
 

This is an Accepted Article that has been peer-reviewed and approved for publication in the 
Journal of Neurochemistry, but has yet to undergo copy-editing and proof correction. Please 
cite this article as an “Accepted Article”; doi: 10.1111/j.1471-4159.2010.06935.x 

Received Date : 30-Apr-2010 
Revised Date   : 14-Jul-2010 
Accepted Date : 26-Jul-2010 
Article type      : Review 
 

Synthesis and transport of creatine in the central nervous system: 

Importance for cerebral functions 
 

Elidie Béard and Olivier Braissant. 

Inborn Errors of metabolism, Clinical Chemistry Laboratory, 

Centre Hospitalier Universitaire Vaudois and University of Lausanne, 

CH-1011 Lausanne, Switzerland. 

Correspondence to: Olivier Braissant, 

 Inborn Errors of metabolism, Clinical Chemistry Laboratory, 

 Centre Hospitalier Universitaire Vaudois and University of Lausanne 

 CH-1011 Lausanne, Switzerland 

 Tél : (+41.21) 314.41.52; Fax : (+41.21) 314.35.46 

                                      e-mail: Olivier.Braissant@chuv.ch 

 

Abbreviations: AD, Alzheimer disease; AGAT, L-arginine:glycine amidinotransferase; ALS, 

amyotrophic lateral sclerosis; BBB, blood-brain barrier; B-CK, brain creatine kinase; CK, 

creatine kinase;  Cr, creatine; GA, gyrate atrophy of the choroid and retina; GAA, 

guanidinoacetate; GAMT, guanidinoacetate methyltransferase; HD, Huntington disease; IEM, 

inborn errors of metabolism; MCEC, microcapillary endothelial cells; M-CK, muscle creatine 

kinase; mPTP, mitochondrial permeability transition pores; MRS, magnetic resonance 

spectroscopy; NH4
+, ammonium; OAT, ornithine δ-aminotransferase; PCr, phosphocreatine; 

PD, Parkinson disease; ROS, reactive oxygen species; SLC6A8, Cr transporter; sMtCK, 

sarcomeric mitochondrial creatine kinase; uMtCK, ubiquitous mitochondrial creatine kinase. 



 

 

Abstract  

Apart of its well known function of “energetic buffer” through the creatine / phosphocreatine / 

creatine kinase system allowing the regeneration of ATP, creatine has been recently suggested 

as a potential neuromodulator of even true neurotransmitter. Moreover, the recent discovery 

of primary creatine deficiency syndromes, due to deficiencies in AGAT or GAMT (the two 

enzymes allowing creatine synthesis) or in the creatine transporter SLC6A8, has shed new 

light on creatine synthesis, metabolism and transport, in particular in CNS which appears as 

the main tissue affected by these creatine deficiencies. Recent data suggest that creatine can 

cross blood-brain barrier but only with a poor efficiency, and that the brain must ensure parts 

of its needs in creatine by its own endogenous synthesis. Finally, the recent years have 

demonstrated the interest to use creatine as a neuroprotective agent in a growing number of 

neurodegenerative diseases, including Parkinson and Huntington diseases. This article aims at 

reviewing the latest data on creatine metabolism and transport in the brain, in relation to 

creatine deficiencies and to the potential use of creatine as neuroprotective molecule. 

Emphasis is also given to the importance of creatine for cerebral function.  

 

Keywords: creatine, guanidinoacetate, brain, creatine deficiency, mitochondria, 

neuroprotection. 

 

Running title: Creatine in central nervous system. 



 

 

Introduction 

Creatine (Cr) (α-N-methylguanidino acetic acid) is a nitrogenous organic amino acid playing 

essential roles in energy metabolism by interconversion to its high energy phosphorylated 

analogue phosphocreatine (PCr). This reaction is catalyzed by the ubiquitous enzyme creatine 

kinase (CK). CK isoforms are highly expressed in tissues with high and fluctuating energy 

demands, such as muscle and brain (Wallimann et al. 1992; Wyss and Kaddurah-Daouk 

2000). PCr dephosphorylation yields energy, as ADP is converted to ATP by the transfer of 

N-phosphoryl group from PCr to ADP. The Cr/PCr system also allows the shuttle of high-

energy phosphates from mitochondria to cytoplasmic sites of utilization (Wallimann et al. 

2007) (Figure 1). 

 

Pools of Cr in vertebrates are maintained through uptake from diet and endogenous synthesis. 

This biosynthetic pathway involves two enzymes: L-arginine:glycine amidinotransferase 

(AGAT) and guanidinoacetate methyltransferase (GAMT). Cr is distributed by blood to 

tissues, where cells take it up by a specific transporter, SLC6A8, also called CRT1, CT1, 

CreaT or CRT (Wyss and Kaddurah-Daouk 2000). 

 

It has long been thought that cerebral Cr was principally of peripheral origin (Wyss and 

Kaddurah-Daouk 2000). However, AGAT and GAMT are expressed in CNS (Braissant et al. 

2001; Braissant et al. 2005) suggesting that the brain is able of its own Cr synthesis. While 

SLC6A8 is expressed by microcapillary endothelial cells (MCEC) at blood-brain barrier 

(BBB), allowing CNS to import Cr from periphery, it is absent from astrocytes, and 

particularly from their feet lining MCEC (Braissant et al. 2001; Ohtsuki et al. 2002; 

Tachikawa et al. 2004). This suggested that BBB has a limited permeability for peripheral Cr, 

and that CNS must supply an important part of its Cr needs by endogenous synthesis 



 

 

(Braissant et al. 2001; Braissant and Henry 2008). Considering that CNS ensures parts, if not 

all, of its Cr needs, and thus does not depend only on Cr issued from periphery, is coherent 

with the essential roles played by the Cr/PCr system in CNS energy homeostasis, and by Cr as 

potential neuromodulator or neurotransmitter (see below) (Wallimann et al. 1992; Wyss and 

Kaddurah-Daouk 2000; Brosnan and Brosnan 2007; Andres et al. 2008). 

 

Cr deficiency syndromes, caused by mutations in AGAT, GAMT and SLC6A8 genes, have 

been identified in human (Stöckler et al. 1994; Salomons et al. 2001; Item et al. 2001). CNS 

is the main organ affected in patients suffering from Cr deficiency syndromes. Their common 

phenotype is an almost complete lack of Cr in the brain and the development of several 

neurological symptoms like mental retardation, delays in speech acquisition or epilepsy 

(Stöckler et al. 2007). AGAT- and GAMT-deficient patients can be treated by oral Cr 

supplementation (Stöckler et al. 1996a; Schulze et al. 1998; Battini et al. 2002; Schulze and 

Battini 2007), while Cr supplementation of SLC6A8-deficient patients is inefficient (Bizzi et 

al. 2002; Póo-Argüelles et al. 2006; Arias et al. 2007). Several other brain pathological states 

can also lead to secondary Cr deficiencies in brain cells, like stroke, hyperammonemic states 

or gyrate atrophy of the choroid and retina (GA) (Valle et al. 1981; Braissant et al. 2008; Lei 

et al. 2009). 

