q(x,z) is the mean-removed water content distribution
and f(z) is the differentiated wavelet into which we absorb
the proportionality constant

f zð Þ ¼ k
@

@z
w zð Þ: ð6Þ

Transforming equation (5) into the frequency domain and
taking the squared magnitude of both sides, we arrive at the
following relationship between the power spectra of all
quantities:

D kx; kzð Þj j2� ~q kx; kzð Þ
�� ��2 F kzð Þj j2 H kxð Þj j2: ð7Þ

Now taking the inverse Fourier transform and making use of
the Wiener-Khintchine theorem linking the power spectrum
and autocorrelation functions, we arrive at the final result:

Rdd x; zð Þ � R~q~q x; zð Þ * Rff zð Þ * Rhh xð Þ: ð8Þ

[10] Equation (8) states that the 2-D spatial autocorrela-
tion of a GPR image, Rdd(x,z), is approximately equivalent
to the 2-D autocorrelation of the mean-removed water
content distribution, R~q~q(x,z), filtered vertically by the
autocorrelation of the differentiated source wavelet, Rff (z),
and horizontally by the autocorrelation of lateral resolution
filter, Rhh(x). What this means is that, with an estimate of the
wavelet or its spectrum, and thus the autocorrelation of the
differentiated wavelet, we can estimate the correlation
properties of the mean-removed water content distribution
from those of the GPR image. It must be emphasized that
although the convolution with Rff (z) in equation (8) operates
only in the vertical direction, this vertical convolution has a

Figure 1. Electromagnetic wave velocity versus water
content relationship predicted by the Topp equation and
CRIM model with porosity values between 0.05 and 0.55
and a relative dielectric permittivity of es = 4 for the dry
matrix.
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pronounced effect on the lateral correlation structure of the
image, independent of the horizontal convolution with
Rhh(x). What this means is that both the vertical and lateral
correlation properties will, in general, be significantly
different between a water content distribution and the
corresponding GPR image. In our view this is a key aspect
that has so far not been properly accounted for in previous
efforts to estimate the lateral correlation statistics of water
content from GPR data [e.g., Rea and Knight, 1998; Dafflon
et al., 2006; Knight et al., 2007].
[11] To use equation (8) for the estimation of water

content correlation parameters from a GPR image, we
employ a Bayesian inversion strategy with MCMC sampling
from the posterior distribution of model parameters [e.g.,
Mosegaard and Tarantola, 1995]. The inversion procedure
consists of the following steps.
[12] 1. Draw a proposed set of model parameters, m,

which parameterize the 2-D autocorrelation function of the
mean-removed water content distribution, from a prescribed
prior probability distribution for these parameters. We
assume in our analysis that the autocorrelation of water
content follows some simple parametric form such that
relatively few parameters are required for its description.
This greatly improves the estimation problem and makes the
MCMC inversion approach computationally tractable.
[13] 2. For the set of parameters drawn in step 1, compute

the 2-D autocorrelation of water content, R~q~q(m), using the
assumed parametric equation. Then calculate the predicted
autocorrelation of the corresponding GPR image, Rdd

pred(m),
using equation (8) and our best knowledge of the source
wavelet characteristics.
[14] 3. Calculate the likelihood of the currently proposed

set of model parameters by comparing the predicted auto-
correlation with that calculated from the observed GPR
data, Rdd

obs. We assume that the errors in Rdd
obs are independent

andGaussian, with variances given by s2
di
, where i varies over

the data for different spatial lag vectors. In this case, the
likelihood function takes the following form [Mosegaard
and Tarantola, 1995]:

L mð Þ ¼ exp �
XN
i¼1

R
pred
ddi

mð Þ � Robs
ddi

� �2
s2
di

2
64

3
75: ð9Þ

[15] 4. If the likelihood of the currently proposed set of
model parameters is greater than or equal to that of the
previously accepted set, or if this is the first iteration of the
procedure, acceptm and return to step 1 for another iteration.
[16] 5. If the likelihood of the currently proposed set of

model parameters is less than that of the previously accepted
set, do not necessarily reject m, but instead subject it to a
random decision rule whereby the probability of its accep-
tance is equal to the ratio of the two likelihoods, Lold/Lnew.
Then return to step 1 for another iteration.
[17] It can be shown that after a sufficient number of

