
	
	
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
	

Year : 2014 

 
Evolutionary Games on Weighted and Spatial Networks 

 
Buesser Pierre 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Buesser Pierre, 2014, Evolutionary Games on Weighted and Spatial Networks 
 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_3E0648150AB98 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect. 



FACULTÉ DES HAUTES ÉTUDES COMMERCIALES
DÉPARTEMENT DE SYSTÈMES D’INFORMATION

Evolutionary Games on Weighted and Spatial Networks

THÈSE DE DOCTORAT

présentée à la

Faculté des Hautes Etudes Commerciales
de l’Université de Lausanne

pour l’obtention du grade de
Docteur en Systèmes d’Information

par

Pierre Buesser

Directeur de thèse
Prof. Marco Tomassini

Jury

Prof. Francisco Santos, expert externe
Prof. Ángel Sánchez, expert externe
Prof. Benoît Garbinato, expert interne

Prof. Alessandro Villa, président

LAUSANNE
2014





Jury

Professor Marco Tomassini
Professor at the Faculty of Business and Economics of the University of Lausanne.
Thesis supervisor.

Professor Ángel Sánchez
Professor and Vice Chair for Research at the Departamento de Matemáticas of Universidad
Carlos III de Madrid.
External expert.

Professor Francisco Santos
Assistant Professor at the Department of Computer Science and Engineering of Instituto
Superior Técnico (IST), University of Lisbon.
External expert.

Professor Benoît Garbinato
Professor at the Faculty of Business and Economics of the University of Lausanne.
Internal expert.

Professor Alessandro Villa
Professor at the Faculty of Business and Economics of the University of Lausanne.
President of the Jury.

iii









 
Université de Lausanne 

Faculté des Hautes Etudes Commerciales 
 
 
 
 
 

Doctorat en Systèmes d’Information 
 
 
 
 
 

 
 
 

Par la présente, je certifie avoir examiné la thèse de doctorat de  
 
 

Pierre BUESSER 
 

 
 

Sa thèse remplit les exigences liées à un travail de doctorat. 

Toutes les révisions que les membres du jury et le-la soussigné-e ont 

demandées durant le colloque de thèse ont été prises en considération et 

reçoivent ici mon approbation 

 

Signature :     Date :  19/12/2014 
 
 

Prof. Angel SANCHEZ 

Membre externe du jury 













Abstract

In game theory the fitness of an agent is not fixed but depends on the other agents choices.
In the standard interpretation of game theory the game is played only once and the agents
know all the details of the games. Evolutionary game theory was an adaptation of game
theory in the context of biology brought by Maynard Smith and George R. Price in 1973.
In evolutionary game theory, the game is played many times. It deals with large popu-
lations and studies the dynamic of the strategy frequencies in the population. Generally
the population has been considered such that each player has the possibility to interact
with each other player with the same probability. This approach leads to the replicator
equation introduced by Taylor and Jonker in 1978. Social networks have been studied
since the pioneering work of Milgram in 1967. The most simple network models are the
random one and the regular spatial lattice, however the analysis of social networks has
shown that these networks display other features such as scale-free degree (number of
neighbors) distribution, high clustering, short average path length, community structure
etc. Two well-studied models of complex networks are the scale-free and Watts-Strogatz
small-world ones. The scale-free model takes into account this specific degree distribution
which can be more realistic than more basic ones. The Barabási-Albert model (1999) is a
well-known example of scale-free model where the scale-free distribution is obtained nat-
urally by the process of preferential attachment. Watts-Strogatz networks possess both a
short average path length and a high clustering coefficient, two features often observed
in real networks. Following these developments, several studies have extended evolution-
ary game theory to these complex network models. For example, Santos et al. found that
scale-free degree distributions are highly favorable to cooperation. In this thesis work, we
tried to extend the state of the art of the research in various directions. Weighted networks
are networks where weights are assigned to the links between the agents, which take into
account the importance of the relations between an agent and his neighbors. In the same
line several other extensions of evolutionary game theory have been explored, such as dy-
namical networks. Migration of the players in space is another example. In this type of
models, the positions of the players evolve such that the agents move randomly or toward
the places where they earn the largest payoff. In this thesis we focus on weighted networks,
spatial networks models, and spatial migration of the agents. Concerning the game, this
work investigates for the most part cooperation. This involves two-player games where the
players A and B can choose between two strategies C and D, where C stand for coopera-
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tion and D for defection. Choosing C will benefit both players only if the other adopts the
same strategy, choosing D benefits the player only if the other chooses C and it does not
benefit the other player. If both players choose D they end up with a low payoff. We first
study the evolution of cooperation on weighted networks and on spatial networks. In a
second part we study the evolution of cooperation when the players can migrate in space in
order to improve their payoff. In this context we study also a different type of game, where
a player can choose a strategy among three strategies dominating each other cyclically,
and study how diversity of strategies can be maintained through the spatial shapes of
the patterns formed. Our findings are the following. Concerning weighted networks, some
real weight distribution and some weight distribution obtained from network formation
models do not affect strongly cooperation. However, it seems that attributing the weights
according to some types of degree-weight correlations on an underlying Barabási-Albert
network has a strong effect on cooperation. Using correlation functions where the vari-
able is the product of the degrees of the end nodes of the edge, we find an increase of
cooperation for some parameter range. However, when the correlation depends on the dif-
ference of the degrees we can explore assortative and disassortative weights, and we find
that for disassortative weights, as opposed to assortative or neutral weights, high levels
of cooperation can be reached. We show that it is possible to derive unweighted networks
topologies from these weighted networks that give rise to similar levels of cooperation. In
a second part, using spatial networks, we study the effect of spatial scale-free networks,
and show that cooperation is only slightly changed in these types of models with respect
to classical scale-free models. However exploring other hierarchical topologies which are
embedded in space, we show that they lead to particularly high levels of cooperation. In
this part we also notice some interesting effects due to the strategy update type. In a
third part, exploring migration, we find that when the agents tend to imitate their neigh-
bors more randomly while they migrate opportunistically to the best places, cooperation
spreads in the population, even for the games which are very detrimental for cooperation.
We study also the patterns obtained with opportunistic migration when the strategies of
the agents are fixed, we find that for some games the agents tends to adopt a directional
motion and that for large interaction radii mobile clusters forms. In the same line we study
three-strategy cyclic games coevolving with opportunistic migration. We find that while
the imitation update becomes more random the size of the cyclical patterns goes through
a peak where it tends to diverge before decreasing again. While the parameter tuning the
random imitation rate is changed and the peak is crossed the order in which the different
cyclical strategies follow each other is reversed.
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Chapter 1
Introduction

1.1 Introduction and Motivation

Game Theory is an extension of decision theory, an ”interactive decision theory“, where an
agent’s optimal action depends on expectations on the actions of other agents [20]. Game
theory has successfully been applied in diverse fields such as evolutionary biology, economy,
and social science in general. A game is defined by a set of players, a set of strategies, the
informations available to each player and the players’ payoffs for each configuration of the
strategies. Classical game theory aims at finding the equilibrium states of the population
implied by the rational choices of the players such that no players can profit by changing
their strategy. In classical game theory a dynamical process is not necessary since the
players try to optimize their payoff knowing that the other players will also try to optimize
their payoffs. While in classical game theory the assumption of rationality is very strong, it
is relaxed in evolutionary game theory where the payoffs, and not a complex choice, directly
dictates which strategies will thrive. In a biological context, the organisms which are more
fit will tend to produce more offspring. In a sociological context, the most successful players
will be imitated more often.

Evolutionary games have been traditionally studied in the context of well-mixed and
very large populations. (see e.g. [15, 41]). However, starting with the work of Nowak and
May [25], and especially in the last few years, more complex population structures have
been brought to the focus of research. Indeed, social interactions can be more precisely
represented as networks of contacts in which nodes represent agents and links stand for
their relationships [24]. Most of the results in the context of networks, owing to the diffi-
culty of analytically solving non mean-field models, come from numerical simulations, but
there are also some theoretical results. In game theory, games can be seen as metaphors
for human interactions and social dilemmas. In this work we focus on different types of
games, describing the interaction of two players when two or three strategies are available.
The population evolves as a result of the application, by each player, of some strategy up-
date rule. Both players update rules and players population structure influence the final
outcome.

We focus mainly on the issue of cooperation, although we will also deal with cyclic
games. We model cooperation by two-strategy games. It is a model for the dilemma faced
by the individual when he has to choose between the benefit of the group (cooperation) or

1
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his own benefit at the expense of the group (defection). The problem with the second choice
is that if all the players adopt it, no one can profit from cooperative individuals. The main
issue is to understand how cooperation can thrive when individuals are selfish. Different
mechanisms may lead to cooperation such as network topology, adaptive networks and
migration among others. Because cooperation is so fundamental in society, we first discuss
its main features, as observed in many laboratory and field experiments.

1.2 Cooperation in Society and Experiments

Cooperation appears when members of a group act for the benefit of the whole group. It
is observed in both human and animal societies. For example social insects such as ants
share tasks, unite against predators and construct huge nests where they can store food
and breed. Some other example of cooperation among animals are cooperative grooming,
respecting proximity-based territory, supporting injured individuals, cooperating for hunt-
ing, alarm calling.
Human is a very cooperative species. It can be observed in families, bands, industry,
information systems, markets, political and military organizations, states, laws, firms, in-
surances, schools, universities, etc.
Cooperation among humans is characterized by the possibility to communicate efficiently.
The language makes it possible to create rules and laws, and to construct cooperative
projects. Another characteristic of human cooperation is that it can extend to complete
strangers rather than being limited to genetically related individuals and members of a
group. Human cooperation has also been observed in cases where agents cannot expect
any reward for it.
Although the results of this thesis are theoretical, it is interesting to first review how peo-
ple behave in some real experiments. Thus, in the following we present some experiments
with real people and real money which can be found in [6] in more details.
In the ultimatum game a subject A is given a sum of money. Then he can offer a part of
this amount to a subject B. The player B knows the initial amount of money given to
player A and can accept or reject the offer. If B accepts it, both players receive the money
according to the offer, if B rejects it both players receive nothing. The game is one-shot,
which means that it is played only one time. If the players are selfish and want to maximize
their profit in this experiment the player B should accept any positive amount of money,
thus player A should give the minimum possible positive amount and the receiver should
accept it. However the results of this experiment show that players of type A tend to give
significant amount of money such as 50% of the initial amount, and players of type B
tend to refuse offers below 25%. Thus players of type B do not only maximize their payoff
but also refuse propositions even if that cannot improve their payoff in future rounds of
this game. The fact that player’s of type A propose large amounts of money might be
due to the fact that they expect a large acceptance threshold and want to maximize their
profit or that they take their decision for any other reason. Finally players of type B were
asked why they refused offers, expressed anger, and wanted to punish other player’s greed.
Thus this shows that players also take decisions according to their feelings rather than
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just for maximizing their payoffs. The result is that they punish the defectors and reward
the cooperators.
Another game is the one-shot prisoner’s dilemma. In that game the two players, A an B,
can chose to cooperate or defect by respectively paying a cost c or nothing, knowing that
if he cooperates, the other player receives a benefit b, and nothing otherwise. Therefore
mutual cooperation maximizes the sum of the player’s payoff, but one of the two players
can earn more at the expense of the other by defecting while the latter cooperates. In
[19], experimenters run the game in three different ways with monetary payoff. In the first
one players play the standard game where players don’t know their partner choice. In the
second one, the player has the choice to cooperate or not after he has been informed that
the first player has cooperated. In the third treatment the first player is also told that
the second player will be informed about his choice before playing. The results showed
that 38% of the players cooperated in the standard game, 62% cooperated in the second
case and 59% cooperated in the third case. This experiment shows that the majority of
players do not cooperate in the standard case. In the second and third cases however, a
large part of the players cooperates, even if the second player would earn a better payoff
by defecting. Again, these results shows that player’s choices are a mixing of selfishness
and motives that do not depend from the actual payoff but could be due to internalized
norms, feelings such as pleasure to reward, self-esteem, guilt and anger. It is interesting to
remark that in the second and third case the choice of the second player amounts to the
same as a simple imitation of the first player.
Another game where this reciprocation can be observed is the gift exchange game. For
this game a group of players was divided in employers and employees. An employer hires
an employee with a wage w and the employee exert an effort e with 0 ≤ w ≤ 100 and
0.1 ≤ e ≤ 1, the payoff of the employer is 100e − w and the payoff of the employee is
u = w − c(e), where c(e) is an increasing function with increasing slope (c′, c′′ > 0). The
game was repeated with different partners such that each interaction is one-shot and the
payoffs where paid with real money at end. If an employee wants to maximizes his profits
he has to choose the minimum effort, and if the employer presume that the employee
is selfish he will give the minimal wage. However the experiment shows that employees
reward good wages with larger efforts and that employers proposed also larger payoffs.
It appears that the employees could earn more by exerting the minimal effort. On the
other hand employers could be selfish and predict the behavior of the employees. Thus, in
order to determine if the employers are purely selfish, the employers were also given the
possibility to punish and reward employees at a cost in a second experiment. A purely
selfish employer would never punish or reward an employee. However the employers pun-
ished 68% of the time the employees that did not fulfill their contract, rewarded 70% of
the time those that over fulfilled their contract and 44% of the time those that respected
it exactly. Therefore both employers and employees tend to reciprocate the choice of the
other rather than just maximizing their profit.
In another experiment, a public goods game was implemented and repeated for ten rounds.
At the beginning of a round, each player receives one dollar and can choose to put in a
public account or to keep it. For each dollar that he gives to the public account, $ 0.5
is added to the final payoff of each player. Finally, each player receives its payoff at the
end of the ten rounds. The maximal payoff is obtained when all the players contribute $1
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to the public account in each round. However, a selfish player will not contribute since
contributing costs more if the choices of the others remain fixed. However it is observed
that players tend to contribute half their private account in the first round and then it
decays to nearly zero. This decay could be interpreted as a learning process where the
players are prudent at the beginning but then understand how to maximize their payoff
by not contributing. But if the game is played inside several groups and that at the end of
a series of rounds the groups a reformed, the players tend also to put half of their account
in the first round of the next session. One interpretation is that they start by cooper-
ating, but then try to punish the defectors by not participating. This idea is supported
by another experiment where the players first play in random groups, but then they can
rank the other players according to their preferences to play with them, then the game
is repeated but the players are assigned to groups according to their ranks, such that the
players with the best ranks play with similar players. For the random groups the average
rate of contribution was 38%. With the assortative groups the average rate of contribution
is 70% on the whole. The groups with the higher rankings had a rate of 90% while the
groups with the lower rankings had an average rate of 45%, which is higher than in the
random groups.
The third party punishment game [8] shows another aspect of human reciprocity. In this
game two players A and B play a dictator game : A receives an amount (100 tokens) of
money and decides how to share it with B. B is just a passive player. In the third party
punishment game a third player C receive a amount of money (50 tokens) and observes
the transfer from A to B. Then C can assign punishment to A at a cost of 1 token for 3
tokens of punishment. As a result the players of type C only punished the A players who
gave less than 50 tokens, the less they gave the more they were punished. Thus the C
players punished the greedy A players at a cost even if the A players defected with respect
to B players and not C. This shows that players tend to reciprocate the strategy even if
they are not involved directly in the interaction. These experiments show that humans like
to reward cooperators and punish defectors even if this doesn’t lead to a higher payoff.
Agents feel pleasure or satisfaction when rewarding cooperators and punishing defectors.
Thus, with respect to cooperation, reciprocating other agents strategies seems to be a
common behavior among humans.
But how this behavior may have come to spread among humans? An explanation is that it
is transmitted by culture and genetic code. Feelings of self-esteem, anger toward defectors,
shame and culpability could be transmitted in the genes and in the culture. If the groups
in which the agents cooperate the most are the most successful, the related culture and
genes will spread better than the other, a complete development of this idea can be found
in [6]. Note that this idea of comparing cultural and biological evolution is not new and
dates back to William James (1880) and Julian Huxley (1955).
After this necessarily brief glimpse on the origins and the effects of cooperation in society,
we now turn to a description of the structure and the objectives of the present thesis.
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1.3 Previous Work and Objectives

This thesis is composed of three parts. First we will study evolutionary game theory when
the population is represented by weighted complex networks. In a second part population
will be represented by spatial unweighted networks. In the third part the population will
evolve on a spatial lattice and the agents will be able to adapt their position in order to
increase their payoff.

Regarding game theory on networks with static agents, most of the previous work has
dealt with unweighted graphs. This is understandable as a logical first step, since attribut-
ing reliable weights to relationships in social networks is not a simple matter because the
relationship is often multi-faceted and implies psychological and sociological features that
are difficult to define and measure, such as friendship, empathy, and common beliefs. In
spite of these difficulties, including the strength of agents’ ties would be a step toward more
realistic models. In this thesis we propose to use both empirical and theoretical weight
distributions on standard unweighted social network models in order to understand the
influence of weighted networks on evolutionary games.
Networks in which there is an underlying spatial structure are also very important and
have attracted attention (see [5] for an excellent recent review). In evolutionary games
regular graphs such as one- and two-dimensional lattices have been used early on to pro-
vide a local structure to the population of interacting agents [2, 25]. One of the objectives
of this thesis will be to extend the ideas and methods of evolutionary game theory to
fixed unweighted spatial networks that go beyond discrete two-dimensional lattices and
are more realistic.
In the majority of real situations both in biology and in human societies, actors have the
possibility to move around in space. In the last decade there have been several new stud-
ies of the influence of mobility on the behavior of various games in spatial environments
representing essentially two strands of research: one in which the movement of agents is
seen as a random walk, and a second one in which the agents try to find a position that
maximizes their fitness. Of course, intermediate situations may also exist. In this thesis we
mainly use a type of opportunistic migration which consists in randomly trying several free
positions in space within a given migration radius and in moving to the most profitable
one. We show that success-driven migration notably changes the dynamical evolution of
the population, and leads to very high levels of cooperation. Particularly when we increase
the number of random imitations compared to the number of payoff dependent imitations.
In the last part, always in the context of opportunistic migration, we study a three strategy
cyclic game. In this game three strategies S1, S2, S3 are available. The strategies form a
cycle such that when a strategy is adopted, the payoff earned while the other adopts the
next strategy in the cycle is higher than the payoff obtained against the same strategy or
the former one in the cycle. This type of game is not only of theoretical interest since it is
partly responsible for the biodiversity on Earth, and has been actually observed in several
biological situations such as the dynamic behavior of side-blotched lizards populations [35],
coral reef invertebrates [17], and competition among different bacteria strands [18] among
others. Cyclic behavior has also been found in studies of the public goods game type when
players, besides being able to choose between cooperating or defecting behavior, also have
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the choice of not taking part in the game (so-called “loner” strategy) [10]. Interestingly,
this oscillating behavior was actually observed in an experiment with human subjects by
D. Semman et al. [34].
In a spatial setting such as two-dimensional grids or, more generally, on relational net-
works, several results have been obtained. Szabó and Hauert [37] and Szabó and Vukov [39]
studied the Prisoner’s Dilemma on two-dimensional grids with three strategies: cooperate,
defect, and loners and observed that the three strategies survive in a cyclic dominance
way akin to the rock-paper-scissors (RPS) game. A similar phenomenon manifests itself
on random graphs but with different characteristics. In [38] Szabó et al. investigated the
behavior of the RPS game on regular small-world networks. In more recent work A. Szol-
noki and coworkers have further studied the evolutionary Prisoner’s Dilemma on spatial
grids and random graphs showing that with a third tit-for-tat strategy the system can
show a variety of interesting behaviors including stationary and oscillatory states [40].

Our objectives in this thesis, in the context of cooperation, are the following :

1. Understand how cooperation can thrive.
2. Explore the effect of weights for different types of degree-weight correlations and other

weighted network models.
3. Find unweighted network topologies which foster cooperation.
4. Explore cooperation on spatial networks.
5. Explore different strategy update rules.
6. The effect of migrating to better places on the strategies evolution.
7. Which kind of spatial patterns are formed by migration only, i.e. when players keep a

fixed strategy.
8. Variation of the imitation noise, i.e. players imitate their neighbors randomly rather

than according to the payoffs.

In the context of cyclic games, we explore the effect of the following points on the diversity
of strategies and the size of the spatial patterns :

1. The effect of migrating to better places.
2. Variation of the imitation noise.

1.4 Game Theory

1.4.1 Definitions

In order to make this thesis self-contained as far as possible, in this section we define the
basic notions of game theory and give some general results. A game consist of a set of m
players 1, 2, . . . ,m and for each player i a set of Ni available strategies Si, and the payoffs
Πi attributed to each player for each strategy choice of all the players. When the set of
available strategies is the same for all the players it will be denoted simply as S. A strategy
can be interpreted as a specification of the moves a player will make in the game and the
payoff is the outcome of the strategy choice given the choices of the other players.
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A mixed strategy s for a player i is a probability distribution over the Ni strategies
available to that player, with coefficients p1, .., pN . Since pi ≥ 0 and

∑
pi = 1, the set of

all strategies available to player i can be represented as a simplex

∆i =
{
s = (p1, ..., pNi) ∈ RNi : pj ≥ 0 and

Ni∑
j=1

pj = 1
}

(1.1)

We will call it ∆ when the set of strategies available is the same for all players. Note that
the pure strategies are the unit vectors ej .
Let Si be the set of all possible strategies available to player i, a strategy profile in pure
or mixed strategies is a m-tuple σ = (s1, ..., sm) such that s1 ∈ S1, ..., sm ∈ Sm for pure
strategies or s1 ∈ ∆1, ..., sm ∈ ∆m for mixed strategies . The set of all strategy profiles is
called Ψ .
In game theory, there are two standard representations of games, namely the normal form
and the extensive form. The extensive form of a game represents a possible sequence of
player’s choices as a tree as in Figure 1.1. In that case the order of play is clear, player
P1 has the choice between strategy A1 and A2 and then player P2 has the choice between
strategy B1 and B2 if player P1 has chosen A1 and B3, B4 in the opposite case. The payoffs
can be represented as the leafs of the tree, in Fig. 1.1 the first term of the bracket is the
first player’s payoff and the following term is the second player’s payoff. It is also possible
to specify the information available to a player about the previous choices of players, for
example in fig. 1.1, player 2 can be unaware of the choice of player 1, and is represented
by a dashed line between the two nodes labeled 2.
Unlike extensive forms, normal forms are not represented as a sequence of actions but

P2

P2

P1

(a11,b11)

(a21,b21)

(a22,b22)

A1

A2

B1

B2

B3

B4

(a12,b12)

P2

P2

P1

(a11,b11)

(a21,b21)

(a22,b22)

A1

A2

B1

B2

B1

B2

(a12,b12)

Fig. 1.1 An extensive form representation with complete information (left image), and partial
information (right image)

represent the game by way of a payoff function which assign a payoff to a player as a
function of the strategies chosen by the m players. In that case the temporal sequence
of the game is not taken into account and everything happens as if all players played
simultaneously. Formally, a payoff function is a function Π : S1×S2× ...×Sm → R, which
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ΠA, ΠB B1 B2 . . . Bm
A1 a11, b11 a12, b12 . . . a1m, b1m
A2 a21, b21 a22, b22 . . . a2m, b2m
...

...
... . . . ...

An an1, bn1 an2, bn2 . . . anm, bnm

Table 1.1 A normal form representation.

is specified for each player. For a 2-player game, the payoff function can be represented as
a payoff bi-matrix as can be seen in Table 1.1 where the first (second) entry in the bracket
is the payoff of player A(B). We call MA the matrix containing the payoffs earned by
player A, and MB the matrix containing the payoffs of player B. Here the payoff matrix
entries correspond to pure strategy choices, in order to take into account mixed strategies,
the payoff of player i against player j is given by si ·Misj where sk is the mixed strategy
profile of player k. In order to facilitate the notation we will note (s, σ−i) a strategy profile
in which player i plays strategy s and the other players follow the strategy profile σ−i.
The payoff of a player i adopting strategy si when the other players adopt their strategies
according to strategy profile σ will be noted Πi(si, σ−i).
A two-player game is said to be symmetric if the set of strategies for player 1 and player
2 is the same and the payoff bi-matrix is such that M1 = M>2 = M , i.e. the transpose of
one matrix is equal to the other and is called M . In other words the payoff of player 1 if
1 adopts strategy s and player 2 adopts strategy t is equal to the payoff of player 2 when
player 2 adopts strategy s and player 1 adopts strategy t. This type of games are used
when all the players are identical.
If the payoff bi-matrix of a two-player game is such that the sum of the players payoffs
is always null, i.e M1 = −M2 = M the game is called a zero-sum game. For this class of
games the Minimax theorem stipulate that there exists a value v such that

v = max
p

min
q
Π(p,q) = min

q
max

p
Π(p,q) = max

q
min

p
Π(q,p) (1.2)

where Π(p,q) = p · V q. Which is equivalent to

v = max
p

min
q
Π(p,q) = max

q
min

p
Π(q,p) (1.3)

by definition of the payoff matrix M . In other words there always exists a mixed strategy
which is optimal for both player.
The strategy ti of player i is said to strictly dominate the strategy si if Πi(ti, σ−i) >
Πi(si, σ−i) for all σ ∈ Ψ . In order to find the "solution" of a game it is possible to first
simplify the game by iteratively eliminating the strictly dominated strategies. Indeed a
basic postulate of rationality in game is to consider that rational players never play strictly
dominated strategies. Thus the strictly dominated strategies can be eliminated from the
game. When a strictly dominated strategy is eliminated some remaining strategies can
be strictly dominated in the new game. Therefore the strictly dominated strategies can
be removed iteratively until no more strictly dominated strategy exists in the game. It is
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possible to show that the set of remaining strategies is independent of the details of the
elimination procedure ([7]). In some case, as in the famous prisoner’s dilemma game, only
one strategy profile survives the elimination procedure and is therefore the solution of the
game under perfect rationality. However it is more common that more than one strategy
remain after the iterative elimination of strictly dominated strategies. Furthermore, for a
player, the process of eliminating recursively his strategies and to know which strategies
the other players will eliminate requires a strong rationality.

Nash Equilibrium. Another more general way of modeling solutions and equilibria of a
game is the concept of Nash equilibrium [22]. A strategy profile σ is a Nash equilibrium
(NE) if no player can benefit by changing strategy while the other players keep theirs
unchanged. More formally a strategy profile σ∗ = (s∗1, . . . , s∗m) is a Nash equilibrium, iff

∀i, ∀si 6= s∗i : Πi(s∗i , σ∗−i) ≥ Πi(si, σ∗−i). (1.4)

If the inequality is strict, σ∗ is called a strict Nash equilibrium. A best response for a player
is the best strategy choice given the choices of the other players. A Nash equilibria can be
defined in terms of best response as a strategy profile where each agent’s strategy choice
s∗i is a best response to the other player’s strategies.
A very important theorem in classical game theory is Nash’s theorem [21]. This theorem
asserts that for all finite normal-form games there exists at least one Nash equilibrium in
pure or mixed strategies.
A symmetrical Nash equilibrium is a NE where all the agents play the same strategy.
By definition a Nash equilibrium is stable against single unilateral changes concerning only
one player. However it is possible that some players change their strategies at the same
time and that it increases the payoffs of some other players without decreasing the payoff
of any player. In that case the initial Nash equilibrium is called inefficient. In the opposite
case the NE is called Pareto efficient. These concepts can be used to refine the concept
of Nash equilibrium and determine what is the final outcome of a game. It is interesting
to note that in the Prisoner’s Dilemma game there is only one Nash equilibrium but this
equilibrium is not Pareto-efficient. Therefore there exist a state which maximize the total
payoff of the players and it is not the Nash equilibrium.
A very useful result in classical game theory is the invariance of the dominance and best
response relations, and the set of Nash equilibria under positive affine transformations of
the players payoff function. More formally, let G and G∗ be two games. For each player i,
positive real number ai and real number bi such that Πi(σ)∗ = aiΠi(σ)+bi for all strategy
profile σ, the set of Nash equilibria is invariant, as well as the dominance and best response
relations.
Moreover if a constant bi is added to the payoff of player i only for a fixed strategy profile
σ−i of the other players, Nash equilibria and dominance as well as best response relations
are unchanged.
For a two player game with payoff bi-matrix (M1,M2) the first transformation is the affine
transformation, M∗i = aiMi + bi for i ∈ 1, 2, and the second transformation amounts to
adding the constant b1 to one column ofM1, or b2 to one raw ofM2. These transformations
allow to simplify the payoff matrix and analyze it instead of the original one.
Another consideration that can help to find the Nash equilibria is that a NE cannot be
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strictly dominated, therefore it is possible to first iteratively eliminate all the strictly
dominated strategies.
Finally, in order to derive the Nash equilibria in mixed strategies, we compute the mixed
strategy profile with the condition that, given a player, the expected payoffs for each
strategy choices are equal. If this condition is fulfilled the player has no incentive to
change its mixed strategy since the payoffs would be the same. This system of equations,
together with the normalization of the probabilities constraint, has the Nash equilibria as
solution.

1.4.2 Games

In this section we analyze two-player, two-strategy symmetric games. Such a game is
defined by a matrix (

a b
c d

)
By the invariance property we can reduce the matrix to(

a1 0
0 a2

)

With this matrix it is possible to show that these games can be classified according to the
following types [36]:

1. Coordination class: a > c, d > b or a1 > 0, a2 > 0. Two strict Nash equilibrium in pure
strategy, and one non-strict NE in mixed strategies:

• s∗ = t∗ = 1
• s∗ = t∗ = 0
• s∗ = t∗ = v

All NE are symmetric, i.e. s∗ = t∗.
2. Anti-coordination class: a < c, d < b or a1 < 0, a2 < 0. Two strict Nash equilibrium in

pure strategy, and one non-strict NE in mixed strategies:

• s∗ = 1, t∗ = 0
• s∗ = 0, t∗ = 1
• s∗ = t∗ = v

The first two NE are asymmetric, and the third is symmetric.
3. Strict dominance class [41]: (a − c)(d − b) ≤ 0 or a1a2 < 0. One pure strategy strictly

dominates the other and there is only one symmetric pure strategy strict Nash equilib-
rium:

• s∗ = 1, t∗ = 1 or s∗ = 0, t∗ = 0

In the following paragraphs we analyze five well-known games that will be heavily
used in this thesis. The first four are classical two-person, two-strategy, symmetric games,
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namely the Prisoner’s Dilemma (PD), the Hawk-Dove Game (HD), the Stag Hunt (SH),
and the Harmony game (H). These games are traditionally defined by the following generic
payoff bi-matrix:

( C D

C R,R S, T
D T, S P, P

)
(1.5)

The set of strategies is Λ = {C,D}, where C stands for “cooperation” and D means
“defection”. In the payoff matrix R stands for the reward the two players receive if they
both cooperate, P is the punishment if they both defect, and T is the temptation, i.e. the
payoff that a player receives if he defects while the other cooperates and gets the sucker’s
payoff S. In general we have R > P , since mutual cooperation should be more profitable
than mutual defection.

The Prisoner’s Dilemma. For this game, the payoff values are ordered such that T >
R > P > S. Defection is always the best rational individual choice, so that (D,D) is the
unique strict Nash Equilibrium (NE). This game belongs to the strict dominance [41] class
of games as defined above.The interest of this game is that the strategy profile σ = (C,C)
in which both players profit equally is unstable, since cooperation is strictly dominated
by defection. Therefore both players adopt defection; thus σ∗ = (D,D) is the NE, but
this Nash equilibrium is inefficient since changing the strategies of the players to (C,C)
increases the payoffs of both players. The prisoner’s dilemma is ubiquitous in society and
economics. Some examples are competing companies on market selling the same products
and battling for the marketplace, arms race between superpowers, climate change, etc.
The prisoner’s dilemma is easily extended to more than two players, in such a game the
payoff depends on the interaction between N persons. For example the payoff can be b− c
(b > c > 0) for the cooperators and b for the defectors if more than n persons cooperate
and 0 otherwise.

The Hawk-Dove. In the HD game, the order of P and S is reversed, yielding T >
R > S > P . This game is characterized by the high temptation to defect and the low
punishment, thus mutual defection leads to the lowest payoff. When both players cooperate
they have a strong incentive to play D, therefore one of the players will adopt defection
which is better for that player and worse for the other. On the other hand, if the strategy
profile is (D,D), it is more profitable for both players that one of them chooses cooperation.
Finally the solution will be that one player cooperates while the other defects. (C,D) and
(D,C) are the NE of the game in pure strategies, and there is a third equilibrium in
mixed strategies. This game is in the anti-coordination class and no strategy is strictly
dominated. The strategy profiles (D,C) and (C,D) are Pareto-efficient. The mixed Nash-
equilibria can be computed by equating the expected payoffs of the strategies C and D for
any of the symmetrical players and using the normalization of the probabilities leading to
σ∗ = ((P − S)/(R+ P − S − T ), (R− T )/(R+ P − S − T )).
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The Stag Hunt. In this game, the ordering is R > T > P > S, which means that mutual
cooperation (C,C) is the best outcome, Pareto-efficient, and a NE. The second NE, where
both players defect is less efficient but also less risky. The tension is represented by the
fact that the socially preferable coordinated equilibrium (C,C) might be missed for “fear”
that the other player will play D instead. There is a third mixed strategy Nash equilibrium
given by σ∗ = ((P − S)/(R+ P − S − T ), (R− T )/(R+ P − S − T )) as in the HD, but it
is an unstable fixed point.

Harmony. Finally, in the H game R > S > T > P or R > T > S > P . In this case C
strongly dominates D and the trivial unique NE is (C,C).

The last game is a cyclic two-player three-strategy game.

Rock-Paper-Scissors. In the Rock-Paper-Scissors (RPS) game the three states cyclically
dominate each other. The game can be modeled by the following matrix:


S1 S2 S3

S1 a b2 −b1
S2 −b1 a b2
S3 b2 −b1 a

 (1.6)

where b1 and b2 are positive. By invariance under affine transformations we can sub-
tract a to the payoff matrix and reduce the game to the case a = 0. There is no Nash
equilibrium in pure strategy since when player 1 starts for example with strategy S3 player
2 adopts strategy S2, but then 1 is better off with strategy S1, and the process continues
cyclically. On the other hand there is a Nash equilibrium in mixed strategies given by
σ∗ = (1/3, 1/3, 1/3) ∀a, b1, b2.

1.5 Evolutionary Game Theory

Evolutionary game theory is the theory of the dynamic adaptation and learning in repeated
games played with bounded rationality. In this section we restrict to population games.
Population games are defined by an underlying two-player game and some strategy update
rule, with the assumption that the population is large and that the players are identical,
and thus the game is symmetrical too. In this type of game mixed strategies can be
interpreted as the frequencies of players adopting each strategy in the population.

1.5.0.1 Evolutionarily Stable Strategies

An evolutionarily stable strategy (ESS) is a strategy which cannot be invaded by another
strategy in the sense that its payoff is higher than the payoff of the invader if the frequency
of the invader in the population is small enough. Formally, if Π(s, t) represents the payoff



1.5 Evolutionary Game Theory 13

of strategy s against strategy t, a strategy s is an ESS if for all t ∈ ∆ with t 6= s, the
inequality

Π(s, (1− ε)s+ εt) > Π(t, (1− ε)s+ εt)

holds for all ε > 0 that are sufficiently small.
It is possible to split the formal definition of evolutionary stability into two conditions
such that one of them implies that the strategy is a symmetric Nash equilibrium and the
other one is a stability condition:

1. Nash equilibrium : Π(s, s) ≥ Π(t, s)
2. Stability condition : Π(s, t) > Π(t, t)

for all t 6= s. Note that a strict Nash equilibrium, i.e. Π(s, s) > Π(t, s)∀t 6= s, is an ESS,
therefore the second condition is only needed if ∃ t such that Π(s, s) = Π(t, s).
It is now possible to analyze further the games of section 1.4.2 with the concept of ESS.
Indeed, for games in the coordination class such as the Stag-Hunt, the two Nash equilibria
in pure strategies are ESS since they are strict NE. However the mixed strategy equilib-
rium s is not evolutionarily stable since each pure strategy earns more against itself than
s earns against the pure strategy.
For the games in the anti-coordination class such as the Hawk-Dove, it is possible to
show that the mixed strategy Nash equilibria s is evolutionary stable. Note that the pure
strategy Nash equilibria have different strategies for the two players therefore the ESS
definition cannot be applied.
Finally for games in the strict dominance class such as the prisoner’s dilemma, the Nash
equilibrium is strict and symmetric and therefore it is an ESS.
For the RPS game the unique Nash equilibrium s = (1/3, 1/3, 1/3) is not strict as can be
checked with the Nash equilibrium condition. However the stability condition applied to s
implies that s is evolutionarily stable when b2 > b1 and not evolutionarily stable otherwise.
For b2 = b1, Π(s, t) = Π(t, t) for all t 6= s. A discussion of a class of RPS games with an
equivalent parameter space can be found in [41].