 

Recent studies have shown that Cr administration has a therapeutic potential for 

neurodegenerative disorders with bioenergetic deficits like Huntington (HD) or Parkinson 

(PD) diseases (Gualano et al. 2010). Cr supplementation may also play important protective 

roles in a number of other pathological conditions, including brain ischemia and stroke, brain 

and spinal cord trauma, epilepsy or hyperammonemia (Balestrino et al. 1999; Tarnopolsky 

and Beal 2001; Braissant et al. 2002; Klein and Ferrante 2007). 



 

 

 

This review is focused on the latest data on Cr synthesis and transport in CNS and their 

functions for brain cells. Cr deficiency syndromes will be discussed, as well as other brain 

pathologies leading to secondary Cr deficiencies in brain cells. Finally, the therapeutic 

potential of Cr for various brain pathologies will be considered. 

 

Creatine metabolism and transport 

 

The Cr/PCr/CK system is essential to maintain energy levels in most tissues, and is highly 

active in particular in those with high and/or fluctuating energy demand such as skeletal 

muscle, heart and brain (Wallimann et al. 1992). The Cr/PCr/CK system not only serves as 

intracellular buffer for ATP, but also as high-energy phosphate shuttle from mitochondrial 

sites of production to cytoplasmic sites of consumption (Figure 1). 

 

Part of intracellular Cr is converted by CK into the high-energy compound PCr. Four CK 

isoforms have been described, based on tissue expression and subcellular distribution: two 

cytosolic forms, M-CK (muscle) and B-CK (brain) and two mitochondrial forms, sarcomeric 

muscle form (sMtCK) and brain form called ubiquitous MtCK (uMtCK) (Wallimann et al. 

1992; Schlattner et al. 2006). Each CK isoform has a specific function, mitochondrial CKs 

using ATP to convert Cr to PCr for export to cytoplasm, and cytosolic CKs using PCr to 

convert ADP to ATP at sites of energy demand, and to convert excess ATP to PCr for energy 

storage (Wallimann et al. 1992; Wallimann et al. 1998). 

 

Total Cr (Cr + PCr) in 70kg young adults amounts for approximately 120g. Both Cr and PCr 

are non-enzymatically and irreversibly degraded to creatinine at a rate of about 1.7% of total 



 

 

body pool per day (Wyss and Kaddurah-Daouk 2000). Creatinine is excreted via kidneys, the 

amount of creatinine eliminated being proportional to muscle. The amount of Cr provided by 

diet or by endogenous synthesis depends on creatinine excretion but accounts for about 2g per 

day (Casey and Greenhaff 2000). 

 

In human, half of Cr stores originate from food, mainly fresh meat, fish and dairy products, 

while the other half is biosynthesized endogenously through the AGAT/GAMT pathway. 

From the precursors arginine (limiting factor) and glycine, AGAT catalyzes the formation of 

guanidinoacetate (GAA) and ornithine. This step occurs mostly in kidney where Cr level 

exerts a negative feedback loop on AGAT gene regulation at transcriptional level (McGuire et 

al. 1984; Brosnan et al. 2009). The second reaction, catalyzed by GAMT and occurring 

mostly in liver, uses S-adenosylmethionine to methylate GAA, producing Cr and S-

adenosylhomocysteine (Brosnan et al. 2009). AGAT and GAMT expression are positively 

regulated by growth hormone, thyroid hormone and sex hormones (Carlson and Van Pilsum 

1973; McGuire et al. 1984; Guthmiller et al. 1994; Lee et al. 1994). While AGAT and GAMT 

highest expression is found in kidney and liver respectively, they are also expressed at lower 

levels in various other tissues, including CNS (Lee et al. 1998; Wyss and Kaddurah-Daouk 

2000; Braissant et al. 2001).  

 

Cr is transported by blood to Cr-requiring tissues and taken up in cells with high energy 

demand by a Cr-specific transporter, SLC6A8. SLC6A8 is a member of the solute carrier 

family 6, a large family of membrane transporters that mediate the transport of various 

neurotransmitters and/or amino acids across plasma membrane with the co-transport of two 

Na+ and one Cl- (Chen et al. 2004). This transport is electrogenic and driven by the sodium 

gradient established by Na+/K+-ATPase (Dai et al. 1999). SLC6A8 expression is important in 



 

 

tissues with high energy demand, such as skeletal muscle, heart, brain, retina, or with 

important (re)absorptive functions, such as kidney and intestine (Guimbal and Kilimann 1993; 

Braissant et al. 2001; Peral et al. 2002; Mak et al. 2009). Cr uptake is regulated by different 

factors, like insulin which activates Na+/K+-ATPase and presumably increases the driving 

force for Cr uptake (Snow and Murphy 2001), or the Na+ gradient and intracellular Cr 

concentrations (Brosnan and Brosnan 2007). 

 

Creatine metabolism, transport and functions in the brain 

 
Functions of creatine in CNS 

 

The Cr/PCr/CK system plays essential roles to maintain the high energy levels necessary for 

CNS (maintenance of membrane potential and ions gradients, Ca++ homeostasis, 

neurotransmission, intracellular signaling systems as well as axonal and dendritic transport) 

(Wyss and Kaddurah-Daouk 2000). The brain represents only 2% of body mass but may 

spend up to 20% of total energy consumption. The Cr/PCr/CK system also plays essential 

roles in CNS development. Different studies showed that CK isoforms are found highly 

concentrated in cerebellum (especially glomeruli structures of granular layer), choroid plexus 

and hippocampal granular and pyramidal cells (Hemmer et al. 1994). It must be noted that 

hippocampus is important for learning and memory function and can be severely affected in 

Alzheimer disease (AD). B-CK is much higher than uMtCK in cerebellar Bergmann glial 

cells and hypothalamus, where it plays essential functions in regenerating ATP for glutamate 

clearance during excitatory synaptic transmission (Oliet et al. 2001). Knock-out for one CK 

isoform (B-CK or uMt-CK) showed behavioral abnormalities and defects in formation and 

maintenance of hippocampal mossy fiber connections. Double knock-out mice displayed 

decreased body weight and severely impaired spatial learning, lower nest building activity and 



 

 

reduction of hippocampal size (Jost et al. 2002; Streijger et al. 2005). All these studies 

demonstrate the key function of CK in brain energy metabolism (Hemmer and Wallimann 

1993).  