iterations known as the ‘‘burn-in’’ period, the above proce-
dure will converge to produce samples from the Bayesian
posterior distribution of model parameters. This distribution
takes into account both the available prior information and
observed autocorrelation data and is essentially an update
of the prior distribution into a refined state of knowledge

about the system. Once a sufficient number of posterior
samples have been generated, they can then be analyzed to
determine the most likely water content correlation model
parameters that gave rise to the recorded GPR reflection
data along with estimates of the associated uncertainties. In
addition, the suite of realizations can be examined for
interrelationships existing between the model parameters.
The above procedure is schematically illustrated and con-
ceptually summarized by the flowchart shown in Figure 2.

3. Synthetic Data Example

[18] We now present a realistic synthetic example of how
the inversion strategy described in section 2 can be used to
estimate the correlation parameters of subsurface water con-
tent that are consistent with reflection GPR data. Figure 3a
shows the stochastic water content distribution that we
consider for this purpose. This distribution was generated
using an anisotropic exponential autocorrelation model
whose parametric form is given by

R x; zð Þ ¼ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

ax

� �2

þ z

az

� �2
s2

4
3
5; ð10Þ

where the model parameters ax and az are the horizontal and
vertical correlation lengths, respectively. We assume with
equation (10) that the axis of anisotropy for the hetero-
geneity is aligned with the x and z axes. To obtain the
realization in Figure 3a, we used a spectral simulation
technique which involved assigning a uniformly random
phase spectrum to the amplitude spectrum of the above
autocorrelation model and taking the inverse Fourier
transform [e.g., Goff et al., 1994].
[19] The mean and standard deviation of the water

content distribution in Figure 3a are 0.25 and 0.015,
respectively. The minimum and maximum values are 0.19
and 0.31. This range is representative of a saturated zone
scenario. For simplicity, we did not include in our water
content model an unsaturated region near the Earth’s sur-
face. Note that this in no way limits the applicability of our
findings, as in practice only the GPR data from below the
water table would be selected for analysis. Also note that
although our synthetic example deals with a saturated zone
situation, the inversion methodology could be equally well
applied to data collected in the vadose zone when the
distribution of water content can be adequately described
by a stochastic correlation model. Indeed, the field data
presented in section 4 were collected in an unsaturated
setting.
[20] To simulate a GPR experiment over the water

content distribution in Figure 3a, we first needed to obtain
values for subsurface electrical properties required by the
finite difference time domain (FDTD) solution of Maxwell’s
equations in 2-D Cartesian coordinates that was used to
perform the modeling [Irving and Knight, 2006]. Values for
the dielectric permittivity, e, were obtained from the water
content model using the CRIM equation, assuming a
dielectric permittivity for the dry matrix of es = 4e0, with
e0 denoting the permittivity of free space. As most surficial
geological materials are nonmagnetic, the magnetic perme-
ability, m, was set to its value in free space, m0, throughout
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the simulation region. For the electrical conductivity, s, we
assumed a uniform value of 1 mS/m. This is reasonable for
the sand-and-gravel-type materials amenable to GPR wave
propagation, as the effects of conductivity variations with
water content predicted by Archie’s law [Archie, 1942]
would be minimal in this case. Figure 3b shows the radar

wave velocity field corresponding to Figure 3a, which was
obtained from the electrical properties using the low-loss
approximation

v � 1ffiffiffiffiffiffi
me
p : ð11Þ

Figure 3. (a) Water content distribution generated using an anisotropic, exponential autocorrelation
model. (b) Corresponding radar wave velocity distribution obtained using the CRIM model.