1.5.0.2 The Replicator Equations

The replicator equations allow to analyze Nash equilibria and evolutionary stability from
the point of view of large and well-mixed population with differential equations. Generally
it is not possible to obtain an exact solution since the equations are non-linear, but instead
the rest points are analyzed in terms of stability. Let’s s1, . . . , sN be the strategies available
to the players; the replicator equations describe the temporal evolution of the players
strategy frequencies x1, . . . , xN . As in the mixed strategy case, the frequencies sum up to
one and are positive numbers.
Let Θi be a measure of evolutionary success of a strategy i. Then a player adopting strategy
i should leave an offspring with a probability proportional Θi, and therefore the derivative
ẋi of the frequency of strategy i is proportional to xiΘi. Taking Θi = (fitness of Ei −
average fitness) as a measure of evolutionary success we obtain the replicator equations:
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ẋi = xi(Fi((x))− F̄ (x)) i = 1, . . . , N, (1.7)

where Fi is the fitness function of strategy i and F̄ is the average fitness over all the
strategies. In order to simplify the analysis, the payoff function F is often assumed to
depend linearly upon the strategies frequency. Therefore the replicator equations can be
rewritten as

ẋi = xi((Mx)i − x ·Mx) i = 1, . . . , N, (1.8)

where M is a two players N strategies payoff matrix. In the context of human societies
strategies spreads through imitations rather than births. Therefore it is interesting to note
that these equations are also valid for a population where an agent i imitates a randomly
chosen other player j with probability proportional to the difference between the payoffs
∆ji = Πj −Πi if ∆ji is positive, and a null probability if ∆ji is negative, [13, 14, 36].
Furthermore, the rest points of equations 1.8, i.e the points x for which x(t) = x for all t,
are given by the following conditions

(Mx)1 = . . . = (Mx)N ,
x1 + . . .+ xN = 1.

Note that the simplex ∆ is an invariant of equations 1.8.
In the framework of the replicator equations a point x∗ is a Nash equilibrium if

x ·Mx∗ ≤ x∗ ·Mx∗ (1.9)

for all x ∈ ∆, and an evolutionarily stable state if

x∗ ·Mx > x ·Mx (1.10)

for all x 6= x∗ in a neighborhood of x∗. In less formal terms x∗ is evolutionarily stable if
after a sufficiently small deviation from x∗ the population return to it. In order to briefly
summarize theoretical results we need also some definitions of stability for differential
equations.
If for all points x close enough to an equilibrium point xe the temporal orbits stay near xe
forever, then xe is Lyapunov stable. If the orbits converge to xe, then xe is asymptotically
stable. If xe is Lyapunov stable and all points x which are not on a border of ∆ converge
to xe then xe is called globally stable. The definition does not include the borders since
the boundary faces of ∆ are invariants.
The ω-limit of a point x is the set of accumulation points of x(t), for t→∞:

ω(x) = {y ∈ Rn : x(tk)→ y for some sequence tk → +∞} (1.11)

The following general results describe Nash equilibria and evolutionary stability from the
point of view of the replicator equations [15, 16, 36].

1. If x∗ ∈ ∆ is a Nash equilibrium of the game described by the payoff matrix M , then x∗
is a rest point.

2. If x∗ is a strict Nash equilibrium, then it is asymptotically stable.
3. If x∗ is the ω-limit of an orbit x(t) in the interior of ∆, then x∗ is a Nash equilibrium.
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4. If x∗ is Lyapunov stable, then it is a Nash equilibrium.

Additionally, every interior rest point is a Nash Equilibrium and all the corners of the
simplex are rest points. These results show that the relation between Nash equilibria and
the replicator equations is not trivial.
Concerning the evolutionary stability we have the following results [15, 16, 36]

1. If x∗ is an evolutionarily stable state for the game and payoff matrix M , then it is an
asymptotically stable rest point.

2. If x∗ is an interior evolutionarily stable state, then it is a global attractor.

Furthermore for two strategies symmetrical games, a rest point is asymptotically stable if
and only if the corresponding mixed strategy is evolutionary stable ([41]).
Here also, the replicator equations 1.8 are invariant under positive affine transformations
of the payoff except for a change in the timescale as can be checked. And they are invariant
under the addition of constants to the columns of the payoff matrix.

1.5.0.3 Two-Player Symmetric Games

In this section we analyze two-player symmetric games with the replicator dynamics fol-
lowing [41]. Since the replicator dynamics equations 1.8 are invariant under addition of
constants to the columns the following payoff matrix can be used again:

(
a1 0
0 a2

)
.

Therefore the replicator dynamics for frequency of players adopting the first strategy is

ẋ1 = x1x2(a1x1 − a2x2), (1.12)

with x1 + x2 = 1. Letting ẋ1 = 0 and analyzing the term a1x1− a2x2 when neither a1 nor
a2 is null we obtain easily the same three categories as in section 1.4.2,

1. Coordination class [41]: a1 > 0, a2 > 0. The growth of rate of x1 changes sign at the
mixed strategy equilibrium x1 = λ = a2/(a1 + a2). x1 decreases when x1 < λ, and
x1 increases when x1 > λ. Therefore the NE x1 = λ is unstable and the population
converges to one of the pure strategy states as can be observed in fig. 1.2 first image.

2. Anti-coordination class [41]: a1 < 0, a2 < 0. Here also the growth of rate of x1 changes
sign at the mixed strategy equilibrium x1 = λ. However x1 increases when x1 < λ,
and x1 decreases when x1 > λ. Therefore the NE x1 = λ is stable and the population
converges to the mixed strategy Nash equilibrium, see fig. 1.2 second image.

3. Strict dominance class [41]: a1a2 < 0. If a1 > 0 and a2 < 0, x1 alway increases,
otherwise it always decreases. Therefore the population converges either to strategy 1
or to strategy 2 for any initial value. See fig. 1.2 third image where the case a1 > 0,
a2 < 0 is depicted.
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Fig. 1.2 Orbits of the replicator dynamic in ∆ for the three classes of 2-players games. Open
circles represent unstable fixed points. First image: the population converges to either strategy 1 or
2 depending on the initial condition (Coordination class). Second image: the population converges
to the mixed Nash equilibrium (Anti-coordination class). Third image: the population converges
to either strategy 1 or 2 depending on the payoff values for any initial conditions (Strict dominance
class), here only the case where the population converges to strategy 1 is displayed

These results can be applied to the social dilemmas discussed in section 1.4.2. For example
in the PD game case, which is in the strict dominance class, the population converges to
defection for any initial value.

1.5.0.4 Rock-Paper-Scissors

For the RPS game there exists an unique rest point x∗ in the interior of ∆, which is
also the unique Nash equilibrium. An interesting theorem which holds for the matrix M
represented in Eq. 1.6 for a = 0, in the general case where the parameters b1 and b2 can
be different in each line,[15, 16].
The following conditions are equivalent for the RPS game given by the matrixM for a = 0.

1. x∗ is asymptotically stable,
2. x∗ is globally stable,
3. det M > 0,
4. x∗ ·Mx∗ > 0.

In particular, the third condition is equivalent to b2 > b1 in the case where b1 and b2 are
the same numbers in all lines. When this condition is fulfilled all points in the interior of
∆ converge to x∗. Let x(t) = (x1, x2, x3) be an orbit in ∆, then it is possible to show that
the product x1x2x3 increases for b1 > b2, decreases for b1 < b2 and is constant for b1 = b2.
This shows that the orbits drift away from the rest point, converge to the rest point, are
cycles defined by x1x2x3 = const, respectively, [41]. As the orbits converge to the borders
they visit the neighborhood of all corners cyclically and stay more time in each corners.
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Fig. 1.3 Orbits of the replicator dynamic in ∆ for RPS game with b1 = 1 and b2 = 0.55. The
length of the arrows and the colors indicate speed. Top image: b1 = 1, b2 = 1, the orbits are closed
orbits around the rest point; Left image: b1 = 1.5, b2 = 0.5, the orbits drift apart from the rest
point; Right image: b1 = 0.5, b2 = 1.5, the orbits converge to the rest point; Image made by the
game dynamic simulation program "Dynamo", [3]

This can be observed in Fig. 1.3 where the three cases are depicted.

1.6 Networks

A network captures the connectivity structure of a system. It includes the detailed infor-
mation about the relations between the agents. Since the connectivity structure affects
the dynamic, networks are important tools.
A network is a collection of points joined together by lines. In order to describe a network
we use the concepts of graph theory. Network theory deals with real data sets such as the
world wide web or social networks.
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1.6.1 Definitions

A graph is generally thought as a representation of a set of objects connected by links.
The objects are called vertices and labeled by a number and the links are called edges and
are noted (i, j), where i and j are the labels of the two vertices connected. A graph is
noted G = (E, V ) where E is the set of edges of G and V is the set of vertices. A path is
a sequence of edges (a1, a2), (a2, a3), . . . , (an−1, an). A subgraph G′ = (E′, V ′) is a graph
such that E′ is included in E, and V ′ is included in V . An induced subgraph G′ of G is
a subgraph of G in which e = (i, j) ∈ E′ iff e ∈ E and i, j ∈ V ′. In other words, E′
contains all the edges in E which run between any two vertices in V ′. A component G′ is
an induced subgraph of G in which there is a path between all pair of vertices in V ′ and
there is no path in G between vertices i and j if i ∈ V ′ and j 6∈ V ′.
A graph is directed if the edges are directed, if all edges are symmetric the graph is said
to be undirected.
A neighbor of a vertex i is any other vertex j adjacent to i. The set of neighbors of i is
denoted by Vi. The degree ki of a vertex i is the number of vertices in Vi. A vertex with
high degree compared to other vertices is called a hub.
The degree distribution of G is the probability pk to chose randomly a vertex with degree
k, and the degree sequence is the set of degrees k1, . . . , kn for all vertices. The cumulated
degree distribution is the probability Pk to chose randomly a vertex with degree k′ ≥ k

Pk =
∞∑
k′=k

pk′ . (1.13)

The advantage of cumulated degree distribution is that it is less noisy. For degree distribu-
tion of the form pk = Ck−α for k ≥ kmin for some kmin the cumulated degree distribution
is also a power law but with coefficient α− 1.

Pk = C
∞∑
k′=k

pk′ ' C
∫ ∞
k
k′−α dk′ (1.14)

= C

α− 1k
−(α−1) (1.15)

Power-law degree distributions can be detected with logarithmic xy-axes since they appear
approximatively as straight lines.
The distance between nodes is difficult to define since networks are often not embedded in
a spatial layout. The geodesic distance between two vertices is the length of the shortest
path separating these vertices (the smallest number of edges separating them).
The clustering coefficient measures the ratio of triangles (three vertices fully connected)
over the number of connected triples (a triangle with a missing edge). There are two
different definitions for the clustering coefficient, one global and one local. The global one
is the number of triangles divided by the number of connected triples in the whole network

C = number of triangles× 3
number of connected triples (1.16)

where the number of triangles is multiplied by 3 since each triangle corresponds to 3 con-
nected triples. It can also be seen as the number of paths of length 2 which are closed
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divided by the number of paths of length two. Therefore C is also a measure of transitivity
in the network. The clustering coefficient measures the density of triangles in a network,
but it is possible to measure the densities of other motifs in the network. Note also that
social networks have a larger clustering coefficient than other type of networks, [24]. One
reason might be that people meet often in groups where the agents tends to be all con-
nected.
Another definition for the clustering coefficient uses the notion of local clustering coeffi-
cient. The local clustering coefficient of a vertex i is defined as the number of pairs of
neighbors of i that are connected divided by the total number of pairs of neighbors of i.
Then in order to obtain a global clustering coefficient we average this quantity over all the
vertices. Note that this clustering coefficient is not exactly equivalent to the first one.
A bipartite network G(V,E) is a graph where the vertices can be partitioned into two
disjoint sets V1 ∪ V2 = V , V1 ∩ V2 = ∅, such that there are no edges e = (i, j) between
vertices belonging to the same set:

{(i, j) : i ∈ V1, j ∈ V2}, ∀e ∈ E.

A weighted network is also noted G(V,E) where V is the set of vertices and E is the set
of weighted edges. The weight of an edge (i, j) is noted wij . The strength s(i) of a vertex i
is defined as s(i) =

∑
j∈Vi

wij , and p(s), p(w) denote respectively the strength and weight
distributions. The adjacency matrix Aij of a network is a matrix which entries are the
directed weights of the edges between the nodes i and j. If the graph is unweighted the
entries are 0 or 1, and if it is undirected, Aij = Aji.

1.6.2 Assortativity by characteristic and degree

In this section we introduce the assortativity coefficient, following [24]. Let us consider
that each vertex has a characteristic given by a scalar value, such as the degree, and call
xi the characteristic of vertex i. Then let (xi, xj) be a pair of values for the vertices at the
end of an edge (i, j): we can define the assortativity as the covariance of these values over
the edges

cov(xi, xj) =
∑
ij Aij(xj − µ)(xi − µ)∑

ij Aij
(1.17)

where µ =
∑

ij
Aijxi

Aij
is the mean of xi over the edges and Aij is the adjacency matrix.

After some calculations, we obtain

cov(xi, xj) = 1
2m

∑
ij

(
Aij −

kikj
2m

)
xixj . (1.18)

Where m is the number of edges. In order to obtain the coefficient of assortativity we
normalize this covariance in order that it takes the value 1 in the case where each char-
acteristic is placed on the network such that a vertex i is only connected to vertices j
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such that xi = xj . Note that such a configuration for a given set of vertices with given
characteristics is often not possible. If xi = xj for all pair of neighbors (i, j), the previous
equation can be rewritten as :

cov(xi, xj) = 1
2m

∑
ij

(
Aijx

2
i −

kikj
2m xixj

)
= 1

2m
∑
ij

(
kiδij −

kikj
2m

)
xixj . (1.19)

And the normalized assortativity coefficient is

r =
∑
ij

(
Aij − kikj

2m

)
xixj∑

ij

(
kiδij − kikj

2m

)
xixj

. (1.20)

where δij is the Kronecker coefficient. This measure takes the value 1 in a perfectly assor-
tative configuration, −1 in a perfectly disassortative configuration and 0 when the values
of at the end of the edges are uncorrelated. A case of particular interest is the assortative
mixing by degrees, where the xi = ki are the degrees of the vertices. After replacing the
xi by the ki in equation 1.20 we obtain

r = S1Se − S2
2

S1S3 − S2
2

(1.21)

where Se =
∑
ij Aijkikj , Sp =

∑
i k

p
i , for p = 1, 2, 3.

In this work we will refer to this value as the assortativity coefficient. In real networks the
assortativity coefficient is generally positive for the social networks such as for example
in scientific coauthorship and negative in other types of networks such as information or
technological networks.
It is interesting to note that in [24], the authors also give another kind of assortativity
coefficient Q called modularity in the case where the characteristics ci are enumerative
types, i.e discrete types. In that case the modularity is computed by taking the total
number of edges that run between vertices of the same type divided by the total number
of edges m

Q = 1
2m

∑
ij

Aijδ(ci, cj). (1.22)

Then in order that the modularity be null in the case where the edges are randomly
assigned to pairs of vertices in the network, the value of the modularity in that latter case
is subtracted

Q = 1
2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj). (1.23)

The modularity is strictly smaller than 1 and positive if there are more edges between
vertices of the same type than in the random case.
In the previous measure the average was made over the edges. However, if the modularity
describe the assortativity as viewed from the vertices, it is more convenient to take the
average over the latter. In that case, enumerative assortativity can be obtained by taking
the frequency of neighbors of a vertex i that have the same characteristic as i and averaging
over all the vertices.
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Q =
∑
i

1
ki

∑
j

Aijδ(ci, cj). (1.24)

If we measure the assortativity on a fixed network, we can subtract the value of Q in
the case where the characteristics are randomly assigned over the network. In that way
the neutral case has the same network topology as the network on which assortativity is
measured. By subtracting the latter neutral case we obtain that

Q =
∑
i

1
ki

∑
j

Aij(δ(ci, cj)− C). (1.25)

where C =
∑
c p(c)2 and p(c) is the frequency of the characteristic c, i.e the probability to

find this characteristic on a vertex after random assignement.

1.6.3 Network Topologies

In this section we define some important standard graph topologies and present undirected
network models.

1.6.3.1 Regular Networks

A regular network is a network where all vertices have the same number of neighbors. A
complete graph G is a graph where all the vertices are connected to each other.
Spatial lattices are the simplest type of spatial network. In a spatial lattice the vertices are
embedded in euclidean space on a grid. For simplicity the grid is often a square grid. Then
the edges are attributed to each pair of vertices whose distance is smaller than a constant
dmax. Such a lattice can be appreciated in Fig. 4.4 first image. The problem with spatial
lattices are the borders. In order to overcome this problem periodic boundary conditions
are used. This amounts to folding the spatial plane to form a torus as can be seen in
Fig. 4.4 second image. In this way the degrees of vertices are homogeneous.

1.6.3.2 Random Networks

A random graph is a graph in which some parameters are randomly chosen. A simple form
of random graph G(n,m) is a graph where the number of vertices is fixed to n and the
number of edges to m. The edges are randomly assigned to pairs of vertices. However this
type of network is difficult to handle mathematically. A more easy to handle model is the
Erdos-Rényi random graphs noted G(n, p) [24, 28]. In this model we have also n vertices
but an edge exists between any pair of vertices with probability p. Many properties of this
type of network can be calculated analytically; here we give some results, more detailed
information can be found in [24]. An example of a random graph of size n = 100 is depicted
in Fig. 1.5 left image. The mean degree of a random graph is c = 〈k〉 = (n − 1)p. The
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Fig. 1.4 Left image : Regular lattice of side 4 with connections to the 8 nearest neighbors. Right
image : Periodical border conditions of the plane.

degree distribution can be computed as follows. The probability to be connected to k
chosen vertices and not to the other n − 1 − k vertices is pk(1 − p)n−1−k and there are(n−1
k

)
ways to chose k vertices among n− 1. Thus the degree distribution is

pk =
(
n− 1
k

)
pk(1− p)n−1−k, (1.26)

which is a binomial distribution. In the limit of large n and small p such that np = const,
it is possible to show that this distribution becomes a Poisson distribution

pk = e−c
ck

k! , (1.27)

where c is the mean degree, see [24]. This degree distribution can be seen in figure 1.5
right image, where the axis are logarithmic.
The clustering coefficient is the probability that two neighbors of a vertex are neighbors,
this probability is independent of the other edges and is p = c/(n− 1). Therefore

C = c

n− 1 . (1.28)

This quantity is vanishing for n→∞ with a fixed mean degree.
An interesting feature of random graph is the appearance of a giant component, i.e. a
connected component containing an exponential number of nodes with respect to the other
components, when the mean degree c is larger than 1. It is possible to derive an equation
for the size of the giant component S, [24]:

S = 1− e−cS . (1.29)
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Fig. 1.5 Left image : a random graph of size 100. Right image : Degree distribution of a random
graph with c = 8 in the limit of large n. The axis scale is logarithmic.
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However this equation has no simple solution, but it is possible to plot c as a function of S
and then revert the axes. Figure 1.6 displays the size of the giant component as a function
of the average degree by using equation 1.29 for c > 1.

1.6.3.3 The Configuration Model

The configuration model is a generalization of random graphs to arbitrary degree dis-
tributions. In this section we follow mainly Newman’s book [24]. In order to construct
an instance of the configuration model we need a given degree sequence {k1, k2, . . . , kn},
which can be drawn from the degree distribution pk. Note also that the sum of the degrees
has to be even. Then each vertex i with degree ki is attributed ki stubs of edge. Finally
to form the network the stubs are connected randomly to form complete edges. Self-edges
and multi-edges, i.e. several edges that connect the same pair of vertices, might be formed,
but the expected number of self-edges and multi-edges is constant as a function of n, there-
fore the frequency of such edges vanishes for large networks. In the construction self-edges
can be erased and multi-edges reduced to simple edges. The clustering coefficient can be
computed and is given by

C = 1
n

[〈k2〉 − 〈k〉]2

〈k〉3
. (1.30)

It is also possible to compute the condition for the existence of the giant component as

〈k2〉 − 2〈k〉 > 0. (1.31)

Using the formalism of generating functions it is possible to obtain an equation for the
size of the giant component, however we do not show it here. An interesting special case
are the power-low degree distributions defined by

pk =
{

0 for k = 0
k−α/ζ(α) for k ≥ 1

(1.32)

where ζ(α) =
∑∞
k=1 k

−α is the Riemann zeta function. In that case equation 1.31 leads to
the following result. The network has a giant component only if α < 3.4788. Furthermore,
if α < 2, the giant component fils the entire network. Concerning the clustering coefficient,
it is shown in [23] that

C ∼ n−β, β = 3α− 7
α− 1 , (1.33)

which implies that if α > 7/3, then C → 0 as n → ∞, at α = 7/3, C is constant as a
function of n and for α < 7/3, C increases with increasing n.

1.6.3.4 Small-World Model.

An important property of real networks is that the shortest path between most of the
vertices is small even for very large networks, and is named the small-world effect. Watts
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Fig. 1.7 A Watts-Strogatz small-world model for c = 3, p = 0.05 and n = 20.

and Strogatz proposed a model where a high clustering coefficient and the small-world
effect can be obtained in the same network. The small-world model is a combination of a
spatial network with high clustering coefficient, as a ring network, and a random network
with small average shortest path length between vertices. The construction algorithm
starts with a ring network where a vertex is connected to all vertices at a distance smaller
or equal to c in terms of spatial hops on the ring, with c > 1 in order to obtain triangles.
Then all the edges are visited and are removed with fixed probability p, and replaced by an
edge between two randomly chosen vertices. Thus for p = 0 the network is a ring with high
clustering, and for p = 1 the network is a random graph with a short average distances
between vertices. In between, as p increases from 0 the average path length decreases faster
than the clustering coefficient, showing that the two properties are compatible.

1.6.3.5 Preferential Attachment.

The concept of cumulative advantage was first studied by Yule and Willis in 1925 in the
context of biology, and by Price in 1976 in the context of citation networks [29]. In the
context of networks, the model was rediscovered in 1999 by Barabási and Albert [1] and
called preferential attachment. The interest of this kind of models is that the generated
networks possess a power-law degree distribution. Indeed a number of real networks have
a degree distribution that obey approximatively a power-law degree distribution. In this
section we present the model of Barabási-Albert (BA network). In order to construct a BA
network we start with an initial connected network of m0 nodes. New nodes are added to
the network one by one and connected to m < m0 existing nodes with a probability that
is proportional to the degree of the existing nodes. Formally the probability to connect to
node i is ki/

∑
j kj . In the limit of large k the generated network has a degree distribution

proportional to k−3, thus the BA model generates a degree distribution with a power-law
tail with α = 3. This result can be derived analytically. The left image of Fig. 1.8 depicts a
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Fig. 1.8 Left image : a Barabási-Albert graph of size 100. Right image : Degree distribution of a
Barabási-Albert graph with n = 10000 and 〈k〉 ' 8, (m = 4). The axis scale is logarithmic.

BA network of size 100 with m = 4, which corresponds to 〈k〉 = 8. The right image shows
the degree distribution for a similar network of size n = 10000 with logarithmic x and y
axes. The approximately straight line degree distribution of this network can be observed.
It is interesting to compare this image with the random network Poisson distribution.
In the BA case the distribution decreases slowly as k increases since some vertices with
very high degrees exist. Note that the mean degree is equal to 2×m and therefore it is a
constant as a function of n.

1.6.3.6 Spatial Networks.

There are several types of spatial networks, a good review can be found in [5]. Here we
present briefly some basic models. The simplest spatial random graphs is the random
geometrical graph (RGG) model. In this model vertices are distributed randomly in the
euclidean space and are connected to all other vertices that lie at a spatial distance smaller
than R. The degree distribution can be calculated as follows. For simplicity we restrict to
the homogeneous distribution of vertices on a 2-D plane of side 1, thus the probability q(R)
that a vertex i is in the neighborhood of another vertex j is the area of the neighborhood of
radius R divided by the total area which is 1 by definition, or more formally q(R) = πR2.
Therefore the degree distribution is the binomial distribution

pk =
(
n− 1
k

)
qk(1− q)n−1−k (1.34)

As in the RG case it can be reduced to a Poisson distribution in the limit n → ∞ while
the mean degree c = 〈k〉 = nπR2 remains fixed.
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pk = e−c
ck

k! , (1.35)

Contrary to the random graph, the average clustering coefficient is high due to spatial
constraints and can also be calculated as C = 0.58650 for the 2D case.
An interesting class of spatial networks are those with a scale-free distribution. In [32],
the authors proposed a model to construct such a network. In this model the vertices are
placed on the sites of a d-dimensional euclidean lattice of size R with periodic boundary
conditions and are assigned a random degree k from a scale-free distribution. Then each
node is connected to the k nearest neighbors. However it might be impossible to make the
connection to some of them, since they can already have reached their assigned degree.
In addition, In this model, the connections can be formed only up to a distance given by
r(k) = Ak1/d, where A is a given constant.

1.6.3.7 Weighted Network Models

There are few models of weighted networks. One way to construct a weighted network is
to start with an unweighted topology, such as a BA network and add the weights as a
function of the unweighted topology. The simplest topological feature to take into account
is the degree. To take weight-degree correlations into account, one possible approach is
to assume that wij ∝ (ki kj)α for some small exponent α. Such an empirical correlation
has indeed been detected for the world-wide airport network [4] with α ≈ 1.5, and similar
behavior, perhaps with different values of the exponent, seems to be likely in all kind of
transportation networks in which there are fluxes that must respect local conservation [27].
However, social networks are different in this respect; there aren’t any obvious quantities
that could constrain the relationship between link weights and number of contacts. For
example, both [4] and [26, 27] found that 〈wij〉 is uncorrelated with ki × kj for mobile
phone call nets as well as for a coauthorship network.
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Fig. 1.10 The perpendicular curves defined by kikj = const and |k2
i − k2

j | = const.

In the degree-weight correlation above the coordinate kikj is the joint contribution; a
complementary view would be to use the difference between ki and kj which amounts to
a local degree comparison. Thus, as there is no correlation between the form kikj and real
weights, one can take its perpendicular field |k2

i − k2
j | in the degree-weight correlation. In

other words, in the space spanned by the parameter (ki, kj), the mean weight values over
the curves kikj = const are constant when the product kikj changes. Thus in order to
find a new degree-weight correlation we propose to average over the perpendicular field
|k2
i − k2

j | = const, since the variable |k2
i − k2

j | takes into account correlations along the
perpendicular direction. The two functions kikj and |k2

i − k2
j | can be seen in Figs. 1.9 and

the fields defined by kikj = const and |k2
i − k2

j | = const in fig.1.9. Finally we use the
following degree-weight correlation

wij ∝ (|k2
i − k2

j |+ 1)γ (1.36)

Where the exponent γ allows to explore the weight-degree correlation from a more disas-
sortative case (γ > 0) to an assortative case (γ < 0), passing through the unweighted case
(γ = 0). A strictly positive constant is added to the difference of square degrees to avoid
division by 0 for negative γ (more details can be found in chapter 3 where these weighted
networks are used in the context of evolutionary games).
Another type of weighted models are models where multi-edges are naturally created in
the construction algorithm and can be interpreted as weights. Here we present the team
assembly model by Guimerà et al. [9] which is a bipartite model that is used in chapter
2 of the present thesis. The bipartite network includes two distinct set of vertices V1 and
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V2, V1 represents teams and V2 represent members of teams. In order to obtain a weighted
network from this bipartite graph, after it has been built, the teams are discarded and
members are connected proportionally to the number of teams in which they are both
members.
In this growing model, teams are formed sequentially taking their members either from a
set of newcomers or a set of incumbents. The model starts at time zero with an endless
pool of newcomers. Once they are selected for a team, newcomers becomes incumbents.
Each time step t, a new team is formed and added to the network. The team consists of
m agents. With a probability p, the agent is drawn from the pool of incumbents and with
probability 1−p from the pool of newcomers. If the new agent is an incumbent and there is
already another incumbent in the team, the new agent is selected with probability q from
the set of collaborators of a randomly selected incumbent in the team. With probability
1− q, it is randomly selected from the set of all incumbents.

1.7 Games on Networks

The behavior of evolutionary games is strongly affected by the underlying social struc-
ture; here the theory of networks gives the theoretical background to study games on
these structures. The mean-field approximation given by the replicator dynamics is valid
on two different graph topologies in the limit n→∞. The first one is the complete graph
where all players are connected. The second topology is a dynamic one where players
choose randomly a new set of neighbors at each time step.
In general game theory on complex networks is studied by means of simulations. In fact,
the outcome is often very difficult to obtain with analytical tools. Here we present our
game theoretical simulation methods.
In the bulk of this thesis we investigate the four classical two-person, two-strategy, sym-
metric games, namely the Prisoner’s Dilemma (PD), the Hawk-Dove Game (HD), the Stag
Hunt (ST), and the Harmony game (H) as defined in section 1.4.2. We use the following
payoff matrix M where C stands for cooperation and D for defection.(C D

C R S
D T P

)
(1.37)

In order to study the usual standard parameter space [31, 33], we restrict the payoff
values in the following way: R = 1, P = 0, −1 ≤ S ≤ 1, and 0 ≤ T ≤ 2. The parameter
space with variable S and T , called ST-Plane, is shown in Fig. 1.11.

We will also investigate the rock-paper-scissors game, defined in 1.4.2, and use the payoff
matrix 1.6 with a = 0, where the strategies are labelled S1, S2, S3. In order to restrict the
parameter space we take b1, b2 ∈ [0, 2]. With this setting the regions above the diagonal and
under the diagonal of the plane corresponding to parameters b1, b2 correspond respectively
to the cases b1 > b2 and b1 < b2 discussed in section 1.5.0.3.
The simulation of a game proceeds as follows: the players are initially assigned a random
strategy at the beginning, each strategy has the same probability to be chosen. Then,
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Fig. 1.11 H, SH, HD and PD games as a function of the game parameters S and T .

the players can update their strategies either synchronously or asynchronously. In the
synchronous update the n players play at the same time and the new payoffs are calculated
only after all players have updated their strategies. On the other hand, in the asynchronous
case, players are randomly chosen one by one and their payoffs are computed at each
time, and not after the n players have been chosen. In both cases we call the time interval
needed for n players to update their strategies a time step. In this thesis we mainly use the
asynchronous update since it seems to us the less constrained one, although synchronous
dynamics is used in chapter 2. After the players have been assigned a random strategy we
let the system evolve until the population has reached a stable or quasi-stable state, at
which point we take our measures.

1.7.1 Update Rules

In this section we specify how individual’s payoffs are computed and how agents decide
to revise their current strategy. On complex networks the agents interact with their first
neighbors as defined by the topology. On spatial lattices the agents interact with all the
neighbors inside a disk of radius RG. Let σi(t) be a vector giving the strategy profile of
player i at time t and let M be the payoff matrix of the game. The cumulated payoff
collected by i at time step t is

Πi(t) =
∑
j∈Vi

σi(t) M σ>j (t). (1.38)

where the neighborhood Vi of i was defined in section 1.6.1. Rather than summing the
two-players game payoffs with each neighbors, the total payoff could be computed with
non-linear rules. In this work we restrict to the linear case except for the mean-payoff
which is the same quantity divided by the degree ki. In the weighted network case, the
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pairwise payoffs Mij = σi M σTj are multiplied by the weights wij of the corresponding
links before computing the accumulated payoff earned by i. This takes into account the
relative importance of the relationship as represented by its weight.
Several strategy update rules are customary in evolutionary game theory. First we describe
three well known imitative update rules.
The local fitness-proportional or replicator rule is stochastic and gives rise to replicator
dynamics in a well mixed population [11, 12]. Player i’s strategy σi is updated by ran-
domly drawing another player j from the neighborhood Vi, and replacing σi by σj with
probability:

p(σi → σj) =
{

(Πj −Πi)/K if Πj > Πi

0 if Πj ≤ Πi
(1.39)

where Πj − Πi is the difference of the payoffs earned by j and i respectively. K =
max(ki, kj)[max{R,S, T, P}−min{R,S, T, P}] ensures proper normalization of the prob-
ability p(σi → σj). This normalization increases the frequency of imitations between nodes
with smaller degree.
A more flexible update rule without the problem of normalization is the Fermi rule. Here
the randomly chosen player i is given the opportunity to imitate a randomly chosen neigh-
bor j with probability :

p(σi → σj) = 1
1 + exp(−β(Πj −Πi))

(1.40)

where β is a constant corresponding to the inverse temperature of the system, i.e. high
temperature implies that imitation is random to a large extent and depends little on the
payoffs. Thus when β → 0 the probability of imitating j tends to a constant value 0.5 and
when β → ∞ the rule becomes deterministic: i imitates j if (Πj −Πi) > 0, otherwise it
doesn’t. For β ∈ [1.0, 10.0] the rule leads approximatively to similar results as the local
fitness-proportional one.
Another imitative strategy update protocol is to switch to the strategy of the neighbor
that has scored best in the last time step. In contrast with the previous one, this rule is
deterministic. This imitation of the best (IB) policy can be described in the following way:
the strategy si(t) of individual i at time step t will be

si(t) = sj(t− 1), (1.41)

where
j ∈ {Vi ∪ i} s.t. Πj = max{Πk(t− 1)}, ∀k ∈ {Vi ∪ i}. (1.42)

That is, individual i will adopt the strategy of the player with the highest payoff among
its neighbors including itself. If there is a tie, the winner individual is chosen uniformly at
random.
The next update rule is a randomized version of the imitation of the best, we will call
it IBR. This rule is also an alternative to the replicator rule since it does not have the
problem of normalization. Here player i chooses and imitates a neighbor j with probability
given by formula 1.39, where K is now such that

∑
j∈Vi

pij = 1.
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The last rule is called best response. This rule stipulates that the agents adopt the strat-
egy that gives them the highest payoff given the neighbors’ strategies at the previous time
step. This rule is different from the other since the players do not imitate their neighbors.
The above model rules are common and almost standard in numerical simulation work,
which has the advantage that the mathematics is simpler and results can be compared with
previous work such as, for instance, [31, 33]. However, it is far from clear whether these
rules are representative of the ways in which human players actually take their strategic
decisions, as has been shown by many laboratory experiments. In these experiments it
seems that learning and heuristics play an important role. Moreover, players are inhomo-
geneous in their behavior while our stereotyped automata all behave in the same way and
never change or adapt.
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Fig. 1.12 Replicator dynamics stable states with 50% cooperators and defectors initially. Lighter
tones stand for more cooperation. Values in parentheses next to each quadrant indicate average
cooperation in the corresponding game space. Left image : well mixed population or complete
graph. Right image : random graph with n = 10000, p = 8/(n− 1) and 〈k〉 = 8.

1.7.2 The Effect of Topology on Two Strategy Games

A good review on the effect of topology on evolutionary games is found in [31]. Authors
study the ST-plane with the replicator rule, the IB rule (called unconditional imitation),
the Fermi rule and the best response rule, and different topologies such as regular lattices,
Erdos-Rényi random graphs and Barabási-Albert graphs. In Figs. 1.12 and 1.13 we show
the steady states obtained in the ST-plane with the replicator dynamics on several topolo-
gies. In Figs. 1.12 cooperation on random graph is compared to the well-mixed case. It
can be observed that the levels of cooperation are slightly better with random graph for
all the games. In Figs. 1.13 cooperation on a Barabási-Albert graph and a regular lattice
are displayed, the levels of cooperation are higher in the SH games for the regular lattice,
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Fig. 1.13 Replicator dynamics stable states. Left image : Barabási-Albert graph with n = 10000
and 〈k〉 = 8. Right image : regular lattice with n = 10000 and 〈k〉 = 8. The initial frequency of
cooperators and defectors is 50%. Values in parentheses next to each quadrant indicate average
cooperation in the corresponding game space.

while they are larger in the HD games for the BA model. In the Barabási-Albert graph the
dynamic is influenced by the inhomogeneous degree distribution. Vertices with a higher
degree compared to most of their neighbors receive larger payoff since they cumulate the
payoffs over all their neighbors. For this reason they are imitated by their neighbors with
smaller degrees. In this context defectors tend to turn their neighbors to defectors and
finally earn a small payoff compared to cooperators with large hubs. This might explain
the large levels of cooperation for the games where all the payoffs are positive. In a regular
lattice the cooperators can form spatial clusters where they interact mostly with other
cooperators.

1.7.3 The Effect of Space on Cyclic Games

In a well mixed population the RPS games can be divided into two classes, the games
where the mixed-strategy equilibrium repels the orbits (type 1) and the games where
the mixed-strategy equilibrium is an attractor (type 2). Thus for games of type 1, if the
population is finite, the players adopt all the same strategy at equilibrium. However on
a spatial lattice, games of type 1 leads to the formation of finite size regions or spiral
patterns where players adopt the same strategy. For Games of type 2, the strategies tend
to coexist and it can be observed in the spatial case that the patterns tends to be very
small. We display some examples in figure 1.14 for two different interaction radii and two
different games representing the two types, type 2 is represented in the first column and
type 1 in the second. It can be observed for games of both type that for larger Rg the
transition between one type of game and the other is less smooth with respect to the case
where the interaction radius is small. Therefore the general effect of space and locality is to
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Fig. 1.14 Typical screen shots of the RPS game with the Fermi rule and β = 10. First row :
Rg = 5. Second row : Rg = 1.5. First column : b1 = 1.5, b2 = 0.5. Second column : b1 = 0.5,
b2 = 1.5. The lattice size is L = 150.

stabilize the patterns and prevent extinction. Since the system is bounded, it is interesting
to study the size of the patterns when different parameters, such as the mobility [30], are
changed.

1.8 The Chapters to Follow

In this section we present briefly the content of each of the chapters to follow. In all the
chapters, except in the last, we investigate standard two-person, two-strategy evolutionary
games. In the last chapter we investigate standard three-strategy cyclic games. In the first
two chapters the games are simulated on weighed static networks derived from unweighted
graph topologies such as random and scale-free ones. We assign weights randomly or ac-
cording to some theoretical weight-degree correlations. In addition, weighted graph derived
from bipartite networks model and real bipartite networks are used in chapter 2.