 

Apart of its functions in energy, Cr may play other roles, as recently suggested in particular in 

CNS. Cr was suggested as essential CNS osmolyte. Astrocytes placed in hyperosmotic shock 

significantly increase their Cr uptake, suggesting that Cr can work as compensatory osmolyte 

(Alfieri et al. 2006). Conversely, astrocytes exposed to hypo-osmotic swelling conditions 

stimulate the release of their osmotically active Cr (Bothwell et al. 2001). In contrast, 

ammonium-exposed MCEC in vitro stimulate their Cr uptake (Bélanger et al. 2007), 

suggesting that cells making BBB (MCEC and astrocytes lining them) behave differentially 

during swelling. Cr was also proposed as appetite and weight regulator, by acting on specific 

hypothalamic nuclei (Galbraith et al. 2006). 

 

Creatine: a co-transmitter in CNS? 

 

Cr and GAA can affect GABA-ergic neurotransmission as partial agonists or antagonists on 

post-synaptic GABAA receptors, depending on local GABA concentration (De Deyn et al. 

1991; Neu et al. 2002; Cupello et al. 2008). These data stimulated research showing that in 

organotypic cultures of rat cortex, caudate putamen and hippocampus slices, Cr is released 

from neurons in a similar manner as classical neurotransmitters. This electrically-evoked 

exocytotic Cr release mechanism is action potential-dependent, being dependent from Ca++, 

inhibited by the Na+-channel blocker tetrodotoxin and enhanced by the K+-channel blocker 4-

amino-pyridine (Almeida et al. 2006b). According to these in vitro studies, Cr may thus also 

be considered as a neuromodulator or co-transmitter in CNS, which may modulate the activity 



 

 

of post-synaptic receptors such as GABAA (Almeida et al. 2006a). Interestingly, rat brain 

synaptosomes were identified recently as expressing SLC6A8, which allows their active 

accumulation of Cr (Peral et al. 2010). This suggests the presence of a Cr recapture 

mechanism in axon terminal membrane, which would fit with a neurotransmitter/co-

transmitter function of Cr in CNS (Almeida et al. 2006a). 

 

AGAT, GAMT and SLC6A8 in adult brain 

 

It has long been thought that most of brain Cr was of peripheral origin, be it taken from the 

diet or synthesized endogenously through AGAT and GAMT activities in kidney and liver 

respectively (Wyss and Kaddurah-Daouk 2000; Brosnan and Brosnan 2007; da Silva et al. 

2009). However, Cr is synthesized in the mammalian brain (Van Pilsum et al. 1972) as well 

as in primary brain cell cultures and nerve cell lines (Daly 1985; Dringen et al. 1998; 

Braissant et al. 2002). AGAT and GAMT are expressed in CNS, for which we provided the 

first detailed analysis demonstrating their expression in all the main structures of the adult rat 

brain, in every main cell types (neurons, astrocytes and oligodendrocytes; Braissant et al. 

2001) (Figure 2). Particularly high levels were found in telencephalon and cerebellum. 

AGAT was further shown in rat retina (Nakashima et al. 2005), while our data on GAMT 

were confirmed in mouse and human (Schmidt et al. 2004; Tachikawa et al. 2004). 

 

Organotypic rat cortical cultures, primary brain cell cultures (neuronal, glial or mixed) and 

neuroblastoma cell lines have a Cr transporter activity (Daly 1985; Möller and Hamprecht 

1989; Almeida et al. 2006b; Braissant et al. 2008). In vivo, mouse and rat CNS can take up Cr 

from the blood against its concentration gradient (Ohtsuki et al. 2002; Perasso et al. 2003). 

SLC6A8 is expressed throughout the main regions of adult mammalian brain, particularly in 



 

 

those associated with learning, memory and general limbic functions (Guimbal and Kilimann 

1993; Schloss et al. 1994; Happe and Murrin 1995; Saltarelli et al. 1996). We provided the 

first detailed analysis demonstrating that SLC6A8 is found in neurons and oligodendrocytes 

but, in contrast to AGAT and GAMT, cannot be detected in astrocytes (Braissant et al. 2001). 

We also showed that in contrast to its absence in astrocytes lining microcapillaries, SLC6A8 

is present in MCEC (BBB; Figure 2). These data were confirmed later in rat and mouse 

(Ohtsuki et al. 2002; Tachikawa et al. 2004; Nakashima et al. 2004; Acosta et al. 2005; 

Tachikawa et al. 2008; Mak et al. 2009). 

 

 

AGAT, GAMT and SLC6A8 in developing brain 

 

The Cr/PCr/CK system plays essential roles in energy homeostasis during vertebrate 

embryonic development (Wallimann et al. 1992). Many structures of vertebrate embryo 

express CKs at early stages (Lyons et al. 1991; Dickmeis et al. 2001), and Cr concentrations 

between 5 and 8 mmol/kg wet weight were measured in CNS of rat and human fetus (Miller 

et al. 2000; Kreis et al. 2002). Parts of CNS developmental needs for Cr are provided by 

active transport of Cr from mother to embryo, Cr accumulating in chorioallantoic placenta 

and yolk sac at concentrations higher than found in maternal and fetal blood, then diffusing 

down its concentration gradient into fetal circulation (Davis et al. 1978). 

 

AGAT, GAMT and SLC6A8 are well expressed during vertebrate embryogenesis (Schloss et 

al. 1994; Sandell et al. 2003; Schmidt et al. 2004; Braissant et al. 2005; Wang et al. 2007; 

Ireland et al. 2009), and probably play essential roles in developing CNS as their deficiencies 



 

 

lead to neurological symptoms in early infancy and severe neurodevelopmental delay (see 

below).  

 

Working on rat, we have provided the first detailed analysis of AGAT, GAMT and SLC6A8 

expression in developing embryonic CNS (Braissant et al. 2005). AGAT and GAMT are 

expressed in the whole developing CNS parenchyma. However, their low level (GAMT in 

particular) at early developmental stages suggests that embryonic CNS depends on external 

Cr supply, be it from embryonic periphery or from maternal origin. This is coherent with 

SLC6A8 expression in whole embryonic CNS already at early stages (E12.5 in rat), with 

particularly high levels in periventricular zone and choroid plexus, the predominant metabolic 

exchange zones of fetal brain before differentiation of BBB (Braissant et al. 2005; Braissant 

et al. 2007). 