Figure 2. Flowchart illustrating our Bayesian-MCMC approach for estimating the parameters
describing the correlation model of subsurface water content from reflection GPR data.
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[21] GPR reflection data were simulated over the envi-
ronment in Figure 3 at two different frequencies. Zero-offset
traces were recorded at lateral increments of 0.2 m along the
Earth’s surface. The source current function that was input
into the modeling grid was a differentiated Gaussian pulse
having a dominant frequency of 50 and 100 MHz for the
first and second data sets, respectively. After the numerical
simulations were complete, the data were first gained in
time using a smoothly varying function inversely propor-
tional to the average trace envelope. A smooth gain such as
this preserves the relative amplitudes of reflections along a
trace but corrects for the effects of geometrical spreading
and attenuation; however, we have found that our correla-
tion analysis methodology is relatively insensitive to the
type of gain used. Next, the GPR data were depth migrated in
the frequency–wave number domain using the constant
velocity algorithm of Stolt [1978] and a mean subsurface
velocity value of 0.08 m/ns. For the 2-D synthetic data
considered here, this type of migration is perfectly accept-
able as the radiation characteristics of the line source are
uniform with angle and the velocity variations for imaging
purposes are minimal. In the case of field GPR data, which
we consider in section 4, there is a long and successful
history of employing standard seismic processing and
migration algorithms such as this one [e.g., Annan, 2005].
Although other GPR-specific and potentially more accurate
imaging methodologies are available, we believe that the
seismic algorithms are sufficient for our purposes because
most practical approaches to amplitude scaling, including
ours, largely obliterate any traces of the directivity of the

transmitter and receiver antennas in the GPR data. As a final
step, band-limited Gaussian random noise with a standard
deviation of 5% of the RMS amplitude of the data was
added to simulate more realistic conditions.
[22] Figures 4a and 4b show the processed and migrated

50 and 100 MHz GPR images, respectively. The top parts of
the data were muted to suppress waves traveling directly
between the antennas. This muted zone was not considered
for analysis. Notice the similarities between the two images
in terms of the location and nature of the dominant reflect-
ing interfaces. At the same time, however, because of the
difference in frequency content of the GPR pulses used,
Figure 4b appears to have a distinctly longer horizontal
correlation length than Figure 4a. Any reasonable inversion
strategy to determine the underlying subsurface correlation
structure must account for the effective changes in lateral
correlation of the GPR image produced by the predomi-
nantly vertical interaction with the radar pulse.
[23] Figures 5a and 5b show the calculated 2-D autocor-

relations corresponding to the original water content model
and radar wave velocity distribution in Figures 3a and 3b,
respectively. As prescribed, these autocorrelations follow an
exponential parametric model. Best fitting correlation
lengths to the autocorrelation data in Figure 5a were
determined using a nonlinear least squares algorithm to be
az = 0.35 m and ax = 3.53 m. For the data in Figure 5b, they
were determined to be az = 0.34 m and ax = 3.48 m. The
correlation model parameters for the water content and
velocity distributions are thus approximately equal. This
results because of the roughly linear relationship between

Figure 4. (a) Zero-offset 50 MHz GPR reflection image obtained by the FDTD modeling over the
velocity distribution shown in Figure 3b followed by gaining and migration. (b) Corresponding 100 MHz
GPR reflection image.
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these two variables over the range of water content values
encountered in Figure 3a (see also Figure 1).
[24] In Figures 5c and 5d, we see the calculated 2-D

autocorrelations corresponding to the 50 and 100 MHz radar
images in Figures 4a and 4b, respectively. Notice the
distinct difference between these autocorrelations and those
in Figures 5a and 5b. In both cases, we have a visibly much
shorter correlation length in the horizontal direction, and the
vertical correlation properties of the radar images are largely
controlled by the spectral content of the GPR wavelet rather
than the vertical structure of the underlying water content
heterogeneity. This is an excellent example of how, in going
from water content to the corresponding GPR reflection
image, we may encounter significant changes in both the
vertical and horizontal correlation properties. Between the
50 and 100 MHz data autocorrelations, we also have a
significant difference in the autocorrelation behavior; the
50 MHz data show a distinctly longer correlation length in
the vertical and horizontal directions. Again, any reasonable
method for estimating the lateral correlation structure of
water content from GPR data must account for all of these
effects by adequately capturing the physics of the GPR
experiment.
[25] The goal of our numerical example is to estimate,

from the autocorrelation data in Figures 5c and 5d, the
parameters describing the autocorrelation in Figure 5a.
Assuming that the data can be adequately explained by
our model in equation (8), the GPR image and water content