Chapter 2, The Influence of Tie Strength on Evolutionary Games on Net-
works: An Empirical Investigation. In the absence of any reliable model for gener-
ating weighted social networks, we attribute weights to links in a few ways supported by
empirical data. In the baseline case the weights are attributed randomly to edges and
drawn from a uniform distribution in [0, 1] or a power-law distribution. The results of the
extensive simulation work shows that taking the tie strength into account does not change
in a radical manner the long-run steady-state behavior of the studied games. Then we
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assign weights according to the particular weight-degree correlation (kikj)α observed on
transportation networks but that does not seem to be common in social networks. In that
case we observed a non negligible increase of cooperation for alpha between 0 and 1.5.
The next weighted model is obtained from the team assembly model, a bipartite model
formation, here the weighted and unweighted models give almost the same results. Besides
model networks, we also included a real-life case drawn from a coauthorship network. In
this case, taking the weights into account only changes the results slightly with respect
to the raw unweighted graph, although to draw more reliable conclusions on real social
networks many more cases should be studied as these weighted networks become available.

Chapter 3, Supercooperation in Evolutionary Games on Correlated Weighted
Networks. In this chapter we use (|k2

i −k2
j |+1)γ as degree-weight correlation on Barabási-

Albert and random scale-free unweighted graphs. Unlike the degree-weight correlation of
the previous chapter this correlation is a function of the difference of the degrees and
therefore it can be tuned between assortative and disassortative. Our numerical simula-
tion results show that for γ > 0, the weights lead to unprecedented levels of cooperation
in the whole games’ phase space, well above those found for the corresponding unweighted
complex networks. We provide intuitive explanations for this favorable behavior by trans-
forming the weighted networks into unweighted ones with particular topological properties.
The resulting structures help to understand why cooperation can thrive and also give ideas
as to how such supercooperative networks might be built. In particular we describe a small
cooperative model composed of low and high degree vertices with a specific connectivity
structure.

Chapter 4, Evolution of Cooperation on Spatially Embedded Networks. In
this chapter we study the game dynamics on networks embedded in a Euclidean two-
dimensional space with different kinds of degree distributions such as regular, random,
and scale-free ones. Using several imitative microscopic dynamics, we study the evolution
of global cooperation on the above network classes and on specific cooperative topologies
such as Apollonian networks and a spatial version of the supercooperative networks de-
scribed in the previous chapter. Spatial scale-free networks are good for cooperation but
cooperation is notably higher on Apollonian and spatial supercooperative networks. Both
classes of networks enhance average cooperation in all games with respect to standard
random geometric graphs and regular grids.

In the following chapters we study the coevolution of the games with the migration
of agents on the spatial layout. In order to update their positions the players can move
randomly or test several places around them and move to the most profitable one. The
space is represented by a discrete grid except in chapter 5 where space is continuous.

Chapter 5, Random Diffusion and Cooperation in Continuous Two-Dimensional
Space. The goal of this chapter is to investigate whether cooperation can evolve and be
stable when agents can move randomly in continuous space. When the agents all have
the same constant velocity cooperation may evolve if the agents update their strategies
imitating the most successful neighbor. If a fitness difference proportional is used instead,
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cooperation does not improve with respect to the static random geometric graph case.
When viscosity effects set-in and agent velocity becomes a quickly decreasing function of
the average number of neighbors they have, one observes the formation of a dimorphic
population composed by monomorphic stable clusters of cooperators or defectors in the
Prisoner’s Dilemma. However, cooperation does not spread in the population as in the
constant velocity case.

Chapter 6, Spatial Organization of Cooperation with Contingent Agent Mi-
gration. Studying the effect of cooperation on discrete grids with the imitation of the best
update rule, we show that cooperation may thrive for small interaction radius. We com-
pare the results obtained with opportunistic migration and random migration. We observe
that cooperation levels are larger in the opportunistic migration case. Then we show that
the difference between the two cases is even larger for smaller player densities. This is due
to the fact that in the random case, the density is homogeneous and therefore the degree
of players is smaller and they tend to interact in pairs, instead of interacting with larger
numbers of players. Indeed, by definition of the payoff matrix, an interactions between
two players is highly profitable for defector compared to the well-mixed case. Finally we
investigate the case where the rate of strategy update is high compared to the rate of
migration update. We observe that for low sucker payoffs, cooperation cannot thrive, and
that this might be due to an increase of the agents mobility preventing cooperator clusters
to be stable. Finally we set the rate of strategy update to zero in order to study the effects
of the mobility of agents alone. We observe that in the low sucker payoff region, mobility
increases, explaining the loss of cooperation observed. Additionally, for high interaction
radii, this type of games leads to the formation of dynamical patterns having a definite
direction of motion. These clusters are composed of a group of cooperators followed by
a swarm of defectors. On the other hand, when S is large, players end up blocked into
stationary clusters.

Chapter 7, Opportunistic Migration in Spatial Evolutionary Games. In the same
line as in the previous chapter, using the imitation of the best rule for strategy revision, it
is shown that agents do not need to spend to much effort in order to search a new position
for cooperation to evolve. When the stochastic Fermi strategy update is used, and that
agents migrate opportunistically, cooperation cannot evolve in the Prisoner’s Dilemma if
the imitation is deterministic. However, when imitation becomes more random, fully or
partially cooperative states are reached in all games for all migration radii tested and for
short to intermediate interaction radii. Indeed, in the case where players imitate randomly
chosen neighbors, only the spatial configuration of the players dictates which strategy will
thrive.

Chapter 8, The Role of Opportunistic Migration in Cyclic Games. We study
cyclic evolutionary games in a spatial diluted grid environment in which agents strate-
gically interact according to the Fermi rule, but can also migrate opportunistically as in
previous chapters. We investigate the size of the patterns formed as a function of the game
and imitation noise. We find that opportunistic migration can reverse the cyclic preva-
lence between the strategies when the imitation noise is large enough compared to the
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payoff-driven imitation. At the transition the average size of the patterns diverges. We try
to explain this inversion of cyclicity by configuration analysis and a simple calculation.
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Abstract Extending previous work on unweighted networks, we present here a systematic
numerical investigation of standard evolutionary games on weighted networks. In the ab-
sence of any reliable model for generating weighted social networks, we attribute weights
to links in a few ways supported by empirical data ranging from totally uncorrelated to
weighted bipartite networks. The results of the extensive simulation work on standard
complex network models shows that, except in a case that does not seem to be common in
social networks, taking the tie strength into account does not change in a radical manner
the long-run steady-state behavior of the studied games. Besides model networks, we also
included a real-life case drawn from a coauthorship network. In this case also, taking the
weights into account only changes the results slightly with respect to the raw unweighted
graph, although to draw more reliable conclusions on real social networks many more cases
should be studied as these weighted networks become available.

2.1 Introduction

The importance of the population structure on evolutionary game theory has been fully
realized in recent years. In fact, the customary infinite well-mixed populations used in
the theory have the appeal of simplicity and lend themselves to exact mathematical anal-
ysis [19] but network science has clearly shown that fully mixed populations are only
an approximation, sometimes a bad one, to the actual interactions among agents. These
social interactions can instead be more precisely represented as graphs in which nodes
represent agents and links stand for their relationships [9]. In the last few years evolution-
ary games on networks have been thoroughly investigated and many results are available.
Most of them come from numerical simulations, but there are also some theoretical results,
mainly on degree-homogeneous graphs. It would be impossible to cite all the works in this
fast-developing field but good recent reviews can be found in [12, 14, 16].

The bulk of the work on evolutionary games on complex networks so far has dealt with
unweighted graphs, so that the intensity of the relationships has not been taken into ac-
count in general. This is right as a first step and allows one to ignore the interplay between
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topology and structure, but a further step toward more realism consists in including the
strength of a relationship. Indeed, there are only few works in which the role of link weights
in evolutionary game dynamics have been considered [4, 18]. However, such investigations
have been rather limited in character and there is not, as far as we know, any systematic
treatment dealing with this potentially important aspect of games on networks. In the
present work we present such a study of the behavior of paradigmatic evolutionary games
on weighted networks.

Attributing weights to links in technological networks such as computer networks, power
grids, or airline route networks, is relatively easy. For example, data packets for a com-
puter network, and number of flights, passengers, or seats for airlines are quantities that
make sense and can be defined and measured easily and without ambiguity. Contrastingly,
attributing weights to relationships in social networks is not a simple matter because the
relationship is often multi-faceted and relying on psychological and sociological features
that are difficult to define and measure, such as friendship, empathy, and common beliefs.
Nevertheless, there are some social networks for which at least a proxy for the intensity of
a relationship can be defined and accurately measured. This is the case, for instance, for e-
mail networks, phone calls networks, and coauthorship networks among others [8, 10, 11].
Other examples come from the field of animal networks in which animals can be marked
or recognized in some way and repeated co-occurences of animals adds to the weight of
their relationship [3].

For the sake of definiteness, we shall assume in the following that suitable weights can
be attributed to the network edges and, since we shall explore several possible ways of
performing the assignment, our work will be primarily based on standard model networks
in order to try to unravel the interplay and the correlation between the purely topologi-
cal aspect of the relationships and their intensity for the chosen games. Nevertheless, to
connect our work to real-life nets, we shall also consider a known collaboration network.
Moreover, to avoid having to deal with further degrees of freedom, we use fixed networks,
i.e. networks in which neither the number of nodes nor the number of links is subject to
change over time. Likewise, there is no rewiring of existing links among the network nodes.
Co-evolutionary models can be more realistic (see e.g. [12, 13, 15, 20]) but in this work we
are especially interested in singling out the effect of link weights in static networks, which
is a satisfactory approximation if the network dynamics is slowly fluctuating. The present
investigation is based on extensive numerical simulations.

The article is organized as follows. In the next section we briefly introduce the main
games used and their parameter space, as well as the evolutionary rules for strategy up-
date. In Sect. 2.3 we provide justifications for a number of ways of attributing weights to
network links and we numerically study evolutionary games behavior using typical model
networks and several link weight distributions. Finally, we discuss the results and give our
conclusions in Sect. 2.4.
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2.2 Evolutionary Games on Networks

2.2.1 The Standard Games

We study the four standard two-person, two-strategy, symmetric games, namely the Pris-
oner’s Dilemma (PD), the Hawk-Dove (HD), the Stag Hunt (ST), and the Harmony game
(H). We briefly summarize the main features of these games here for completeness; more
detailed accounts can be found elsewhere [17, 19]. The games have the generic payoff bi-
matrix of Table 2.1. In this matrix, R stands for the reward the two players receive if they

C D

C (R,R) (S, T )
D (T, S) (P, P )

Table 2.1 Generic payoff bi-matrix for the two-person, two-strategies symmetric games discussed
in the text.

both cooperate (C), P is the punishment for bilateral defection (D), and T is the tempta-
tion, i.e. the payoff that a player receives if she defects while the other cooperates. In this
case, the cooperator gets the sucker’s payoff S. In order to study the standard parameter
space, we restrict the payoff values in the following way: R = 1, P = 0, −1 < S < 1,
and 0 < T < 2. In the resulting TS-plane, each game corresponds to a different quadrant
depending on the ordering of the payoffs.
For the PD, the payoff values are ordered such that T > R > P > S. Defection is always
the best rational individual choice, so that (D,D) is the unique Nash Equilibrium (NE)
and also the only Evolutionarily Stable Strategy (ESS) [19]. Mutual cooperation would be
socially preferable but C is strongly dominated by D.
In the Hawk-Dove game, the order of P and S is reversed, yielding T > R > S > P . Thus,
in the SD when both players defect they each get the lowest payoff. (C,D) and (D,C) are
NE of the game in pure strategies. There is a third equilibrium in mixed strategies where
strategy D is played with probability p, and strategy C with probability 1 − p, where p
depends on the actual payoff values. The only ESS of the game is the mixed strategy,
while the two pure NE are not ESSs [19]. Players have a strong incentive to play D, which
is harmful for both parties if the outcome produced happens to be (D,D).
In the Stag Hunt, the ordering is R > T > P > S, which means that mutual cooperation
(C,C) is the best outcome, Pareto-superior, and a NE. The second NE, where both players
defect is less efficient but also less risky. The dilemma is represented by the fact that the
socially preferable coordinated equilibrium (C,C) might be missed for “fear” that the
other player will play D instead. The third mixed-strategy NE in the game is evolutionary
unstable and not an ESS [19].
Finally, in the Harmony game R > S > P > T . In this case C strongly dominates D and
the trivial unique NE is (C,C). The game is non-conflictual by definition and does not
cause any dilemma: we include it just to complete the quadrants of the parameter space.
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2.2.2 Population Structure and Dynamics

We represent the population of players by an undirected weighted graph G(V,E), where
the set of vertices V represents the individuals, and the set of weighted edges E represents
their symmetric interactions. The weight of an edge e ∈ E will be denoted by we or by
wij , by using the edge end points i and j and the weights we are normalized in [0, 1].
The population size N is the cardinality of V . A neighbor of an agent i is any other
agent j adjacent to i. The set of neighbors of i is denoted by Vi. The cardinality of this
set is the degree ki of vertex i ∈ V ; p(k) denotes the degree distribution of the graph,
i.e. the probability that an arbitrarily chosen node has degree k. The average degree of
the network is given by 〈k〉 =

∑
k k p(k). For the weighted aspects of the network p(we)

represents the link weight distribution, and p(s) denotes the strength distribution, where
the strength s(i) of a vertex i is defined as s(i) =

∑
j∈Vi

wij , i.e. the sum of the weights of
the links incident in i [2].

For the evolutionary dynamics, we must next define the decision rule by which indi-
viduals update their strategy and the timing of the dynamical process. There are several
possible strategy update rules that can be used [14, 16] . The results are not very much
qualitatively dependent on the specific rule type, although there are quantitative differ-
ences between them [14]. For the sake of simplicity, we use two rules that are sufficiently
different so as to represent typical diverse behavior: imitation of the best and local repli-
cator dynamics. These updating rules will be explained below.
Let σi ∈ {C,D} be the current strategy of player i and let us call M the payoff matrix of
the game. The quantity

Πi(t) =
∑
j∈Vi

σi(t) M σTj (t)

is the accumulated payoff collected by player i at time step t. Since we work with weighted
networks, the pairwise payoffs Mij = σi M σTj are multiplied by the weights wij of the
corresponding links before computing the accumulated payoff earned by i. This takes into
account the relative importance of the relationship as represented by its weight.
Another possibility is to use the normalized weight wij as a probability of interaction
of agents i and j, i.e. i and j will play with probability wij as in [18]. Here we use the
former choice but some numerical experiments have shown that the results do not differ
qualitatively by using the latter instead.
In imitation of the best, the strategy σi(t) of individual i at time step t will be

σi(t) = σj(t− 1),

where
j ∈ {Vi ∪ i} s.t. Πj = max{Πk(t− 1)}, ∀k ∈ {Vi ∪ i}.

That is, individual i will adopt the strategy of the player with the highest payoff among
its neighbors including itself. If there is a tie, the winner individual is chosen uniformly at
random, but otherwise the rule is deterministic.

The local replicator dynamics rule is stochastic and it is consistent with the original
mean-field evolutionary game theory equations [6]. Here it has been slightly modified to
take into account the weighted nature of the network. Player i’s strategy σi is updated
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by drawing another player j from the neighborhood Vi with a probability proportional to
wij , and replacing σi by σj with probability

p(σi → σj) = (Πj −Πi)/K,

if Πj > Πi, and keeping the same strategy if Πj ≤ Πi. K = max(si, sj)[(max(1, T ) −
min(0, S)], with si and sj being the strenghts of nodes i and j respectively, ensures proper
normalization of the probability p(σi → σj).
Finally, if we define C(t) = (σ1(t), . . . , σN (t)) as being the configuration or state of the
population at time t, then the simulation advances synchronously according to the sym-
bolic global evolution rule F :

C(t+ 1) = F (C(t)).

In other words, all the individuals in the network play the game once with all their respec-
tive neighbors, accumulate their payoffs, and decide their strategy for the next time step
according to the above rules. The evolution could also be fully or partially asynchronous. In
partially asynchronous dynamics a fraction f of the population is simultaneously updated
in each time step [13]. In fully asynchronous update an individual is chosen at random,
she plays the game once with her neighbors, and she updates her strategy accordingly.
Then the payoff of all individuals is set to zero and another individual is drawn uniformly
at random in the whole population at the next time step. In several studies, following an
enquiry by [7], it has been shown that asynchronous evolution doesn’t change the main
qualitative aspects of the dynamics of games on networks (for example, see [6, 13, 14]).
Thus, here we use synchronous dynamics.

2.2.3 Simulation Parameters

All simulations were performed for a networked population size of N = 2000 and mean
degree 〈k〉 = 8 unless otherwise stated. The initial density of cooperators is 0.5, uniformly
distributed over the vertices of the networks. Given that our main goal here is to compare
weighted and unweighted networks with respect to evolutionary games, in the interest of
simplicity, we do not explore unbalanced initial conditions. Each value in the phase space
reported in the following figures is the average of 50 independent runs. Each run has been
performed on a fresh realization of the corresponding graph. To detect steady states1 of
the dynamics we first let the system evolve for a transient period of 5000×N time steps.
After a quasi-equilibrium state is reached past the transient, averages are calculated during
500×N additional time steps. A steady state has always been reached in all simulations
performed within the prescribed amount of time, for most of them well before the limit.
The state space explored is defined by R = 1, P = 0, −1 < S < 1, and 0 < T < 2 and the
T and S axes have been sampled at intervals of 0.1.
1 True equilibrium states in the sense of dynamical systems stability are not guaranteed to be reached
by the simulated dynamics. For this reason we prefer to use the terms steady states or quasi-equilibrium
states which are states that have little or no fluctuation over an extended period of time.
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2.3 Games on Weighted Networks

In the last decade the structure of hundreds of medium to large networks have been
investigated thanks to readily available electronic data [9]. However, the large majority
of these graphs were of the unweighted type. The reasons are that, as hinted at in the
introduction, apart from technological or economic networks such as trade networks, in the
realm of social nets it is often difficult to associate sensible weights to an edge representing
some kind of relationship between two agents. However, there are some published studies
that can be used as a starting point to estimate suitable forms for the weights, given that
some very different hypothesis have been voiced in the literature. One extreme position,
called the dyadic hypothesis [11] is to argue that the weight of a particular tie does not
depend on the network structure around the two concerned agents but only on the nature of
their relationship. In this view, tie strengths are completely uncorrelated with topological
features such as node degree and clustering coefficient. In two detailed studies of large
social networks, the first being a scientific coauthorship network [1] and the second a
mobile call [10] network, it has been empirically shown that this is not the case. Although
the non-correlation hypothesis does not seem to be a likely one in social networks, it is
still useful as a benchmark: a kind of null model against which to test some more realistic
assumptions. In our first simulation model we thus assume that weights are attributed
to links without correlation with the topology. In order to get rid of topological effects
and to observe the effect of the link strength only on the dynamics, we first model the
games on regular random graphs in which each node has the same degree but links are
otherwise randomly distributed. Random graphs are the closest network approximation
to a mean-field well mixed population, ideally represented by a complete network and, in
the limit of very large population sizes, the standard results of evolutionary game theory
should hold [14, 19] at least approximately.

Figure 2.1 depicts the average cooperation levels on regular random graphs of degree
k = 8 and N = 2000 nodes at steady state, when the weights are assigned at random
according to a uniform distribution in [0, 1] distributed uniformly at random among the
available links.

Left images correspond to imitate the best update rule while the right ones corre-
sponds to local replicator dynamics. Unsurprisingly, the results are almost identical with
those obtained on the same family of graphs but using unweighted networks (bottom row
images). This result is also fully coherent with the cooperation levels found in [14] for
unweighted Erdös-Rényi random graphs with the same 〈k〉. Clearly, when weights are
assigned uniformly at random there is an implicit averaging over the whole set of edges
when calculating payoffs and the inclusion of weights does not not change the qualitative
results. In passing, we note the remarkable level of cooperation reached in the SH game
with the imitate the best strategy update rule, a phenomenon already observed in [14].

To investigate whether degree inhomogeneity changes the picture, we have also sim-
ulated the same games on Barabási-Albert (BA) scale-free graphs of the same size and
〈k〉 = 8. The results, shown in Fig. 2.2 (top row) are again very similar to the unweighted
cases (bottom row), and there is full agreement with the results of Roca et al. [14]. One is
thus led to the conclusion that, when weights are distributed uniformly at random among
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Fig. 2.1 Average degree of cooperation at steady state for regular random graphs with 〈k〉 = 8.
Left column : imitation of the best. Right column: replicator dynamics. Top row: link weights
uniformly and independently distributed. Bottom row: unweighted regular random graphs. Network
sizes N = 2000. Each grid point value is the average over 50 independent runs. Blue means more
defection.

the edges there is almost no difference with the unweighted case for both update rules.
This in turn shows that when weights are totally uncorrelated with the topological aspects
of the network, such as degree or clustering coefficient, their influence is negligible.

Indeed, even when the weight distribution is a long-tailed one such as a power-law
p(we) ∝ w−γe , the results are very similar, as shown in Fig. 2.3, where the value of the
exponent γ is 2. The reasons seem intuitively clear: since there are few strong links, hubs
with many connections will get only a few of those, which will change the picture very
little with respect to the unweighted case. Likewise, the few strong links that will exist
among poorly connected vertices, because of the low degree of the end points, will not be
able to influence a sizable portion of the network. Only statistical outliers could change
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Fig. 2.2 Average degree of cooperation at steady state for BA scale-free networks with 〈k〉 = 8.
Left images: imitation of the best. Right images: replicator dynamics. Top row: link weights drawn
from a uniform distribution. Bottom row: unweighted BA scale-free networks. Network sizes N =
2000. Each grid point value is the average over 50 independent runs. Blue stands for more defection.

this significantly but, over many graph realizations, the fluctuations will be smoothed and
only mean values will matter.

The inescapable conclusion is the following: if one assumes the dyadic hypothesis for set-
ting the edge weights, owing to system averaging, there is almost no effect on cooperation.
But we have already remarked that empirical research to date indicates that edge weights
and topological properties are related. To take weight-degree correlations into account one
possible approach is to assume that wij ∝ (ki kj)α for some small exponent α. Such an
empirical correlation has indeed been detected for the world-wide airport network [1] with
α ≈ 1.5, and similar behavior, perhaps with different values of the exponent, seems to be
likely in all kind of transportation networks in which there are fluxes that must respect lo-
cal conservation [11]. However, social networks are different in this respect, they are much
more local and there aren’t any obvious quantities that could constrain the relationship
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Fig. 2.3 Average degree of cooperation at steady state when link weights are distributed according
to an inverse power-law with an exponent of 2. Left column: imitate the best. Right column:
replicator dynamics. Top row: regular random graphs; bottom row: BA scale-free graphs.N = 2000,
averages over 50 runs.

between link weights and number of contacts. For example, both [1] and [10, 11] found that
〈wij〉 is uncorrelated with ki × kj for mobile phone call nets as well as for a coauthorship
network.

In [4] Du et al. have tried to account for the effect of link weights on the PD on
Barabási-Albert scale-free graphs with the Fermi function [16]:

p(σi → σj) = 1
1 + exp(−β(Πj −Πi))

,

as a strategy update rule with β = 10. This setting gives results very similar to our
replicator rule in unweighted networks, as it has been clearly shown in [14]. The payoff was
rescaled using the corresponding link weight as explained in Sect. 2.2.2. They assumed the
above degree product form for the weights, studying the evolutionary behavior of the PD
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for several negative and positive values of the exponent α. However, their simulations only
covered a tiny part of the game phase space due to their use of the so-called “reduced”
PD game in which R = 1 and S = P = 0, which makes T the only free parameter
and corresponds to the straight line at the frontier between the PD and the SD games.
Although, as remarked above, this form of degree-weight correlation is not supported by
empirical data in social networks, for the sake of completeness we performed simulations
for the whole four games phase space. The results for replicator dynamics are shown in
Fig. 2.4 where we report the average cooperation values for values of α between −3 and 3
starting with α = −3 in the leftmost top row picture; α then increases from left to right
and takes positive values starting from the second picture in the bottom row. The last top
row image and the first bottom raw image correspond to the case α = 0, i.e. the unweighted
networks. From these images it appears that cooperation seems to increase around α = 1
but it is difficult to really see it. In order to better quantify the effect, in Fig. 3.1 we plot
the average cooperation values for each game as a function of α. Now it becomes clear
that, taking the average over the whole game phase space, in the three non-trivial games
there is a “plateau” of cooperation between α = 0.5 and α = 1 approximately (of course
the HG case is only shown for completeness). For values lower than 0 and beyond 1.5 the
trend is toward a lower, almost constant level of cooperation. This is confirmed by the
values obtained for α = −10 and α = 10 which are shown for reference as small traits on
each curve on the left and the right of the figure respectively. Du et al. [4] found a big
increase in cooperation for large negative values of α and for α close to −1 while they
found a deep minimum of cooperation around α = −1.5. This, however, only applies to
the region of the space represented by the segment at the frontier between the PD and
SD games. Our results show that this non-monotonic behavior is not observed when the
entire phase space is taken into account.

Fig. 2.4 Average cooperation at steady state using replicator dynamics on BA networks of size
N = 2000 and 〈k〉 = 8 as a function of the parameter α (see text). Top row images, from left to
right α = −3,−2,−1,−0.5, 0. Bottom row, from left to right α = 0, 0.5, 1, 2, 3. The initial density
of cooperators is 0.5 in all cases. Averages over 50 runs.
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Fig. 2.5 The points show, for each game, the average amount of cooperation at steady state in
the whole game’s phase space as a function of α. Lines are just a guide for the eye.

2.3.1 Weighted Networks from Bipartite Graphs

We have seen above that there can be a generally positive influence on cooperative strate-
gies in weighted networks when the link weights are proportional to the products of the
endpoints degrees with an exponent between 0.5 and 1. However, the few available empir-
ical studies exclude the presence of such a correlation in typical social networks [1, 10, 11].
But many social networks are of the affiliation type, meaning the participation of a set
of actors in a set of groups or interest centers. Each set is represented by the vertices of
a graph and there is a link X − G between two elements of the sets when an actor X
participates to group G. In this model there can be no links between vertices belonging to
the same set. Such a situation can be described by using bipartite graphs. Although social
networks such as friendship or mutual communication nets are not of this kind, there are
many significant examples of bipartite graphs in society such as scientist coauthoring an
article, directors belonging to the same board, people that have bought the same book in
Amazon, actors starring in the same movie, and so on [9].

A graph G(V,E) in which V = {v1, . . . , vN} is the set of vertices or nodes, and E =
{e1, . . . , eM} is the set of edges or links, is said to be bipartite when the vertices can
be partitioned into two disjoint sets V1 ∪ V2, V1 ∩ V2 = ∅, such that there are no edges
e = {u, v} between vertices belonging to different sets:

{{u, v} : u ∈ V1, v ∈ V2}, ∀e ∈ E.

The incidence matrix B of a bipartite network with, say, l groups and m actors is an
l ×m rectangular matrix such that the generic matrix element Bij is 1 if actor j belongs
to group i and 0 otherwise [9].

From the bipartite graph, it is an easy matter to obtain two derived graphs which are
called projections. One can construct a graph in which two actors are connected if they
adhere to the same group, or we can also build the projection in which two groups are
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connected if they share a common actor. The two projections capture the essence of the
relationships we are looking for but they do not account for the “weight” of a relationship.
Indeed, it is sensible to say that it is not the same whether two people sit together on a
single board or on several, or whether an article has only two coauthors or ten. In some
sense, their degree of interaction should be higher in the former case. To account for this,
the projection can be weighted; for example, for the actors projection, an edge, i.e. a pair of
connected actors, will have a weight equal to the number of common groups. The weighted
projection can be obtained from the incidence matrix B as follows [9]:

P = BTB, where Pij =
l∑

k=1
BT
ikBkj (2.1)

where BT is the transpose of B, and l is the number of groups. The elements Pij of the
m×m matrix P are the weights, i.e. the number of common groups shared by the actors
i and j, whereas the diagonal elements Pii are the number of groups to which actor i
belongs. This provides us with a “natural” way of attributing ways to the links of the
projection graph and thus can in principle be used to gauge the behavior of the standard
games on the resulting weighted networks.

Among several existing models of bipartite graphs, we choose the team assembly model
by Guimerà et al. [5]. In this growing model, teams are formed sequentially taking their
members both from a set of newcomers and a set of incumbents. Teams correspond to top
nodes, newcomers to new bottom nodes and incumbents to existing bottom nodes. The
model starts at time zero with an endless pool of newcomers. Once they are selected for a
team, newcomers become incumbents. Each time step t, a new team is formed and added
to the network. The team consists of m agents. With a probability p, the agent is drawn
from the pool of incumbents and with probability 1−p from the pool of newcomers. If the
new agent is an incumbent and there is already another incumbent in the team, the new
agent is selected with probability q from the set of collaborators of a randomly selected
incumbent in the team. With probability 1− q, it is randomly selected from the set of all
incumbents.

For our graphs, we used values of p = 0.6, q = 0.9 (both empirically justified [5])
and m = 4. In order to generate graphs with exactly N = 1000 agents, we repeated the
procedure described before for a number M of teams equal to bn/m(1− p)c and kept only
those graphs with exactly N = 1000 agents.

Once the graphs are constructed, we let the game dynamics develop as previously ex-
plained. The results are depicted in Fig. 2.6 for the unweighted case, and in Fig. 2.7 for
the weighted graphs both for replicator dynamics and imitate the best strategy update
rules. It appears that the level of cooperation is very similar for weighted and unweighted
networks in both cases, with the only difference that, in the weighted case, the transition
region between cooperation and defection becomes less crisp. This can be due to the fact
that weights act as a form of noise in the evaluation of payoffs, which gives more fluctu-
ations in the transition region. However, the bottom line is that, once more, the effect of
the link strength on cooperation is rather small. One interesting observation is that the
amount of cooperation on these graphs, weighted or unweighted, is high, of the order of
what has been found for unweighted BA scale-free networks [14]. The reason is simple: due
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Fig. 2.6 Average cooperation in unweighted assembly model graphs. Left image: imitation of the
best. Right image: replicator dynamics. Size of graphs is N = 1000. Each grid point is the average
of 50 independent runs.
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Fig. 2.7 Average cooperation in weighted assembly model graphs. Left image: imitation of the
best. Right image: replicator dynamics. Size of graphs is N = 1000. Each grid point is the average
of 50 independent runs.

to the way in which the graphs are built [5], their degree distribution turns out to be very
close to scale-free (results not shown here). It is thus obvious that the games’ behavior
should be very similar. This in turn also shows once again that the purely topological
aspects of the networks are more important than the weights in determining the steady
states of the games.

As a further example of a weighted graph resulting from a bipartite interaction, we
consider the network of scientists belonging to the Econophysics community 2. This net-
2 Kindly provided by Zhang Peng, personal communication.
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Fig. 2.8 Average degree of cooperation at steady state on the collaboration network of econo-
physicists. Left column: imitate the best. Right column: replicator dynamics. Top row: standard
weighting scheme; bottom row: corrected weighting scheme (see text). Averages over 50 independent
runs.

work has a size N = 738 and 1866 edges, wich gives 〈k〉 ' 5.06. In this network two
nodes (authors) are connected if they have coauthored at least one scientific article. Link
weights are assigned in two ways; the first corresponds to Eq. 2.1 in which the weight
corresponds simply to the number of common papers, suitably normalized; in the second
scheme, this row weight is corrected for a factor that accounts for the number of coauthors
of a given paper, on the grounds that the larger the number of authors a paper has, the
lesser the likelihood that the authors know each other equally well. Thus the weight of the
link between two coauthors i and j is given by wij =

∑
k δ

k
i δ
k
j /(nk − 1) [8], where δkj is 1

if author i was a coauthor of paper k and 0 otherwise, and nk is the number of coauthors
of paper k (single author papers are excluded).
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Fig. 2.9 Average degree of cooperation at steady state on the unweighted collaboration network
of econophysicists. Left column: imitate the best. Right column: replicator dynamics. Averages over
50 independent runs.

Figure 2.8 shows the results for the two weighting schemes described above for imitation
of the best update (left figures) and local replicator dynamics update (right figures). It
is apparent that results are qualitatively very similar. We can compare these results with
those obtained in the unweighted graphs (Fig. 2.9). The behavior is similar but, on the
whole, the degree of cooperation in the three non-trivial games is slightly lower for the
weighted versions of this social network. Although no general conclusions can be drawn
from this single instance, it can be said that, at least in this case, taking into account
the strengths of ties does not help cooperation. Whether or not this is a more general
phenomenon in social networks would require a much more complete investigation using
real networks coming from different types of social interactions. Unfortunately, reliable
weighted network data are still few.

Table 2.2 summarizes the average cooperation levels reached in the various network
types studied in this section, both weighted and unweighted, for the three non-trivial
games PD, SG, and SH.

2.4 Discussion and Conclusions

The focus of this paper is on the influence of the weighted nature of social interaction
networks on evolutionary games played on those networks, an issue that has been some-
what neglected until now. The first major question was: how do weighted edges affect
the results of standard evolutionary games on complex networks? Owing to the lack of
generally accepted theoretical models of the formation and structure of weighted social
networks, we tried to answer the question by using numerical simulation and several meth-
ods for assigning weights to links. Three different roads were tried: in the first, weights
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Table 2.2 Average cooperation at steady state in weighted and unweighted networks derived from
bipartite graphs. ‘ib’ and ‘rd’ stand for ‘imitate the best’ and ‘replicator dynamics’ update rules
respectively. PD, SG, and SH design the Prisoners Dilemma, Snowdrift, and Stag Hunt games
respectively.

PD, ib PD, rd SG, ib SG, rd SH, ib SH, rd

Guimerà weighted 0.232 0.141 0.883 0.797 0.815 0.668
Guimerà unweighted 0.246 0.137 0.895 0.811 0 .807 0.650

Econophysicists, standard weights 0.164 0.147 0.845 0.746 0.673 0.585
Econophysicists, corrected weights 0.203 0.171 0.828 0.754 0.701 0.582

Econophysicists, unweighted 0.221 0.157 0.933 0.875 0.704 0.611

were assigned to edges according to some probability distribution independently of the
underlying network topology. This means that the intensity of a binary relationship does
not depend on the environment of the corresponding link and goes under the name of
dyadic hypothesis in social networks. In the second empirical model, the weight of a link is
correlated in some way with the degrees of the end points. Finally, in the third model, we
started from bipartite affiliation graphs and generated weighted graphs using the model
proposed in [5] and a real collaboration graph.

The results obtained using the first uncorrelated model clearly show that the influence of
weights on the games is almost negligible. Furthermore, in this case topology and weights
do not interact, as shown by the results on scale-free networks. Even in the case where
the network is topologically inhomogeneous, and the weights are distributed according to
a power-law, there is little difference with the unweighted case.

However, available empirical data on large networks suggest that topology and degree
can be correlated to some extent. Assuming the link/weight correlation found in [1] for air
flights between airports and used in [4] for the evolutionary PD on BA scale-free networks,
which postulates that weights wij are proportional to (kikj)α, we have numerically studied
the full phase space of the standard games for several positive and negative exponent α
values thus extending the work of [4] which was limited to a very small region of the game
configuration space. For values of α larger than 0 and smaller than 1.5 approximately,
there is indeed a non-negligible increase of the average cooperation for all the non-trivial
games. However, it must be said that recent empirical research on typical social networks
does not support such a weight dependence [1, 10, 11].

The third model comes from the realization that many social networks are of the affil-
iation type, which can be represented by bipartite graphs. We have thus studied model
weighted networks built according to the method of [5]. On these graphs, the average
results in terms of cooperation are very good but this appears to be due to the scale-
free nature of the resulting networks and not to the weighted aspects, since weighted and
unweighted networks give almost the same results. Finally, we examined the case of an
actual coauthorship network, a projection of the bipatite graph formed by authors on the
one hand, and the papers they have written together on the other. Our results show that
weights are even slightly detrimental for cooperation for this particular network, although
the main features remain similar with respect to the unweighted case. This last investiga-
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tion was performed to illustrate the study with a real-life case but the results cannot be
generalized in the absence of a sufficient amount of statistics on several social networks.
In this respect, we mention that in previous work, Voelkl and Kasper studied the donor
game, an analogous of the PD, using a number of networks representing weighted interac-
tions in primate groups [18]. Using a fitness proportional update rule, they found that the
fixation probability of cooperation in the groups was larger on the average with respect
to a baseline well mixed population of the same size. The networks were very small and
degree-inhomogeneous in many cases. Indeed, the authors refrained from attributing the
results to the weighted nature of their networks; instead, they mainly invoked topological
reasons and concluded that those, rather than the weights, were the more important con-
tribution to network reciprocity. Although they did not examine the unweighted networks,
in the light of the results presented here, it is likely that their explanation is essentially
correct for this particular case.

Summing up all the previous considerations, a general conclusion can be drawn, taking
into account the fact that our numerical simulation study cannot be considered exhaus-
tive, but it has certainly been extensive. The conclusion is that, for well known model
network classes, the weighted aspect of links does not seem to have a large influence on
evolutionary games played on networks, the topological aspects being more important. It
appears that weights essentially act as a source of noise on the payoff values. Thus, study-
ing the unweighted versions of networks would seem to suffice for evolutionary games, at
least in the case of standard model graphs. Of course, our conclusion does not apply to
other domains. For example, link weights certainly play a very important role in diffusion
and fragmentation processes on networks. Nevertheless, a thorough study of evolutionary
games on reliably weighted actual social networks is still lacking. The single actual net-
work that was studied here and the report [18] are insufficient, in our opinion, to draw
any reliable conclusions. Our future work will be directed towards a better understand-
ing of evolutionary games on real weighted networks, including dynamical ones, and the
relationships with their topological features.
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Abstract In this work we study the behavior of classical two-person, two-strategies evolu-
tionary games on a class of weighted networks derived from Barabási-Albert and random
scale-free unweighted graphs. Using customary imitative dynamics, our numerical simu-
lation results show that the presence of link weights that are correlated in a particular
manner with the degree of the link endpoints, leads to unprecedented levels of cooperation
in the whole games’ phase space, well above those found for the corresponding unweighted
complex networks. We provide intuitive explanations for this favorable behavior by trans-
forming the weighted networks into unweighted ones with particular topological properties.
The resulting structures help to understand why cooperation can thrive and also give ideas
as to how such supercooperative networks might be built.