 

Functions of AGAT, GAMT and SLC6A8 in CNS: Synthesis or uptake of creatine by the 

brain ? 

 

Total Cr levels and CK activity are well correlated in mammalian CNS (Wyss and Kaddurah-

Daouk 2000), their highest levels being reached in brain cells described with high and 

fluctuating energy demands, where AGAT, GAMT and SLC6A8 are expressed (Hemmer et 

al. 1994; Wang and Li 1998; Braissant et al. 2007). 

 

SLC6A8 absence in astrocytes, particularly in their feet sheathing MCEC, made us suggest 

that in mature brain, BBB has a limited permeability for Cr, despite SLC6A8 expression by 

MCEC and their capacity to import Cr (Braissant et al. 2001; Braissant et al. 2007). In vivo 

data confirmed this hypothesis: the blood to brain transport of Cr is effective in rodents, but is 



 

 

relatively inefficient (Ohtsuki et al. 2002; Perasso et al. 2003), and long term treatment of 

AGAT- and GAMT-deficient patients with high doses of Cr allows only a slow and in most 

cases partial replenishment of their CNS Cr (Stöckler et al. 2007; Schulze and Battini 2007). 

Consequently, the brain may depend more on its own Cr synthesis through AGAT and 

GAMT expression than on Cr supply from blood (Braissant et al. 2007; Braissant and Henry 

2008). The effective but limited passage of Cr from blood to CNS through BBB may occur 

through the limited surface of CNS microcapillary endothelium that is free of astrocytic feet 

(Virgintino et al. 1997; Ohtsuki 2004) (Figure 2). 

 

One strong argument in favor of the “brain endogenous Cr synthesis” hypothesis comes from 

Cr measures in CSF of Cr-deficient patients (see Braissant and Henry 2008, and references 

therein). SLC6A8 deficient patients present normal Cr levels in CSF, but cannot import it 

from periphery (Cecil et al. 2001; DeGrauw et al. 2002). In contrast, GAMT-deficient 

patients show strongly decreased Cr levels in CSF, but can import it from blood (Schulze et 

al. 1997). This also suggests that CNS Cr synthesis might still remain operational, although 

very partially, under SLC6A8 deficiency, while it is completely blocked in AGAT and 

GAMT deficiencies. Endogenous synthesis, or a very efficient uptake from periphery, are the 

two ways available for the brain to secure Cr homeostasis for its energy and functions. As 

uptake from periphery does not appear efficient, CNS might privilege Cr endogenous 

synthesis. 

 

The “brain endogenous Cr synthesis” hypothesis might seem contradictory with in vivo 

characteristics of SLC6A8 deficiency, which, despite AGAT and GAMT expression in CNS, 

shows absence (or very low level) of brain Cr by magnetic resonance spectroscopy (MRS) 

(Salomons et al. 2001). This apparent contradiction is probably explained by AGAT, GAMT 



 

 

and SLC6A8 expression patterns in CNS. AGAT and GAMT are found in every CNS cell 

type (Braissant et al. 2001), but appear rarely co-expressed within the same cell (Braissant et 

al. 2010). This suggests that to allow Cr synthesis in the brain, GAA must be transported from 

AGAT- to GAMT-expressing cells (Braissant and Henry 2008) (Figure 2). This GAA 

transfer most probably occurs through SLC6A8, as recently shown by Cr and GAA 

competition studies, and the use of stable isotope-labeled GAA demonstrating its conversion 

to Cr by GAMT activity (Braissant et al. 2010). These observations may explain Cr absence 

in CNS of SLC6A8-deficient patient, despite normal expression of AGAT and GAMT in their 

brain (Braissant and Henry 2008). Recent studies also demonstrate the potential role of 

SLC6A8 (and taurine transporter) for GAA transport across BBB and at blood-cerebrospinal 

fluid barrier, as well as in brain parenchymal cells (Tachikawa et al. 2008; Tachikawa et al. 

2009).  

 

While we have shown that AGAT and GAMT can be found in all brain cell types (Braissant 

et al. 2010), various studies demonstrated high levels of GAMT within glial cells (Schmidt et 

al. 2004; Tachikawa et al. 2004; Braissant et al. 2008), suggesting that the final CNS step for 

Cr synthesis may predominantly by glial. However, this probably depends on the CNS region 

considered, as in cortex, only 20% of astrocytes express GAMT, in comparison with 48% of 

neurons (Braissant et al. 2010). 

 

Creatine deficiency syndromes  

 

Inborn errors of Cr biosynthesis and transport, called Cr deficiency syndromes and due to 

deficiencies in AGAT, GAMT and SLC6A8 (Figures 3 to 5), are characterized by an absence 

or a severe decrease of Cr in CNS, as measured by MRS (Stöckler et al. 1994; Item et al. 



 

 

2001; Salomons et al. 2001; Stromberger et al. 2003). AGAT and GAMT deficiencies are 

autosomal recessive diseases, while SLC6A8 deficiency is a X-linked disorder. Cr deficiency 

syndromes appear among the most frequent inborn errors of metabolism (IEM), the 

prevalence of SLC6A8 deficiency being estimated at 2% of all X-linked mental retardations 

(Rosenberg et al. 2004) and at 1% of males with mental retardation of unknown etiology 

(Clark et al. 2006). AGAT and GAMT deficiencies appear rarer. The prevalence of all 

combined Cr deficiencies was estimated at 2.7% of all mental retardation (Lion-François et al. 

2006). CNS is the main organ affected in Cr deficiency syndromes, whose patients show 

severe neurodevelopmental delay and develop, in early infancy, mental retardation, 

disturbance of active and comprehensible speech, autism, automutilating behavior and 

hypotonia (Stöckler et al. 1996b; Schulze et al. 1997; de Grauw et al. 2002; Battini et al. 

2002). Patients with GAMT deficiency exhibit a more complex phenotype, including 

intractable epilepsy, extrapyramidal movement syndromes and abnormalities in basal ganglia 

(Stromberger et al. 2003; Schulze 2003; Mercimek-Mahmutoglu et al. 2006). GAMT-

deficient patients accumulates GAA due to the block in GAMT enzymatic activity, including 

in the brain where GAA accumulation is probably due to the combined CNS endogenous 

AGAT activity (Braissant and Henry, 2008), as well as to a facilitated crossing of BBB by 

GAA due to increased GAA versus decreased Cr in their blood (Tachikawa et al. 2009) 

(Figure 4). GAA toxicity in CNS, and particularly its epileptogenic action (Schulze et al. 

