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A B S T R A C T

Purpose: The goals of this study were to assess the performance of a novel lesion segmentation tool for long-
itudinal analyses, as well as to validate the generated lesion progression map between two time points using
conventional and non-conventional MR sequences.
Material and methods: The lesion segmentation approach was evaluated with (LeMan-PV) and without (LeMan)
the partial volume framework using “conventional” and “non-conventional”MR imaging in a two-year follow-up
prospective study of 32 early RRMS patients. Manual segmentations of new, enlarged, shrunken, and stable
lesions were used to evaluate the performance of the method variants. The true positive rate was estimated for
those lesion evolutions in both white matter and cortex. The number of false positives was compared with two
strategies for longitudinal analyses. New lesion tissue volume estimation was evaluated using Bland-Altman
plots. Wilcoxon signed-rank test was used to evaluate the different setups.
Results: The best median of the true positive rate was obtained using LeMan-PV with non-conventional se-
quences (P < .05): 87%, 87%, 100%, 83%, for new, enlarged, shrunken, and stable WM lesions, and 50%, 60%,
50%, 80%, for new, enlarged, shrunken, and stable cortical lesions, respectively. Most of the missed lesions were
below the mean lesion size in each category. Lesion progression maps presented a median of 0 false positives
(range:0–9) and the partial volume framework improved the volume estimation of new lesion tissue.
Conclusion: LeMan-PV exhibited the best performance in the detection of new, enlarged, shrunken and stable
WM lesions. The method showed lower performance in the detection of cortical lesions, likely due to their low
occurrence, small size and low contrast with respect to surrounding tissues. The proposed lesion progression map
might be useful in clinical trials or clinical routine.

1. Introduction

Magnetic resonance imaging (MRI) is used for both Multiple
Sclerosis (MS) diagnosis (Thompson et al., 2018), and longitudinal
evaluation of disease progression and therapy response (Rovira et al.,
2015).

Manual detection and segmentation of longitudinal changes in le-
sions, especially of new and enlarged lesions, including both white
matter (WM) and cortical lesions, is challenging, time-consuming and

often characterized by substantial intra- and inter-variability. Although
several automated MS lesion segmentation methods have been pro-
posed in the past 25 years, their application to time series analyses to
study lesion evolution or disease progression is less frequent (Carass
et al., 2017). Indeed, detection of new lesions, particularly of small size,
or small enlarged areas is challenging, mainly due to partial volume
(PV) effects unavoidable at conventional image spatial resolutions, as
well as to low contrast-to-noise (Fartaria et al., 2017). Moreover, most
of the automated methods were designed to detect lesions in the WM
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(Garcia-Lorenzo et al., 2013) and have rarely been applied to cortical
lesions (Fartaria et al., 2016).

State-of-the-art methods on automated longitudinal analyses of MS
progression can be classified in two main groups: i) lesion segmenta-
tion-based methods; ii) change detection-based methods (Lladó et al.,
2012a). Lesion segmentation-based methods aim at segmenting MS
lesions cross-sectionally in successive MR images and then to compute
volumetric differences between the two time points (Ettinger et al.,
1994; Guttmann Charles et al., 1999; Solomon and Sood, 2004; Aït-Ali
et al., 2005; Köhler et al., 2019). Although any kind of cross-sectional
approach is adaptable to segmentation-based methods, only few groups
have evaluated them in longitudinal scenarios (Carass et al., 2017;
Garcia-Lorenzo et al., 2013; Lladó et al., 2012b). This evaluation was
mainly based on longitudinal volume correlation between times points
within one subject (Carass et al., 2017), lacking the assessment on de-
tection of new and enlarged lesions (Rovira et al., 2015). Change de-
tection-based methods rely on capturing differences in serial MR images
by either using subtraction images or deformation analyses from non-
rigid registration between different time points (Lladó et al., 2012a).
Subtraction techniques evaluate tissue transformations through in-
tensity variations (Lladó et al., 2012a; Moraal et al., 2010; Ganiler
et al., 2014; Marco et al., 2014; Bosc et al., 2003; Jain et al., 2016);
deformation analyses, on the other hand, measure the mass effect on
surrounding tissues due to the deformation caused by lesion enlarge-
ment or shrinkage (Rey et al., 2002). Although these methods ii) are
sensitive to changes in the brain, they do not provide information about
stable lesions and often show a considerable number of false positives
due to noise, registration errors, or image artefacts.