3.1 Introduction

Game theory has proved useful in a number of settings in biology, economy, and social
science in general. Evolutionary game theory in particular is well suited to the study
of strategic interactions in animal and human populations and has been a very useful
mathematical tool for dealing with these kind of situations. Evolutionary games have
been traditionally studied in the context of well-mixed and very large populations (see
e.g. [8, 25]). However, starting with the work of Nowak and May [12], and especially
in the last few years, population structures with local interactions have been brought
to the focus of research. Indeed, it is a fact of life that social interactions can be more
precisely represented as networks of contacts in which nodes represent agents and links
stand for their relationships [11]. The corresponding literature has already grown to a
point that makes it difficult to be exhaustive; however, good recent reviews can be found
in [15, 19, 23]. Most of the new results, owing to the difficulty of analytically solving non
mean-field models, come from numerical simulations, but there are also some theoretical
results, mainly on degree-homogeneous graphs. On the other hand, most of the work
so far has dealt with unweighted graphs. This is understandable as a logical first step,
since attributing reliable weights to relationships in social networks is not a simple matter
because the relationship is often multi-faceted and implies psychological and sociological
features that are difficult to define and measure, such as friendship, empathy, and common

59
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beliefs. In spite of these difficulties, including the strength of agents’ ties would be a
step toward more realistic models. In fact, sometimes at least a proxy for the intensity
of a relationship can be defined and accurately measured. This is the case for e-mail
networks, phone calls networks, and coauthorship networks among others. For example, in
an extensive study of mobile phone calls network [14], the authors used the number of calls
between two given agents and the calls’ duration to capture at least part of the underlying
more complex social interaction. The same can be done in coauthorship networks in which
the strength of a tie can be related to the number of common papers written by the two
authors [10].

Fig. 3.1 (Color online) The points show, for each game, the average fraction of cooperation at
steady state in the whole game’s phase space as a function of γ, −3 ≤ γ ≤ 3 in Barabási–Albert
networks. The weight-degree correlation is wij = (kikj)γ and the strategy update rule is replicator
dynamics. Each point is the average of 50 independent runs; continuous curves are just a guide for
the eye. Small lines on the right and left borders indicate the cooperation level for γ = ±10.

Little work has been done on evolutionary games on weighted networks to date. Two
recent contributions are [5, 24]. We have recently offered a rather systematic analysis
of standard evolutionary games on several network types using some common weight
distributions with no correlations with the underlying network topology features such as
node degree and local clustering [4]. The results in all cases studied in [4] are that the
evolutionary game dynamics are little affected by the presence of weights, that is, the graph
topology, together with the game class and the strategy update rules seem to be the main
factors dictating strategy evolution in the population. This is a reassuring result to the
extent to which it allows us to almost ignore the weights and focus on the structural aspect
only. However, the previous results, as said above, were obtained with standard weight
distribution functions and ignoring possible correlations with other topological features.
Thus, it is still possible that some particular weight assignment that takes these factors
into account could make the dynamics to behave in a more radically different way. Indeed,
in [5], Du et al. have investigated the Prisoner’s Dilemma on Barabási–Albert scale-free
graphs with a particular form of two-body correlation between the link weights and the
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C D

C R,R S, T
D T, S P, P

Table 3.1 Generic payoff bi-matrix for the two-person, two-strategies symmetric games discussed
in the text.

degrees of the link endpoints, finding an increase of cooperation under some conditions
with respect to the unweighted case. We shall discuss and extend their results in Sect. 3.3.
In the present paper we have studied another form of degree-weight correlation that is
more likely to occur in social networks and gives unprecedented amounts of cooperation
promotion on scale-free networks. In the following we first give a brief description of the
games used and of the population dynamics; then we present and discuss our results.

3.2 Evolutionary Games on Networks

3.2.1 The Games Studied

We investigate four classical two-person, two-strategy, symmetric games, namely the Pris-
oner’s Dilemma (PD), the Hawk-Dove Game (HD), the Stag Hunt (ST), and the Harmony
game (H). We briefly summarize the main features of these games here for completeness;
more detailed accounts can be found elsewhere [25]. The games have the generic payoff
bi-matrix of Table 3.1.
The set of strategies is Λ = {C,D}, where C stands for “cooperation” and D means
“defection”. In the payoff matrix R stands for the reward the two players receive if they
both cooperate, P is the punishment if they both defect, and T is the temptation, i.e. the
payoff that a player receives if he defects while the other cooperates getting the sucker’s
payoff S. In order to study the standard parameter space, we restrict the payoff values in
the following way: R = 1, P = 0, −1 ≤ S ≤ 1, and 0 ≤ T ≤ 2. In the resulting TS-plane,
each game corresponds to a different quadrant depending on the ordering of the payoffs.
For the PD, the payoff values are ordered such that T > R > P > S. Defection is always
the best rational individual choice, so that (D,D) is the unique Nash Equilibrium (NE)
and also the only fixed point of the replicator dynamics [25]. Mutual cooperation would
be socially preferable but C is strongly dominated by D.
In the HD game, the order of P and S is reversed, yielding T > R > S > P . Thus, in
the HD when both players defect they each get the lowest payoff. Players have a strong
incentive to play D, which is harmful for both parties if the outcome produced happens
to be (D,D). (C,D) and (D,C) are NE of the game in pure strategies. There is a third
equilibrium in mixed strategies which is the only dynamically stable equilibrium [25].
In the ST game, the ordering is R > T > P > S, which means that mutual cooperation
(C,C) is the best outcome, Pareto-superior, and a NE. The second NE, where both players
defect is less efficient but also less risky. The tension is represented by the fact that the
socially preferable coordinated equilibrium (C,C) might be missed for “fear” that the other
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player will play D instead. The third mixed-strategy NE in the game is evolutionarily
unstable [25].
Finally, in the H game R > S > T > P or R > T > S > P . In this case C strongly domi-
nates D and the trivial unique NE is (C,C). The game is non-conflictual by definition and
does not cause any dilemma, it is mentioned to complete the quadrants of the parameter
space.
With these conventions, in the figures that follow, the PD space is the lower right quadrant;
the ST is the lower left quadrant, and the HD is in the upper right one. Harmony is
represented by the upper left quadrant.

Fig. 3.2 (Color online) The points show, for each game, the average fraction of cooperation at
steady state in the whole game’s phase space as a function of γ, with weight-degree correlations
wij = (|k2

i −k2
j |+1)γ in weighted Barabási–Albert networks. The strategy update rule is replicator

dynamics. Averages over 50 independent runs.

3.2.2 Population Structure

The population of players is a connected, weighted, undirected graph G(V,E), where the
set of vertices V represents the agents, while the set of edges E represents their symmetric
interactions. The population size N is the cardinality of V . The set of neighbors of an
agent i is defined as: Vi = {j ∈ V | dist(i, j) = 1}, and its cardinality is the degree ki of
vertex i ∈ V . The average degree of the network is called 〈k〉. Given two arbitrary nodes
k, l ∈ V , the weight of the link {kl} is called wkl.
For the network topology we use the classical Barabási–Albert (BA) [1] networks which
are grown incrementally starting with a clique of m0 nodes and adding a new node with
m ≤ m0 edges at each time step. The probability that a new node will be connected to
node i depends on the current degree ki of the latter: the larger ki the higher the connec-
tion probability. The model evolves into a stationary network with power-law probability
distribution for the vertex degree P (k) ∼ k−α, with α ∼ 3. For the simulations, we started
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Fig. 3.3 (Color online) Average cooperation over 50 runs at steady state on networks of size
N = 2000 and 〈k〉 = 8 as a function of the parameter γ (see text). For all lines of images,
γ = −3,−2,−1,−0.5, 0, 0.5, 1, 2, 3 from left to right. The initial density of cooperators is 0.5 in all
cases. In all images the x-axis corresponds to 0 ≤ T ≤ 2, and the y-axis represents the interval
−1 ≤ S ≤ 1. Dark tones mean more defection; the color bar on the right goes from 0 cooperation
to full cooperation at the top. Upper line: weighted BA graph; Middle line: weighted BA graph,
with unweighted payoffs (see text); Bottom line: weighted Erdös-Rényi random graphs.
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Fig. 3.4 (Color online) Average cooperation over 50 runs in Barabási–Albert networks for γ = 0.0
on the left and γ = 1.0 on the right. The initial cooperation is 0.3 and strategy update is by
replicator dynamics.

with a clique of m0 = 9 nodes and, at each time step, the new incoming node has m = 4
links. In addition, we also used standard Erdös-Rényi random graphs [3] and scale-free
random graphs [9], as explained in Sect. 8.3.
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Fig. 3.5 (Color online) The points show, for each game, the average fraction of cooperation in
Barabási–Albert networks at steady state in the whole game’s phase space as a function of γ for
the rule (|ki − kj |+ 1)γ using replicator dynamics.

3.2.3 Payoff Calculation and Strategy Update Rules

Fig. 3.6 (Color online) Average cooperation levels for the replicator dynamics in Barabási–Albert
networks when payoff is computed according to the unweighted network (see text).

We need to specify how individual’s payoffs are computed and how agents decide to
revise their present strategy, taking into account that only local interactions are permitted.
Let σi ∈ {C,D} be the current strategy of player i and let us call M the payoff matrix of
the game. The quantity

Πi(t) =
∑
j∈Vi

σi(t) M σTj (t) (3.1)
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is the cumulated payoff collected by player i at time step t. Since we work with weighted
networks, the pairwise payoffs Mij = σi M σTj are multiplied by the weights wij of the
corresponding links before computing the accumulated payoff M ′

ij earned by i. This takes
into account the relative importance or frequency of the relationship as represented by
its weight. Thus, the modified cumulated payoff of node i at time t is Π̂i =

∑
j∈vi

M
′
ij .

However, if the weights are seen simply as an expression of trust, the payoff is computed
with the unweighted network and the weights affect only the strategy update rule, because,
as the frequency of the relationship is held constant, the additional trust only influences
which neighbor the player wants to imitate.

Several strategy update rules are customary in evolutionary game theory. Here we shall
describe two imitative update protocols that have been used in our simulations.
The local fitness-proportional rule is stochastic and gives rise to replicator dynamics [7].
Player i’s strategy σi is updated by drawing another player j from the neighborhood Vi
with probability proportional to the weight wij of the link, and replacing σi by σj with
probability:

p(σi → σj) = (Π̂j − Π̂i)/K,

If Π̂j > Π̂i, and keeping the same strategy if Π̂j ≤ Π̂i, where Π̂j − Π̂i is the difference
of payoffs earned by j and i respectively. K = max(si, sj)[(max(1, T )−min(0, S)] ensures
proper normalization of the probability p(σi → σj), in which si and sj are the strenghts
of nodes i and j respectively, the strength of a node being the sum of the weights of the
edges emanating from this node.
The second strategy update rule is the Fermi rule [23]:

p(σi → σj) = 1
1 + exp(−β(Π̂j − Π̂i))

.

This gives the probability that player i switches from strategy σi to σj , where j is a
neighbor of i chosen with probability proportional to the weight wij of the link between
them. The parameter β gives the amount of noise: a low β corresponds to high probability
of error and, conversely, high β means low error rates.

3.2.4 Simulation Parameters

The networks used in all simulations are of size N = 2000 with mean degree 〈k〉 = 8.
The TS-plane has been sampled with a grid step of 0.1 and each value in the phase space
reported in the figures is the average of 50 independent runs, using a fresh graph realization
for each run.

The evolution proceeds by first initializing the players at the nodes of the network with
one of the two strategies at random such that each strategy has a fraction of approxi-
mately 1/2. Other proportions have also been used. Agents in the population are given
opportunities to revise their strategies all at the same time (synchronous updating). We
have also checked that asynchronous sequential update gives similar results. We let the
system evolve for a period of 4000 time steps, after any transient behavior has died out,
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Fig. 3.7 (Color online) Average cooperation in Barabási–Albert networks over 50 runs for γ = 0
on the left and average cooperation over 200 runs for γ = 1 after 12000 synchronous time steps on
the right. Both cases belong to the diffusion approximation, that is Fermi rule with β = 0.01.

and we take average cooperation values. At this point the system has reached a steady
state in which there is little or no fluctuation.

3.3 Degree-Weight Correlations

In a recent work Du et al. [5], based on observed degree-weight correlations in transporta-
tion networks [2], assumed that wij ∝ (kikj)γ for some small exponent γ, where wij is
the weight of edge {ij}, and ki, kj are the degrees of its end points. The authors used
Barabási-Albert model graphs which are, among the standard model complex networks,
those that are more conducive to cooperation [21, 22]. Although they only presented re-
sults for the points in the phase space belonging to the frontier segment between the PD
and HD games (so-called “weak” PD game), here we provide the full average results for
each game’s parameter space as a function of the exponent γ in Fig. 3.1 using replicator
dynamics. The complete numerical results for the whole phase space are to be found in [4].

For γ ≥ 0, there is indeed a small but non-negligible increase in cooperation around
γ = 0.0 to 0.5. However, the problem is that the assumed degree-weight correlation is
typical of transportation networks but has not been observed in social networks [2, 13, 14].
The reason could be that while in transportation networks there are fluxes that must
respect local conservation [14], social networks have a more local nature. In the degree-
weight correlation above the coordinate kikj is the joint contribution; a complementary
view would be to use the difference between ki and kj which amounts to a local degree
comparison. Thus, as there is no correlation between the form kikj and real weights,
we take its perpendicular counterpart |k2

i − k2
j | in the degree-weight correlation, which

contains the same information as the absolute value of the difference of degrees. Taking
these considerations into account we have:
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wij ∝ (|k2
i − k2

j |+ 1)γ (3.2)

The exponent γ allows us to explore the weight-degree correlation from a more disas-
sortative case (γ > 0) to an assortative case (γ < 0), passing through the unweighted case
(γ = 0). We added a strictly positive constant to the difference of square degrees to avoid
division by 0 for negative γ.

It is important to point out that we do not mean to imply that this kind of correlation is
present in actual social networks as we do not have the empirical data analysis needed to
show that this is the case. Indeed, to our knowledge, there are not enough publicly available
reliable data on weighted social networks to test it out empirically. As a consequence, our
results will refer to model weighted networks, not to real ones, but this has been the case
for most studies of evolutionary games on unweighted networks as well ( [19, 21, 22, 23]
and references therein).

Fig. 3.8 (Color online) Average cooperation in all games on Barabási–Albert networks over 100
runs for γ = 1 after 4000 synchronous time steps with the Fermi rule as a function of β.

3.4 Results

The average cooperation figures for BA networks, in which weights are set according to the
degree-weight correlation described by Eq. 3.2, are shown in Fig. 3.2 as a function of the
exponent γ. The strategy update rule is replicator dynamics. The increase in cooperation
is notable in the positive γ range, especially in the hardest PD game, well beyond what is
found in unweighted BA networks, as can be seen in Figs. 3.3 by comparing the 5th image in
the top panel, which corresponds to an unweighted network (γ = 0), with the next images
in the same panel. Moreover, it is seen that the HD and ST games also benefit in this
range. Taking into account that BA scale-free networks have been found to be among the
most effective to date in terms of amplifying cooperation, these findings seems to be very
interesting. In Fig. 3.3 it can be seen that, in contrast to the positive γ case, for negative
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γ there is no cooperation gain whatsoever. A qualitative explanation of this result is the
following. When γ < 0, Eq. 3.2 attributes small weights to links between nodes that have
widely different degrees. Because of the way in which weights are used to choose neighbors
and to compute payoffs in the game dynamics, this in turn will prevent hubs from playing
their role in propagating cooperation. The situation for γ = −0.5 becomes qualitatively
similar to that of a random graph in which the degree distribution is more homogeneous,
and it is well known that random graphs are not conducive to cooperation [19]. When
γ decreases further and approaches −3, in practice the network becomes more and more
segmented into small components that have very weak links between them.

Fig. 3.9 (Color online) The points show, for each game, the average fraction of cooperation at
steady state in the whole game’s phase space as a function of γ for Erdös-Rényi random graphs.
Strategy update is by replicator dynamics and the points are averages over 50 independent runs.

As expected, the initial conditions influence final cooperation frequencies. As an exam-
ple, we display the phase space at steady state starting from 30 percent cooperation in
Fig. 3.4 for γ = 0 and 1. The average cooperation is less, especially for the SH and PD
games; however, cooperation levels are still significantly higher with the weights.

The rule (|k2
i − k2

j | + 1)γ uses the square of the degrees. We also tested the simpler
alternative rule (|ki − kj | + 1)γ on a Barabasi-Albert network. We obtained the same
behavior, except for a shift, see Fig. 3.5.

Until now we used the weights as representing a time of interaction, and thus payoffs
were the product of the weight times the numerical payoffs as explained in Sect. 7.2.3.
We can also consider them simply as an expression of trust. In this case the weights only
influence the choice of a neighbor to imitate, but the payoffs are just the ordinary payoffs,
Eq. 8.6, without weight multiplication. For the PD, the assortative weights (γ < 0) imply
close to zero cooperation, and the disassortative weights tend to one half cooperation. We
show the mean cooperation for all games in Fig. 3.6, and the entire game’s space in the
middle panel of Fig. 3.3, using the rule (|k2

i − k2
j | + 1)γ . We observe that all the games

are positively influenced for γ > 0 which indicates that simply imitating the strategy of
agents with which the link is stronger has a favorable effect on cooperation.
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The Fermi dynamics (see Sect. 7.2.3) is a flexible imitation protocol. For β ' 10 it
approaches the replicator dynamics results in unweighted networks [19]. However, when
β � 1.0 the Fermi dynamics leads to the diffusion approximation [23]. Here, this approx-
imation means that when a player selects a strategy, after having selected a neighbor, in
the majority of cases he chooses the strategy at random and only rarely he selects it pro-
portionally to difference of payoffs. For unweighted BA networks at steady state there is no
cooperation increase and defection prevails in the PD (see left image of Fig. 3.7 and [19]).
However, on the weighted network with γ = 1.0, cooperation remains high, although lower
than the replicator dynamics case (Fig. 3.7, image on right). We performed 200 runs in-
stead of 50 because the system is noisier, and each run lasted for 12000 instead of 4000
time steps, since approaching steady state is slower. In Fig. 3.8 we display the cooperation
levels as a function of β for the weighted graph with γ = 1 after 4000 synchronous time
steps and 50 repetitions. This seems to confirm the robustness of cooperation, on this
kind of topology, against noise in the choice of a neighbor. For β ≤ 10−2 the dynamics
is probably not at steady state. Steady state might be difficult to attain because the dy-
namic becomes very slow as β approaches 0. However, the difference from the BA is very
interesting (See also [19]); it shows that the model is applicable to a broader range of real
situations, where the behavior of players is subject to errors of various kinds.

Fig. 3.10 (Color online) Average cooperation in random scale-free graphs obtained with the con-
figuration model with an exponent α = −3 of the power law degree distribution. Strategy update
rule is replicator dynamics. Averages over 50 independent runs.

In order to see how cooperation is affected when degree heterogeneity is low, we use
Erdös-Rényi random graphs and then set the weights according to our rule. The Barabasi-
Albert graph gives drastically better results but there is an improvement in weighted
random graphs compared to the unweighted case: see Fig. 3.9 and the bottom panel of
Fig. 3.3. Indeed, while cooperation in the PD is almost absent on random graphs, with
our weighting scheme, cooperation increases to levels similar to those found in unweighted
BA networks, as seen by comparing Fig. 3.9 for γ = 1 with Fig. 3.2 for γ = 0.
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It is worth noting that Barabási–Albert graphs are only a particular class of scale-free
growing networks. Due to their construction, they possess historical correlations between
early hub nodes [11]. In other words, hubs tend to be interconnected among themselves
and it transpires that this feature is favorable for cooperation [19, 21]. Thus, we also tested
scale-free networks that have no degree correlation, such as the “configuration model” [9,
11] which yields random scale-free graphs if built from the right degree sequence. We used
the configuration model with an exponent α = −3 of the power-law degree distribution.
The results, shown in Fig. 4.3, are qualitatively similar to those obtained on BA networks
(Fig. 3.2), except for a small drop in cooperation near γ = 1. The largest differences
are observed for the ST game, but they are still small in absolute terms. The result on
random scale-free weighted networks is interesting and confirms the role of weights in the
establishment of asymptotic high levels of cooperation in our model networks, in spite of
the fact that these networks are less conducive to cooperation than BA networks [17, 22].

3.5 Cooperative Unweighted Graphs from Weighted Ones
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Fig. 3.11 (Color online) Average cooperation for the filtered unweighted graphs obtained from
Barabási–Albert networks with γ = 1.0 (left) and γ = −1.0 (right), as a function of the parameter
θ (see text). Values are averages over 50 runs, and strategy update is by replicator dynamics.

Understanding game dynamics may be simpler on unweighted graphs than on weighted
graphs. In order to get an intuitive idea of the mechanism seen on weighted networks, we
constructed two unweighted models from the weighted one as described below.

The first model is a rather raw but revealing way of extracting an unweighted structure
from the weighted graph by filtering out edges with low enough weights. The resulting
topology should be of help in understanding the origins of the large promotion of coop-
eration we found on our particular class of weighted correlated networks. Starting with a
BA graph, we set the weights according to the form (|k2

i − k2
j | + 1)γ , discard the edges

with a weight inferior to a threshold θ, and finally set all weights of the remaining links
to one. Every edge with weight w < θ 〈w〉, θ={0.0,0.1,0.3,...,1.9}, is discarded. During
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the edge filtering process some vertices may become isolated. The problem is that their
strategy cannot change after having been assigned randomly at the beginning. In the
weighted network these nodes interact rarely since the frequency of interaction depends
on the link weight. For the sake of simplicity, our choice has been to discard them in the
simulations, otherwise the simulation results would be biased owing to the isolated nodes
with unchanging strategy.
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Fig. 3.12 (Color online) Left : Cooperation phase space on Barabási–Albert networks for the
weighted case with γ = 1 and the correlation function (|k2

i − k2
j | + 1)γ . Right : Corresponding

cooperation phase space for the filtered unweighted network with γ = 1 and θ = 0.7. Averages over
50 runs using replicator dynamics.

The mean cooperation on the filtered graphs as a function of θ is shown in the left image
of Fig. 3.11. The mean cooperation level in all the games increases with the threshold up
to a certain point and then stays approximately constant. The cooperation increase is
particularly notable for PD in which one goes from 0.15 up to about 0.65, i.e. a four-fold
increase. The right image of Fig. 3.12 shows the average cooperation in the whole S-T
plane for γ = 1 and θ = 0.7. It is apparent that the high degree of cooperation that was
present in the original weighted graph, which is reported in the left image of Fig. 3.12 is
fully maintained apart from some small differences due to the details of the dynamics and
slightly different network sizes. This means that the filtered unweighted graph provides
at least as much cooperation as the original weighted one and, therefore, is in some non-
rigorous sense, equivalent to it. For higher values of θ, not only in the average but also
for the whole game space, the trend remains very similar for the PD; in the ST there is
some small loss of cooperation, while the HD gains a little bit (the corresponding figures
are not shown to save space).

In the right image of Fig. 3.11 we show the mean cooperation values that are reached
when the links are filtered in the same way but with γ = −1. Since the weights are now the
reciprocals of the original ones, this roughly amounts to cutting the strongest links with
respect to the case γ = 1. The result is a generalized loss of cooperation in the average, a
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fact that shows the importance of strong links. The fact that cooperation goes below 1 in
the Harmony game is due to graph fragmentation.

Fig. 3.13 (Color online) Typical filtered graph plots as a function of γ, with Fruchtermann-
Reingold layout, coloration of cores, and the size of a vertex ∝ log(ki). From left to right: γ =
0.0, 1.0, 3.0; θ = 0.7 for all images. Only the giant connected components are shown.

Fig. 3.14 (Color online) Cumulated degree distribution of the filtered and unfiltered networks
in log-log scales. dotted gray line, dashed red line, green thick line stand, respectively, for
γ = 0.0, 1.0, 3.0. The original unfiltered graph has been obtained through the Barabási–Albert
construction.

We display some particular but representative graphs obtained through the filtering
process in Fig. 3.13. The topologies show hubs connected to many low degree vertices and
the hubs are possibly connected directly or through some intermediate vertices with low
degree, while the low degree vertices are not connected between them. This effect increases
with increasing γ and can be seen explicitly in Fig. 3.13. The empirical degree distribution
curves of the BA graphs before and after transformation are shown in Fig. 3.14. We observe
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that there are less nodes with degree between ' 5 and ' 50, thus separating vertices in
two sets, large degree and low degree vertices, an almost bipartite network. In fact, the
Newman’s coefficient of assortativity [11] is of the order of∼ −0.6, for the filtered BA graph
with θ = 0.7, γ = 1, and of the order of ∼ −0.9 for θ = 0.7, γ = 3, while it is ∼ −0.05 for
the original graph, which indicates that the graph indeed becomes more bipartite as there
are few links between nodes of similar degree and γ increases. Another class of networks in
which one finds this almost bipartite degree distributions has been generated by Poncela et
al. [18] in a completely unrelated way. They use a dynamical process in which new players
attach to existing nodes at random, or preferentially to those that have been successful in
the past. Their graphs are highly cooperative in the dynamical regime, but when used as
static graphs cooperation is much lower. In another study, Rong et al. [20] find that when
a network becomes assortative by degree, the large-degree vertices tend to interconnect to
each other closely, which destroys the sustainability among cooperators and promotes the
invasion of defectors, whereas in disassortative networks, the isolation among hubs protects
the cooperative hubs in holding onto their initial strategies to avoid extinction. This study,
although it is different from ours since it does not start from weighted networks, also shows
the role of degree disassortativity in influencing cooperation.

The above model gave us some general ideas about the possible structure of highly
cooperative unweighted networks. Now we shall try to better understand the microscopical
foundations of the phenomena by studying a small graph containing the minimal features
required to parallel the behavior on weighted networks.

In Roca et al. [19] the authors give an intuitive explanation for the cooperation induced
by degree heterogeneity in unweighted BA networks. Gómez-Gardeñes et al. [6] provide a
deeper analysis of the origins of cooperation in the PD case but here the simple argument
of [19] will be sufficient. In their view, the hubs drive the population, fully or partially,
to cooperation in HD games. The reason is the following: the hubs get more payoff, thus
a defector hub triggers the change of his neighbors to defection, while a cooperator hub
triggers it to cooperation, favoring cooperation since cooperative hubs surrounded by co-
operators get a higher payoff. In our weighted case the topology of the network leads to
cooperation not only in the HD game, but also in the PD game. In this case the idea
of hubs driving the population to cooperation is very relevant, because the new topology
amplifies this effect.

According to Eq. 3.2 for γ > 0, the smaller the difference between the degrees of two
connected nodes, the smaller the weight of the corresponding link. Thus, two connected
hubs will have a relatively low link weight, while a link between a hub and a low-degree
vertex will be given a high weight. Also, links between two low-degree nodes will make the
corresponding link weight almost negligible, a fact that we have exploited in the filtered
graphs above. With these ideas in mind, let us consider the graph in the right part of
Fig. 3.15 where two hubs are connected to 36 vertices having degree one or two, depending
on whether they are connected to one hub or to both. We will consider two extreme cases:
either the two hubs are connected, or they aren’t. We obtain a bipartite graph when the
hubs are not connected, and an almost bipartite one when there is a link between them.
The number of common neighbors of A and B is 8 in the figure, so as to be in a region
where cooperation is high, as shown in the left image of Fig. 3.15 when A and B are
connected. These data have been obtained by numerically simulating the games’ evolution
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on the graph of Fig. 3.15 with replicator dynamics and varying the number of common
neighbors from 0 to 24. The upper row of Fig. 3.16 shows the games’ phase space with or
without an edge between the two hubs for the graph of Fig. 3.15 starting from a random
initial distribution, while the lower row of Fig. 3.16 shows the same plots with the following
initial distribution: A is cooperator, B is defector, random strategies are assigned to the
other vertices. The plots show that the model in which the hubs are connected induces
more cooperation in all games. When hubs are not connected (the left images) results are
very similar in the upper and lower images because propagation via the hubs is no longer
possible. Now, we shall try to explain the mechanism at work referring to the graph in
Fig. 3.15.
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Fig. 3.15 (Color online) Average cooperation over 1000 repetitions of 500 time steps on the
bipartite graph shown on the right as a function of the number of common neighbors to A and B.
Replicator dynamics is used to update agents’ strategy. The initial strategy distribution is random.
The graph displayed has 8 common neighbors.

If node A is a cooperator and node B is a defector, by Roca’s et al. arguments [19], A will
have an advantage and could spread cooperation to B. However, if A and B are not directly
connected, strategy migration will have to go through a low degree node and this will make
further progress more difficult because B is a hub and is likely to collect a higher payoff.
On the other hand, when there is a link between A and B, B could imitate cooperator A at
some point. To spread cooperation further now cooperator B needs cooperator neighbors
in order to get a sufficiently high payoff. B could obtain this from common neighbors with
A, which are more likely to be cooperators than the neighbors that are only connected to
it and not to A. Therefore, having a direct connection between A and B is crucial for the
dynamics to lead to high degrees of cooperation. This can be seen in the numerical results
shown in Fig. 3.16 for the case in which A has a link to B (right part) and to the opposite
case (left part). A certain number of shared neighbors between A and B seems to play an
important role. Without them, there would be segregation of strategies, reflected in the
average cooperation level in Fig. 3.15 (left) for 0 or a low number of common neighbors
for the HD and the PD. As this number increases, however, cooperation may propagate
from hub to hub. When the number of common neighbors becomes too high, around 13,
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a cooperator hub is no longer favored as now his cooperator and defector neighbors will
be about the same number.

Fig. 3.16 (Color online) Average cooperation over 1000 repetitions of 500 time steps for 8 common
neighbors without a link between A and B (left), and with a link between A and B (right) (see
Fig. 3.15). Strategy update uses the replicator dynamics rule. Upper row: The initial strategy
distribution is random; Lower row: The initial strategy distribution is random except for the hubs,
one is set cooperator, the other defector.

It is worth noting that Perc et al. [16] with an apparently unrelated grid population
model in which a fraction of players is more influential in the sense that they can transmit
their strategy to others more easily, also obtain a high amount of cooperation in the weak
PD game. For this to happen, it is also needed that, with a small probability a player can
randomly link temporarily to distant sites in the lattice. When both features are present
cooperation is boosted.
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3.6 Discussion and Conclusions

Although weighted networks are closer to reality, evolutionary games on complex net-
works have been essentially studied on unweighted networks until now, both for simplic-
ity as well as because weights in social networks are notoriously difficult to assess. In
this article we introduced a new degree-weight correlation form in a model derived from
three standard unweighted networks classes: BA graphs, the configuration model, and
Erdös-Rényi random graphs. We studied the evolutionary game dynamics of standard
two-person, two-strategies games on these classes of networks for which accurate results
exist in the unweighted cases. A weight-degree correlation of the form (kikj)γ had already
been studied [4, 5], giving a small gain in cooperation for a restricted range of γ on BA
networks. However, it has empirically been found that real social weights are not corre-
lated to kikj [2, 14]. Thus in this work we used the perpendicular coordinate |k2

i − k2
j | in

the weight-degree correlation (|k2
i − k2

j | + 1)γ to study the proportion of cooperators at
steady state on static weighted networks, and varying the weights from a more assortative
case to a more disassortative case passing through the unweighted case. As γ increases
toward disassortative weights, cooperation dramatically increases until a maximum of 0.6
averaged in the whole PD game phase space. And results are equally good for the HD and
ST games, both for the replicator dynamics as well as for the Fermi rule. A small value of
γ > 0 such as 0.5 or one is sufficient to induce unprecedented amounts of cooperation, and
this remains true also for the linear correlation form (|ki−kj |+1)γ . The outcome at steady
state depends on the initial conditions: starting from lower cooperation fractions induce
less cooperation at steady state, which is also the case in the unweighted networks [19].
The best results were obtained for BA networks or random scale-free graphs, but even
with Erdos-Rényi random graphs, which are known to induce little or no cooperation in
the unweighted case [19], results are better, especially for the PD in which the amount
of cooperation is comparable with the corresponding result for an unweighted BA graph.
On the other hand, the assortative weights (γ < 0) are in general slightly detrimental to
cooperation, except for the PD game where the increase is small anyway. Summing up,
we can say that the main result in this part is that payoff-proportional imitation induces
cooperation in a large part of the Prisoner’s Dilemma with the given weights and γ > 0
on heterogeneous networks. The other games are positively affected as well.

In the second part of the present work we provided qualitative arguments for the emer-
gence of large increases of cooperation in unweighted networks derived from the weighted
ones. To this end, we proposed to filter out edges with low weight in the original net-
work and to set all the remaining weights to 1. The cooperation level in those unweighted
graphs, after removing isolated vertices, is similar or even higher than in the weighted
networks. The features observed are: a bipolar distribution of degree (low degree and high
degree vertices), degree disassortativity, low degree vertices are connected only to hubs
while some connections between hubs may still exist for moderate γ, thus a nearly bi-
partite graph. Then, keeping only the necessary features, we constructed a small network
which helps to intuitively understand the origins of the large increase in cooperation. We
found that while low degree vertices surrounding hubs advantage cooperators, common
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neighbors between hubs and direct links between hubs are important for the propagation
of cooperation in the network.

A general consideration on the results we obtained is the following. We do not know
whether the weighted networks, or the unweighted ones derived from them do really exist,
at least in an approximate form. Ours is only an abstract model and weighted network data
to perform empirical analyses are difficult to find. Nevertheless, in the future it would be
interesting to study empirical degree-weight correlations in real-life network. If correlations
of the type assumed in this work with γ > 0 could be found, then the corresponding
networks would likely be favorable for cooperation in evolutionary games. Also, considering
dynamical network evolution linked to a game [15], cooperative network similar to ours
could emerge at steady state, because they maximize the number of satisfied players.
Nevertheless, naturally occurring social networks do have a large amount of clustering,
which is not the case in our filtered unweighted networks, but could be obtained on the
weighted ones. Finally, the highly hierarchical cooperative unweighted structures found
in this work could be created on purpose, if cooperation is the objective. This could be
especially useful when the network nodes are not only persons but also organizations or
institutions that happen to interact according to game rules similar to those used in the
simulations.
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Abstract In this work we study the behavior of classical two-person, two-strategies evolu-
tionary games on networks embedded in a Euclidean two-dimensional space with different
kinds of degree distributions and topologies going from regular to random, and to scale-
free ones. Using several imitative microscopic dynamics, we study the evolution of global
cooperation on the above network classes and find that specific topologies having a hi-
erarchical structure and an inhomogeneous degree distribution, such as Apollonian and
grid-based networks, are very conducive to cooperation. Spatial scale-free networks are
still good for cooperation but to a lesser degree. Both classes of networks enhance average
cooperation in all games with respect to standard random geometric graphs and regular
grids by shifting the boundaries between cooperative and defective regions. These findings
might be useful in the design of interaction structures that maintain cooperation when the
agents are constrained to live in physical two-dimensional space.

4.1 Introduction

In a strategic context, Game Theory is an ”interactive decision theory“ where an agent’s
optimal action for herself depends on expectations on the actions of other agents - including
herself [18]. This approach has proved very useful in a number of settings in biology,
economy, and social science. Evolutionary game theory in particular is well suited to the
study of strategic interactions in animal and human populations that are large and well-
mixed in the sense that any agent can interact with any other agent in the population (see
e.g. [14, 32, 33]). However, lattice-structured populations were used starting with the works
of Axelrod on the repeated Prisoner’s Dilemma [6] and of Nowak and May on the one-shot
case [21]. Especially in the last few years, population structures with local interactions
have been brought to the focus of research as it is known that social interactions can be
better represented by networks of contacts in which nodes represent agents and links stand
for their relationships. This literature is already rather abundant and it is difficult to be
exhaustive; good recent reviews can be found in [24, 25, 29] and important foundational
work dealing with the microscopic agent dynamics appears, among others, in [2, 23, 31, 34].
Most of the recent work has dealt with populations of agents structured as non-spatial
graphs (relational graphs), i.e. networks in which there is no underlying spatial structure
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and distances are measured in terms of edge hops. Relational networks are adequate in
many cases; for instance, when two people have a connection in Facebook, for the purposes
of the electronic communication, their actual physical distance is irrelevant, although many
links in the network will be related to closeness in space. However, often it is the case that
actual distances matter; for example, networks such as the road or the railway networks
are of this type. Thus, while the recent focus in complex network research has been mainly
on relational graphs, spatial graphs are also very important and have attracted attention
(see [7] for an excellent recent review).