2001), may occur through disturbances of GABAergic neurotransmission (see above; Neu et 

al. 2002). GAA may also inhibit the complex between Na+/K+-ATPase and CK (Zugno et al. 

2006). Severe epilepsy may also appear in SLC6A8-deficient patients (Mancardi et al. 2007). 

This may be due to the observed CNS GAA accumulation in some SLC6A8-deficient patients 

(Sijens et al. 2005), that could be caused by impairment of GAA transport, through deficient 

SLC6A8, from AGAT- to GAMT-expressing cells (Braissant et al. 2010) (Figure 5).  



 

 

 

 The diverse phenotypic neurological spectrum observed in Cr deficiency syndromes show the 

importance of Cr for psychomotor development and cognitive functions and might be 

explained by the wide pattern of AGAT, GAMT and SLC6A8 genes in mammalian brain 

(Figures 2 to 5), which has been documented in every main regions of rat (AGAT, GAMT 

and SLC6A8), mouse (GAMT and SLC6A8) and human (GAMT) CNS (see above). The 

potential role of Cr as co-transmitter on the widely distributed GABA postsynaptic receptors 

(Almeida et al. 2006b) might also contribute to this phenotypic diversity.  

 

AGAT- and GAMT-deficient patients can be treated with Cr, which strongly improves their 

neurological status and CNS development (Stöckler et al. 1996a; Schulze et al. 1998; Item et 

al. 2001; Battini et al. 2002) (Figures 3 and 4). For GAMT-deficient patients, combined 

arginine restriction and ornithine substitution coupled to Cr treatment decrease GAA and 

improve clinical outcome (Schulze et al. 1998; Schulze et al. 2001; Schulze 2003). However, 

despite improvement of clinical outcome by Cr supplementation, most AGAT- and GAMT-

deficient patients remain with CNS developmental problems. Oral supplementation of Cr is 

inefficient in replenishing CNS Cr in SLC6A8-deficient patients (Figure 5), who remain with 

mental retardation, severe speech impairment, and progressive brain atrophy (Cecil et al. 

2001; Bizzi et al. 2002; de Grauw et al. 2002). Attempts to treat SLC6A8-deficient patients 

with arginine and glycine as precursors of Cr gave encouraging results in two SLC6A8-

deficient patients (Chilosi et al. 2008; Wilcken et al. 2008), while it failed to improve the 

neurological status of four others (Fons et al. 2008). The use of a lipophilic Cr-derived 

compound, creatine ethyl ester, failed to replenish brain Cr concentration in SLC6A8-

deficient patients, as well as to improve their neurological status (Fons et al. 2010). 

 



 

 

Pre-symptomatic treatment of AGAT- and GAMT-deficient patients 

 

Two recent studies have shown that the pre-symptomatic treatment of AGAT and GAMT 

deficiencies appears to prevent the phenotypic expression of these diseases (Schulze and 

Battini, 2007). An AGAT-deficient boy, brother of two already affected AGAT-deficient 

sisters, was diagnosed at birth with the same homozygous mutation as his sisters, and treated 

orally since the age of 4 months with Cr monohydrate (Battini et al. 2006). Similarly, a 

GAMT-deficient girl, sister of an already affected GAMT-deficient brother, was diagnosed at 

birth with the same heterozygous mutations as her brother, and treated orally since the age of 

22 days with Cr monohydrate (Schulze et al. 2006). Both patients, over a follow-up of more 

than 2 years, did not develop the characteristic CNS phenotypic expression of AGAT and 

GAMT deficiencies (Schulze and Battini 2007). These two cases suggest that Cr plays 

essential roles in the development of CNS higher cognitive functions, like speech acquisition, 

during the first months and years of life, and that treatment with Cr before irreversible 

damage occurs may prevent clinical symptoms of AGAT and GAMT deficiencies 

permanently. As described above, the pre-symptomatic treatment with Cr in post-natal stages 

and during the first years of life may also facilitate the entry of Cr into the brain, at stages 

where BBB is not as tightly regulated as in more mature stages (Virgintino et al. 1997; 

Engelhardt, 2003), and where SLC6A8 expression on BBB and choroid plexus may still 

facilitate entry of peripheral Cr into the brain (Braissant et al. 2005; Ireland et al. 2009), in 

contrast to adulthood (Braissant et al. 2001). 

 

The GAMT -/- mouse 

 



 

 

So far, only one in vivo model of Cr deficiencies has been described: the GAMT knock-out 

mouse (GAMT-/-) in which the first exon of the murine GAMT gene has been disrupted 

(Schmidt et al. 2004). As GAMT-deficient patients, GAMT-/- mice have markedly decreased 

Cr and increased GAA levels in CNS and in body fluids (urine, serum, CSF) (Renema et al. 

2003), and slowly replenish their brain Cr when fed with Cr. GAMT-/- mice show increased 

neonatal mortality, muscular hypotonia and decreased male fertility. The most obvious 

symptom observed is a reduction of body weight throughout life, more pronounced in females 

than males. While biochemical alterations of GAMT-/- mice are comparable to those found in 

GAMT-deficient patients, their neurological and behavioral analysis reveals only mild 

cognitive impairment and no severe neurological symptoms despite the important 

accumulation of GAA in CNS (Schmidt et al. 2004; Torremans et al. 2005). In particular, no 

severe symptoms like epileptic seizures or ataxia are observed. One explanation for this 

contrast to GAMT patients may be the use of GAA as CK substrate, leading to the formation 

of phosphorylated GAA which may play the same role as PCr in providing high-energy 

phosphates (Ellington 2001; Renema et al. 2003). If this were true, the same compensation 

mechanism by GAA may also occur in GAMT-deficient patients, who can accumulate 

phosphorylated GAA at least in their muscles (Schulze et al. 2003; Ensenauer et al. 2004). No 

in vivo models of AGAT and SLC6A8 deficiencies have been published so far. 

 

Secondary creatine deficiencies in CNS 

 

Apart of the primary Cr deficiency syndromes, several other CNS pathologies cause a 

secondary Cr deficiency in brain cells. 