autocorrelations will be related through convolution with
the autocorrelations of the differentiated source pulse and
horizontal resolution filter. To estimate Rff(z), we require, at
a minimum, an estimate of the spectral content of f(z). Here
we determined Rff(z) from an estimate of w(z) obtained from
the ground wave pulse traveling directly between the GPR
antennas at a far horizontal offset, where it was possible to
separate this pulse from the one arriving directly through the
air. Although we believe that it is reasonable to have
knowledge of Rff(z), obtained either in this manner or
through some other method, uncertainty about the details
of the source wavelet could be accounted for in our
inversion procedure through the use of additional model
parameters.
[26] Also required for the Bayesian-MCMC inversion are

prior probability distributions for the autocorrelation model
parameters, in our case the vertical and horizontal correla-
tion lengths az and ax. For this example, we first assumed
relatively good knowledge of az but very little knowledge of
ax. We also assumed to know the parametric form of the
autocorrelation model. We think that this is reasonable
because information regarding the autocorrelation model
and vertical structure could be estimated from sparse
borehole data or perhaps from some form of deconvolution
applied to the recorded data [e.g., Poppeliers and Levander,
2004; Poppeliers, 2007]. Moreover, we have found that
knowledge regarding the vertical variability is crucial in
some cases for reliable estimation of the lateral correlation

Figure 5. (a) Autocorrelation of the mean-removed water content distribution from Figure 3a. Best
fitting exponential model parameters are az = 0.35 m and ax = 3.53 m. (b) Autocorrelation of the mean-
removed velocity distribution from Figure 3b. Best fitting model parameters are az = 0.34 m and ax =
3.48 m. (c) Autocorrelation of the 50 MHz GPR image from Figure 4a. (d) Autocorrelation of the
100 MHz GPR image from Figure 4b.
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properties because in the common situation where the
vertical correlation length is less than the dominant propa-
gating wavelengths, the vertical structure tends to be largely
obliterated through averaging by the source wavelet. That
is, the vertical autocorrelation of the GPR image often
shows limited sensitivity to the vertical correlation structure
of water content, yet the horizontal correlation structure of
the data is strongly dependent on the vertical resolution. For
az, we first assumed a uniform prior probability distribution
with lower and upper bounds of 0.30 and 0.42 m. For ax, we
also assumed a uniform prior distribution but with much
broader bounds between 0.2 and 20 m. With these values,
the Bayesian-MCMC algorithm was run separately on both
the 50 and 100 MHz data sets until 2000 realizations from
the posterior probability distribution for az and ax had been
generated. On a dated 2.4 GHz desktop computer with
1 GB of RAM, this took approximately 1 h for each data
set. Past the burn-in period, all posterior samples were
used in the subsequent analysis. This is because the
proposed sets of model parameters in our two-parameter
MCMC code were drawn independently from the prior
distribution.
[27] Figures 6a–6c show the results of our inversion for

az and ax based on the autocorrelation of the 50 MHz GPR
data in Figure 5c. Figures 6a and 6b show the marginal
histograms computed for these parameters from the suite of

posterior realizations, whereas Figure 6c shows a contour
plot of the joint 2-D histogram. The first thing to notice
from these results is that, although quite specific prior
information was provided in the inversion regarding the
vertical correlation length of water content, there is very
little refinement of this information in the posterior distri-
bution. In fact, it is clear from Figures 6a and 6c that a wide
range of az values is likely to be valid within the considered
interval, with preference actually being given to az values
near the upper limit of the uniform range instead of the true
value of 0.35 m. As mentioned, we believe that this is
related to the vertical averaging effects of the source
wavelet, which result in the vertical autocorrelation of the
GPR data being relatively insensitive to the underlying
vertical stochastic structure of water content. For the hori-
zontal correlation length, on the other hand, Figures 6b and 6c
demonstrate that the 50 MHz GPR data allow for a
significant reduction of uncertainty regarding this parameter
compared to the broad uniform prior distribution. The mean
value of ax from the suite of posterior realizations is 3.60 m
with a standard deviation of 0.50 m, compared to the true
value of 3.53 m. In Figure 6d, we explore the effect on the
stochastic inversion when detailed information regarding az
is not available. Here, we show the contoured joint histo-
gram for the case where the MCMC procedure was run with
a broad uniform prior for az between 0.1 and 2.0 m. Clearly,