In evolutionary games regular graphs such as one- and two-dimensional lattices have
been used early on to provide a local structure to the population of interacting agents [6,
21]. These networks can be considered relational for certain purposes but can also be
trivially embedded in some low-dimensional Euclidean space, with the associated distance
metric. Practically the totality of the work on spatial evolutionary games has been done
on this kind of structure and a large literature has been produced (for a summary with
references to previous work see [22]). To the best of our knowledge, only few works have
dealt with spatial networks other than grids in games e.g. [16, 35]. In [16] geometric random
graphs, which are Euclidean graphs built by drawing links between nodes that are within
a given distance, and spatially embedded Watts–Strogatz networks are used in connection
with the Naming Game. Ref. [35] deals with games on Apollonian networks, which can be
viewed as Euclidean networks that can be built by recursively joining a new node in the
interior of a triangle with the nodes at its vertices. This kind of graphs will be referred
to later in the present work. Clearly, grids are only an approximation to actual spatial
graphs representing networks of contacts in the physical world [7].

In the present work we extend the ideas and methods of evolutionary game theory to
fixed spatial networks that go beyond the much-studied discrete two-dimensional lattices.
Previous results show that networks with heterogeneous degree distributions increase co-
operation in the Hawks-Dowes games, while regular lattices increase cooperation in the
Stag-Hunt games [25, 27, 28]. Therefore we study spatial network models with a scale-free
degree distribution as a first step. In a second part, by extending a previous work [35], we
show that Apollonian networks [3] are such that both the benefits of spatiality and scale-
free degree distribution can be gathered. Some previous works use reduced game spaces.
As these settings are not suitable for our discussion, we extend them to a larger game
space. Mobility (see e.g. [13, 17]) is an important issue in these spatial networks but, as an
obvious first step, here we shall deal only with static networks. Our exploratory approach
is based on numerical Monte Carlo simulations since an exact analytical description is
essentially only possible in the mean-field case.

4.2 Evolutionary Games on Networks

4.2.1 The Games Studied

We investigate three classical two-person, two-strategy, symmetric games classes, namely
the Prisoner’s Dilemma (PD), the Hawk-Dove Game (HD), and the Stag Hunt (SH).
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These three games are simple metaphors for different kinds of dilemmas that arise when
individual and social interests collide. The Harmony game (H) is included for completeness
but it doesn’t originate any conflict. The main features of these games are summarized
here for completeness; more detailed accounts can be found elsewhere e.g. [14, 32, 33]. The
games have the generic payoff matrix M (equation 8.1) which refers to the payoffs of the
row player. The payoff matrix for the column player is simply the transpose M> since the
game is symmetric. (C D

C R S
D T P

)
(4.1)

The set of strategies is Λ = {C,D}, where C stands for “cooperation” and D means
“defection”. In the payoff matrix R stands for the reward the two players receive if they
both cooperate, P is the punishment if they both defect, and T is the temptation, i.e. the
payoff that a player receives if he defects while the other cooperates getting the sucker’s
payoff S. In order to study the usual standard parameter space [25, 28], we restrict the
payoff values in the following way: R = 1, P = 0, −1 ≤ S ≤ 1, and 0 ≤ T ≤ 2.
For the PD, the payoff values are ordered such that T > R > P > S. Defection is always
the best rational individual choice, so that (D,D) is the unique Nash Equilibrium (NE)
and also the only fixed point of the replicator dynamics [14, 33]. Mutual cooperation would
be socially preferable but C is strongly dominated by D.
In the HD game, the order of P and S is reversed, yielding T > R > S > P . Thus, when
both players defect they each get the lowest payoff. Players have a strong incentive to
play D, which is harmful for both parties if the outcome produced happens to be (D,D).
(C,D) and (D,C) are NE of the game in pure strategies. There is a third equilibrium in
mixed strategies which is the only dynamically stable equilibrium [14, 33].
In the SH game, the ordering is R > T > P > S, which means that mutual cooperation
(C,C) is the best outcome, Pareto-superior, and a NE. Pareto-superior means that the
equilibrium is a set of strategies, one for each player, such that there is no other strategy
profile in which all players receive payoffs at least as high, and at least one player receives
a strictly higher payoff. The second NE, where both players defect is less efficient but also
less risky. The tension is represented by the fact that the socially preferable coordinated
equilibrium (C,C) might be missed for “fear” that the other player will play D instead.
The third mixed-strategy NE in the game is evolutionarily unstable [14, 33].
Finally, in the H game R > S > T > P or R > T > S > P . In this case C strongly domi-
nates D and the trivial unique NE is (C,C). The game is non-conflictual by definition and
does not cause any dilemma, it is mentioned to complete the quadrants of the parameter
space.
In the TS-plane each game class corresponds to a different quadrant depending on the
above ordering of the payoffs as depicted in Fig 4.1, left image, and the figures that follow.
We finally remark that a rigorous study of the evolutionary dynamics of 2 × 2 matrix
games in finite mixing populations has been published by Antal and Scheuring [4].
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4.2.2 Population Structure

The population of players is a connected undirected graph G(V,E), where the set of
vertices V represents the agents, while the set of edges E represents their symmetric
interactions. The population size N is the cardinality of V . The set of neighbors Vi of an
agent i are the agents that are directly connected to i; the cardinality |Vi| is the degree ki
of vertex i ∈ V . The average degree of the network is called 〈k〉, and p(k) is the network’s
degree distribution function.

4.2.3 Payoff Calculation and Strategy Update Rules

We need to specify how individual’s payoffs are computed and how agents decide to revise
their current strategy, taking into account that each agent only interacts locally with its
first neighbors, not globally as in well mixed populations. Let σi(t) be a vector giving the
strategy profile at time t with C = (1, 0) and D = (0, 1) and let M be the payoff matrix
of the game (equation 8.1). The quantity

Πi(t) =
∑
j∈Vi

σi(t) M σ>j (t) (4.2)

is the cumulated payoff collected by player i at time step t.
We use an asynchronous scheme for strategy update, i.e. players are updated one by one

by choosing a random player in each step. Several strategy update rules are customary in
evolutionary game theory. Here we shall describe the four imitative update protocols that
have been used in our simulations. The first three are well known; we thank an anonymous
reviewer for suggesting a rule very similar to the fourth one presented here.
The local fitness-proportional rule is stochastic and gives rise to replicator dynamics
(RD) [11, 12]. Player i’s strategy σi is updated by randomly drawing another player j
from the neighborhood Vi, and replacing σi by σj with probability:

p(σi → σj) =
{

(Πj −Πi)/K if Πj > Πi

0 if Πj ≤ Πi
(4.3)

where Πj − Πi is the difference of the payoffs earned by j and i respectively. K =
max(ki, kj)[(max(1, T )−min(0, S)] ensures proper normalization of the probability p(σi →
σj). This normalization increase the frequency of imitations between nodes with smaller
degree. A more flexible update rule without the problem of normalization is the Fermi
rule. Here the randomly chosen player i is given the opportunity to imitate a randomly
chosen neighbor j with probability :

p(σi → σj) = 1
1 + exp(−β(Πj −Πi))

(4.4)

where β is a constant corresponding to the inverse temperature of the system, i.e. high
temperature implies that imitation is random to a large extent and depends little on the
payoffs. Thus when β → 0 the probability of imitating j tends to a constant value 0.5
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and when β →∞ the rule becomes deterministic: i imitates j if (Πj −Πi) > 0, otherwise
it doesn’t. For β ⊂ [1.0, 10.0] the rule leads approximatively to similar results as the
local fitness-proportional one. Another imitative strategy update protocol is to switch to
the strategy of the neighbor that has scored best in the last time step. In contrast with
the previous one, this rule is deterministic. This imitation of the best (IB) policy can be
described in the following way: the strategy si(t) of individual i at time step t will be

si(t) = sj(t− 1), (4.5)

where
j ∈ {Vi ∪ i} s.t. Πj = max{Πk(t− 1)}, ∀k ∈ {Vi ∪ i}. (4.6)

That is, individual i will adopt the strategy of the player with the highest payoff among
its neighbors including itself. If there is a tie, the winner individual is chosen uniformly at
random. The next update rule is a randomized version of the imitation of the best that
we call IBR. Here player i imitates a neighbor j with probability given by formula 4.3.
The constant K appearing in formula 4.3 is such that

∑
j∈Vi

pij = 1.
A final remark is in order here. The above model rules are common and almost standard

in numerical simulation work, which has the advantage that the mathematics is simpler
and results can be compared with previous work such as, for instance, [25, 28]. However,
it is far from clear whether these rules are representative of the ways in which human
players actually take their strategic decisions, as has been shown by many laboratory
experiments. In these experiments it seems that learning and heuristics play an impor-
tant role. Moreover, players are inhomogeneous in their behavior while our stereotyped
automata all behave in the same way and never change or adapt. Some less conventional
work along these lines can be found in [9, 30]. In Cardillo et al. [9] standard strategy
update rules are used but they are permitted to co-evolve with the agent’s strategies. In
Szolnoki et al. [30], rather than imitating strategies, agents imitate a proxy that stands
for emotions among their neighbors.

4.2.4 Simulation Parameters

The TS-plane has been sampled with a grid step of 0.1 and each value in the phase space
reported in the figures is the average of 50 independent runs using a fresh graph realiza-
tion for each run, except for strictly regular or degree-invariant networks. The evolution
proceeds by first initializing the players at the nodes of the network with one of the two
strategies uniformly at random such that each strategy has a fraction of approximately 1/2
unless otherwise stated. For each grid point, agents in the population are chosen sequen-
tially at random to revise their strategies (asynchronous updating). Payoffs are updated
after each strategy change. We let the system evolve for a period of 2 ∗N time steps. At
this point the system has reached a steady state in which the frequency of cooperators is
stable except for small fluctuations. We then let the system evolve for 300 further steps
and take the average cooperation value in this interval. We repeat the whole process 50
times for each grid point and, finally, we report the average cooperation values over those
50 repetitions.



84 4 Evolution of Cooperation on Spatially Embedded Networks

4.3 Results

In the following sections we investigate how spatiality affects cooperation through its effect
on network topology. In section 4.3.1 we study a class of spatial scale-free networks, and in
section 4.3.2 we study Apollonian networks, a different model of spatial scale-free network
leading to high levels of cooperation. Spatial scale-free networks and Apollonian networks
combine spatiality and scale-free degree distribution. In section 4.3.3 we propose a class
of hierarchical spatial networks derived from lattices and random geometric graphs which
also improve cooperation.
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Fig. 4.1 (Color online) Left image: The games phase space (H= Harmony, HD = Hawk-Dove,
PD = Prisoner’s Dilemma, and SH = Stag Hunt). Right image: Average cooperation over 50 runs
at steady state in a well mixed population (right image). The initial fraction of cooperators is 0.5
randomly distributed among the graph nodes and the update rule is imitation proportional to the
payoff. Lighter tones stand for more cooperation. Figures in parentheses next to each quadrant
indicate average cooperation in the corresponding game space.
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Fig. 4.2 (Color online) Average cooperation over 50 runs at steady state in BA networks. Network
size isN = 10000, 〈k〉 = 8. The initial fraction of cooperators is 0.5 randomly distributed among the
graph nodes. Lighter tones stand for more cooperation. The update rule is imitation proportional
to the payoff (left image), imitation of the best (middle image), randomized imitation of the best
(right image).



4.3 Results 85

T

S

 

 
(1)

  (0.61) (0.12)  

(0.84)  

0 1 2−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

T

S

 

 
(1)

  (0.91) (0.45)  

(0.94)  

0 1 2−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

T

S

 

 
(1)

  (0.83) (0.35)  

(0.95)  

0 1 2−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Fig. 4.3 (Color online) Average cooperation over 50 runs at steady state on the configuration
model with exponent γ = 3.0, with N = 10000, and 〈k〉 = 8.0. The initial fraction of cooperators is
0.5 randomly distributed among the graph nodes. The update rule is imitation proportional to the
payoff (left image), imitation of the best (middle image), randomized imitation of the best (right
image).
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Fig. 4.4 (Color online) Average cooperation over 50 runs at steady state in a regular lattice, the
size is N = 10000, 〈k〉 = 8. The initial fraction of cooperators is 0.5 randomly distributed among
the graph nodes. Figures in parentheses next to each quadrant indicate average cooperation in the
corresponding game space. The update rule is imitation proportional to the payoff (left image),
imitation of the best (middle image), randomized imitation of the best (right image).

4.3.1 Spatial Scale-Free Networks

The right image of Fig. 4.1 shows cooperation in the well-mixed population case as a
baseline to which we refer when evaluating the amount of cooperation that evolves in
network-structured populations. Scale-free networks, such as the Barabási–Albert (BA) [1]
and the configuration model (CF) [19], are known to induce high levels of cooperation in
HD games and also improve cooperation in the PD and the SH [25, 28]. Results on these
topologies are shown for future reference in Figs. 4.2 and 4.3. On the other hand, spatial
grids induce high levels of cooperation in SH games but not in PD games, and they
reduce the levels of cooperation in the HD games as compared to the well-mixed case [25],
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see Fig. 4.4. In order to understand how cooperation is affected by the combination of
spatiality and heterogeneous degree distribution, we used a spatial network model with
a given degree distribution. Our construction is inspired by the one given by Rozenfeld
et al. [26] and only differs from the latter in the way in which a given node looks for
its k neighbors. We start from a given sequence of target degrees {k1, k2, . . . , kN} and
we place the N nodes in a regular lattice as in [26]. However, instead of selecting the
nearest neighbors of a given node, the neighbors of a node are chosen in the following way.
For each of the k edges of a node we perform a random walk on the underlying lattice
starting from this node until we find a free neighbor whose effective degree is less than its
target degree and we create a link to that node. The process is halted when the effective
degree of the considered node is equal to the target degree. Since it is possible that a
node has already cumulated edges up to its target degree, we fix a maximum m = N for
the number of random walk steps for the construction of one edge. We used a scale-free
distribution p(k) ∝ k−γ with exponent γ ∈ {2.0, 3.0, 4.0}. In order to keep a constant
mean degree 〈k〉 = 8, the lower bound of the scale-free degree sequence was shifted. Thus,
as γ increases the distribution becomes more peaked around 〈k〉. The network model just
described, called SFSN, gives very similar results on cooperation as the one of Rozenfeld
et al.; thus we show only those concerning our model.
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Fig. 4.5 (Color online) Average cooperation over 50 runs at steady state on SFSN networks (see
text). Size is N = 10000, 〈k〉 = 8 and γ = 2.0 (first image), 3.0 (second image), and 4.0 (third
image). The fourth image corresponds to random geometric graphs with 〈k〉 = 20. The initial
fraction of cooperators is 0.5 randomly distributed among the graph nodes and the update rule is
imitation proportional to the payoff.

For comparison purposes, and by analogy with Erdös-Rényi random graphs [20] in
relational networks, we take as a spatial baseline case the random geometric graph (RGG).
Random geometric graphs are constructed as follows [7, 10]. N nodes are placed randomly
on a subset of Rn; then two nodes are linked if their distance is less than a constant r.
The resulting graph has a binomial degree distribution which tends to a Poisson degree
distribution as N →∞ and r → 0 [7, 10], with 〈k〉 = Nq(r) and q(r) = πr2/S, for n = 2,
is the probability that a node is in a disk of radius r. S is the total surface.

Average cooperation on SFSNs with RD and IB update rules for γ = 2.0, 3.0, 4.0 are
shown in Figs. 4.5 and 4.6. The first remark is that spatial scale-free networks are slightly
less conducive to cooperation than the corresponding BA and CF relational networks. This
can be seen by comparing the first images of Fig. 4.2 and Fig. 4.3, which corresponds to
the BA and CF cases, with the second image of Fig. 4.5 which refers to SFNSs with γ = 3.
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Fig. 4.6 (Color online) Average cooperation over 50 runs at steady state on SFSN networks with
imitation of the best update rule. Size is N = 10000, 〈k〉 = 8 and γ = 2.0 (first image), 3.0
(second image), 4.0 (third image). The fourth image corresponds to random geometric graphs with
〈k〉 = 20. The initial fraction of cooperators is 0.5 randomly distributed among the graph nodes.

Nevertheless, it can be seen that SFNSs do favor cooperation especially in the HD and
the PD space with respect to the RGG case depicted in Fig. 4.5, rightmost image. It can
also be observed that the gains in the transition between cooperation and defection that is
apparent in the SH games with increasing γ, are partially offset for low γ. The comparison
with the RGG case (rightmost image) shows that cooperation levels tend to those of the
random graph case with increasing γ, except for the HD quadrant where the RGG topology
causes some cooperation loss. As in non-spatial networks [25], the imitation of the best
neighbor strategy update rule is more noisy and gives rise, in general, to somewhat higher
levels of cooperation. Results with IBR rule are similar to those with IB and are not
presented.

4.3.2 Apollonian Networks: A Spatial Scale-Free Model with Higher
Cooperation

An interesting case of scale-free spatial networks are the Apollonian networks (AN) [3]
for which we show in this section that they lead to high levels of cooperation. Apollonian
networks are constructed by linking adjacent circles in Apollonian packings. In the simplest
case, an Apollonian packing is built by starting from three tangent circles, adding a smaller
circle tangent to the three previous ones, and iterating the process for each new hole
between three circles (see Fig. 4.7 and [3]). Our sample Apollonian networks have been
obtained in this way after nine iterations and are of size N = 9844 nodes. AN belong to a
class of networks that are scale-free, small-world, planar and embedded in Euclidean space.
The degree-distribution exponent is γ = 2.585 and the clustering coefficient Ccl = 0.83 [3].

In a recent work, Yang et al. [35] have shown that Apollonian networks foster coop-
eration on the weak prisoner’s dilemma (R = 1, P = 0, S = 0, T ∈ [0, 3]) using update
proportional to payoff. The space covered is thus just the segment at the frontier between
HD and PD. Here, with the aim of extending the scope of the study, we sample the full
ST-plane. Our results are summarized in Fig. 4.8. They show that the AN topology is
more conducive to cooperation than SFNS and BA networks in the HD games, but also
in the SH games, by shifting to the right the transition from cooperation to defection at
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Fig. 4.7 (Color online)Apollonian network after two generations (see text).
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Fig. 4.8 (Color online) Average cooperation over 50 runs at steady state on the Apollonian network
of size N = 9844, and 〈k〉 ' 6.0. The initial fraction of cooperators is 0.5 randomly distributed
among the graph nodes. From left to right the strategy update rules are: replicator dynamics,
Fermi rule, imitation of the best, and probabilistic imitation of the best.

S = −1, as in other spatial networks. However, the amount of cooperation gain depends
on the strategy update rule. Replicator dynamics and the Fermi rule (first and second
image from the left respectively) have a similar behavior, and are also analytically close
(if the exponent β of the Fermi rule is between 1 and 10). On the other hand, the rule
that prescribes straight imitation of the best (third image), and the rule that imitates the
best neighbor probabilistically (rightmost image) perform better. Intuitively, the first two
rules choose a very good neighbor to imitate less often than the latter two, especially when
compared with deterministic imitation of the best. This could favor the latter rules in an
Apollonian network when some cooperators surrounded by a majority of cooperators have
gained a foothold on several hubs.

In [35], the authors discuss the topology features that induce the high cooperation
levels. They point out, beside other facts, the presence of connections between hubs and
that there exist nodes with high gi and Ui, gi being the degree gradient between a node
i and its neighbors {Vi}, gi =

√
1
ki

∑
j∈Vi

(ki − kj)2 and Ui = ki ∗ gi. By transforming the
network they show that these features are linked to high levels of cooperation. They point
out the high clustering coefficient and explain that clustering increases cooperation on the
reduced PD games as shown in [5].
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4.3.3 High Levels of Cooperation on Lattice and Derived Structures

Simple hierarchical networks were shown to be favorable to cooperation by using a rigorous
stochastic process of the Moran type by Lieberman et al. [15]. In [8] we showed how
to construct relational hierarchical networks that induce high levels of cooperation. By
analogy with the latter work, in this section we construct a lattice embedded in two-
dimensional space with a similar local structure and obtain high levels of cooperation.
This model shows that space along with some specific constraints creates such cooperative
topologies. We first place the nodes on a regular square lattice and label them according
to their integer coordinates (i, j). Each node with coordinates such that i mod 4 = r
and j mod 4 = 2r is a “hub” of radius r which is connected to all “small nodes” in a
square neighborhood of side 2 ∗ r + 1 and to the four closest hubs. This topology models
a situation where there exist two kinds of nodes distributed in space. One kind (vertices
with few connections) tries to make undirected connections to the other kind (hubs) while
minimizing distances. Low-degree nodes have connections to hubs only. The hubs, in turn,
form a lattice in which they are connected to the closest hubs. In Fig. 4.9 we show such a
graph with r = 2. Cooperation levels are very good in all games and for all the strategy
revision rules, as seen in Fig. 4.10. Indeed, the cooperation enhancement goes beyond the
best levels found in relational networks as can be seen by comparing Fig. 4.10 with Fig. 4.2,
which refers to BA networks.

Fig. 4.9 (Color online) Lattice topology with two kind of nodes. Each hub is fully connected to
a square neighborhood of side 5 and to the 4 nearest hubs.

Starting from random geometric graphs with arbitrary radius distribution, in the limit-
ing case where there are two different kinds of nodes, we show how a network with similar
properties to those of the above lattice can emerge by using the RGG model. We con-
structed random geometric graphs in the same way as explained in Sect. 4.3.1, except
that two nodes are linked if the sum of their radii is larger than their mutual distance.
In Fig. 4.11 (left) we used the following distribution of radius: 1/16 of the population has
an arbitrary radius r and the other vertices have a null radius. The undirected resulting
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Fig. 4.10 (Color online) Average cooperation levels on the lattice. The size of the graph is 10000
nodes. From left to right the strategy update rules are: replicator dynamics, Fermi rule, imitation
of the best, and probabilistic imitation of the best. In all cases the initial fraction of cooperators
is 0.5 randomly distributed among the graph nodes.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

Co
op

er
at

or
s

 

 

H
HD
SH
PD

Fig. 4.11 (Color online) Left : an instance of a random geometric graph with two kinds of nodes
and r = 0.03. Right: Average cooperation levels on an ensemble of these graphs as a function of
the hubs radius; the frequency of hubs is 1/16, and the radius of small vertices is null. The update
rule is imitation proportional to payoff and the initial fraction of cooperators is 0.5 randomly
distributed among the graph nodes. In both images isolated vertices were discarded.

network is composed of hubs mainly connected to low-degree vertices, which in turn are
not connected among themselves. The low-degree vertices which are not connected to any
hubs are isolated. In order to focus on the interesting part of the network, we discarded
them, taking into account that they cannot change their initially attributed strategies.
Fig. 4.11 (right) shows that cooperation is greatly enhanced for a sizable range of radius
r, although it doesn’t reach the exceptional levels of the lattice. The shape of the curves
can be qualitatively understood noting that, when r is small, say less than 0.015, the hubs
have few connections between themselves and the network becomes fragmented into small
clusters. On the other hand, when r is large, the mechanism leading to cooperation ex-
plained in detail in [8] doesn’t work anymore. Now low-degree vertices may be connected
to several hubs. This fact weakens the probability for defector hub to imitate the strat-
egy of a high payoff cooperator hub, since cooperator hubs are no longer surrounded by
low-degree cooperators.
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4.3.4 Network Type and Assortativity of Strategies

A potentially interesting question concerns the way in which strategies are distributed
at steady-state among the network nodes. At the beginning the distribution is uniform
random but during the dynamics it typically evolves and its final state could be different
in different network types, according to the game played. This effect can be evaluated by
using several measures of “similarity” between vertices. Here we have chosen a measure
that is inspired by Newman’s work on assortativity in networks [20] 1. A state will be
called “assortative” if cooperators tend to be surrounded by coperators and defectors by
defectors. It will be called “disassortative” in the opposite case, and there will be an
absence of correlations between strategies if the distribution is random.
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Fig. 4.12 (Color online) Average strategy assortativity levels with the replicator dynamics on
the Apollonian network (left image), cooperative grid (middle image), and the regular geometric
graph with 〈k〉 = 8 (right image). In all cases the initial fraction of cooperators is 0.5 randomly
distributed among the graph nodes.

In Figs. 4.12 we report the results of our assortativity analysis for Apollonian networks
(left), the spatial cooperative grid defined at the beginning of sect. 4.3.3 (middle), and for
RRGs (right). The first thing to notice is that strategy disassortativity is only present in
the RGG for the HD quadrant, as the HD stable equilibrium in well-mixed populations,
and also partly in random graphs, consists of a mix of Cs and Ds. Now, due to the
HD payoff structure, locally a cooperator tends to be surrounded by defectors and the
other way around for a defector. On the other hand, in the middle and left images, in
the HD space assortativity disappears because now the corresponding game phase space
becomes totally cooperative (compare with the leftmost images of Figs. 4.8 and 4.10). For
the SH there is an increase in cooperation too going from the RGG to Apollonian, and
especially the lattice. The SH game features two monomorphic stable equilibria in well-
mixed populations which explains why assortativity is near zero in most of the quadrant.
Nevertheless, in the unstable middle and low region C and D can coexist thanks to the
local network structure that allows clusters to form. But here, contrary to the HD, the
strategies show some positive assortativity since it is best for players to coordinate on
1 To calculate the mean assortativity of a player at steady-state, we take the frequency of neighbors having
the same strategy and we compute the mean over the whole network. Then we subtract the same quantity
assuming that the strategies are randomly distributed in the same network
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the same action. In Fig. 4.12 we observe that this assortative region bends downwards
and extends to the right in the left and middle image with respect to the RGG case (right
image). This region extends to the PD phase space in the two highly cooperative networks.

4.4 Discussion and Conclusions

Evolutionary games on static spatial networks have been intensively studied in the past but
mainly on two-dimensional regular lattices, either taking into account Euclidean distances
explicitly or implicitly, as they can be trivially embedded in a metric space. However,
lattices are only an approximation of actual network of contacts in geographical space.
Indeed, many economic, transportation, and communication systems rely on actual posi-
tions in space and agents usually have a variable number of neighbors. For this reason,
here we have studied typical two-person, two-strategies evolutionary games on spatial
networks having homogeneous degree distributions such as geometric random graphs, as
well as heterogeneous ones with right-skewed degree distributions such as scale-free net-
works. We have studied evolutionary games on two spatial scale-free networks models: a
first one based on a variant of Rozenfeld et al.’s construction [26] called SFSN, and the
Apollonian networks [3]. Concerning the second model, we extended previous results to a
much larger parameter’s space, allowing to discuss our results more accurately. We find
that cooperation is promoted on spatial scale-free networks with respect to the random
geometric graphs, except in the Stag-Hunt games. Now if we compare SFSNs with BA
relational networks, SFSNs show the same trend but the gains are lower with all dynam-
ics. Still, this is an interesting results since SFSNs are important in practice, for example
in ad hoc communication networks. On Apollonian networks cooperation is the highest
ever observed on networks of the scale-free type in all the games studied here, although
Apollonian networks would be difficult to reproduce in practice. We also point out that
these results are robust with respect to the several standard strategy update rules used in
our simulations.

Finally, we have introduced a two-dimensional hierarchical net whose structure has been
inspired by a previous relational graph model which highly promotes cooperation [8]. On
this particular spatial network cooperation reaches the highest values, with 66% of the
population being cooperators in the average in the PD, the totality in the HD, and 83% in
the SH with the local fitness-proportional rule and the Fermi rule. IB and IBR give similar
figures. Of course, these unprecedented cooperation levels are theoretically interesting but
can only be actually reached if the special network can be formed and kept fixed, since
naturally formed networks could hardly take this shape. However, using similar ideas, we
have shown that more realistic networks can be produced that can attain a rather high
level of cooperation using a modified construction starting from random geometric graphs.

The general conclusion of this work is that promotion of cooperation in all the games’
parameter space is possible on static networks of agents constrained to act in geographical
space, provided that agents interact according to some special spatial network of contacts
that creates a connection hierarchy among the agents.
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Abstract This work presents a systematic study of population games of the Prisoner’s
Dilemma, Hawk-Dove, and Stag Hunt types in two-dimensional Euclidean space under two-
person, one-shot game-theoretic interactions, and in the presence of agent random mobility.
The goal is to investigate whether cooperation can evolve and be stable when agents can
move randomly in continuous space. When the agents all have the same constant velocity
cooperation may evolve if the agents update their strategies imitating the most successful
neighbor. If a fitness difference proportional is used instead, cooperation does not improve
with respect to the static random geometric graph case. When viscosity effects set-in and
agent velocity becomes a quickly decreasing function of the number of neighbors they have,
one observes the formation of monomorphic stable clusters of cooperators or defectors in
the Prisoner’s Dilemma. However, cooperation does not spread in the population as in the
constant velocity case.

5.1 Introduction and Previous Work

Cooperative behavior is socially beneficial but difficult to obtain among selfish individuals.
In this context, the Prisoner’s Dilemma game is a widely used paradigm for the investi-
gation of how cooperation might evolve in a population of self-regarding agents. In fact,
game-theoretical results predict defection as a Nash equilibrium or as a stable state of
the population dynamics [15, 33]. In spite of this, non-negligible amounts of cooperative
behavior can be observed daily in the animal kingdom, in the human society, and also
in the laboratory, where controlled experiments can be carried out. Many mechanisms
have been suggested to explain these behaviors, such as direct and indirect reciprocity, kin
reciprocity, group reciprocity, and population structure among others (see e.g. [18] and
references therein for a summary of this vast amount of work).

Among the various reasons that have been advocated, the structure of the interacting
population is one of the simplest factors that can change the generalized defection outcome
with respect to the well-mixed population case. The population structure of the interacting
agents can be generically represented by a relational graph in which two directly linked
vertices stand for two interacting agents. This locality of contacts means that only pairs
or groups of individuals that are direct neighbors play the game among themselves. By
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using theoretical models and simulations, it has been found that some network structures
appear to be more conducive to cooperation than others, albeit this result is contingent
upon the evolutionary dynamics of the model [22, 25, 28, 31]. However, an earlier way of
considering the effect of population structures makes use of the concept of geographical
space. Indeed, physical space may be more adequate than generic relational structures in
many cases in which territoriality plays an important role. A simple first approximation
of physical space is given by a regular discrete lattice in two dimensions. Building on
previous work by Axelrod [3], Nowak et al. [20] and Nowak et al. [19] were able to show by
extensive simulations that, even when the game is one-shot, i.e. pairs of players interact
anonymously, cooperation can evolve and can persist for a non-negligible region of the game
phase space thanks to positive assortment among cooperators. Of course, anonymity of
neighbors is difficult to maintain in a real unchanging social network environment, but this
is the context that has been adopted in previous modeling work. A summary of this and
other early work is provided in [21]. Actually, the gains in the PD are relatively limited
and depend on the players’ strategy update rule used [25]. Meanwhile, the improvements
are large in the related game called Stag Hunt (SH) [25, 30] when played on a grid.
Evolutionary games on arbitrary static spatially embedded networks have been recently
studied in [4].

All the above refers to static environments. However, it is easy to see that fixed environ-
ments are the exception rather than the rule. Evolutionary games on dynamic networks
have been investigated in recent years, see e.g. [10, 24, 27, 35] and the review article [23].
Although the models differ in their assumptions and the details of the dynamics, there
is a consensus emerging on the fact that purposeful, or strategic link update is a further
factor allowing cooperating individuals to escape exploiting defectors by cutting links to
them and forming new links with fellow cooperators, which facilitates clustering and pos-
itive assortment of cooperators, ultimately leading to sustained global cooperation. In a
way analogous to the dynamic network case, in the case of spatially embedded agents it
is easy to think of mobile rather than fixed individuals. Many examples can be found in
biological and ecological sciences, in human populations, and in engineered systems such
as ad hoc networks of mobile communicating devices or mobile robot teams. Mobility may
have positive or negative effects on cooperation, depending on several factors. An early
brief investigation of random grids and spatial drift is to be found in Nowak et al. [19].
Another study was carried out by Enquist and Leimar [11] whose main conclusion of [11]
was that mobility may seriously restrict the evolution of cooperation. In the last decade
there have been several new studies of the influence of mobility on the behavior of various
games in spatial environments covering essentially two strands of research: one in which
the movement of agents is seen as a random walk, and a second one in which movement
may contain random elements but it is purposeful, or strategy-driven. Examples of the
latter kind of work are to be found in [1, 6, 8, 14, 16, 26]. In spite of the difference among
the proposed models, the general message of this work is that purposeful contingent move-
ment may lead to highly cooperating stable or quasi-stable population states depending
on the individuals’ density and the degree of mobility.

As said above, the other line of investigation is centered on random diffusion of the
mobile agents through space, either in continuous space [17] or, more commonly, on diluted
grids [29, 32]. Random diffusion, with its tendency to mix-up the population has been



5.2 Model Description 99

thought to hinder cooperation by weakening the possibility of cooperator cluster formation.
In spite of this, the work of [29, 32] shows that cooperation can be maintained with respect
to the static case and even enhanced for some parameters’ ranges. In the continuous space
case of [17] cooperation can be maintained only for low velocities and low temptation to
defect. Within this framework, there has also been work on n-person Prisoner’s Dilemma
and public goods games, either in the one-shot case [5], as well as in the iterated, short
memory case [7]. The effect of diffusion in a spatial ecological public goods game has been
studied by Wakano et al. [34] using a partial differential equation formalism.

The present investigation belongs to the random diffusion category and deals with
memoryless agents performing random movements and interacting in pairs with other
agents in continuous space. Indeed, we believe that while grids are interesting because
of their simplicity, a continuous space approach is more natural and less restricted. Our
approach follows Meloni et al. [17] but it largely extends and completes it in various
ways. Indeed, Meloni et al. studied the weak Prisoner’s Dilemma, which is the segment
at the frontier between the genuine Prisoner’s Dilemma game space and the Hawk-Dove
game [15]. Here we explore the full conventional Prisoner’s Dilemma space and also the
regions belonging to the Stag Hunt and Hawk-Dove games. Furthermore, we use a second
strategy update rule besides their fitness-proportional one. Finally, while the velocity of
the agents was held constant and the same for all individuals in the population in [17], we
explore the effects of having players diffusing with different velocities. Some relationships
with the results found in the grid-based diffusion systems proposed in [29, 32] will also be
discussed.

5.2 Model Description

In this section we describe our model and the numerical simulations parameters. We also
describe what is new with respect to the previous work.

5.2.1 The Spatial Environment

The environment in which the set of agents N interact and move is a square in the
Euclidean plane of side L = 1 thus having unit area. For the purposes of the dynamics
the square is wrapped around into a torus. Agents are initially distributed uniformly at
random over the space. Every agent j has an interaction neighborhood which has the same
extension for all agents and is given by a circle of radius r around the given agent. All
the agents that fall into this circle at a given time t are considered to be neighbors N (j, t)
of the agent, i.e. N (j, t) = {∀k ∈ N | dist(j, k) < r}, where dist(j, k) is the Euclidean
distance between agents (points) j and k. Agents are simply material points, they do not
have an area. Since the spatial region area has unit value, the density ρ of the agents is
ρ = |N |.

Given the above setting, at any point in time the current implicit network of contacts
between the agents turns out to be a Random Geometric Graph (RGG) [9] as illustrated
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in Fig. 5.1. The average degree k̄ of a RGG is k̄ = πρr2. Thus it is possible to consider k̄
as a parameter of RGGs, instead of the radius r. Therefore, in order to construct an RGG
with an average degree that tends to k̄, it is sufficient to use the radius r =

√
k̄/(πρ). This

class of networks has an high average clustering coefficient [9] and positive degree-degree
correlations [2].

5.2.2 Games Studied

Agents in our system, when they interact in pairs, play one of three common two-person,
two-strategy, symmetric game classes, namely the Prisoner’s Dilemma (PD), the Hawk-
Dove Game (HD), and the Stag Hunt (SH). These three games are simple metaphors for
different kinds of dilemmas that arise when individual and social interests collide. The
games have the generic payoff matrix M (eq. 8.1) which refers to the payoffs of the row
player. The payoff matrix for the column player is simply the transpose M> since the
games are symmetric.

(C D

C R S
D T P

)
(5.1)

The set of strategies is Λ = {C,D}, where C stands for “cooperation” and D means
“defection”. In the payoff matrix R stands for the reward the two players receive if they
both cooperate, P is the punishment if they both defect, and T is the temptation, i.e. the
payoff that a player receives if he defects while the other cooperates getting the sucker’s
payoff S.
For the PD, the payoff values are ordered such that T > R > P > S. Defection is always
the best rational individual choice, so that (D,D) is the unique Nash Equilibrium (NE)
and also the only fixed point of the replicator dynamics [15].
In the HD game, the order of P and S is reversed, yielding T > R > S > P . Players have
a strong incentive to play D, which is harmful for both parties if the outcome produced
happens to be (D,D). The only dynamically stable equilibrium is in mixed strategies [15,
33].
In the SH game, the ordering is R > T > P > S, which implies that mutual cooperation
(C,C) is the payoff superior outcome and a NE. The second NE, where both players
defect is less efficient but also less risky. The third mixed-strategy NE in the game is
evolutionarily unstable [15].
Finally, in the Harmony game, which is included to complete the square, R > S > T > P
or R > T > S > P . In this case C dominates D and the trivial unique NE is (C,C).
In order to study the usual standard parameter space [25, 28], we restrict the payoff values
in the following way: R = 1, P = 0, −1 ≤ S ≤ 1, and 0 ≤ T ≤ 2. In the resulting TS-plane
each game class corresponds to a different quadrant depending on the above ordering of
the payoffs: PD is the lower right quadrant, HD corresponds to the upper left region, and
SH belongs to the lower left quadrant.
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Fig. 5.1 Neighborhood area (left image) and an example of a RGG with |N | = 1000 and k̄ = 10
(right image).