 

Hyperammonemia 



 

 

 

Excess of ammonium (NH4
+) is toxic for CNS. In adults, liver failure can result in 

hyperammonemia and lead to a potentially severe neuropsychiatric disorder named hepatic 

encephalopathy, which progressively leads to altered mental status and coma (Beal and 

Martin 1998). In pediatric patients, hyperammonemia can be caused by various inherited or 

acquired disorders, the most frequent being urea cycle diseases, which can cause irreversible 

damages to the developing brain with presentation symptoms such as cognitive impairment, 

seizures and cerebral palsy (Leonard and Morris 2002; Gropman and Batshaw 2004). In CNS, 

NH4
+ exposure alters several amino acid pathways and neurotransmitter systems, cerebral 

energy, nitric oxide synthesis, axonal and dendritic growth and signal transduction pathways 

(Cagnon and Braissant 2007; Cagnon and Braissant 2008; Cagnon and Braissant 2009) 

eventually leading to energy deficit, oxidative stress and cell death (Braissant 2010a). In 

particular, NH4
+ exposure generates a secondary Cr deficiency in brain cells, both in vivo and 

in vitro (Ratnakumari et al. 1996; Choi and Yoo 2001; Braissant et al. 2002). NH4
+ appears to 

inhibit AGAT enzymatic activity and to differentially alter AGAT, GAMT and SLC6A8 gene 

expression in a cell type-specific manner, which may alter the energy requirements of brain 

cells (Braissant et al. 2008; Braissant 2010b). 

 

Stroke 

 

Stroke is the rapidly developing loss of brain functions due to disturbances in CNS blood 

flow, and resulting in insufficient oxygen and glucose delivery to support brain cell 

homeostasis (Donnan et al. 2008). Distinction is made between ischemic stroke, due to 

thrombotic or embolic events interrupting blood supply to the brain, and hemorrhagic stroke, 

due to the rupture of a blood vessel or an abnormal vascular structure. Ischemic stroke is the 



 

 

most frequent, representing about 87% of all cases of stroke (Donnan et al. 2008). The Cr/PCr 

system is known to allow the regeneration of ATP even in absence of oxygen and glucose, but 

for a very limited amount of time. In the brain in particular, PCr levels are limited, and rapidly 

become depleted after anoxia or ischemia, the PCr decrease preceding the fall in ATP (Lipton 

and Whittingham 1982; Obrenovitch et al. 1988). Moreover, studies on different in vivo 

models for brain ischemia have demonstrated a rapid diminution in CNS total Cr (Peres et al. 

1992; Gideon et al. 1992; Lei et al. 2009). In ischemic patients, total Cr levels are also 

significantly lower than in normal volunteers (Mathews et al. 1995). This lower Cr level 

causes a decrease in high energy phosphates production, and leads to a failure in most energy-

dependent processes necessary for cell survival, such as ion pumping, neuronal depolarization 

or presynaptic re-uptake of excitatory amino acids (Nicholls and Attwell 1990). This in turn 

favors the accumulation of excitotoxic glutamate in CNS extracellular space, eventually 

leading to neuronal death by necrosis or apoptosis (Dirnagl et al. 1999; Zhu et al. 2004). 

 

Gyrate atrophy of the choroid and retina 

 

Gyrate atrophy of the choroid and retina (GA), an IEM causing chorioretinal dystrophy 

starting in childhood and that can lead to blindness in the fourth to seventh decade of life, is 

caused by mutations in ornithine δ-aminotransferase (OAT) (Valle et al. 1981). GA generates 

a secondary Cr deficiency in skeletal muscle as well as in brain cells, as OAT deficiency leads 

to an important accumulation of ornithine which inhibits AGAT reaction, therefore depleting 

GAA for Cr synthesis (Sipilä 1980), as shown in brain and skeletal muscle of GA animal 

models and patients (Wang et al. 1996; Valayannopoulos et al. 2009). While GA patients may 

develop with normal intelligence, electroencephalography and magnetic resonance imaging 

analysis have however demonstrated unspecific abnormalities and premature degenerative 



 

 

changes in CNS (Näntö-Salonen et al. 1999; Valtonen et al. 1999). GA neurological 

symptoms may thus possibly be related to a secondary Cr deficiency in CNS (Näntö -Salonen 

et al. 1999; Valayannopoulos et al. 2009).  

 
  

Therapeutic potential of creatine for brain diseases  

 

Troubles in CNS energy metabolism due to mitochondrial dysfunction, either from oxidative 

stress, mitochondrial DNA deletions, pathological mutations or altered mitochondria 

morphology, play critical roles in the progression of neurological diseases as a primary or 

secondary mechanism in neuronal death cascade (Beal 2000; Chaturvedi and Beal 2008). The 

cellular energy state plays key roles in regulating and initiating necrosis and apoptosis in brain 

cells, since mitochondria are known as essential in controlling specific apoptotic pathways 

(Green and Reed 1998) (Figure 6). 

 

The dominant role of mitochondria is to supply and regulate energy, in the form of ATP, for 

the cell. In addition, mitochondria are involved in a range of other processes, such as cellular 

growth and differentiation, and cell cycle control (McBride et al. 2006). Their dysregulation 

can lead to alterations in Ca++ homeostasis, production of reactive oxygen species (ROS) and 

cell death (apoptosis) (Steeghs et al. 1997; Green and Reed 1998; McBride et al. 2006). 

Mitochondria can release several pro-apoptotic proteins into cytosol which in turn can induce 

cell death (Primeau et al. 2002). This release is under control of ROS, allowing formation of 

mitochondrial permeability transition pores (mPTP), a continuum between inner and outer 

mitochondrial membranes (Adhihetty and Beal 2008) (Figure 6). mPTP are associated with 

different death mechanisms leading to apoptosis and necrosis (Bernardi et al. 1998). mPTP 

formation and opening is facilitated by several factors, like accumulation of Ca++, reduction in 



 

 

membrane potential, increase in inorganic phosphate, decrease in ATP and ADP, and 

elevation in oxidative stress (Di Lisa and Bernardi 2005). In particular, mPTP are localized on 

the mitochondrial membrane beside MtCK, with which they interact. MtCK suppresses pore 

opening and potentially decreases apoptotic susceptibility, which is itself stabilized by the 

presence of Cr (O'Gorman et al. 1997; Adhihetty and Beal 2008). Thus, Cr can play essential 

roles in stabilizing mitochondrial function and in decreasing neuronal cell death (Figure 6). 

 

The mechanisms of neuroprotection by Cr differ depending on the brain pathology, but 

several studies have shown that Cr supplementation can improve the bioenergetic deficit 

associated with these disorders (Gualano et al. 2010). 