Figure 6. Results of MCMC analysis of the synthetic 50 MHz GPR image. (a and b) Marginal posterior
histograms for az and ax, respectively, obtained using uniform prior ranges of az = [0.30, 0.42] m and ax =
[0.2, 20.0] m. (c) Corresponding contoured joint posterior histogram. (d) Contoured joint posterior
histogram for the case where the prior range for az was extended to [0.1, 2.0] m.
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a variety of az-ax combinations can explain very well the
recorded GPR data, which suggests that without reliable
knowledge of az, it may not be possible to accurately
recover the horizontal correlation length. The mean value
of ax from the posterior realizations in this case is 3.86 m,
with a standard deviation of 0.72 m. Although this is not a
bad estimate of ax, we see that without proper bounds on az,
the posterior realizations are biased and have a larger
standard deviation than in the case where the vertical
structure is well constrained. Nevertheless, Figure 6d
shows that there is a trade-off between az and ax, with
the most acceptable solutions occurring along a ridge-type
feature having slope approximately equal to 10, which
corresponds to the aspect ratio of the underlying water
content heterogeneity.
[28] In Figure 7, we see the results of our inversion for az

and ax based on the autocorrelation of the 100 MHz GPR
data in Figure 5d. Similar to the 50 MHz case, Figures 7a
and 7b show the marginal histograms computed for az and ax
from the suite of posterior realizations, whereas Figures 7c
and 7d show contour plots of the joint 2-D histogram of
these parameters assuming the same narrow and broad prior
ranges for az, respectively. Again, we see in Figure 7 that
there is relatively little refinement in the information re-
garding az through the MCMC inversion, with values this
time near the lower range of the prior uniform distribution

being preferred. However, as in the case with the 50 MHz
data, there is a significant reduction of uncertainty regarding
ax, with the mean value of the posterior realizations equal to
3.48 m with a standard deviation of 0.46 m. In the case
where accurate information regarding az is not available,
Figure 7d illustrates again that there appears to be a trade-
off between az and ax, with the range of most likely
parameter combinations falling along a ridge-like feature
having a slope approximately equal to 10. Here the mean
value of ax from the posterior realizations is 2.80 m with a
standard deviation of 0.74 m. Again, the estimate is biased
and more uncertain with inadequate knowledge of az,
although it is still not a completely unreasonable value for
the horizontal correlation length.

4. Field Data Example

[29] We now show the application of our inversion
methodology to field GPR data acquired at a gravel quarry
in northern Switzerland in an unsaturated glaciofluvial
environment. The sediments at the site are unconcolidated
and consist of structurally complex, gravel- and sand-
dominated braided stream deposits. The local geology and
its expression in radar images have been previously described
by Huggenberger [1993] and Beres et al. [1999]. Common-
offset reflection GPR data were collected at nominal antenna

Figure 7. Results of MCMC analysis of the synthetic 100 MHz GPR image. (a and b) Marginal
posterior histograms for az and ax, respectively, obtained using uniform prior ranges of az = [0.30, 0.42] m
and ax = [0.2, 20.0] m. (c) Corresponding contoured joint posterior histogram. (d) Contoured joint
posterior histogram for the case where the prior range for az was extended to [0.1, 2.0] m.
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center frequencies of 100 and 200 MHz using a commercial
GPR system along an approximately 75 m long profile. To
acquire the data, a time-sampling interval of 0.2 ns and trace
spacing of 0.2 m were employed, and 64 vertical stacks were
taken at each point to improve the signal-to-noise ratio.
Common midpoint (CMP) data were also collected at two
locations along the GPR survey line, such that an estimate of
the radar wave velocity and its vertical variability could be
obtained for migration of the reflection data. In the CMP
analysis, which consisted of examining the hyperbolic cur-
vature of reflections as a function of antenna separation, the
velocity was found to be remarkably uniform with depth and
approximately equal to 0.11 m/ns. As in our synthetic
example, we also used the CMP data to determine the direct
pulse traveling through the ground between the radar anten-
nas, which provided an estimate of the radar wavelet, and thus
Rff(z), for the inversion procedure.
[30] Figures 8a and 8b show the 100 and 200 MHz field