In this work, we propose a strategy for longitudinal analysis of MS
lesions based on a combination of lesion-segmentation and change-
detection based approaches. Thus, the purpose of our study was to as-
sess the performance of the partial-volume aware lesion segmentation
tool, LeMan-PV, for longitudinal analyses (Fartaria et al., 2016; Fartaria
et al., 2017; Fartaria et al., 2018), to evaluate the value of non-con-
ventional MR sequences, and to propose a method for generation of a
lesion progression map between two time points.

2. Material and methods

2.1. Subjects

Thirty-two RRMS patients underwent MR imaging at baseline (first
time point, TP1, as previously reported in (Fartaria et al., 2016; Fartaria
et al., 2018)) and after two years follow-up (second time point, TP2;
follow-up time: 21.4 ± 2.5months, range 16–27months) in this pro-
spective study. This patient cohort consisted of 18 females and 14 males
with age 35 ± 9.9 years (mean ± standard deviation, range
20–60 years) at TP1. All patients were < 6 years from initial symptoms
(32 ± 21.6 months, range 3–70months) and disease diagnosis
(26 ± 19.3 months, range 0–59months) at TP1. Thirty patients has
been under immunomodulatory treatment (high dosage interferon beta
or fingolimod) for at least 3 months. No patient had received corticos-
teroid therapy within the 3months preceding the enrolment. No sig-
nificant evolution of the expanded disability status scale (EDSS) was
measured over the two years (median EDSS: 1.5, range 1.5 to 2.5). MR
images from twenty age-matched (33 ± 9.3 years, range 20–60 years)
healthy controls, 12 females and 8 males, were also acquired at TP1
(see Table 1).

The imaging was performed between January 2012 and November
2014. The study was approved by the Ethics Committee of our in-
stitution, and all the subjects gave written informed consent prior to
participation.

2.2. MRI

The MRI acquisitions were performed on a 3 T MRI (MAGNETOM

Trio a Tim system, Siemens Healthcare, Erlangen, Germany) equipped
with a 32-channel head coil. The imaging protocol consisted of MP-
RAGE, MP2RAGE, 3D FLAIR, and 3D DIR with a spatial resolution of
1×1×1.2mm3 (see Table 2). In this work, we considered MPRAGE
and FLAIR as “conventional” sequences once they are currently estab-
lished in clinical protocols. MP2RAGE and DIR were considered as
“non-conventional” sequences since they are mainly used for research
purposes. From the MP2RAGE acquisitions, we used only the homo-
geneous T1-weigthed contrast (“uniform image”) (Marques et al.,
2010).

2.3. Manual segmentation

Two experts - one radiologist and one neurologist, 10 and 6 years of
experience, respectively - identified and marked fully blinded WM and
cortical lesions on FLAIR, MP2RAGE, and DIR by consensus in two
separate sessions (one for patients TP1 together with the healthy con-
trols cohort, and one for patients TP2). Cortical lesions were identified
according to the criteria defined by the recommendations by Geurts
et al. (2011). A trained technician delineated each identified lesion in
each image contrast. Lesions that were marked only by one rater were
re-evaluated by both experts and excluded or included according to a
final consensus. Finally, the delineations obtained from the different
contrasts were registered to MP2RAGE space and merged into a single
mask which we considered the most comprehensive representation of
lesion load per patient in both time points (Kober et al., 2012; Bonnier
et al., 2014; Bonnier et al., 2015). Based on this single mask per time
point, both time points were compared and lesions classified, by the
same technician, in one of the following four categories (based on cri-
teria by (Moraal et al., 2010)):

• New: lesion identifiable on the TP2 image but not on the TP1 image;

• Enlarged: lesion diameter in TP2 increased by at least 50% with
respect to TP1;

• Shrunken: lesion diameter in TP2 decreased by at least 50% with
respect to TP1;

• Stable: any lesion that does not fall into any of the above criteria.