 

Huntington disease 

 

Huntington disease (HD) is caused by a CAG triplet expansion in exon 1 of huntingtin gene, 

resulting in an elongated polyglutamine expansion in huntingtin protein. The precise roles of 

huntingtin are unknown so far, but hypotheses have been made for functions in intracellular 

transport, autophagy, transcription, signal transduction and mitochondrial function (Beal and 

Ferrante 2004; Gauthier et al. 2004; Ross 2004). Huntingtin is a cytosolic protein expressed 

ubiquitously in vertebrates, including in CNS (Bender et al. 2005). HD symptoms are 

progressive motor dysfunction, emotional disturbance, dementia and weight loss (Klein and 

Ferrante 2007). 

 

Mutated huntingtin has a toxic effect in neural tissue, with transcriptional dysregulation, 

proapoptotic signaling, oxidative injury, inflammatory reactions and mitochondrial 

dysfunctions (Ryu and Ferrante 2005). HD-/- mice showed an important interaction between 



 

 

energy metabolism dysfunction, mitochondrial abnormalities and excitotoxicity in HD 

pathogenesis (Brouillet and Beal 1993; Beal 1995; Beal 2000), and that Cr plays important 

roles in stabilizing intracellular Ca++, buffering intracellular energy reserves, inhibiting mPTP 

and decreasing extracellular glutamate (Ferrante et al. 2000; Andreassen et al. 2001; 

Dedeoglu et al. 2003; Ryu and Ferrante 2005) (Figure 6). Cr supplementation of HD-/- mice 

increased their life span, decreased their brain atrophy and delayed the formation of mutant 

huntingtin aggregates (Ferrante et al. 2000). Recently, a phase II clinical trial on safety and 

tolerability of Cr in HD patients showed that Cr supplementation made an indicator of 

oxidative-induced damage to DNA (8-hydroxy-2’-deoxyguanosine) undetectable in the serum 

(Hersch et al. 2006). A phase III clinical trial has now been approved and is currently ongoing 

in various centers. 

 

Amyotrophic lateral sclerosis 

 

Amyotrophic lateral sclerosis (ALS) is caused by a loss of motor neurons in CNS, particularly 

in brainstem and motor cortex, which leads to skeletal muscle atrophy, paralysis and death. 

ALS is caused by a variety of genetic mutations, the most common being located in 

superoxide dismutase 1 gene (Hervias et al. 2006). Different studies with G93A transgenic 

mice, an animal model for ALS, have shown decreased ATP levels and impairment in 

respiratory chain activity, inducing a significant decrease in mitochondrial Ca++ loading 

capacity, oxygen consumption, and ATP synthesis in CNS mitochondria (Mattiazzi et al. 

2002; Damiano et al. 2006) (Figure 6). Cr supplementation in G93A mice improved their 

motor performance, extended their survival, protected against neuronal loss in substantia nigra 

and motor cortex, and finally decreased oxidative damage in mitochondria (Klivenyi et al. 

1999). 



 

 

 

Despite these promising results, human clinical trials testing the efficacy of Cr in ALS 

patients showed no evidence for Cr therapeutic potential on survival and/or disease 

progression in patients (Groeneveld et al. 2003; Shefner et al. 2004). ). While mitochondrial 

dysfunction is essential in the motor neuron death cascade in G93A mice, it is not known 

whether it plays similar roles in inducing motor neuron degeneration in ALS patients (Wong 

et al. 1995; Kong and Xu 1998; Swerdlow et al. 1998; Borthwick et al. 1999). Other reasons 

for the discrepancy in Cr responsiveness between G93A mice and ALS patients may be the 

time of starting Cr treatment (40 days before onset of disease in mice, as compared to an 

average of 500 days after onset of symptoms in patients), as well as the Cr dose given to ALS 

patients that may have been inefficient as compared to the dose given to G93A mice 

(Groeneveld et al. 2003; Shefner et al. 2004; Rosenfeld et al. 2008). 

 

Parkinson disease 

 

Mitochondrial dysfunction and oxidative damage play important roles in the pathogenesis of 

Parkinson disease (PD), which manifests by a loss and/or dysfunction of dopaminergic 

neurons in substantia nigra (Beal 1995; Beal 2003) and intraneural protein inclusions called 

Lewy bodies (Lin and Beal 2006). Principal symptoms are progressive bradykinesia, rigidity, 

tremor and gait abnormalities (Adhihetty and Beal 2008). Mitochondrial dysfunction in PD 

decreases ATP synthesis and increases ROS production. ROS inactivate MtCK and decrease 

cytosolic CK activities, thus shutting down energy metabolism (Bindoff et al. 1989; Parker et 

al. 1989) (Figure 6). Mutations in several genes also appear to affect mitochondrial 

metabolism in PD (Thomas and Beal 2007). Cr supplementation in PD animal models 

resulted in significant protection against both CNS dopamine depletion and neuronal loss of 



 

 

neurons in substantia nigra (Matthews et al. 1999). Finally, several double-blinded, phase II 

clinical trials of Cr in early PD patients indicated that Cr supplementation is not futile and 

should be considered for phase III clinical trials (Bender et al. 2006). 

 

Alzheimer disease  

 

Alzheimer disease (AD), the most common form of dementia, is characterized by a loss of 

neurons in cerebral cortex and specific subcortical regions (Wenk 2003). This neuronal loss is 

associated with deposits of extracellular plaques (amyloid-β peptide and cellular material) 

outside and around neurons, and deposits of intracellular neurofibrillary tangles (aggregation 

of the microtubule-associated protein tau in a hyperphosphorylated form) (Bouras et al. 1994; 

Tiraboschi et al. 2004). 

 

At the molecular level, AD lesions show inactive CKs in association with depositions 

enriched in Cr (Bürklen et al. 2006). This loss of bioenergetic function appears due to an 

excessive production of ROS by mitochondria and the absence of translocation of MtCK from 

cytosol to mitochondria due to lack of a protein chaperone-like activity (Li et al. 2006) 

(Figure 6). Cr supplementation does not improve cellular bioenergetics at late stages of AD, 

and the question remains open whether improvement can occur earlier. Other Cr functions 

have been considered, like protection against oxidative-induced CK inactivation by a delay in 

ROS action (Aksenov et al. 2000). Cr supplementation appears neuroprotective against 

glutamate and β-amyloid toxicity in rat hippocampal neurons (Brewer and Wallimann 2000). 

 

Ischemic stroke 

 



 

 

As described above, stroke generates a significant decrease in CNS total Cr pools. Several 

studies have investigated the potential neuroprotective effects of Cr supplementation to 

protect CNS against stroke deleterious mechanisms. Cr supplementation of organotypic 

cultures of hippocampal slices placed in anoxic conditions appears to replenish their PCr 

content, protect synaptic transmission and enhance survival of hippocampal neurons 

(Whittingham and Lipton 1981; Balestrino et al. 1999; Balestrino et al. 2002) (Figure 6). 