5.2.3 Agent and Population Dynamics

The population dynamic is simulated by the following stochastic process at each time step
t:

1. An agent is chosen uniformly at random among the population
2. The agent plays the game with each of his neighbors in turn and accumulates his payoff
3. The chosen agent undergoes a strategy revision phase based on his current payoff and

the payoff of his neighbors
4. The agent moves randomly to another position in space

Step 1 means that the population evolution is asynchronous in time, which amounts to a
Monte Carlo process simulation. At the end of step 2 the player computes his total payoff
accumulated through the two-person games played with his neighbors Ni. Let σi(t) be a
vector giving the strategy profile at time t with C = (1, 0) and D = (0, 1) and let M be
the payoff matrix of the game (eq. 8.1). The quantity

Πi(t) =
∑
j∈Ni

σi(t) M σ>j (t) (5.2)

is the cumulated payoff collected by player i at time step t.
In step 3 the chosen agent adopts a strategy in Λ = {C,D} according to a microscopic

revision rule. Several update rules are customary in evolutionary game theory [31]. Two
imitative protocols have been used in our simulations: fitness difference proportional and
imitation of the best. The fitness difference proportional rule (FDP) is linear and stochas-
tic [12, 13]. Player i’s strategy σi is updated by randomly drawing another player j from
the neighborhood Ni, and replacing σi by σj with probability:

p(σi → σj) =
{

(Πj −Πi)/K if Πj > Πi

0 if Πj ≤ Πi
(5.3)

where Πj − Πi is the difference of the payoffs earned by j and i respectively. K =
max(ki, kj)[max(1, T )−min(0, S)] ensures proper normalization of the probability p(σi →
σj).
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Another imitative strategy update protocol is to deterministically switch to the strategy
of the neighbor that has scored best in the last time step [20]. This imitation of the best
(IB) policy can be described in the following way: the strategy σi(t) of individual i at time
step t will be

σi(t) = σj(t− 1), (5.4)
where

j ∈ {Ni ∪ i | Πj = max{Πk(t− 1)}}, ∀k ∈ {Ni ∪ i}. (5.5)
That is, individual i will adopt the strategy of the player with the highest payoff among
its neighbors including itself. If there is a tie, the winner individual is chosen uniformly at
random.

Finally, in Step 4 the individual moves to another position in the plane in the following
way. First, the magnitude of the displacement v is constant and the same for all agents
for a given simulation run. Next, a direction is chosen by randomly drawing an angle in
the range [0, 2π].

The iteration of steps 1, 2, 3, and 4 gives rise to a sequence of RGGs {G(t)}t, and
a sequence of population strategy profiles {σ1(t), . . . , σ|N |(t)}t, with t ∈ N. Given our
assumptions, both sequences are Markov chains.
In another set of simulations the velocity v is not constant for all individuals but will
instead depend on a given individual’s neighborhood, see Sect. 5.4.

5.3 Constant Velocity Results and Discussion

The parameters used in the simulations were the following. The number of players was
|N | = 1000; the mean degrees of the RGGs constituting the populations were either
k̄ = 4 or k̄ = 8. The maximum number of simulation steps was 2000. Here one step
means the update of all the |N | players in the average, since updating is asynchronous.
Simulations end either when a monomorphic population has been obtained, or when the
maximum number of steps has been reached. Cooperation frequencies in the population
are computed when the run stops. As for the game space, the TS-plane has been sampled
in steps of 0.05 in the T and S directions thus forming a 41× 41 grid. As stated above, at
the beginning of each run agents are randomly distributed over the space with an agent
being a cooperator with probability 0.5. Cooperation frequencies for each game space grid
point are computed as the average value of 100 runs. The last parameter is the individual’s
velocity v. As stated, in each given simulation run, all the agents are assigned the same
constant velocity v. We have studied the cases v = 0 (the static case), v = 0.01, and
v = 0.001.

Figures 5.2 and 5.3 show the results for the entire games’ phase space when players
update their strategy using the FDP rule (see Sect. 5.2.3) with k̄ = 4 and k̄ = 8 respec-
tively. In the figures, velocity decreases from left to right and the v = 0 case refers to a
static RGG. Since Meloni et al. [17] used the same update rule, we first compare their
results with ours. The game space sampled in [17] corresponds to the segment at the fron-
tier between the PD and HD game spaces with R = 1, P = 0, S = 0, and 1 ≤ T ≤ 2
(weak PD game). When our velocities are suitably normalized in order to be comparable
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with the corresponding values in [17], our results do qualitatively agree with theirs for the
weak PD, i.e. cooperation can only evolve for low T values, small velocity, and small mean
degrees, or radii used in the simulations shown in the figures. However, when one looks
at the entire PD game space, one can see that the gains in cooperation are indeed very
small or non-existent when the agents can move. Only in the case of v = 0.001 cooperative
outcomes are found in the small area in the upper left corner of the PD quadrant with
S slightly less than 0, and T between 1.0 and about 1.1. It is likely that the separation
between defection and cooperation in this small region would become crisper if we could
perform extremely long runs and use larger population, both of which contribute to dra-
matically increase the computing time. However, these considerations do not change the
global result, i.e. defection prevails almost completely in the PD.

For the other games, the HD behavior is practically not influenced by the agents’ move-
ment except for the case k̄ = 4 and v = 0.01 where there is more defection than what one
observes in the static case, i.e. v = 0. This is due to the particular status of the HD in
which the only stable state is the mixed one. When small cooperator or defectors clusters
form, they are subsequently invaded by the other strategy and their composition remain
close to the proportions of the mixed NE. The situation is different and more interesting in
the SH case which features bistability. Here cooperation benefits from the agents’ diffusion
with low velocity v = 0.001 because slow movement favors the spreading of the efficient
strategy. Instead, when v = 0.01 the populations are less cooperative than in the static
case.

Fig. 5.2 Average cooperation values using FDP as an update rule. The mean degree is k̄ = 4.
From left to right: v = 0.01, v = 0.001, and v = 0. The bold-face numbers next to each quadrant
are average cooperation values for the corresponding game. The results are averages over 100 runs.

While Meloni et al. [17] did not use the IB rule, Vainstein et al. [32] and Sicardi et
al. [29] performed an extensive study of random migration in diluted grids employing this
rule. They investigated the influence of the density of players and of their mobility on
cooperation when the agents have the possibility of migrating to an empty neighboring
site in the grid, if any, with a certain probability. It must be said that our continuous
space system is not directly comparable to the setting of [29, 32]. Indeed, in their case the
mobility parameter, a quantity that is related to the players’ displacements, and thus to
their implicit velocity, depends on the density of players in the grid, while in our continuous
collisionless model velocity is a well-defined independent quantity. Keeping in mind the
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Fig. 5.3 Average cooperation values using FDP as an update rule. The mean degree is k̄ = 8.
From left to right: v = 0.01, v = 0.001, and v = 0. The bold-face numbers next to each quadrant
are average cooperation values for the corresponding game. The results are averages over 100 runs.

Fig. 5.4 Average cooperation values using imitation of the best as an update rule. The mean
degree is k̄ = 4. From left to right: v = 0.01, v = 0.001, and v = 0. The bold-face numbers next to
each quadrant are average cooperation values for the corresponding game. The results are averages
over 100 runs.

Fig. 5.5 Average cooperation values using imitation of the best as an update rule. The mean
degree is k̄ = 8. From left to right: v = 0.01, v = 0.001, and v = 0. The bold-face numbers next to
each quadrant are average cooperation values for the corresponding game. The results are averages
over 100 runs.

differences, it is nevertheless interesting to compare the results of [29, 32] with ours. In
Figs. 5.4 and 5.5 we show average cooperation levels in the whole T -S space when the
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update rule is imitation of the best. In [29, 32] equilibrium cooperation values for only
some points in the PD, HD, and SH spaces were reported, albeit using a much larger
population size. In [29, 32] each player has at most four neighbors which means that the
mean degree is less than four, since there are empty sites when their density ρ < 1; we
should thus compare their results with those of Fig. 5.4. Sicardi et al. found that for
intermediate densities ρ and for the games sampled in the T -S plane, cooperation states
are reached in the three games PD, HD, and SH. This result is qualitatively confirmed
and generalized by looking at the two leftmost images of Fig. 5.4. Indeed, when agents
can move the SH quadrant becomes fully cooperative, the HD results are improved with
respect to the static case, and a larger cooperative region appears in the PD space too.
Results are better in terms of cooperation for lower velocities. Fig. 5.5 confirms all the
trends when the mean connectivity of the agents doubles; indeed, more connections seem
to further favor cooperation because cooperator cluster formation becomes easier.

For the sake of illustration, Fig. 5.6 shows spatial snapshots of a particular but typical
run at successive time steps. The particular game shown here, which converges to full
cooperation, has R = 1, P = 0, S = 0, and T = 1.3, v = 0.001, k̄ = 4, and thus it
belongs to the weak PD along the segment between the PD and HD games (see Fig. 5.4
middle image). The sequence of figures represent evolving RGGs. Starting from a 50− 50
initial configuration, there is first a fall in cooperation followed by a steady increase caused

Fig. 5.6 Time evolution of a particular run with R = 1, P = 0, S = 0, T = 1.3, v = 0.001, and
k̄ = 4. Red squares represent cooperators; blue circles stand for defectors; The initial proportion
of cooperators is 0.5. s gives the time step at which the corresponding snapshot has been taken.

by cooperation spreading around small cooperative subgraphs. Although the last image
still contains a few defectors, those are likely to disappear if the simulation would last
longer. This mechanism is common to the SH game too, which converges to cooperation
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everywhere in the parameters space, and also in the cooperative HD and PD regions. The
graph and strategy evolution found with FDP instead of IB when the final state is full
cooperation are similar but take longer times.

In conclusion, it appears that cooperation tends to be enhanced for a sizable part of
the parameters space when agents update their strategies using the IB rule, and are able
to move around. In addition, since our results and the partial ones of [29, 32] are coherent
between themselves starting from two rather different models, the phenomenon can be
considered robust. Some caveats are in order however. In the first place, the IB strategy
update rule requires knowing the payoffs of the neighbors, which is likely to be cognitively
unfeasible in many biological situations of interest. Perhaps it is conceivable, at least in
a stylized manner, in human societies. As we saw above, the results are not as good with
FDP update, which is also based on payoff differences but has a stochastic component
that could be thought to roughly represent some uncertainty in the decision process.

5.4 Viscosity and Non-Constant Velocity

In the basic model agents move with a constant pre-defined velocity v which is the same for
all of them. However, this does not seem very realistic. If one looks at a crowd moving in
space, for instance, one sees that the magnitude of the displacements of an agent strongly
depends on the density of people around him. We have tried to model this effect in a very
simple but general way, although it might not be suitable for any particular given real
situation. Now the velocity becomes a function of the instantaneous degree k of the agent
such that the more neighbors she has, the more her movement is hindered. For simplicity,
we have chosen a negative exponential function form. Thus an agent of degree k will have
an instantaneous velocity v(k) given by:

v(k) = v0 e
−βk (5.6)

Here v0 is the agent velocity when there are no neighbors, and β is a scaling factor to
be chosen empirically which influences the speed of the decay and thus the mobility. For
β = 0 we recover the constant velocity model, while for β → ∞ viscosity is maximal
and we recover the static case for k 6= 0. After some numerical experimentation, we have
chosen to study the effect of two different values of β: 1 and 0.1.

The following discussion is for an initial contact radius that corresponds to k̄ = 4,
the strategy update rule is IB, and v0 = 0.01. However, as time goes by, owing to the
non-uniform random diffusion caused by viscosity effects, the average degree is not main-
tained and will tend to increase. Let us first examine the case β = 0.1. In this case the
displacements are less hindered and thus viscosity is comparatively low. Before presenting
average results for the whole T − S plane which are globally interesting but could hide
some important dynamical phenomena, we will show a particular, suitably chosen game.
Figure 5.7 shows the time evolution for a game in the weak PD segment with R = 1,
P = 0, S = 0, and T = 1.3. The phenomena observed are very different from those that
appeared in the same game with constant velocity shown in Fig. 5.6. With constant ve-
locity, this game region led to full cooperation. Instead, with velocity damping, although
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average cooperation is still of the order of the initial 50 − 50 proportion, the spatial dis-
tribution of cooperators and defectors is no longer random: there is cluster formation of
each strategy which is essentially caused by progressive velocity reduction due to viscosity.
Once the dense clusters are formed, agents cannot move away easily just because viscosity
is too high.

It is thus clear that cooperation cannot spread past the clusters as in the case with
constant velocity, and the clusters are just connected components which are disconnected
from the other parts. In fact, in the limit of very long simulation times, the clusters become
more and more dense because of the lack of a minimal repulsion distance in the model.

Now we describe the case of β = 1. Taking the same game as before, we obtained the
dynamics depicted in the snapshots of Fig. 5.8. With a larger β value one would expect
that viscosity plays a more important role in hindering the agents’ movements. This is
indeed the case. At the very beginning agents do not diffuse much already but are still
able to move enough to join other agents and form more elongated spread-out clusters in
which nodes have few connections, as opposed to the dense clusters observed with β = 0.1.
Indeed, for the higher β value a small number of neighbors is already sufficient to severely
hinder the agents’ motion. Now, because viscosity is high, these configurations do not
change their shapes much as time goes by. After an initial loss, non-negligible levels of
cooperation are recovered at steady state and, again, strategies cluster together but with
a definite difference in cluster shape with respect to the previous case.

Fig. 5.7 Time evolution of a particular run with R = 1, P = 0, S = 0, T = 1.3, initial k̄ = 4,
β = 0.1 and v0 = 0.01. Red squares represent cooperators; blue circles stand for defectors; The
initial proportion of cooperators is 0.5. s gives the time step at which the corresponding snapshot
has been taken. The final cooperation frequency at s = 2000 is 0.57.

Figure 5.9 illustrates the behavior of the average velocity and the mean degree in the
system as a function of time for a single typical run with the same v0 = 0.01. We remark
that this behavior is general and does not depend on the particular game parameters or
agent strategy. For the sake of studying long-term system behavior, we have performed
20000 steps to draw these figures. Clearly, as velocity and degree are related in Eq. 5.6,
one would expect that the lower β the higher the mean speed in the system, and the
same should be true for the mean degree. In fact, Fig. 5.9 left image shows that velocity
indeed decreases exponentially for β = 0.1. The mean velocity can never go to zero as the
lowest possible velocity for such a finite system is v0 e

−β(N−1). Actually, towards the end
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Fig. 5.8 Time evolution of a particular run with R = 1, P = 0, S = 0, T = 1.3, initial k̄ = 4,
β = 1 and v0 = 0.01. Red squares represent cooperators; blue circles stand for defectors; The initial
proportion of cooperators is 0.5. s gives the time step at which the corresponding snapshot has
been taken. The final cooperation frequency at s = 2000 is 0.38.

of the simulation, the mean velocity is the average of individuals that have not yet joined
a densely connected cluster (see Fig. 5.7 rightmost image) and move around in space more
freely, and those within a cluster which are almost at rest. The network counterpart of
this velocity damping is the large increase of mean degree k̄ (Fig. 5.9, right image) which
is due to the fact that individuals are densely packed into clusters. In the case β = 1
mobility is more restricted from the start but, since the clusters that form are less dense,
the velocity decreases more slowly.

To conclude this section, we show the global cooperation results in Fig. 5.10. Although
these average results do not provide information on the fine system dynamics, as we said
above, we still observe that, even in the more realistic simulation of a viscous system,
there are non-negligible gains of cooperation compared to the RGG static case (rightmost
image of Fig. 5.4). On the other hand, it doesn’t make much sense to compare the present
results with those at constant velocity (left and middle images of Fig. 5.4) since there are
variable scale factors between the two cases; nevertheless, the global cooperation pattern
is similar to the one found with constant velocity v = 0.01.

5.5 Conclusions

We have presented a systematic study of some population games by extensive numerical
simulations in two-dimensional Euclidean space under two-person, one-shot game-theoretic
interactions, and in the presence of agent random mobility. The goal was to investigate
whether cooperation can evolve and be stable when agents can move randomly in space.
Individuals in the population only interact with other agents that are contained in a circle
of radius r around the given agent, where r is much smaller than the spatial dimension
occupied by the whole population. For the game-theoretic interactions we have used two
common microscopic payoff-based strategy update rules: fitness difference proportional
and imitation of the best neighbor. We have studied a large game parameter space which
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Fig. 5.9 Average system velocity for β = 0.1 and β = 1 (left image) and evolution of the mean
degree k̄ for the same values of β (right image); v0 = 0.01.

Fig. 5.10 Average cooperation values using imitation of the best as an update rule in the viscous
model. The initial mean degree is k̄ = 4 but it evolves during the run. Left: β = 0.1; Right: β = 1.
The results are averages over 100 runs.

comprises the Prisoner’s Dilemma, the Stag Hunt, and the Hawk-Dove class of games. We
have investigated two models which differ only in their mobility aspects.

In the first model, the velocity is the same for all agents in the population and it remains
constant throughout the dynamics. Our main results with this model are the following.
Under fitness difference proportional update, the effect of mobility on cooperation is very
small and there is little difference with the case in which the agents sit at the nodes of a
random geometric graph and don’t move. These results extend previous ones obtained by
Meloni et al. [17] which were limited to the weak Prisoner’s Dilemma region, the segment
with S = 0 and 1 ≤ T ≤ 2 in the game’s phase space.

However, when the imitation of the best neighbor rule is used instead, random mobility
promotes cooperation in all the games’ parameter space. Indeed, in the steady state we
observe full cooperation in the Stag Hunt games while cooperation is also boosted in the
Hawk-Dove. The Prisoner’s Dilemma class of games is the most critical one but random
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mobility seems to significantly improve the situation opening up to cooperation a large
region of the PD space. The results are qualitatively the same with two different radii r
that lead to network mean degrees 4 and 8 respectively. The main mechanism leading to
the evolution of cooperation is the random initial formation of small clusters of cooperators
followed by other cooperators joining the initial clusters thanks to their mobility, together
with defectors slowly becoming cooperators because of the latter higher payoff.

In the second model agents do not move with constant scalar velocity; rather, velocity
is assumed to be a negative exponential function of the agent’s connectivity degree. This
introduces a damping factor which can be seen as a kind of viscosity due to the accumu-
lation of individuals around a given agent, leading to a more hindered random movement.
The numerical simulation study of the average cooperation levels in the TS-plane in this
case leads to results that are qualitatively similar to those obtained in the constant veloc-
ity case, although the gains in cooperation with respect to a static population represented
by a RGG are slightly less. However, average values do not reveal the particular dynamics
that are at work. To study this aspect, we have simulated a particular Prisoner’s Dilemma
game with two different velocity damping factors β, one giving rise to low viscosity and
the second to a higher viscosity. With low viscosity, starting with a uniform distribution
of the agents in the plane, the system evolves toward the formation of dense monomor-
phic clusters of cooperators or defectors. In these clusters agents are almost at rest in the
steady state and only individuals that have not joined a cluster still move. Under these
conditions, contrary to the case with constant velocity, cooperation cannot spread past
the cluster boundaries because of the lack of individual dispersion. With high viscosity the
agents’ movements are more hindered from the beginning but they are still able to join
clusters of their kind. The situation is similar to the previous case, i.e. clusters of C’s and
D’s do form and remain stable, with the important difference that now they are much less
dense and, consequently, the mean degree of the population is smaller. Again, viscosity
and progressive velocity loss do not allow cooperation to spread to the whole population.
One can thus conclude that random agent movements in physical space that take into
account the natural fact that crowding effects have an effect on the agents’ mobility may
still lead to cooperative outcomes in many cases. However, the dynamics lead to cluster
formation and condensation which hinders further spreading of cooperators especially in
the harder Prisoner’s Dilemma case. In future work we would like to address the detailed
study of cluster dynamics and the effect of strategy noise on the system evolution.
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Abstract In the framework of game theory and cooperation, we study standard two-
person population games when agents in the population are allowed to move to better
positions in a two-dimensional diluted grid. We show that cooperation may thrive for
small interaction radius and when mobility is low. Furthermore, we show that, even when
the agents cannot change their game strategy, interesting spatial patterns do emerge as
players explore their neighborhood in order to find a better place to migrate to. In the
Prisoner’s Dilemma and Stag-Hunt games, when the losses experienced by cooperators
against defectors as well as the game and migration radius are large enough, players move
in a coherent way because clusters of cooperators followed by defectors form. On the other
hand, in the Hawk-Dove game or when the migration radius is small, players end up
blocked into stationary clusters.

6.1 Introduction

Systems whose parts are contained in physical space are very important in biological and
social sciences since most interactions among living beings or artificial actors take place
in such a space. Thus game-theoretical interactions among spatially embedded agents
distributed according to a fixed structure in the plane have been studied in detail since
the pioneering works of Axelrod [2] and Nowak and May [10]. The related literature is
very large; see, for instance, the review article by Nowak and Sigmund [11] and references
therein for a synthesis. Most of this work was based on populations of agents arranged
according to planar regular grids for mathematical simplicity and ease of numerical sim-
ulation. Recently, some extensions to more general spatial networks have been discussed
in [3]. Strategic behavior on fixed spatial structures is important but, in the majority of
real situations both in biology and in human societies, actors have the possibility to move
around in space. Many examples can be found in biological and ecological sciences, in
human populations, and in engineered systems such as ad hoc networks of mobile com-
municating devices or robot teams. Mobility may have positive or negative effects on
cooperation, depending on several factors. For instance, early on Enquist and Leimar [5]
studied a model in which space is not explicitly represented but assortment of strategies
is made non-uniform by introducing the possibility of abandoning a non-profitable rela-
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tionship and searching for another partner, thus modifying the homogeneous well-mixed
original population structure. Their main conclusion was that mobility may seriously re-
strict the evolution of cooperation. In the last decade there have been several new studies
of the influence of mobility on the behavior of various games in spatial environments rep-
resenting essentially two strands of research: one in which the movement of agents is seen
as a random walk, and a second one in which movement may contain random elements
but it is purposeful, or strategy-driven. In the present study we focus on situations where,
instead of randomly diffusing, agents possess some basic cognitive abilities and they ac-
tively seek to improve their situation by moving in space represented as a discrete grid in
which part of the available sites are empty and can thus be the target of the displacement.
This approach has been followed, for example, in [1, 4, 6, 7, 9]. The mechanisms invoked
range from success-driven migration [7], adaptive migration [9], flocking behavior [4], and
cooperators walking away from defectors [1]. The general qualitative message of this work
is that purposeful contingent movement may lead to highly cooperating stable or quasi-
stable population states if some conditions are satisfied. Despite all the above work, the
quantitative results strongly depend on the assumptions made and on the details of the
models.

Our approach here is inspired by the work of [6, 7] which they call “success-driven
migration” and which has been shown to be able to produce highly cooperative states.
In this model, locally interacting agents playing either defection or cooperation in a two-
person Prisoner’s Dilemma are initially randomly distributed on a grid in equal proportions
with a certain density such that there are empty grid points. Agents are updated one
at a time. When chosen for updating, the agent evaluates the current payoff she would
accumulate by playing two-person games with all her current neighbors but she can also
“explore” an extended square neighborhood by testing all the empty positions up to a
given distance. If the player finds that it would be more profitable to move to one of
these positions then she does it, choosing the best one among those tested, otherwise she
stays at her current place. Helbing and Yu find that robust cooperation states may be
reached by this single mechanism, even in the presence of random noise in the form of
random strategy mutations and random agent relocation. Our study builds upon this work
in several ways. In the first place, whilst Helbing and Yu had a single game neighborhood,
we systematically investigate game neighborhood and migration neighborhood, showing
that only some values of this pair of parameters allow the evolution of cooperation using
success-driven migration. Second, we present systematical results for a whole game phase
space including the Hawk-Dove class of games, the Stag Hunt coordination class, and
the Prisoner’s Dilemma class, while only the Hawk-Dove and the Prisoner’s Dilemma
are studied in [6]. We find that fully cooperative states can be reached for the standard
neighborhoods and for several migration distances in the Stag Hunt case, while cooperation
can also be achieved in the Prisoner’s Dilemma for a non-negligible part of its game space.
Mobility is less beneficial in the hawk-dove game where cooperation levels are on the
average only slightly better than in the static, motionless case . Finally, we also study
the extreme case of system evolution when agents cannot change their initially attributed
strategy and are only allowed to test free cells within their migration radius in order to
possibly move to more profitable regions. Here cooperation cannot evolve by definition
but we are interested in the dynamical patterns that may form, i.e. whether or not the
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agent distribution remains uniform during the dynamics. In this case, in the Prisoner’s
dilemma and Stag Hunt games we find that players move in a coherent way because clusters
of cooperators followed by defectors are formed. On the other hand, in the Hawk-Dove
game or when the radius within which players move is small, players end up blocked into
stationary clusters.

6.2 Evolutionary Games and Migration in Two-Dimensional Space

6.2.1 The Games Studied

We investigate three classical two-person, two-strategy, symmetric games classes, namely
the Prisoner’s Dilemma (PD), the Hawk-Dove Game (HD), and the Stag Hunt (SH). These
three games are simple metaphors for different kinds of dilemmas that arise when individ-
ual and social interests collide. The Harmony game (H) is included for completeness but it
is not a dilemma since cooperation is trivially the NE. The main features of these games
are summarized here for completeness; more detailed accounts can be found elsewhere
e.g. [8, 16, 17]. The games have the generic payoff matrix M (equation 6.1) which refers
to the payoffs of the row player. The payoff matrix for the column player is simply the
transpose M> since the game is symmetric.

(C D

C R S
D T P

)
(6.1)

The set of strategies is Λ = {C,D}, where C stands for “cooperation” and D means
“defection”. In the payoff matrix R stands for the reward the two players receive if they
both cooperate, P is the punishment if they both defect, and T is the temptation, i.e. the
payoff that a player receives if he defects while the other cooperates getting the sucker’s
payoff S.

In order to study the usual standard parameter space [12, 13], we restrict the payoff
values in the following way: R = 1, P = 0, −1 ≤ S ≤ 1, and 0 ≤ T ≤ 2.
For the PD, the payoff values are ordered such that T > R > P > S. Defection is always
the best rational individual choice, so that (D,D) is the unique Nash Equilibrium (NE)
and also the only fixed point of the replicator dynamics [8, 17]. Mutual cooperation would
be socially preferable but C is strongly dominated by D.
In the HD game, the order of P and S is reversed, yielding T > R > S > P . Thus, when
both players defect they each get the lowest payoff. Players have a strong incentive to
play D, which is harmful for both parties if the outcome produced happens to be (D,D).
(C,D) and (D,C) are NE of the game in pure strategies. There is a third equilibrium in
mixed strategies which is the only dynamically stable equilibrium [8, 17].
In the SH game, the ordering is R > T > P > S, which means that mutual cooperation
(C,C) is the best outcome and a NE. The second NE, where both players defect is less
efficient but also less risky. The difficulty is represented by the fact that the socially
preferable coordinated equilibrium (C,C) might be missed for “fear” that the other player
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will play D instead. The third mixed-strategy NE in the game is evolutionarily unstable [8,
17].
Finally, in the H game R > S > T > P or R > T > S > P . In this case C strongly domi-
nates D and the trivial unique NE is (C,C). The game is non-conflictual by definition and
does not cause any dilemma, it is mentioned to complete the quadrants of the parameter
space.

There is an infinite number of games of each type since any positive affine transformation
of the payoff matrix leaves the NE set invariant [17]. Here we study the customary standard
parameter space [12, 13], by fixing the payoff values in the following way: R = 1, P = 0,
−1 ≤ S ≤ 1, and 0 ≤ T ≤ 2.
In the TS-plane each game class corresponds to a different quadrant depending on the
above ordering of the payoffs as depicted in Fig 6.1, left image, and the figures that follow.
The right part of Fig 6.1 shows the standard replicator dynamics results for a well mixed
population [17].
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Fig. 6.1 (Color online) Left image: The games phase space (H= Harmony, HD = Hawk-Dove,
PD = Prisoner’s Dilemma, and SH = Stag Hunt) as a function of S, T (R = 1, P = 0). Right
image: cooperation at steady state in a well mixed population for comparison purposes. Lighter
tones stand for more cooperation. Figures in parentheses next to each quadrant indicate average
cooperation in the corresponding game space.

6.2.2 Population Structure

The euclidean two-dimensional space is modeled by a discrete square lattice of side L with
toroidal borders. Each vertex of the lattice can be occupied by one player or be empty. The
density is ρ = N/L2, where N ≤ L2 is the number of players. Players can interact with k
neighbors which lie at a distance smaller or equal than a given constant Rg. Players can
also migrate to empty grid points at a distance smaller than Rm. The relationships between
the neighborhoods defined as above and the customary square Moore neighborhoods of
increasing order are illustrated in Fig. 6.2.
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Fig. 6.2 Relationships between the neighborhoods defined by the radii Rg and Rm and the Moore
square neighborhoods. Left: with the 1.5 radius the neighborhood is identical with the standard
Moore neighborhood at distance one. Middle: radius 3 is almost equivalent to a Moore neighborhood
at distance two marked as a square. Right: with radius 5 the closer Moore neighborhood has
distance four.

6.2.3 Payoff Calculation and Strategy Update Rules

Here it is specified how individual’s payoffs are computed and how agents decide to revise
their current strategy. We take into account that each agent i interacts locally with a set of
neighbors Vi lying closer than Rg. Let σi(t) be a vector giving the strategy profile at time t
with C = (1, 0) and D = (0, 1) and let M be the payoff matrix of the game (equation 6.1).
The quantity

Πi(t) =
∑
j∈Vi

σi(t) M σ>j (t) (6.2)

is the cumulated payoff collected by player i at time step t.
We use an asynchronous scheme for strategy update and migration, i.e. players are

updated one by one by choosing a random player in each step with uniform probability
and with replacement. Then the player migrates with probability p or updates its strategy
with probability 1−p. Several update rules are customary in evolutionary game theory [12].
Here we shall use imitative strategy update protocol which consists in switching to the
strategy of the neighbor that has scored best in the last time step. This imitation of the
best (IB) policy can be described in the following way: the strategy σi(t) of individual i
at time step t will be

σi(t) = σj(t− 1), (6.3)

where
j ∈ {Vi ∪ i} s.t. Πj = max

k∈{Vi∪i}
{Πk(t− 1)}. (6.4)

That is, individual i will adopt the strategy of the player with the highest payoff among
its neighbors including itself. If there is a tie, the winner individual is chosen uniformly at
random.

A final remark is in order here. The above model rules are common in numerical sim-
ulation work, which has the advantage that the mathematics is simpler and results can
be compared with previous work. However, they are homogeneous among the agents and
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there is no learning. It is far from clear whether they are able to model real situations in bi-
ological systems and especially human societies. However, we feel that these considerations
are outside the scope of the present numerical investigation.

6.2.4 Strategy Imitation and Migration rules

When player i is chosen for update, she changes her strategy with probability 1 − p or
migrates with probability p. If the pseudo-random number drawn dictates that i should
migrate, then she considers Ntest randomly chosen positions in the disc of radius Rm
around itself in order to take into account her bounded rationality. Ntest = 20 has been
used in all the simulations. For each trial position the player computes the payoff that she
would obtain in that place with her current strategy. The positions already occupied are
just discarded from the possible choices. Then player i stays at her current position if she
obtains there the highest payoff, or migrates to the most profitable position among those
explored during the test phase. If several positions, including her current one, share the
highest payoff she chooses one at random. The protocol described in Helbing and Yu [7]
is slightly different: the chosen player chooses the strategy of the best neighbor including
himself with probability 1−r, and with probability r his strategy is randomly reset. Before
this imitation step i deterministically chooses the highest payoff free position in a square
neighborhood surrounding the current player and including himself. If several positions
provide the same expected payoff, the one that is closer to the old position of i is selected.

Algorithm 1: migration of player i
for j ∈ [1, Ntest] do

choose random position xj in Vi
if xj is free then

compute the expected payoff Π(xj) of player i at xj
choose the best Π(xj); if several xj share the same Π(xj) choose one at random and
migrate to this position

6.2.5 Mobility Measure

In order to assess if a player has a definite direction of motion with respect to time we will
use the following mobility measure. Mobility is defined as M = maxt∈[0,τ ](Dt)/L where
τ is the time interval for a player to travel a total distance L if she moves the maximal
distance Rm at each time step in the same direction. Dt is the Euclidean distance from the
initial position to the position at time t. The interval τ is not taken from the beginning of
the simulation but rather after a time sufficient for the mobile patterns to form. Thus M
measures the ratio between the maximal distance over time reached by a player from her
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initial position and the maximal distance that it is possible to reach in the best case. We
multiplied this measure by four in order to increase the contrast in the images. However,
this measure is not a strict indicator of coherent motion as moving clusters can collide and
change direction.

6.2.6 Simulation Parameters
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Fig. 6.3 (Color online) Average cooperation levels with IB strategy revision rule as a function
of Rg and Rm with p = 0.5 and ρ = 0.5. Left image: Random migration. Right image: best
fitness migration rule. The size of the population is 1000 players. In all cases the initial fraction of
cooperators is 0.5 randomly distributed among the occupied grid points.
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Fig. 6.4 (Color online) Average cooperation levels with IB strategy revision rule as a function
of Rg and Rm with p = 0.5 and ρ = 0.1. Left image: Random migration. Right image: best
fitness migration rule. The size of the population is 1000 players. In all cases the initial fraction of
cooperators is 0.5 randomly distributed among the occupied grid points.

The TS-plane has been sampled with a grid step of 0.1 and each value in the phase
space reported in the figures is the average of 50 independent runs. The evolution proceeds
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by first initializing the population by creating a player in each cell of the underlying lattice
with probability ρ. Then the players’ strategies are initialized uniformly at random such
that each strategy has a fraction of approximately 1/2 unless otherwise stated. For each
grid point, agents in the population are chosen sequentially at random with replacement
to revise their strategies or positions. Payoffs are constantly updated. To avoid transient
states, we let the system evolve for a period of τ = 1000 time steps, for each time step
N = 1000 players are chosen for update. At this point almost always the system reaches
a steady state in which the frequency of cooperators is stable except for small statistical
fluctuations. We then let the system evolve for 50 further steps and take the average
cooperation value, or the mobility, in this interval. We repeat the whole process 50 times
for each grid point and, finally, we report the average cooperation values over those 50
repetitions.

6.3 Results

6.3.1 Strategy Evolution and Mobility

In this section we discuss cooperation results with the IB rule and adaptive migration
and explore the influence of different radii Rm and Rg and the density ρ. Fig. 6.3 left
image displays the cooperation level in the ST-planes with the IB rule and a density
ρ = 0.5 for several combinations of Rg and Rm. For the sake of comparison, and in
order to have a baseline case, Fig. 6.3 left image shows the case in which migration is
not dictated by success but, rather, it is simply random, i.e. the target of migration will
be a free cell randomly drawn among those contained in the Rm disk. The right image
depicts cooperation levels when migration is success-driven. We see that, for Rg = 1.5, full
cooperation is achieved in the SH quadrant for all Rm in the case of contingent migration
while cooperation is notably lower in the random migration case for all Rm. For the
PD cooperation remains nearly constant through Rm for Rg = 1.5, or slightly improves
with smaller Rm in the contingent migration case with average values in the quadrant
of about 0.3. In contrast, it is almost zero in the random diffusion case. Increasing the
game radius Rg doesn’t help and all average values tend to fall independent of Rm. This
is because enlarging the neighborhood of a player is a step towards the mixed population
in which cooperation results are worse, as can be seen in Fig. 6.1. We have observed that
the increase in cooperation for Rg = 1.5 with “intelligent” migration is essentially due to
the formation of cooperator clusters that remain relatively stable throughout evolution
thanks to the possibility for cooperators to join one of those clusters. With larger Rg
values, small cooperator clusters are easier to break and large C clusters, which would
help cooperation to establish itself in the cluster, cannot form and defection prevails at
least in the PD case. The Hawk-Dove game, due to its mixed-strategy equilibrium benefits
less from success-driven migration as the two other games.

Density is a parameter that heavily influences the evolution of cooperation [14, 15],
also in the presence of intelligent migration [7, 9]. Too high densities are detrimental
because they tend to limit the mobility of agents to a point that only cooperator clusters
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Fig. 6.5 (Color online) Left: average mobility levels in the ST-plane as a function of Rg and Rm.
Right: mobility in the SP-plane for T = 1, Rm = 10 and Rg = 10. The best fitness migration rule is
used. The size of the population is 1000 players and ρ = 0.1. Cooperators fraction is 0.5 randomly
distributed among the population. Lighter tones stand for more mobility.

that appear owing to statistical fluctuations in the initial population compositions can
eventually remain stable. It appears that low and intermediate densities give more freedom
to the population for moving around and to search for better positions. Figure 6.4 right
image shows average cooperation results for the IB strategy revision rule and the same
combinations of radii but for ρ = 0.1 instead of 0.5. With ρ = 0.1 cooperation generally
increases. In this case defectors attack clusters with a smaller rate since they are more
diffused in space and move randomly until they find a cluster of cooperators. The advantage
of intelligent migration with respect to random motion is even more marked here by
comparing with the left image. In the latter defection appears to be even stronger than in
the mixed population, but this is rather special and is due to the fact that the system is
very diluted which causes most encounters to be between just two players.