The lesion masks with longitudinal information (longitudinal lesion
mask) were finally reviewed and corrected (if necessary) by consensus
from the same experts and considered as reference. Lesion volume and
count per each lesion type were computed for WM and cortical lesions
based on the longitudinal lesion mask. Minimum lesion size was de-
rived from the median lesion size found in the cohort of healthy con-
trols (Grahl et al., 2017). Disease activity was measured according to

Table 1
Study population: demographic and clinical information. SD: standard-devia-
tion.

Patients (time
point 1)

Patients (time
point 2)

Healthy controls
(time point 1)

Demographics
# Subjects 32 32 20
Age: mean ± SD 35 ± 9.9 37 ± 10.0 33 ± 9.3
(range) [years] (20–60) (22–62) (20–60)
Sex (female/male) 18/14 18/14 12/8
Disease
1st relapse:

mean ± SD
32 ± 21.6 53 ± 21.2 —

(range) [months] (3–70) (25–90)
Diagnosis:

mean ± SD
26 ± 19.3 48 ± 18.9 —

(range) [months] (0–59) (20–81)
EDSS: median (range) 1.5 (1.5–2.5) 1.5 (1.5–2.5) —
Follow-up
Time: mean ± SD 21.4 ± 2.5 –
(range) [months] (16–27)
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the presence or absence of new or enlarged T2 hyperintense lesions
(Giovannoni et al., 2017; Stangel et al., 2015). In this particular study,
the disease was considered active in patients with at least one new or
enlarged T2 hyperintense lesion. Patients with no new and/or enlarged
lesion were considered patients with inactive disease.

2.4. Proposed methods

We assessed the following methods:

• LeMan: a supervised approach based on the kNN classifier trained
using a set of features obtained from the images and atlas-based
prior probability maps of the two brain tissues (WM and GM), and
CSF (Fartaria et al., 2016).

• LeMan-PV: a Bayesian partial volume estimation algorithm (Fartaria
et al., 2018), where spatial constraints for GM and lesions are in-
cluded to drive the segmentation (Fartaria et al., 2017). The spatial
constraint for GM is an atlas-based probability map, and the spatial
constraint for lesions is derived a priori from the supervised ap-
proach described above.

2.5. Lesion progression map

In addition, we proposed the lesion progression map, a binary mask
that shows areas of new lesional tissue located in the WM and cortex,
i.e. new WM and cortical lesions and enlarged parts of existing WM and
cortical lesions. This longitudinal extension that can be applied to both
LeMan and LeMan-PV, consisting of the following steps:

1. TP1 and TP2 images previously submitted to pre-processing steps
including N4 bias field correction and intensity normalization (see
(Fartaria et al., 2016) for details) from each contrast were rigidly
registered to MP-RAGE TP2 (Klein et al., 2010).

2. [TP2] – [TP1] difference images were computed for FLAIR and DIR
images. [TP1] – [TP2] difference images were computed for
MPRAGE and MP2RAGE images.

3. A “joint difference image” was obtained by summing up and nor-
malizing by the maximum value the available difference images. In
this study FLAIR/MPRAGE and DIR/FLAIR/MP2RAGE joint differ-
ence images were obtained for the “conventional” and “non-con-
ventional” protocols, respectively.