GPR data after gaining, migration, and cropping of the
images to select a suitable region for the statistical analysis.
Only the last 30 m of the 75 m long survey line was
considered as the rest of the collected data did not reach a
suitable depth of penetration. One of the CMP data sets was
located approximately at the center of this 30 m profile.
Depths between 2 and 8 m were considered in the correla-
tion analysis in order to avoid the direct arrivals at the top of
the section and the regions where noise was clearly dom-
inant in the lower part of the section. Again, the constant-
velocity migration algorithm by Stolt [1978] was employed
to image the data since the velocity was found to be
approximately uniform. As mentioned previously, we feel
that this last step is justified.
[31] Notice again the similarities between the two GPR

images shown in Figure 8 in terms of their response to
dominant reflecting interfaces in the subsurface. However,
as in the case of our synthetic example, we see that the

higher-frequency data appear to have a shorter lateral
correlation length. This is because reflectors which effec-
tively ‘‘line up’’ when imaged at 100 MHz become hori-
zontally discontinuous when imaged at 200 MHz, again
confirming the dependence on vertical resolution of the
horizontal correlation structure of the GPR data [Knight et
al., 2004]. This effective decrease in correlation length of
the data with increasing frequency is better seen in Figure 9,
which shows the calculated 2-D autocorrelations of the 100
and 200 MHz data along with horizontal and vertical slices
through the centers of these autocorrelations.
[32] Clearly, our goal with the field data example is to

estimate the lateral correlation structure of water content and
then to validate the results in some manner. However, in
virtually all practical situations, obtaining the ‘‘true’’ spatial
structure of the subsurface water content distribution for
such a validation, especially in the lateral direction, is not
possible. In the absence of such conclusive information, we
focus here on inverting independently the 100 and 200 MHz
field data. We then assess the validity of the estimated
correlation model parameters through the degree of consis-
tency between the two different frequencies. Unfortunately,
no concrete information regarding the most suitable para-
metric correlation model and range for az were available at
this particular site, the latter of which we saw in the
synthetic example to be important for the accurate determi-
nation of ax. Such information might be obtained at other
field sites from the analysis of borehole porosity log data, if
they are available. For our inversion, we again assumed that
the water content correlation structure can be adequately
captured by an exponential model as given by equation (10),
which is arguably the most widely used geostatistical model.
We also assumed az to lie within a uniform prior interval
between 0.10 and 0.80 m, which we believe is broad enough
to capture all realistic possibilities for this parameter at the
field site on the basis of geological considerations. For the

Figure 8. (a) Zero-offset 100 MHz field GPR data after gaining, migration, and cropping. (b) Cor-
responding 200 MHz GPR image.
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bounds on ax, we assumed a very broad uniform prior
distribution between 0.2 and 20 m. Like in the synthetic
case, the MCMC inversion was run separately on the two
autocorrelations in Figures 9a and 9b until 2000 samples
from the posterior distribution of correlation model param-
eters were generated.
[33] Figures 10 and 11 show the histograms obtained

from the posterior samples for the inversion of the 100 and
200 MHz data, respectively. In both Figures 10 and 11, we
see a slight refinement in our knowledge of az through the
inversion, but, most importantly, we see a consistent and
significant refinement in our knowledge regarding ax. The
posterior histograms in Figures 10a and 11a show that only
az values between 0.1 and 0.6 m can be considered as
acceptable given the GPR data, even though the input prior
range for this parameter extended to 0.8 m. In the case of
the 200 MHz data, az values around 0.35 m are preferred.
For ax, the inversion of both data sets can be seen to result in
posterior histograms having a distinctly normal appearance.
The posterior mean and standard deviation for the 100 MHz
results in Figure 10b are 4.17 and 1.60 m, respectively,
whereas those for the 200 MHz results in Figure 11b are
4.70 and 1.58 m. The similarity of the posterior realizations
obtained from the two inversions, within the bounds of
uncertainty provided, indicates the internal consistency of
our analysis and suggests the likely realism of the inferred
parameter values. The larger mean value estimated from the
200 MHz data likely results from our lack of prior infor-
mation regarding az and thus slightly biased results in both
cases. Finally, from the joint 2-D histograms presented in
Figures 10c and 11c, we see again that a range of acceptable

az-ax combinations is able to fit the recorded 100 and 200
MHz GPR data, with the slope of the acceptable solution
domain being approximately equal to 13. This is consistent
with published values for structural aspect ratios that are
typically observed in comparable alluvial environments
[e.g., Gelhar, 1993].