6.3.2 Mobility Only: Emergence of Dynamic Clusters

In this section we study the emergence of dynamic clusters. These clusters are formed by
a cohesive group of cooperators followed by defectors. The left image of Fig. 6.5 displays
the mobility of nodes (see Sect. 6.5) for several ST-planes as a function of the game and
migration radius. Lighter tones stand for higher mobility and indicate that such dynamic
clusters may form. It can be observed that the dynamic clusters tend to appear with low
S. The horizontal stripes of constant M can be explained by the fact that, as long as
P = 0, all positive values of T are identical since the best target position for migration
remains the same. On the other hand, when P is comparable to T or larger, defectors form
clusters among themselves and stop following cooperators, which causesM to decrease. In
contrast, when P is negative enough, defectors repel each other and they can not gather
behind cooperators. These effects are reflected in the averages shown in the right image
of Fig. 6.5.
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S=0.5 S=-0.5 S=-1.0
Fig. 6.6 (Color online) Cluster for Rg = 5 and Rm = 10, T = 1.5. Cooperators are represented
as orange circles and defectors as black triangles.

Rg=1.5 Rg=5 Rg=10 Rg=20Rg=3

Fig. 6.7 (Color online) Cluster for Rm = 10, T = 1.5, S = −1.0 for different Rg values. Cooper-
ators are represented in orange and defectors in black.

We display dynamic clusters for some particular runs in Figs. 6.6 and 6.7. Figure 6.6
shows clusters that have formed after a number of time steps and that are already stable
as a function of S with Rg = 5 and Rm = 10. The corresponding game can be inferred
from Fig. 6.5 left image. From left to right the images show situations with increasing
cluster mobility. There is a sort of mobility transition such that, while the first two images
show clusters that do not move, the rightmost one corresponds to a situation in which the
clusters are much more dynamical.

Figure 6.7 shows the clusters appearance when mobility is high (compare with Fig. 6.5
left image) as a function of the radius of play Rg for the same game as above, which is
in the PD region. One can see that there is a direct relationship between increasing Rg
and the cluster size. With a given Rm, which is here 10, when Rg is comparatively small,
clusters do form but they are continuously destroyed and reformed in an other places
without a definite motion.
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6.3.2.1 The Effect of Strategy Update

In the limiting case p → 1, i.e. very little strategy update with respect to migration,
dynamical patterns form before any significant strategy update. Fig. 6.8 displays the ST-
plane in that case. It can be observed that cooperation is lost for the lower values of S.
This loss of cooperation can be related to an increase in mobility by comparing Fig. 6.4
(right) with Fig. 6.8 and by remarking that the loss of cooperation between these two
cases correspond to the relatively high levels of mobility seen in Fig. 6.5 for this area of
the game space. In the case p = 0.5 the dynamical patterns cannot fully form since the
strategy evolution is too fast. In fact as clusters of cooperators form defectors are attracted
towards them. Considering only the case in which cooperation thrives, if p is small enough
the incoming defectors are transformed into cooperators directly while approaching the
cluster. Thus the cluster remains static and grows. On the other hand, when p tends to
one, the migrating defectors cumulated around the cluster will eventually cause it to move.
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Fig. 6.8 (Color online) Average cooperation levels with best fitness migration rule and IB strategy
update rule as a function of Rg and Rm, ρ = 0.1, and p = 0.99. The size of the population is 1000
players. The initial fraction of cooperators is 0.5 randomly distributed among the occupied grid
points.

6.4 Conclusion

In the framework of game theory we have studied the evolution of cooperation in spatially
structured populations when a given focal player can only interact with players contained
in a radius Rg centered on the focal player that is small with respect to the space available.
This locality of interactions is a realistic feature of actual populations and markedly differs
from the customary well mixed population. Besides being able to adapt their strategy with
probability 1− p, in our model players can also move around to unoccupied places in the
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underlying two-dimensional grid also with probability p. The amount of displacement is
determined by the migration radius Rm. Migration depends on the payoff, i.e. a player
that has decided to migrate can examine a number of free positions around it within the
radius Rm, earn a potential payoff by fictitious play with the neighbors at that position,
and finally choose to migrate to the position that provides the best payoff among those
tested. We show that an equal amount of migration and of strategy mutation in the original
position gives rise to full cooperation in the SH game space and, to comparatively high
values in the more difficult PD game space. This is particularly striking when compared
with the baseline case in which strategy revision is identical but migration is to a randomly
chosen free cell in the disk of radius Rm.

We have also investigated pattern formation in the population under the effects of
intelligent migration only. In this case too we start from a 50− 50 random distribution of
cooperators and defectors. However, now cooperation cannot evolve since strategy changes
are not allowed. What we do observe is a very interesting and intricate phenomenon of
dynamical or almost static pattern formation that is related to the underlying game played
and that also depends on the Rg and Rm radii. We have analyzed the nature and dynamics
of these clusters and we have shown that mobility of agents can be high when the sucker
payoffs S reaches negative enough values compared to the reward payoff R. The temptation
T has only to be positive as the punishment P is null in our settings. For high interaction
radius Rg and migration radius Rm the motion is coherent and the cooperators tend to
gather and move in the same direction with swarms of defectors following them. When Rm
is small players can be blocked into clusters. On the other hand, when Rg is low and Rm
high the clusters are constantly destroyed and reformed in different places. For both Rg
and Rm low small clusters are formed and the motion is not definite. Future work should
include the study of the effect of strategy update and mobility noise in the dynamics, as
well as the use of different strategy update and, possibly, migration rules.
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Abstract We study evolutionary games in a spatial diluted grid environment in which
agents strategically interact locally but can also opportunistically move to other positions
within a given migration radius. Using the imitation of the best rule for strategy revision,
it is shown that cooperation may evolve and be stable in the Prisoner’s Dilemma game
space for several migration distances but only for small game interaction radius while the
Stag Hunt class of games become fully cooperative. We also show that only a few trials are
needed for cooperation to evolve, i.e. searching costs are not an issue. When the stochas-
tic Fermi strategy update protocol is used cooperation cannot evolve in the Prisoner’s
Dilemma if the selection intensity is high in spite of opportunistic migration. However,
when imitation becomes more random, fully or partially cooperative states are reached in
all games for all migration distances tested and for short to intermediate interaction radii.

7.1 Introduction

Spatially embedded systems are very important in biological and social sciences since most
interactions among living beings or artificial actors take place in physical two- or three-
dimensional space [7]. Along these lines, game-theoretical interactions among spatially
embedded agents distributed according to a fixed structure in the plane have been studied
in detail, starting from the pioneering works of Axelrod [2] and Nowak and May [15].
The related literature is very large; see, for instance, the review article by Nowak and
Sigmund [16] and references therein for a synthesis. Most of this work was based on pop-
ulations of agents arranged according to planar regular grids for mathematical simplicity
and ease of numerical simulation. Recently, some extensions to more general spatial net-
works have been discussed in [3]. The study of strategic behavior on fixed spatial structures
is necessary in order to understand the basic mechanisms that may lead to socially effi-
cient global outcomes such as cooperation and coordination. However, in the majority of
real situations both in biology and in human societies, actors have the possibility to move
around in space. Many examples can be found in biological and ecological sciences, in
human populations, and in engineered systems such as ad hoc networks of mobile com-
municating devices or robot teams. Mobility may have positive or negative effects on
cooperation, depending on several factors. An early investigation was carried out by En-
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quist and Leimar [9] who concluded that mobility may seriously restrict the evolution of
cooperation. In the last decade there have been several new studies of the influence of
mobility on the behavior of various games in spatial environments representing essentially
two strands of research: one in which the movement of agents is seen as a random walk,
and a second one in which movement may contain random elements but it is purposeful,
or strategy-driven.

Random diffusion of mobile agents through space, either in continuous space or, more
commonly, on diluted grids has been investigated in [14, 19, 20]. In the present study
we focus on situations where, instead of randomly diffusing, agents possess some basic
cognitive abilities and they actively seek to improve their situation by moving in space
represented as a discrete grid in which part of the available sites are empty and can thus
be the target of the displacement. This approach has been followed, for example, in [1,
4, 5, 6, 8, 10, 11, 13]. The mechanisms invoked range from success-driven migration [11],
adaptive migration [13], reputation-based migration [6], risk-based migration [4], flocking
behavior [5], and cooperators walking away from defectors [1]. In spite of the difference
among the proposed models, the general qualitative message of this work is that purposeful
contingent movement may lead to highly cooperating stable or quasi-stable population
states if some conditions are satisfied. Another related line of research has dealt with the
case in which the grid is diluted but there is no migration. Recent work has shown that
in this case cooperation is optimally promoted when the population density is close to the
percolation threshold of the lattice [22, 23]. This interesting result could be somehow seen
as a base case in the study of cooperation in diluted lattices with migration.

Our approach is based on numerical simulation and is inspired by the work of Helbing
and Yu [10, 11] which they call “success-driven migration” and which has been shown to be
able to produce highly cooperative states. In this model, locally interacting agents playing
either defection or cooperation in a two-person Prisoner’s Dilemma are initially randomly
distributed on a grid such that there are empty grid points. Agents update their strategies
according to their own payoff and the payoff earned by their first neighbours but they can
also “explore” an extended square neighborhood by testing all the empty positions up to a
given distance. If the player finds that it would be more profitable to move to one of these
positions then she does it, choosing the best one among those tested, otherwise she stays
at her current place. Helbing and Yu find that robust cooperation states may be reached
by this mechanism, even in the presence of random noise in the form of random strategy
mutations and random agent relocation. Our study builds upon this work in several ways.
In the first place, whilst Helbing and Yu had a single game neighborhood and migration
neighborhood, we systematically investigate these two parameters showing that only some
combination do foster cooperation using success-driven migration. Secondly, cost issues are
not taken into account in [11]. However, it is clear that moving around to test the ground
is a costly activity. In a biological setting, this could mean using up energy coming from
metabolic activity, and this energy could be in short supply. In a human society setting,
it is the search time that could be limited in a way or another. Additionally to physical
energy, cognitive abilities could also limit the search. We present results for a whole game
phase space including the Hawk-Dove class of games, and the Stag Hunt coordination
class. Helbing’s and Yu’s agents based their strategy change on the imitation of the most
successful neighbour in terms of accumulated payoff. We kept this rule but also added the
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Fermi strategy-updating rule, a choice that allows us to introduce a parametrized amount
of imitation noise. With the imitiation of the best policy we find that cooperation prevails
in the Stag Hunt and may evolve in the Prisoner’s Dilemma for small interaction radius.
With the Fermi rule fully cooperative states are reached for the standard neighborhoods
independently of the migration distances when the rate of random strategy imitation is
high enough.

7.2 Methods

7.2.1 The Games Studied

We investigate three classical two-person, two-strategy, symmetric games classes, namely
the Prisoner’s Dilemma (PD), the Hawk-Dove Game (HD), and the Stag Hunt (SH).
These three games are simple metaphors for different kinds of dilemmas that arise when
individual and social interests collide. The Harmony game (H) is included for completeness
but it doesn’t originate any conflict. The main features of these games are well known;
more detailed accounts can be found elsewhere e.g. [12, 21, 24]. The games have the generic
payoff matrix M (equation 8.1) which refers to the payoffs of the row player. The payoff
matrix for the column player is simply the transpose M> since the game is symmetric.(C D

C R S
D T P

)
(7.1)

The set of strategies is Λ = {C,D}, where C stands for “cooperation” and D means
“defection”. In the payoff matrix R stands for the reward the two players receive if they
both cooperate, P is the punishment if they both defect, and T is the temptation, i.e. the
payoff that a player receives if he defects while the other cooperates getting the sucker’s
payoff S. For the PD, the payoff values are ordered such that T > R > P > S. Defection is
always the best rational individual choice, so that (D,D) is the unique Nash Equilibrium
(NE). In the HD game the payoff ordering is T > R > S > P . Thus, when both players
defect they each get the lowest payoff. (C,D) and (D,C) are NE of the game in pure
strategies. There is a third equilibrium in mixed strategies which is the only dynamically
stable equilibrium [12, 24]. In the SH game, the ordering is R > T > P > S, which means
that mutual cooperation (C,C) is the best outcome and a NE. The second NE, where
both players defect is less efficient but also less risky. The third NE is in mixed strategies
but it is evolutionarily unstable [12, 24]. Finally, in the H game R > S > T > P or
R > T > S > P . In this case C strongly dominates D and the trivial unique NE is (C,C).
The game is non-conflictual by definition; it is mentioned to complete the quadrants of
the parameter space.

There is an infinite number of games of each type since any positive affine transformation
of the payoff matrix leaves the NE set invariant [24]. Here we study the customary standard
parameter space [17, 18], by fixing the payoff values in the following way: R = 1, P = 0,
−1 ≤ S ≤ 1, and 0 ≤ T ≤ 2. Therefore, in the TS plane each game class corresponds to a
different quadrant depending on the above ordering of the payoffs as depicted in Fig. 7.1,
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left image. The right image depicts the well mixed replicator dynamics stable states for
future comparison.
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Fig. 7.1 (Color online) Left image: The games phase space (H= Harmony, HD = Hawk-Dove, PD
= Prisoner’s Dilemma, and SH = Stag Hunt) as a function of S, T (R = 1, P = 0). Right image:
replicator dynamics stable states [12, 24] with 50% cooperators and defectors initially in a well
mixed population for comparison purposes. Lighter tones stand for more cooperation. Values in
parentheses next to each quadrant indicate average cooperation in the corresponding game space.

7.2.2 Population Structure

The Euclidean two-dimensional space is modeled by a discrete square lattice of side L with
toroidal borders. Each vertex of the lattice can be occupied by one player or be empty. The
density is ρ = N/L2, where N ≤ L2 is the number of players. Players can interact with
k neighbours which lie at an Euclidean distance smaller or equal than a given constant
Rg. Players can also migrate to empty grid points at a distance smaller than Rm. We use
three neighborhood sizes with radius 1.5, 3, and 5; they contain, respectively, 8, 28, and
80 neighbours around the central player.

7.2.3 Payoff Calculation and Strategy Update Rules

Each agent i interacts locally with a set of neighbours Vi lying closer than Rg. Let σi(t)
be a vector giving the strategy profile at time t with C = (1, 0) and D = (0, 1) and let M
be the payoff matrix of the game (equation 8.1). The quantity

Πi(t) =
∑
j∈Vi

σi(t) M σ>j (t) (7.2)

is the cumulated payoff collected by player i at time step t.
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We use two imitative strategy update protocols. The first is the Fermi rule in which
the focal player i is given the opportunity to imitate a randomly chosen neighbour j with
probability:

p(σi → σj) = 1
1 + exp(−β(Πj −Πi))

(7.3)

where Πj − Πi is the difference of the payoffs earned by j and i respectively and β is
a constant corresponding to the inverse temperature of the system. When β → 0 the
probability of imitating j tends to a constant value 0.5 and when β →∞ the rule becomes
deterministic: i imitates j if (Πj − Πi) > 0, otherwise it doesn’t. In between these two
extreme cases the probability of imitating neighbour j is an increasing function of Πj−Πi.
The second imitative strategy update protocol is to switch to the strategy of the neighbour
that has scored best in the last time step. In contrast with the previous one, this rule is
deterministic. This imitation of the best (IB) policy can be described in the following way:
the strategy σi(t) of individual i at time step t will be

σi(t) = σj(t− 1), (7.4)

where
j ∈ {Vi ∪ i} s.t. Πj = max{Πk(t− 1)}, ∀k ∈ {Vi ∪ i}. (7.5)

That is, individual i will adopt the strategy of the player with the highest payoff among
its neighbours including itself. If there is a tie, the winner individual is chosen uniformly
at random.

7.2.4 Population Dynamics and Opportunistic Migration

We use an asynchronous scheme for strategy update and migration, i.e. players are up-
dated one by one by choosing a random player in each step with uniform probability and
with replacement. Then the player migrates with probability 1/2, otherwise it updates
its strategy. If the pseudo-random number drawn dictates that i should migrate, then
it considers Ntest randomly chosen positions in the disc of radius Rm around itself. The
quantity Ntest could be seen as a kind of “energy” available to a player for moving around
and doing its search. Ntest being fixed for a given run, it follows that an agent will be able
to make a more complete exploration of its local environment the smaller the Rm. For
each trial position the player computes the payoff that it would obtain in that place with
its current strategy. The positions already occupied are just discarded from the possible
choices. Then player i stays at its current position if it obtains there the highest payoff,
or migrates to the most profitable position among those explored during the test phase. If
several positions, including its current one, share the highest payoff then it chooses one at
random. We call this migration opportunistic or fitness-based. The protocol described in
Helbing and Yu [11] is slightly different: the chosen player chooses the strategy of the best
neighbour including itself with probability 1− r, and with probability r, with r � 1− r,
its strategy is randomly reset. Before this imitation step i deterministically chooses the
highest payoff free position in a square neighborhood of size (2M + 1) × (2M + 1) cells
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surrounding the current player and including itself, where M can take the values 0, 1, 2, 5.
If several positions provide the same payoff, the one that is closer is selected.

7.2.5 Simulation Parameters

The TS plane has been sampled with a grid step of 0.1 and each value in the phase space
reported in the figures is the average of 50 independent runs. The evolution proceeds by
first initializing the population by distributing N = 1000 players with uniform probability
among the available cells. Then the players’ strategies are initialized uniformly at random
such that each strategy has a fraction of approximately 1/2. To avoid transient states, we
let the system evolve for a period of τ = 1000 time steps and, in each time step, N players
are chosen for update. At this point almost always the system reaches a steady state in
which the frequency of cooperators is stable except for small statistical fluctuations. We
then let the system evolve for 50 further steps and take the average cooperation value in
this interval. We repeat the whole process 50 times for each grid point and, finally, we
report the average cooperation values over those 50 repetitions.

7.3 Results

7.3.1 Imitation of the Best and Opportunistic Migration

Rm

1.5 3 5

Rg

1.5

3

5

Rm

1.5 3 5

Rg

1.5

3

5

Fig. 7.2 (Color online) Average cooperation levels with opportunistic migration and IB rule as
a function of Rg and Rm. Left: Ntest = 20; Right: Ntest = 1. The size of the population is 1000
players and the density ρ is 0.5. In all cases the initial fraction of cooperators is 0.5 randomly
distributed among the occupied grid points.
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In this section we study cooperation with the IB rule and fitness-based opportunistic
migration, and we explore the influence of different radii Rm and Rg and other parameters
such as the density ρ and the number of trials Ntest. The left image of Fig. 7.2 displays
the TS plane with the IB rule, a density ρ = 0.5, and Ntest = 20. For small Rg = 1.5 full
cooperation is achieved in the SH quadrant for all Rm. The average levels of cooperation
in the PD games are 0.33, 0.31, 0.30 for Rm = 1.5, 3, 5 and Rg = 1.5 respectively. It
is remarkable that cooperation emerges in contrast to the well mixed population case
(Fig. 7.1, right image), and also that better results are obtained with respect to a fully
populated grid in which agents cannot move [17]. The HD doesn’t benefit in the same way
and the cooperation levels are almost the same in the average. Cooperation remains nearly
constant as a function of Rm for a given Rg value but increasing Rg has a negative effect.
For higher game radius, Rg ∈ {3, 5} cooperation is progressively lost in the PD games while
there is little variation in the HD quadrant among the different cases due to the dimorphic
structure of these populations. In the SH quadrant there is a large improvement compared
to the well mixed case but the gain tends to decrease with increasing Rg. In the PD with
high Rg, cooperators cannot increase their payoff by clustering, since the neighborhood
of defectors covers adjacent small clusters of cooperators, the payoff of defectors becomes
higher and they can invade cooperators clusters. Figure 7.3 illustrates in an idealized
manner what happens to a small cooperators cluster when the game radius Rg increases
using a full grid for simplicity. For Rg = 1.5 (left image) the cooperator cluster is stable

C D C D

Fig. 7.3 Illustration of the effect of the playing radius Rg on the payoff of individuals. Left
image: Rg = 1.5, righ image: Rg = 3. The drawings refer to a locally full grid and are intended for
illustrative purposes only (see text).

as long as 8R > 3T since the central cooperator gets a payoff of 8R, while the best payoff
among the defectors is obtained by the individual marked D (and by the symmetrically
placed defectors) and is equal to 3T since P = 0. Under this condition all the cooperators
will thus imitate the central one. On the other hand, the defector will turn into a C as long
as 5R + 3S > 3T , thus provoking cooperator cluster expansion for parameter values in
this range. On the contrary, for Rg = 3 (right image) the central cooperator gets 8R+20S
whilst the central defector at the border has a payoff of 7T . Thus the cooperator imitates
the defector if 7T > 8R + 20S, i.e. 7T > 8 + 20S since R = 1. This qualitative argument
helps to explain the observed cooperation losses for increasing Rg.

This inequality is satisfied almost everywhere in the PD quadrant except in a very small
area in its upper left corner.
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Helbing and Yu [11] found very encouraging cooperation results in their analysis but
they only had a small game radius corresponding to the Von Neumann neighborhood which
is constituted, in a full lattice, by the central individual and the four neighbours at distance
one situated north, east, south, and west. We also find similar results for our smallest
neighborhood having Rg = 1.5, which corresponds to the eight-points Moore neighborhood
but, as Rg gets larger, we have just seen that a sizable portion of the cooperation gains
are lost. We think that this is an important point since there are certainly situations in
which those more extended neighborhoods are the natural choice in a spatially extended
population.
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Fig. 7.4 (Color online) Average convergence time Tc with IB rule as a function ofNtest forRg = 1.5
and Rm = 1.5, 3, 5. Left image: S = −0.5, T = 0.5. Right image: S = −0.1, T = 1.1. The time to
convergence is defined as the number of simulation steps needed for the number of cooperators Nc
or defectors Nd to be smaller than 0.1N . Times of convergence are averaged over 500 independent
runs.

The number of trials Ntest could also be a critical parameter in the model. The right
image of Fig. 7.2 refers to the same case as the left one, i.e. the IB update rule with
opportunistic migration and ρ = 0.5, except for the number of trials which is one instead
of 20. We observe that practically the same cooperation levels are reached at steady state
in both cases for Rm = 5 and Rm = 3, while there is a small increase of the average
cooperation in the PD games for Rg = 1.5 which goes from 0.33, 0.31, and 0.30 for
Ntest = 20 to 0.41, 0.36, and 0.33 for Ntest = 1, for Rm = 1.5, 3, 5 respectively. On the
whole, it is apparent that Ntest does not seem to have a strong influence. However, one
might ask whether the times to convergence are shorter when more tests are used, a fact
that could compensate for the extra work spent in searching. But Figs. 7.4 show that
convergence times are not very different and decrease very quickly with the number of
essays Ntest. This is shown for two particular games, one in the middle of the SH quadrant
(left image), and the other near the upper left corner of the PD space (right image). Thus,
a shorter time does not compensate for the wasted trials. Since moving around to find a
better place is a costly activity in any real situation, this result is encouraging because
it says that searching more intensively doesn’t change the time to convergence for more
than four tests. Thus, quite high levels of cooperation can be achieved by opportunistic
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migration at low search cost, a conclusion that interestingly extends the results presented
in [11].

In diluted grids, density is another parameter that influences the evolution of coopera-
tion [19, 20], also in the presence of intelligent migration [11, 13]. Too high densities should
be detrimental because clusters of cooperators are surrounded by a dense population of
defectors, while low densities allow cooperator clusters to have less defectors in their neigh-
borhood once they are formed. We have performed numerical simulations for two other
values of the density besides 0.5, ρ = 0.2 and ρ = 0.8. We do not show the figures to save
space but the main remark is that there is a monotone decrease of cooperation going from
low to higher densities in the low S region that influences mainly the PD and, to a smaller
extent, the SH games.

7.3.2 Opportunistic Migration and Noisy Imitation

In this section we use the more flexible strategy update protocol called the Fermi rule which
was described in Sect. 7.2.3 and in which the probability to imitate a random neighbour’s
strategy depends on the parameter β. We have seen that using the IB rule with adaptive
migration leads to full cooperation in the SH quadrant and improves cooperation in a part
of the PD quadrant (Fig. 7.2). This result does not hold with the Fermi rule with β ≥ 1,
and we are back to full defection in the PD and almost 50% cooperation as in the well
mixed case in the SH; this behavior can be appreciated in the leftmost image of Fig. 7.5.
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Fig. 7.5 (Color online) Average cooperation levels with opportunistic migration and the Fermi
rule as a function of Rg and Rm. From left to right β = 1.0, 0.1, 0.01, 0.001. The density ρ is 0.5 and
Ntest = 20. The size of the population is 1000 players. In all cases the initial fraction of cooperators
is 0.5 randomly distributed among the population.

An interesting new phenomenon appears when β becomes small, of the order of 10−2.
In this case, the levels of cooperation increase in all games for Rg values up to 3 and
cooperation raises to almost 100% in all game phase space for Rg = 1.5, for all migration
radii, see the third image of Fig. 7.5. The positive trend continues with decreasing β
(see rightmost image) and cooperation prevails almost everywhere. As we said above, the
Fermi rule with β = 0.01 or less implies that the decision to imitate a random neighbour
becomes almost random itself. Thus, the spectacular gains in cooperation must depend
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in some way from opportunistic migration for the most part. Figure 7.6 illustrates the
dynamical behavior of a particular case in the PD space. Here T = 1.5, S = −0.5, R = 1,
P = 0; that is, the game is in the middle of the PD quadrant. The other parameters are:
β = 0.01, Rg = 1.5, and Rm = 3. This particular game would lead to full defection in
almost all cases but here we can see that it leads to full cooperation instead.

t=0 t=20 t=150t=1

Fig. 7.6 (Color online). Time evolution for the case of a PD with T = 1.5, S = −0.5, R = 1,
P = 0. Here β = 0.01, Rg = 1.5, Rm = 3. The density ρ = 0.5 and Ntest = 20. There are 1000
players and the strategies are initially attributed uniformly at random in a 50− 50 proportion.

This is a surprising phenomenon that needs an explanation. At the beginning, due to
opportunistic migration, cooperators will be likely to form small clusters between them-
selves more than defectors, as the latter tend to follow cooperators instead of clustering
between themselves since the (D,D) payoff is equal to 0. The low β value will make strat-
egy change close to random and thus strategy update will have a neutral effect. Indeed,
as soon as cooperator clusters form due to migration, defectors that enter a cooperator
cluster thanks to random imitation cannot invade them. The situation there is akin to a
full grid and the number of defectors inside the cluster will fluctuate. Meanwhile, defectors
at the border of a cooperator cluster will steadily turn into cooperators thus extending
the cluster. This is due to the fact that lone defectors at the border will tend to imitate
cooperators since defectors are less connected, and strategy imitation is almost random.
Finally, the defectors inside the clusters will reach the border and turn into cooperators
as well. The phenomenon is robust with respect to the migration radius Rm, as can be
seen in the lower part of the third and fourth images of Fig. 7.5. Cooperation prevails
even when P becomes positive which increases the payoff for defectors to aggregate. We
have simulated the whole phase space for P = 0.2 and P = −0.2. The results are similar
to those with P = 0 except that cooperation decreases slightly with increasing P . On the
same images it can be seen that the game radius Rg has a large influence and cooperation
tends to be lost for radii larger than 1.5. The reasons for this are very similar to those
advocated in Sect. 7.3.1 where Fig. 7.3 schematically illustrates the fact that increasing
Rg makes the situation more similar to a well mixed population. In these conditions, the
payoff-driven strategy imitation process becomes more important and may counter the
benefits of opportunistic migration. However, since we believe that system possessing lo-
cality are important in practice, the findings of this section seem very encouraging for
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mobile agents that are better at finding more profitable positions and moving to them
rather than at strategic reasoning.

7.4 Discussion and Conclusions

In this work we have explored some possibilities that arise when agents playing simple
two-person, two-strategy evolutionary games may also move around in a certain region
seeking better positions for themselves. The games examined are the standard ones, like
the Prisoner’s Dilemma, the Hawk-Dove, or the Stag Hunt. In this context, the ability
to move around in space is extremely common in animal as well as human societies and
therefore its effect on global population behavior is an interesting research question. As
already pointed out by other researchers [1, 5, 6, 10, 11, 13], adding a form of contingent
mobility may result in better capabilities for the population to reach socially valuable
results. Among the existing models, we have started from a slightly modified form of the
interesting Helbing’s and Yu’s model [11] and have explored some further avenues that
were left untouched in the latter work. In the model agents live and move in a discrete
two-dimensional grid space in which part of the cells are unoccupied. Using a strategy
update rule that leads an agent to imitate her most successful neighbour as in [11], and
having the possibility to explore a certain number of free positions around oneself to find
a better one, the gains in cooperative behavior are appreciable in the Prisoner’s Dilemma,
in qualitative agreement with [11]. In the Hawk-Dove games the gains in cooperation are
small but, in addition, we find that cooperation is fully promoted in the class of Stag
Hunt games which were not considered in [11]. In Helbing and Yu the exploration of the
available cells in search of a better one was fixed and deterministic. The question of the
amount of effort needed to improve the agent’s situation was left therefore open, although
this is clearly an important point, given that in the real world more exploration usually
entails an increasing cost be it in terms of energy, time, or money. By using a similar
search strategy but to random positions within a given radius, and by varying the number
of searches available to the agent, we have seen that the convergence times to reach a
given average level of cooperation do not degrade significantly by using fewer trials. This
is a reassuring finding, given the above remarks related to the search cost.

Helbing and Yu explored migration effects under a number of sizes of the square neigh-
borhood around a given agent. However, they only had a single neighborhood for the game
interactions, the standard five-cells Von Neumann neighborhood. We have explored this
aspect more deeply and presented results for several combinations of game radius Rg and
migration radius Rm. In fact, it turns out that increasing the interaction radius has an
adverse effect on cooperation to the point that, at Rg = 5, cooperation levels are similar
to those of a well mixed population, in spite of fitness-based migration. Thus, positive
results are only obtained when agents interact locally in a relatively small neighborhood
which, fortunately, seems to be a quite common condition in actual spatial systems.

Most importantly, we have explored another important commonly used strategy update
rule, the Fermi rule. This rule is also imitative but allows to control the intensity of
selection by varying a single parameter β. When β is high, i.e. larger than one, almost all
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the cooperation gains observed with the imitation of the best rule are lost and we are back
to a scenario of defection in the Prisoner’s Dilemma space and the Stag Hunt games are
also influenced negatively. Migration does not help in this case. However, when β is low, of
the order of 0.01, a very interesting phenomenon emerges: cooperation prevails everywhere
in the game space for small game radius and for all migration radii, including in the PD
space, which is notoriously the most problematic class of games. With β = 0.01 or lower
the strategy update is close to random; however, fitness-based migration is active and thus
we see that migration, and not strategy update, is the main force driving the population
towards cooperation and we have hypothesized a qualitative mechanism that could explain
this striking result. Cooperation is robust with respect to the migration radius Rm but
increasing Rg affects the results negatively for Rg ≥ 3. The effect is mitigated the more
random the strategy update, i.e. by further decreasing β.
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Abstract We study cyclic evolutionary games in a spatial diluted grid environment in
which agents strategically interact locally but can also opportunistically move to other
positions within a given migration radius. We find that opportunistic migration can inverse
the cyclic prevalence between the strategies when the frequency of random imitation is
large enough compared to the payoff-driven imitation. At the transition the average size
of the patterns diverges and this threatens diversity of strategies.

8.1 Introduction

Cyclic behavior can be observed in evolutionary games when there are more than two
strategies available to the players, a well-known case being the Rock-Scissors-Paper (RSP)
class of games [8]. This behavior is not only of theoretical interest since it is partly respon-
sible for the biodiversity on Earth, and has been actually observed in several biological
situations such as the dynamic behavior of side-blotched lizards populations [18], coral reef
invertebrates [10], and competition among different bacteria strands [13] among others.
These games have been studied extensively both theoretically and by computer simula-
tions. Rigorous results are available for well mixed populations in the infinite population
size limit pointing to the fact that the system may converge toward a stable or Lyapunov
stable interior rest point, or to an unstable rest point leading to an heteroclinic cycle,
depending on the relative values of the payoffs (see, for example, [8, 16, 19]). Cyclic be-
havior has also been found in studies of the public goods game type when players, besides
being able to choose between cooperating or defecting behavior, also have the choice of
not taking part in the game (so-called “loner” strategy) [6]. Interestingly, a little later this
oscillating behavior was actually observed in an experiment with human subjects by D.
Semman et al. [17]. Likewise, in a spatial setting such as two-dimensional grids or, more
generally, on relational networks, several results have been obtained. Szabó and Hauert [20]
and Szabó and Vukov [22] studied the Prisoner’s Dilemma on two-dimensional grids with
three strategies: cooperate, defect, and loners and observed that the three strategies sur-
vive in a cyclic dominance way akin to the RSP game. A similar phenomenon manifests
itself on random graphs but with different characteristics. In [21] Szabó et al. investigated
the behavior of the RSP game on regular small-world networks. In more recent work A.
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Szolnoki and coworkers have further studied the evolutionary Prisoner’s Dilemma on spa-
tial grids and random graphs showing that with a third tit-for-tat strategy the system
can show a variety of interesting behaviors including stationary and oscillatory states [23].
When agents can only cooperate or defect but have time-dependent learning capabilities
Szolnoki et al. [24] showed that cooperator and defectors can coexist and propagating
waves appear in the spatially extended system.

In another strand of research players also have the possibility of moving around in space,
a feature that is central in ecosystems. Spatial travelling waves and cyclic dominance
are typical features of these more biologically realistic settings which are often based on
stochastic partial differential equations discretized on a grid to model random diffusion [14,
15]. Another recent paper employs a continuous time space/time formalism in the RSP
game with a non-diffusive spatial component [5]. The spatial flux is based on local gradients
of relative fitness. In this respect, this study is closer to our approach described below but
if focuses on pattern formation and dynamics. Indeed, the strategies are distributed at
the start and remain fixed. While the system shows the formation of spirals in space for
some initial conditions, and of strategy domains for others, since strategy proportions do
not change extinction phenomena are absent. Other important recent works dealing with
migration in diluted grid systems are [25, 26].

In this paper we present a new model based on RSP games in which agents enjoy
mobility but their displacements are not random; rather, they change place in a pur-
poseful manner. Contingent mobility has previously been used under various forms in
two-strategies evolutionary games of the Prisoner’s Dilemma, Hawk-Dove, or Stag Hunt
types [1, 2, 3, 4, 7, 11]. The idea here is that the agents possess some basic reactive or
elementary reasoning capability that allow them to sense the situation in their local spatial
environment and to employ some simple heuristic to move accordingly. Heuristics range
from very simple ones such as cooperators moving away from surrounding defectors when
the latter are in the majority [1, 11], to more elaborate ones such as “success-driven mi-
gration” where agents may try many destinations in space and choose to jump to the most
favorable one in terms of expected payoff [2, 7]. Here agents use a simplified form of an
heuristic introduced in [2] which consists in randomly trying one single free position in
space within a given migration radius and to move there if it is empty and more profitable
than the starting one. Our setting requires minimal rational capabilities on the part of the
players but it is clearly not adequate for low-level biological organisms such as bacteria
where it is likely that movements are almost random. On the other hand, the heuristics
used are within the reach of many superior animal populations and certainly of humans.
We show in the paper that the addition of opportunistic migration notably changes the
dynamical behavior of species. In particular conditions, spatial traveling waves become
much longer and tend to diverge with respect to the finite system size causing strategy
extinction and thus threatening diversity. On the other hand, in different contexts this
result could be seen as a positive one as it tends to stabilize an oscillating system.
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8.2 Methods

We investigate a class of two-person, three-strategy, symmetric rock-scissors-paper game
as a metaphor for cyclic behavior. These games have the generic payoff matrix M (equa-
tion 8.1) which refers to the payoffs of the row player. The payoff matrix for the column
player is simply the transpose M> since the game is symmetric.


S1 S2 S3

S1 0 b2 −b1
S2 −b1 0 b2
S3 b2 −b1 0

 (8.1)

Where b1 and b2 are positive. The set of strategies is Λ = {S1, S2, S3}.
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Fig. 8.1 Diversity phase space in a well-mixed population as a function of the game’s payoffs b1
and b2 with a = 0. Diversity is maximal for light tones and disappears for black tones.

The Euclidean two-dimensional space is modeled by a discrete square lattice of side
L with toroidal borders. Each vertex of the lattice can be occupied by one player or be
empty. The density is ρ and N is the number of players. Players can interact with k
neighbours which lie at an Euclidean distance smaller or equal than a given constant Rg.
Players can also migrate to empty grid points at a distance smaller than Rm. We use
three neighborhood sizes with radius 1.5, 3, and 5; they contain, respectively, 8, 28, and
80 neighbours around the central player.

Each agent i interacts locally with a set of neighbours Vi lying closer than Rg. Let σi(t)
be a vector giving the strategy profile at time t with S1 = (1, 0, 0), S2 = (0, 1, 0), and
S3 = (0, 0, 1), and let M be the payoff matrix of the game (equation 8.1). The quantity

Πi(t) =
∑
j∈Vi

σi(t) M σ>j (t) (8.2)

is the cumulated payoff collected by player i at time step t.
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Fig. 8.2 Average diversity levels with random migration (first row) and opportunistic migration
(second row) as a function of the game radius Rg and the migration radius Rm. The size of the grid
is L = 50 and the density ρ is 0.5. In all cases the initial strategies of the players are attributed
uniformly at random. Diversity is maximal for light tones and disappears for black tones as can be
seen in the color code bar of Fig. 8.1.

We use the imitative strategy update called the Fermi rule [19] in which the focal player
i is given the opportunity to imitate a randomly chosen neighbour j with probability:

p(σi → σj) = 1
1 + exp(−β(Πj −Πi))

(8.3)

where Πj − Πi is the difference of the payoffs earned by j and i respectively andβ is a
constant corresponding to the inverse temperature for the imitation update. When β → 0
(high temperature) the probability of imitating j tends to a constant value 0.5 and when
β → ∞ (low temperature) the rule becomes deterministic: i imitates j if (Πj −Πi) > 0,
otherwise it doesn’t. In between these two extreme cases the probability of imitating
neighbour j is an increasing function of Πj −Πi.