Total Cr is also increased in vivo in the ischemic CNS of rat supplemented with Cr (Wick et 

al. 1999). Moreover, Cr supplementation exerts neuroprotective effects against cerebral 

ischemia in mice, by inhibiting mitochondrial cytochrome c release and downstream caspase-

3 activation (Zhu et al. 2004). To counteract the poor penetration of Cr from periphery to 

CNS, the direct administration of Cr into cerebral ventricles, aimed at bypassing BBB, 

protected CNS from damage of global ischemia in rat (Lensman et al. 2006). Similarly, Cr-

derived compounds that can cross biological membranes in a Cr transporter-independent 

manner also showed neuroprotective effects against brain tissue anoxia (Lunardi et al. 2006; 

Perasso et al. 2008). 

 

Hyperammonemia 

 

As described above, NH4
+ exposure generates a secondary Cr deficiency in brain cells, both in 

vitro and in vivo. As Cr is essential, during CNS development, to buffer the energetic levels 

necessary, in growth cones, for axonal and dendritic elongation, and as NH4
+ exposure impairs 

axonal growth (Braissant et al. 2002), we investigated whether a Cr co-treatment under NH4
+ 

exposure could be neuroprotective. We could show that Cr supplementation can protect 

axonal growth under NH4
+ exposure (Braissant et al. 2002). This protection by Cr depends on 

the presence of glial cells. As NH4
+ exposure inhibits axonal growth and decreases Cr, while 



 

 

Cr co-treatment under NH4
+ protects axonal growth, methods to efficiently sustain Cr 

concentration in the developing hyperammonemic CNS should be assessed. As described 

above, Cr can cross from blood to brain through BBB under physiological conditions, but 

with a low permeability, partly because astrocytes lining BBB do not express SLC6A8. 

MCEC, at BBB, express SLC6A8 (Braissant et al. 2001; Ohtsuki et al. 2002). NH4
+ exposure 

increases both SLC6A8 and Cr uptake in MCEC (Bélanger et al. 2007). As we demonstrated 

that SLC6A8 is induced in NH4
+-exposed astrocytes (Braissant et al. 2008), BBB of the 

hyperammonemic CNS might thus be more permeable to Cr than under physiological 

conditions, and supplying oral Cr to hyperammonemic neonates or infants might likely 

contribute to protect their brain (Braissant 2010a; Braissant 2010b). 

 

Conclusion  

 

The main function of Cr, in energy metabolism, is to allow ATP regeneration through CK 

enzymatic activity. In recent years, new roles of Cr have been suggested in CNS, like a 

function of central neuromodulator or even true neurotransmitter and roles in appetite and 

weight regulation by acting on specific hypothalamic nuclei. 

 

Several studies investigated the brain biosynthetic pathway and transport of Cr, and suggested 

that due to a poor permeability of BBB for Cr, CNS must secure parts of its needs in Cr by 

endogenous synthesis. We have recently shown that in many brain structures, AGAT and 

GAMT are dissociated between different cells, suggesting that to allow brain synthesis of Cr, 

GAA must be transported from AGAT- to GAMT-expressing cells, most probably through 

SLC6A8 (Braissant and Henry 2008; Braissant et al. 2010).  

 



 

 

Given the essential functions of Cr played in CNS, several studies have investigated its 

neuroprotective potential in numerous brain pathologies, both on neurodegenerative animal 

models and in patients, with ongoing clinical trials in phase II and III. Cr supplementation 

appears to exert neuroprotective effects in HD and PD, but not in AD nor in ALS. Cr may 

also be used as neuroprotective agent under stroke, ischemia or hyperammonemic states, for 

which further studies are needed. 
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Figure legends 

 

Figure 1: Synthesis and function of creatine (Cr). Cr synthesis requires the presence of two 

enzymes, L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate 

methyltransferase (GAMT); cells take up Cr by a specific transporter, SLC6A8. 

Mitochondrial or cytosolic creatine kinases (CK) convert Cr to its high-energy counterpart 

phosphocreatine (PCr). PCr dephosphorylation yields energy, as ADP is converted to ATP. 

Besides its function in cellular energy, Cr may also be involved in neurotransmission. 

 

Figure 2: Model of Cr synthesis and transport in CNS, illustrating the diversity of 

AGAT, GAMT and SLC6A8 expression by brain cells (Braissant et al. 2010). 1) Cr 

endogenous synthesis within cells co-expressing AGAT and GAMT. 2) Cr endogenous 

synthesis through AGAT-expressing cells synthesizing GAA, and GAA uptake by SLC6A8 in 

GAMT-expressing cells. 3) Cell expressing only SLC6A8 (“users” of Cr). 4) Cells silent for 

AGAT, GAMT and SLC6A8. While microcapillaries express SLC6A8, astrocytic feet lining 



 

 

them do not. This implies that only low amounts of peripheral Cr can enter the brain through 

the limited endothelial surface that is free of astrocytic feet, and that CNS must also ensure its 

own endogenous synthesis of Cr. So far, the way Cr (and GAA) can leave cells is poorly 

known. Cr: creatine; AGAT: L-arginine:glycine amidinotransferase; GAMT: 

guanidinoacetate methyltransferase; GAA: guanidinoacetate; SLC6A8: Cr transporter. 

 

Figure 3: Model of AGAT deficiency in CNS. See Figure 2 for abbreviations. 

 

Figure 4: Model of GAMT deficiency in CNS. See Figure 2 for abbreviations. 

 

Figure 5: Model of SLC6A8 deficiency in CNS. See Figure 2 for abbreviations. 

 

Figure 6: Involvement of mitochondria and the Cr/PCr system in brain cell death. In 

Hungtington (HD), Parkinson (PD) and Alzheimer (AD) diseases, as well as in amyotrophic 

lateral sclerosis (ALS), stroke and hyperammonemia (NH4), the impairment of mitochondria 

produces reactive oxygen species (ROS) by the electron transport chain. ROS inactivate 

mitochondrial creatine kinase (MtCK) by changing its octameric conformation to a dimeric 

inactivated form, leading to phosphocreatine (PCr) depletion. Dimeric MtCK and ROS 

modify the structure and open mitochondrial permeability transition pores (mPTP), leading to 

the release of pro-apoptotic factors in cytosol and to cell death. Creatine (Cr) supplementation 

allows the regeneration of the cell Cr pool. Moreover, in HD, PD, stroke and 

hyperammonemia, Cr supplementation may stabilize octameric MtCK and prevent the 

opening of mPTP, thus avoiding cell death. 
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