5. Discussion

[34] We have presented a novel methodology for the
estimation of the lateral correlation structure of subsurface
water content from surface-based reflection GPR data.
Compared to previous related efforts in this domain, our
methodology represents a significant step forward in that it
is based on a theoretical foundation that captures critical
aspects of the underlying wave propagation phenomena.
Furthermore, the inversion strategy is posed within a
versatile Bayesian-MCMC framework that allows for esti-
mates of parameter uncertainties and the incorporation of
additional unknowns. In applying our estimation procedure
to both synthetic and field GPR images using multiple
antenna frequencies, consistent information regarding the
horizontal correlation length of water content was obtained.
In the case where detailed information regarding the vertical
correlation structure of water content was available, the
estimates of the horizontal correlation length were very
accurate. In the absence of such information, our technique
proved to provide a rather robust estimate of the aspect ratio
of the heterogeneity, which in its own right serves as
valuable geostatistical information.

Figure 9. (a) Autocorrelation of the 100 MHz image from Figure 8a. (b) Autocorrelation of the
200 MHz image from Figure 8b. (c) Horizontal slices through the centers of Figures 9a and 9b. (d) Vertical
slices through the centers of Figures 9a and 9b.
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[35] In our formulation of the inverse problem and in our
synthetic and field examples, a number of assumptions were
made that warrant some additional discussion. First, we
have mentioned that the PRS model, which forms the basis
of our method, assumes that we are within the regime of
weak, single scattering in the subsurface. We believe this to
be reasonable for most GPR surveys, both above and below
the water table, on the basis of expected variations in soil
water content in both regions. Nevertheless, future work
will include the investigation of whether our methodology
can be adapted or modified for use in stronger scattering
environments. In fact, with our technique, only the 2-D
spatial autocorrelation of the GPR image is used to estimate
the parameters describing the water content correlation
model. That is, only the information contained in the 2-D
Fourier power spectrum of the data is employed, and the
phase information is discarded. Further accuracy and gen-
eral applicability to stronger scattering environments might
be obtained by attempting to link the full Fourier spectrum
of the GPR data to the correlation properties of the under-
lying water content distribution.
[36] Another assumption inherent to the PRS model is

that of wavelet stationarity. By working with this model in
the depth domain in equation (1), we implicitly assume an
approximately constant background subsurface velocity
such that changes in wavelet shape in the migrated GPR
image are negligible. Although strong background velocity

trends can occur with GPR, in our experience this is quite
rare except when crossing the water table. Furthermore,
problems related to the assumption of wavelet stationarity
could likely be overcome by applying our inversion proce-
dure to regions of a migrated image where wavelet shape is
visibly similar. Regarding changes in the GPR wavelet
resulting from frequency-dependent material properties in
the subsurface, such effects, if moderate enough to allow for
successful GPR imaging of the subsurface region, could
likely be corrected prior to analysis using, for example, the
technique described by Irving and Knight [2003].
[37] In our synthetic and field examples, we assumed that

knowledge was available regarding the parametric model
for the autocorrelation of subsurface water content, in our
case an exponential model described by ax and az. We also
found that prior information regarding the range of az was
very beneficial for the reliable recovery of ax. In the case
where borehole data are available, we believe these assump-
tions to be reasonable. Otherwise, it may be possible to
include the correlation model itself as an unknown in the
MCMC inversion procedure, such that models other than
the exponential one can be considered with regard to their
ability to fit the GPR data. Indeed, preliminary results
indicate that GPR data contain pertinent information not
only on the lateral correlation structure but also on the
parametric form of the autocorrelation model. More prob-
lematic in the absence of borehole data is having knowledge

Figure 10. Results of MCMC analysis of the field 100 MHz GPR image. (a and b) Marginal posterior
histograms for az and ax, respectively, obtained using uniform prior ranges of az = [0.1, 0.8] m and ax =
[0.2, 20.0] m. (c) Corresponding contoured joint posterior histogram.
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of the vertical correlation length of water content. The
results in Figures 6, 7, 10, and 11 suggest that because of
a trade-off between az and ax, at least in some cases where
knowledge of az is unavailable, it may only be possible to
recover the aspect ratio of the subsurface variability or a
very broad and possibly biased distribution for ax. Never-
theless, as stated above, such information is useful in its
own right.
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