We use an asynchronous Monte Carlo [19] scheme for strategy update and migration,
i.e. players are updated one by one by choosing a random player in each step with uniform
probability and with replacement. Then the player migrates with probability 1/2, otherwise
it updates its strategy.

If the pseudo-random number drawn dictates that i should migrate, then the player
considers a randomly chosen position in the disc of radius Rm around itself. If the position
is already occupied the player does not migrate, otherwise the player computes the payoff
that it would obtain in that place with its current strategy. Then player i stays at its
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Fig. 8.3 Screenshots with random migration (upper images) compared with opportunistic mi-
gration (lower images) as a function of β, Rg = 1.5, Rm = 1.5, b1 = 1.5, and b2 = 0.5 (game 1).
The size of the grid is L = 400 and the density ρ is 0.5. In all cases the initial strategies of the
players are randomly attributed. Each color is associated with a different strategy: S1 is yellow, S2
corresponds to blue, and S3 is depicted in orange.

current position if it obtains higher payoff there, or migrates to the trial position in the
opposite case. In order to introduce noise in the migration player i can decide to migrate
with probability :

p(xk → xl) = 1
1 + exp(−βm(Π l

i −Πk
i ))

(8.4)

where Π l
i − Πk

i is the difference of the payoffs earned by player i in the positions xl
and xk, where xk is the original position of player i and βm is a constant corresponding
to the inverse temperature for the migration. We call these migrations opportunistic or
fitness-based.

We use two measures in order to assess diversity. The first one is called diversity and
is simply the normalized product of the strategy frequencies : (n1n2n3)/(1/3)3. It is pro-
portional to the probability that three randomly chosen players adopt different strategies.
Here the highest value of the product is reached when the distribution of the strategies
is homogeneous, and if one or more strategy has vanished diversity becomes zero. Indeed,
when there are only two strategies remaining, dominance will cause one of the two to
disappear afterwards.

The second measure is called the wavelength. It is a rough empirical approximation for
the wavelength of a traveling wave or simply for the size of a domain where more than
half of the players adopt locally the same strategy. We compute the width of a domain
surrounding a player along the x axis dx and y axis dy and then choose the shortest width
among dx and dy and take the average over all players p. Note that we could obtain similar
results by taking the average over dx and dy. In order to obtain the wavelength around a
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Fig. 8.4 Average wavelength after time T = 5000 as a function of β with random migration and
opportunistic migration. Rg = 1.5, Rm = 1.5, 3, 5. Left image : b1 = 1.5, b2 = 0.5 (game 1). Right
image : b1 = 0.5, b2 = 1.5 (game 2). The size of the grid is L = 200 and the density ρ is 0.5. In all
cases the initial strategies of the players are randomly attributed.

player p with strategy s we compute the distance to the border of the s domain along the
x and y axis in the positive and negative direction around the player p. In order to detect
if a site i is inside a domain of players adopting strategy s, we compute the frequency of
players with that strategy inside the Moore neighborhood (Rg = 1.5) of i, including i. If
the frequency is smaller than 0.5, i is considered to be out of the domain. Practically we
move gradually on the axis until we reach the end of the domain. The next steps take into
account the case where the spatial distribution of the population contains empty regions,
i.e the frequencies of strategies cannot be computed. In that case, if there are no players
in the neighborhood of i, the position of i is incremented. Then, if the new place is in a
domain with the same strategy we consider that it is still the same domain and continue to
increment the test position. Otherwise, the position is considered to be out of the domain
and the width of the region without players is subtracted from the total width.

Next, we present here the measure for the invasion speed. We call this measure cyclicity
and it takes values ∈ [−1, 1]. The cyclicity measure for a player at a given time step t is 1
if the strategy has changed according to the natural cycling order (S1→ S2→ S3→ S1)
between t − 1 and t, 0 if the strategy has not changed and −1 if the strategy changed
in the opposite way. The global cyclicity is the average of this quantity over the players
during a time interval τ after the system has evolved for t time steps.

For the numerical simulations, the diversity phase-space generated by b1 and b2 has been
sampled with a step of 0.1 and each value in the phase space reported in the figures is the
average of n = 50 independent runs. For the wavelength plots the number of independent
runs is n = 200. The evolution proceeds by first initializing the population by adding play-
ers on grid cells with probability ρ. Then the players’ strategies are initialized uniformly
at random such that each strategy has a fraction of approximately 1/3. We let the system
evolve for a period of t = 1000 time steps for phase-space diagrams and t = 5000 for wave-
length plots. In each time step N players are chosen for update. We then let the system
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Fig. 8.5 Average cyclicity after time T = 5000 as a function of β with random and opportunistic
migration. Rg = 1.5, Rm = 1.5, 3, 5. Left image : b1 = 1.5, b2 = 0.5 (game 1). Right image :
b1 = 0.5, b2 = 1.5 (game 2). The size of the grid is L = 200 and the density ρ is 0.5. In all cases
the initial strategies of the players are randomly attributed.

evolve for τ further steps and take the average measure value in this interval. Finally we
report the average diversity or wavelength values over the n repetitions.

8.3 Results

In order to obtain an overview of the effect of opportunistic migration, the diversity mea-
sure is displayed as a function of the game parameters b1 and b2 for several values of β.
Fig. 8.2 depicts the diversity phase-space for a lattice of size L = 50 after time T = 1000
as a function of β, Rg and Rm. The upper images refer to the random migration case, used
here as a benchmark case, and the lower images refer to the opportunistic migration case.
By comparing with the well-mixed case shown in Fig. 8.1, it can be observed that diversity
can thrive in adverse games (lower left quadrant) when the interactions radius Rm and Rg
are short (Rg, Rm < 5). However this does not hold in the opportunistic migration case
for all values of β as can be seen in Fig. 8.2. For β = 0.1 and 0.01 a small game radius Rg
creates the opposite effect for Rm = 1.5, 3, 5 : extinction extend in the upper right quad-
rant where diversity thrives in the ideal well-mixed case such that nearly all the games of
the phase-space lose diversity. For higher game radius Rg = 5 the game space where full
diversity thrives is similar to the one found in the random migration case. However this
does not imply that the wavelength is similar in the extinction region. Although the small
system size used for this exploratory analysis may cause finite-size effects i.e., extinction
due to fluctuations, the results show that there is perhaps an interesting phenomenon
occurring when β is tuned and thus we try to elucidate it further in the following.

We study the wavelength on larger lattices as a function of β since too small lattices
do not let us appreciate large wavelengths due to finite size effects. Since the systematic
study of the full game phase space would be computationally too heavy, we report the
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Fig. 8.6 Average wavelength for opportunistic migration after T = 5000 as a function of β for
game 1: b1 = 1.5, b2 = 0.5. L = 400 and Rm = 1.5, 3, 5. In all cases the density ρ is 0.5 and the
initial strategies of the players are randomly attributed.

wavelength for two representative games in the plane. The first game (game 1) is in the
middle of the left lower quadrant of the phase space, b1 = 1.5; b2 = 0.5, and the second
game (game 2) is in the middle of the right upper quadrant, b1 = 0.5; b2 = 1.5. Fig. 8.4
depicts the wavelength as a function of Rm and β for game1 and game2, and Rg = 1.5, and
a frequency of migration of 1/2. In the opportunistic migration case a marked peak appears
for values of β between 0.01 and 0.1. Results for a frequency of migration of 1/4 and of
3/4 respectively are reported in the Suppl. Mat. Fig. 8.3 displays some typical snapshots
around the phase transition for random and opportunistic migration. In the central image
of the lower row it is clearly visible how domains become larger and extinction sets in
for β = 0.03 with opportunistic migration. In Fig. 8.5 the average cyclicity is plotted
as a function of β for the opportunistic and random migration cases. It can be seen in
the opportunistic migration case that the cyclicity vanishes at the peak and is slightly
reversed on the left of the transition so that the position of the peak corresponds to the
inversion of the cycling order. This effect can be explained in the extreme case β → 0
where the imitation tends to be random but the migration is opportunistic. In that case,
the players adopting a strategy si which is payoff-dominated by a strategy si−1 form
clusters at the border between the two strategy regions since they try to minimize the
number of si−1 players in their neighborhood. Meanwhile the players adopting the strategy
si−1 are attracted toward the si clusters and surround them with a smaller density. Since
the strategy update rule is almost random imitation for very small β the more clustered
players spread their strategy faster than the surrounding players. In fact this effect can
be understood in a bipartite population with two degree homogeneous sub-populations p1
and p2 where players imitate randomly their neighbors. A quick calculation shows that
the size of the sub-population which has the largest average degree spreads its strategy
faster (see Suppl. Mat.). Also in the Suppl. Mat. it is explained how the effect works
using the example of a specific spatial configuration consisting of two neighboring infinite
regions with different strategies. In the random migration case it is more difficult to find an
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explanation since there is no clustering, but the phenomenon is weaker and the peak is less
marked. The increase of the wavelength when the cyclicity vanishes is not new and has been
studied in [12] in a cyclic voter model with three strategies and a probability to imitate the
dominant (dominated) strategy P respectively (1−P ) but the phenomenon is not caused
by migration, as in our case, since agents don’t move and only the P parameter varies. In [9]
authors study a spatial five-species predator-prey model with site exchange and invasions
between neighbors according to the Rock-Paper-Scissors-Lizard-Spock game. They study
the invasion velocities and species density fluctuations as a function of the invasion rates.
It is reported that the fluctuations of species frequency diverge and invasion velocities
between associations of strategies vanish when tuning the invasion rates. Coming back to
the opportunistic migration case, we have checked that the inversion is stable with growing
system size. Using short simulation times, such that the system has not reached extinction
which means that this data is about the (initial) transient period of the system and not
yet at the stationary state, cyclicity can be measured we show that the inversion is similar
for all system sizes studied (see figures in Suppl. Mat.). In Fig. 8.8 we display the average
wavelength for L = 400, Rm = 1.5, 3, 5 and for game 1: b1 = 1.5, b2 = 0.5. By comparing
with the corresponding curve in fig. 8.4 where L = 200 we remark that the peak becomes
sharper for L = 400 thanks to the larger system size. This is due to the fact that the
system can reach extinction before the end of the simulation due to fluctuations of the
wavelength even if the mean wavelength is smaller than the system size.

Finally, we study the effect of noise on the migration process using the Fermi rule with
parameter βm (see Methods section). We observe that, as βm is decreased, the system
undergoes a transition inside an interval where the phenomenon gradually disappears. (See
Fig. 3 in Suppl. Mat.). Thus, the global effect of migration noise is to prevent extinction
provided that it is high enough, i.e. βm less than 0.2. Of course, as migration noise increases,
the situation resembles more and more to random walk migration, as it should.

8.4 Discussion

We studied the diversity of strategies in a RSP game in a spatial layout where players
migrate opportunistically to more favorable places in their neighborhood. Differently from
the many RSP-like systems that have been studied previously in which diffusion is either
absent or is random, we found that the diversity is not maintained for large areas of the
games’ phase space, leading to strategy extinction, when the exponent of the strategy
update rule is such that the imitative update is sufficiently noisy. Furthermore, studying
the size of the patterns for two representative games as a function of β we found that a
transition occurs where the size of the patterns diverges and the prevalence of the strategies
is reversed. Finally, we also introduced a migration noise and we found that if this noise
is larger than a threshold the divergence of the wavelength disappears.
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8.5 Supplementary Material

8.5.1 Well-mixed population

Suppose that we have two populations (species) p1 and p2. All the players from one pop-
ulation have the same type of neighborhood, but the degree of a player is given by the
mean number of links to p1 and p2. For example players of population p1 have a degree
given by k1 = k11 + k12. Where the kij represent the mean number of link connecting one
player of population pi to players of population pj . Let Ni be the number of players in pi,
then the variation of Ni corresponding to a particular set of kij is given by :

Ṅi = Nj
kji
kj
−Ni

kij
ki

(8.5)

Now since Nikij = Njkji is the total number of links between p1 and p2 the equation
becomes:

Ṅi = Nikij(
1
kj
− 1
ki

) (8.6)

Therefore Ṅi < Ṅj ⇐⇒ ki < kj . Which means that the population with the highest
degree (the players inside the cluster) grows faster in this particular configuration.

8.5.2 Configuration Analysis

Suppose that the lattice is composed of two infinite regions of infinite size containing
two populations p1 and p2 with different densities of players ρ1 and ρ2 where the players
adopt different strategies, see Fig. 8.7 where player A belong to the region 1 and player
B to region 2 and both have a Moore neighborhood of eight players. We compute the
probability that population i grows by one player. In time step t one player is chosen for
strategy update. Taking the Moore neighborhood into account we see that only players
at the border of the two region can imitate a player from the other region. Since we will
compare the probability that p1 grows with the probability that p2 grows we can use

ρ1
ρ1 + ρ2

as the probability that a player of population p1 at the border is chosen. Since the player
chooses a neighbor randomly and imitates it, the probability that population p1 grows by
one is given by

ρ1ρ2
(ρ1 + ρ2)(ρ2 + ρ15/3)

The same formula is valid for region 2 by exchanging the indexes. Therefore the number
of players of type 1 increases faster if and only if ρ1 > ρ2.
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8.5.3 Cyclicity scaling

In Fig. 8.8 we show the average cyclicity (see main text for the definition) after time
T = 500 as a function of β for L = 50, 100, 200, 400, Rg = 1.5, Rm = 1.5. Left image :
b1 = −1.5, b2 = 0.5 (game 1). Right image : b1 = −0.5, b2 = 1.5 (game 2). In all cases
the density ρ is 0.5 and the initial strategies of the players are randomly attributed The
inversion of cyclicity is similar in all cases.

8.5.4 Migration Noise

Figure 8.9 shows the dependence of the wavelength on the migration noise parameter βm
for game 1 and game 2 (see main text).
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Fig. 8.9 Average wavelength after time T = 5000 as a function of β (the exponent of the strategy
update rule) for several βm (the exponent of the noisy migration rule) with opportunistic migration
for Rg = Rm = 1.5. Left image : b1 = −1.5, b2 = 0.5 (game 1). Right image : b1 = −0.5, b2 = 1.5
(game 2). The size of the grid is L = 200 and the density ρ is 0.5. In all cases the initial strategies
of the players are randomly attributed.

8.5.5 Migration Frequency Dependence

The following figures 8.10 show the wavelength as a function of β for migration probability
1/4 (left image) and 3/4 (right image). The number of simulation time steps is 10000 for
the system represented in the right image and it is 3333, in order to keep the strategy
update number constant to 2500 as in the 1/2 case. In the case of Rm = 5 in the right
image, the wavelength saturates due to the L = 200 system size. To observe the peak, a
larger L should be used but this would take an extremely long simulation time.

8.6 Acknowledgments

The authors thank A. Szolnoki for critically reading an early version of the manuscript and
for his insightful comments. P. Buesser and M. Tomassini gratefully acknowledge the Swiss
National Science Foundation for generous financial support under grant n. 200021-146616.

References

[1] C. A. Aktipis. Know when to walk away: contingent movement and the evolution of
cooperation. Journal of Theoretical Biology, 231:249–2160, 2004.

[2] P. Buesser and M. Tomassini. Opportunistic migration in spatial evolutionary games.
Phys. Rev. E, 88:042806, 2013.



References 155

10−3 10−2 10−1 100 101
0

50

100

150

β

w
av

el
en

gt
h

 

 
Random migration; Rm = 1.5
Random migration; Rm = 3
Random migration; Rm = 5

10−3 10−2 10−1 100 101
0

20

40

60

80

100

120

140

160

180

200

β

w
av

el
en

gt
h

 

 
Random migration; Rm = 1.5
Random migration; Rm = 3
Random migration; Rm = 5

Fig. 8.10 Average wavelength as a function of β (the exponent of the strategy update rule) for
several βm (the exponent of the noisy migration rule) with opportunistic migration for Rg = Rm =
1.5, b1 = −1.5, b2 = 0.5 (game 1). The frequency of migration is 3/4 in the right image and it
is 1/4 in the left image. The size of the grid is L = 200 and the density ρ is 0.5. In all cases the
initial strategies of the players are randomly attributed. The saturation of the red curve is due to
the wavelength reaching and then overtaking the system size.

[3] Z. Chen, J. Gao, Y. Kai, and X. Xu. Evolution of cooperation among mobile agents.
Physica A, 390:1615–1622, 2011.

[4] R. Cong, B. Wu, Y. Qiu, and L. Wang. Evolution of cooperation driven by reputation-
based migration. PLOS ONE, 7(5):35776, 2012.

[5] R. deForest and A. Belmonte. Spatial pattern dynamics due to the fitness gradient
flux in evolutionary games. Phys. Rev. E, 87:062138, 2013.

[6] C. Hauert, S. DeMonte, J. Hofbauer, and K. Sigmund. Volunteering as Red Queen
mechanism for cooperation in public goods games. Science, 296:1129–1132, 2002.

[7] D. Helbing and W. Yu. The outbreak of cooperation among success-driven individuals
under noisy conditions. Proc. Natl. Acad. Sci. USA, 106:3680–3685, 2009.

[8] J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cam-
bridge, N. Y., 1998.

[9] G. Szabó J. Vukov, A. Szolnoki. Diverging fluctuations in a spatial five-species cyclic
dominance game. Phys. Rev. Lett., 88:022123, 2013.

[10] J. B. C. Jackson and L. Buss. Allelopathy and spatial competition among coral reef
invertebrates. Proc. Natl. Acad. Sci., 72:5160–5163, 1975.

[11] L.-L. Jiang, W.-X. Wang, Y.-C. Lai, and B.-H. Wang. Role of adaptive migration in
promoting cooperation in spatial games. Physical Review E, 81:036108, 2010.

[12] Y. Itoh K. Tainaka. Topological phase transition in biological ecosystems. Europhys.
Lett., 15:399, 1991.

[13] B. Kerr, M. A. Riley, M. W. Feldman, and B. J. M. Bohannan. Local dispersal
promotes biodiversity in a real-life game of rock-paper-scissors. Nature, 418:171–174,
2002.



156 8 The Role of Opportunistic Migration in Cyclic Games

[14] X. Ni, W.-X. Wang, Y.-C. Lai, and C. Grebogi. Cyclic competition of mobile species
on continuous space: pattern formation and coexistence. Phys. Rev. E, 82:066211,
2010.

[15] T. Reichenbach, M. Mobilia, and E. Frey. Mobility promotes and jeopardizes biodi-
versity in rock-paper-scissors games. Nature, 448:1046–1049, 2007.

[16] W. H. Sandholm. Population Games and Evolutionary Dynamics. MIT Press, Cam-
bridge, MA, 2010.

[17] D. Semman, H-J. Krambeck, and M. Milinski. Volunteering leads to rock-paper-
scissors dynamics in a public goods game. Nature, 425:390–393, 2003.

[18] B. Sinervo and C. M. Lively. The rock-scissors-paper game and the evolution of
alternative male strategies. Nature, 380:240–243, 1996.

[19] G. Szabó and G. Fáth. Evolutionary games on graphs. Physics Reports, 446:97–216,
2007.

[20] G. Szabó and C. Hauert. Evolutionary prisoners’s dilemma game with voluntary
participation. Phys. Rev. E, 66:062903, 2002.

[21] G. Szabó, A. Szolnoki, and R. Izsák. Rock-scissors-paper game on regular small-world
networks. J. Phys. A: Math. Gen., 37:2599–2609, 2004.

[22] G. Szabó and J. Vukov. Cooperation for volunteering and partially random partner-
ship. Phys. Rev. E, 69:036107, 2004.

[23] A. Szolnoki, M. Perc, and G. Szabó. Phase diagrams for three-strategy evolutionary
prisoner’s dilemma games on regular graphs. Phys. Rev. E, 80:056104, 2010.

[24] Attila Szolnoki, Zhen Wang, Jinlong Wang, and Xiaodan Zhu. Dynamically generated
cyclic dominance in spatial prisoner’s dilemma games. Phys. Rev. E, 82:036110, 2010.

[25] Z. Wang, A. Szolnoki, and M. Perc. If players are sparse social dilemmas are too:
Importance of percolation for evolution of cooperation. Scientific Reports, 2:369, 2012.

[26] Z. Wang, A. Szolnoki, and M. Perc. Percolation threshold determines the optimal
population density for public cooperation. Phys. Rev. E, 85:037101, 2012.



Chapter 9
Conclusion

In this final chapter, we will try to assess what the contributions of the thesis are, what
problems remain open, and what are the possibilities for further research. We divide the
discussion in five parts. The first part investigate weighted networks and cooperative un-
weighted topologies, the second deals with spatial networks, the third with random and
opportunistic migration for two-strategy games, the fourth part is concerned with oppor-
tunistic migration and three-strategy cyclic games, and in the last section we list open
problems and future research.

9.1 Weighted Networks

Although weighted networks are closer to reality, evolutionary games on complex networks
have been essentially studied on unweighted networks, both for simplicity as well as be-
cause weights in social networks are notoriously difficult to assess, and also owing to the
lack of generally accepted theoretical models of the formation and structure of weighted
social networks. We tried to answer the question by using numerical simulations and sev-
eral methods for assigning weights to links.
The first method for assigning weights was to start from a bipartite graph where the two
sets of nodes represent affiliations and players, and then generate a weighted graph by
discarding affiliations nodes and creating edges between two players with a weight corre-
sponding to the number of affiliations of which both players are members. The starting
graph were a real collaboration graph and a bipartite theoretical network model. In the
real bipartite network case we report that the transition between cooperation and defec-
tion in the ST-plane is smoother than in the unweighted case. This effect indicates that
cooperation and defection coexist. However the main features remain similar with respect
to the unweighted case. This investigation was performed to illustrate the study with a
real-life case but the results cannot be generalized in the absence of a sufficient amount
of statistics on several social networks. In the bipartite formation model, cooperation was
almost identical in the weighted case compared to the same unweighted network.
Then, using random and Barabási-Albert networks, we assigned to each edges a randomly
chosen weight drawn from a random or scale-free distribution. In that case the weights are
assigned to edges independently of the underlying network topology. Again, the results
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are that cooperation levels are similar to those found on the unweighted networks.
The last method for assigning weights was to correlate the weight of an edge with the
degrees of its end points. Unlike in the previous models, the levels of cooperation where
very sensitive to the particular weight-degree correlation used. We used to types of corre-
lations, the first one is given by wij = (kikj)γ and is typical from transportation networks
but not from the available social networks, this rule takes as parameter the cumulated
amplitude of the degrees. The second correlation is given by wij = (|k2

i − k2
j | + 1)γ and

is complementary to the first, this rule takes as parameter the difference between degrees
and can be tuned in order to obtain either assortative or disassortative weights. We found
that for the first rule cooperation was increased between γ = 0.5 and γ = 1. However the
most interesting rule is the second one since high levels of cooperation are observed for
γ > 0. In other words, disassortative weights increase cooperation compared to assortative
weights or to the unweighted network. Furthermore this effect is robust against imitation
noise, since levels of cooperation remained high even with low β, i.e. the inverse noise in
the Fermi rule. This is contrasting with the unweighted Barabási-Albert case where levels
of cooperation decrease with increasing β.
It is interesting to note that the weighted networks can be transformed into new unweighted
topologies which have the same effect on cooperation than the weighted network. Indeed,
in order to find such a topology we discarded the edges having a weight smaller than a
threshold and took the other edges as unweighted. The levels of cooperation obtained on
such a network are as high and even higher than in the weighted case. We investigated
the unweighted topology obtained for the networks with the highest levels of cooperation
in order to understand better how cooperation spreads. We found that the degree distri-
bution is bipartite and the set of hubs is mainly connected to small degree vertices. There
are connections between hubs which are necessary for cooperation to spread and the pro-
portion of low degree nodes connected to several hubs has also an influence on cooperation
levels. We summarized these results by constructing a small network model with two hubs
and a number of small degree vertices. On the other hand, for assortative weights which
lead to less cooperation, the unweighted topology of the networks tends to be divided
into several components. Each small component consists of nodes with similar degrees
and therefore levels of cooperation should be as on a regular random network. However
we observe a smooth transition between cooperation and defection in the ST-plane. The
reason is probably that the component are small and therefore extinction of one strategy,
independently of the game, due to fluctuations or initial conditions is possible.
Finally, since we do not know if this type of degree-weight correlations exists in real net-
works, it might be interesting to perform further investigations provided that more data
are available.

9.2 Spatial Networks

In the second part of the thesis we have studied cooperation on several type of spatial
networks. The initial question was to understand if cooperation could benefit at the same



9.2 Spatial Networks 159

time from spatial clustering and the positive effect of scale-free degree distribution. We
have shown that just imposing a scale-free distribution on a spatial network does not
lead to particularly high levels of cooperation. In fact the phase space is between the one
obtained for a spatial lattice and for a scale-free distribution depending on the scale-free
exponent of degree distribution. However we showed that Apollonian lattice, a scale-free
spatial topology, displays very high levels of cooperation. This topology is very hierarchical,
and is constructed by adding recursively a vertex inside each connected triple of vertices,
starting from a triangle. This type of networks has a high clustering coefficient and a large
average degree gradient between neighbors.
Then we remarked that highly cooperative networks as those found in the previous part
of this thesis, can be naturally embedded in space. The topology that we created might
be interpreted as follows. Hubs and small degree vertices are displayed regularly in space,
each small degree vertex is connected to the closest hub, if several hubs lay at the same
distance or about the same distance the vertex is connected to all of them. On the other
hand neighboring hubs are interconnected. In this way we obtain a topology very similar
to the supercooperative network. We extended also the geometric random graph model in
order to create networks which tend to be similar to the supercooperative ones. Indeed we
display vertices randomly in space and draw, for each vertex, a radius from a distribution
consisting of two different values, one small and one large. Then each vertex i is connected
to a vertex j if j lays at a distance smaller than the sum of their radii. The networks
obtained in such a way display high levels of cooperation for some radius distribution,
although not as high as in the previous one.
Additionally, we modified the imitate the best protocol such that a vertex does not imitate
only the best neighbor, but rather choose a neighbor with probability proportional to the
difference of payoffs. With this update rule, the levels of cooperation tend to be similar to
the imitation of the best case rather than to the replicator rule case or Fermi case. The
difference between these types of rules is that in one case the player chooses a neighbor
randomly before comparing the payoffs of the neighbor with his own payoff, while in the
other cases the player compares all the payoffs in its neighborhood. This led us to the
conclusion that the higher levels of cooperation obtained with the imitation of the best is
not only due to the fact that this rule is purely deterministic but is also a consequence of
the capacity for a player to compare the payoffs of all the neighbors.
We studied also the assortativity of strategies at steady state. Since HD and SH games are
in the anti-coordination and coordination class, they tend to be respectively assortative
and disassortative. In fact, in the SH case the population tends to adopt fully one strategy,
at the transition in the ST plane, both strategies can persist but the configuration is
assortative. We have shown that the effect of the different network topologies is to change
the phase space regions where the games are in the coordination and anti-coordination
class. In fact, on the lattice with high levels of cooperations discussed above, the PD games
are transformed into coordination games.
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9.3 Migration and Cooperation

In chapter 5 we study the coevolution of the strategies with a random migration where
agents move in a continuous space with a fixed velocity magnitude while the direction
of displacement is randomly chosen. Later in the same chapter, we study the case where
the magnitude of the agents speed depends on the degree as a negative exponential. In
this study we use 0.01, 0.001 and 0 as velocity magnitude, or equivalently the distance
crossed by a player at each time step, for a total space size L = 1. Since we use k̄ = 4, 8,
the corresponding interaction radii are RG = 0.0357, 0.0504. Thus the migration ranges,
0.01, 0.001, are small compared to the the interaction radii. In this chapter we remark
that the random migration and the small migration ranges, in particular 0.001 which is
30 times smaller than RG leads to high levels of cooperation. When the speed magnitude
increases up to 0.01 the cooperation levels decrease slightly. Furthermore these high levels
of cooperation are observed with the imitation of the best update rule but not with the
Fermi rule. It is difficult to explain exactly why cooperation spreads in those conditions,
however it can be observed that the some initial clusters of cooperators are formed which
are also somehow isolated subgraphs. Then these cooperative regions extends and coop-
eration seems to be advantaged with the low speed magnitudes. In the case where speeds
depends inversely on the density, i.e. with damping, it appears that more isolated clusters
forms, and cooperative clusters do not extend.

In chapters 6 and 7 we study the evolution of cooperation on diluted grids when the
agents are able to change their strategies and at the same time to test some places around
and move to the most profitable one. We used the values 1.5, 3, 5 for the game and migra-
tion radii which are respectively the radius defining the size of the neighborhood where
the payoffs are computed Rg, and the migration radius Rm. Concerning the strategy up-
dates we used two rules. The first one is the imitation of the best. Results show that
the cooperation levels are higher in the payoff dependent migration case compared to the
random migration case, and cooperation extends to a part of the prisoner’s dilemma quad-
rant in the former case. We obtain also full cooperation in the stag-hunt quadrant. In the
random migration case, when the density is low and the game radius are still relatively
small, agents interact only with few neighbors, which is detrimental for cooperation. On
the other hand, with same setting but a higher game radius, the system tends to the
case where the migration range is small compared to the interaction radius as in chapter
5. Indeed we have Rg = 5, Rm = 1.5 and ρ = 0.1, and the average degree is therefore
k̄ = ρπR2

g = 0.1∗π ∗25 = 7.854. Thus we approach the cases studied in chapter 5, particu-
larly for speed magnitude v = 0.01, and the cooperation levels in the ST-plane are indeed
somehow similar in that specific case.
In the opportunistic migration case the results are generally independent of Rm, but Rg
has an strong influence on cooperation. In fact, as Rg increases above 3 all cooperation is
lost in the prisoner’s dilemma, and it is progressively lost in the stag hunt also. Therefore
the high levels of cooperation obtained with the imitation of the best update rule are only
valid for short interaction radii.
The parameter Ntest is the number of places that a player tests in order to find the best
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one in the neighborhood, it represents the effort that a player spends for searching. We
computed the convergence times as a function of Ntest and found that above Ntest = 4
the convergence times are almost constant as a function of Ntest for Rm = 1.5, 3, 5. Fur-
thermore we displayed the phase space for Ntest = 1, 20 and cooperation was even slightly
higher for Ntest = 1. We concluded that it is not necessary to test systematically all the
places in the neighborhood in order to obtain more cooperation or to shorten the conver-
gence time, but by testing only 4 randomly chosen places we obtained the same results.
When the rate of strategy update tends to be small compared to the rate of migration
update, we observe that for low values of S, gains of cooperation are mostly lost. This
can be explained by the fact that the mobility of the agents is decreased, thus preventing
cooperator clusters to be stable. In the same line of research we studied the case where the
strategies of the agents are fixed, and only the position can change. We observe a increase
of mobility for low S values. However, with the same game settings but for Rg large, we
report that mobility is very high since dynamical clusters with a definite direction of mo-
tion form.
The second update rule was the Fermi one. For β = 1.0 there is only a small shift in the
ST games in favor of cooperation compared to the well-mixed case, and no cooperation in
the prisoner’s dilemma games. In fact results with random migration and Fermi update,
which are not included in this work, show that cooperation is only slightly higher in the
payoff dependent migration case than in the random migration case. On the other hand
something unexpected happened for smaller β. Indeed, as β decreases, the levels of co-
operation increase, and finally cooperation takes the whole phase-space for β < 0.01 and
Rg = 1.5, 3. This is contrasting for example with the random migration case, which is not
displayed in this work, where decreasing β do not lead to higher levels of cooperation.
These high levels of cooperation hold for all Rm, however for high values of Rg the coop-
eration levels tend to those observed in the well-mixed case. Additionally, the payoffs are
also increased for high Rg, since the number of neighbors is higher and this has the same
effect as increasing β.
We explained these high levels of cooperation in the extreme case where imitation is purely
random as follows. Cooperators tend to migrate towards other cooperators and form clus-
ters, while defectors are attracted toward these clusters. When a cluster of cooperator is
formed, cooperation spreads. In fact when a defector arrive at the border of a cooperator
cluster the number of cooperators in its neighborhood is higher than the number of defec-
tors. Then, because of the random imitation, the defector tends to switch to cooperation.
Thus cooperation can spread in all games if the agents migrate opportunistically but sim-
ply imitate a randomly chosen neighbor.
Finally this phenomenon is not restricted to spatial layout. Indeed random imitation could
also improve cooperation when the network is adaptive, i.e. the agents can rewire edges
to other players when they are not satisfied with a neighbor.
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9.4 Migration and Diversity

In chapter 8 we study the effect of opportunistic migration on cyclic games. We use the
same migration update rule as in chapter 7, but with Ntest = 1. We display our results in
the phase space defined by the parameters b1, b2, two positive constants representing the
payoff that a player earns against a player adopting respectively a dominant strategy or
a dominated strategy. As showed in the introduction, in section 1.4.2 for the well-mixed
case, the region where b2 > b1 has a mixed strategy attractor x∗ = (1/3, 1/3, 1/3), while
for b2 < b1 the orbits are repelled from x∗ and are attracted by the borders, which leads
to extinction if the number of players is finite. On a spatial lattice the two types of game
lead to the formation of dynamic spatial regions where players adopt the same strategy.
In this part of the thesis we study diversity and the size of these regions as a function
of the migration type and β, the inverse noise of the Fermi rule. First we study diver-
sity on small lattices with the game phase space defined by b1, b2 ∈ [−1, 1]. Secondly we
study the size of the patterns and restrict to two games in order to take larger system
sizes and keep reasonable computing durations. For the basic case where agents lie on
the site of regular lattice, the transition between the two types of games is smooth for
small game radii. When the game radius becomes larger the phase space is more similar
to the well-mixed case. Our results in the random migration case show that the size of the
patterns is smaller for small Rm and Rg. In the opportunistic migration case with small
Rg the diversity phase space shows that there are some intermediate values of β where
the size of the patterns grows. Thus we studied the size of the patterns as a function of
β for two representative games of the phase space, one with a mixed-strategy attractor
and the other without. The results show that the size of the patterns is peaked for values
of β between 0.1 and 0.01 and for the two game tested. Then we plotted a measure of
the cyclicity and showed that the peak corresponds to a reversal of the cyclicity. In other
words, the dominated strategies spread faster than their respective dominant strategies at
the border between two regions.
In fact the phenomenon is similar to the one observed in our previous study on two-
strategy games and migration. At the borders between two strategy regions, the players
adopting the dominated strategy form clusters since they earn a larger payoff in this con-
figuration than in a configuration where they are more diluted and can be surrounded by
players adopting the dominant strategy. Therefore in the extreme case where imitation is
random the dominated strategy spreads faster because of this clustered configuration. As
β decreases from higher values, there is a point where this phenomenon cancels cyclicity.
For cyclic games in general, without migration, the size of the patterns tends to diverge
when the game is tuned to the point where the cyclic prevalence is cancelled. In our case
the cyclicity is tuned by the payoff dependent migration and β .
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9.5 Open Problems and Further Research

A thesis work cannot pretend to study the subjects presented here extensively. Many
threads remain necessarily open. In this section, we discuss some interesting questions
that would deserve further study. Concerning weighted networks, we found high levels of
cooperation with some types of degree-weight correlations. However these degree-weight
correlations are only hypothesized, therefore the next step could be to search if such corre-
lations exist in real weighted networks, and to find if these real degree-weight correlations
are assortative or disassortative.
Concerning unweighted networks, we found highly cooperative topologies that were derived
from the weighted ones. It would be interesting to systematically optimize the topology
of the networks with respect to cooperation and compare the resulting graphs with these
cooperative topologies. Small network sizes could be used in order to reduce the compu-
tation times.
In general we studied the case where agents have either strategy C or D. However it would
be interesting to investigate the effect of topology when the strategy space is continuous
or approximately continuous, i.e. different levels of cooperation exist. A different but close
case is when each vertex of the network represents a well-mixed population.
Concerning migration, we studied migration on discrete grids where one cell can be occu-
pied by only one player. If several players could live in the same cell the dynamic would
be affected. When only one player can be in a cell, we observe "traffic jams", i.e. players
can not move because there is no more empty places in the neighborhood.
Another alternative migration update is that each agent has a speed vector which is the
sum of the forces exerted by the neighbors. Each force is a vector in the direction of the
neighbor whose amplitude and direction depends on the payoff earned with that neighbor.
In chapter 1.2 we highlighted the importance of feelings and reciprocity in human relation-
ships following [1], where authors also give a payoff functional which takes into account
both social emotions and monetary payoffs in a public goods game. If the game is a two-
player prisoner’s dilemma, the feelings of a cooperator could be anger against defectors,
and self-esteem, gratitude and other positive feelings when the other cooperates. A defector
could feel guilty when playing with a cooperator. Taking this into account the temptation
to defect should be lowered because of guilt. The anger feeling could decrease also the
sucker payoff, and the reward payoff should be increased in order to take into account the
positive emotions. Thus the sucker and temptation payoff tends to be decreased compared
to punishment, and particularly the reward payoff, and the game could be transformed into
a coordination game. In the case where migration is still possible, it seems plausible that
the defectors and cooperators will still try to have cooperators in their neighborhoods and
that cooperators will try to minimize the number defectors in their neighborhood. Thus
the situation could be such that agents migrate according to a prisoner’s dilemma while
the imitation tends to be a coordination game. This might lead to high levels of coopera-
tion as in the case where the agents imitates their neighbors randomly and could be worth
studying, by conveniently adapting the standard update rules.
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