4. Lesion concentration maps (LeMan-PV output) or binary lesion
masks (LeMan output) from TP2 were overlaid on the “joint dif-
ference image”. Voxels identified as lesions in the concentration
maps or binary lesion masks that have an intensity in the joint dif-
ference image higher than a certain threshold were considered as
new lesion tissue. The threshold was automatically set as the value
that maximized the Dice similarity coefficient between the outcome
of the thresholding operation and the manual segmentations.

5. As a final step, voxels classified as new lesional tissue were binarized
and a lesion progression map containing new and enlarged fractions
of lesions was created.

An overview of this extension of the pipeline using the “conven-
tional” imaging set is presented in Fig. 1. The total processing time per

case, including the computation of the lesion progression map, was
approximately seven minutes on a computer with a 3.40 GHz processor
and 16.0 GB RAM.

2.6. Evaluation of lesion detection

As lesion count is the main MRI biomarker used for MS diagnosis

Table 2
MRI protocol.

MPRAGE MP2RAGE 3D FLAIR DIR

VS, mm3 1.0× 1.0× 1.2 1.0× 1.0× 1.2 1.0× 1.0×1.2 1.0×1.0×1.2
FOV, mm3 256×240×160 256×240×176 256×240×176 256×240×160
AT, min 5:12 8:22 6:27 12:52
TR, ms 2300 5000 5000 10,000
TE, ms 2.98 2.89 394 218
TI, ms 900 700/2500 1800 450/3650

Fig. 1. Schematic diagram representing the computation of the lesion pro-
gression map (mask of new and enlarged fractions of lesions) using the “con-
ventional” protocol: MPRAGE and 3D FLAIR. The pre-processing step relies on
registration, bias field correction and intensity normalization as described in
(Fartaria et al., 2016). The segmentation algorithm is our proposed partial
volume aware algorithm that outputs the lesion concentration map (see
(Fartaria et al., 2017; Fartaria et al., 2018) for details).

M.J. Fartaria, et al. NeuroImage: Clinical 23 (2019) 101938

3



(Rovira et al., 2015), the performance of the algorithm was first eval-
uated in terms of lesion detection by computing the true positive rate
(TPR) and the number of false positives (FP). TPR is thereby defined as
the ratio of automatically detected lesions that overlap with lesions in
the reference, and the total number of lesions in the reference (Styner
et al., 2008). TPR was estimated for WM and cortical lesions for each
longitudinal lesion category (new, enlarged, shrunken, and stable) for
LeMan and LeMan-PV using “conventional” and “non-conventional”
MRI contrasts. The number and the size of missed lesions were com-
puted in each longitudinal lesion class.

In addition, we computed the number of FP in the lesion progression
map to evaluate the misclassifications of new and enlarged lesions,
since in clinical follow-up there is a low tolerance for misclassifications
of this particular type of lesions.

2.7. Comparison of lesion progression map and other quantification
approaches

To evaluate the gain of using the proposed extension of the algo-
rithm, we compared the number of FP from the lesion progression map
with two commonly used strategies to compare two different time
points. The first strategy consisted of a simple comparison of LeMan-PV
concentration maps in TP1 and TP2 (“segmentation-based strategy”),
computing new and enlarged lesions according to lesion volume
changes between the two time points (Ettinger et al., 1994). The second
comparison strategy was inspired by Ganiler's work (Ganiler et al.,
2014) and consisted of applying a threshold on the joint difference
image to detect new and enlarged fractions of enlarged lesions. It
should be noted that both strategies use LeMan-PV as the underlying
segmentation algorithm, but derive the new/enlarged lesion masks
differently. Doing so allowed us to evaluate the added benefit of the
proposed extension of the LeMan-PV algorithm.

2.8. Evaluation of volume estimation

Lesion volume estimation was evaluated for new and enlarged
fractions of lesions by a Bland-Altman plot. This plot represents the
agreement between manual and automatic segmentations of new le-
sional tissue, showing the performance of the proposed approach for
the assessment of disease activity.

2.9. Statistical analyses

TPRs for each longitudinal lesion category were compared for
LeMan and LeMan-PV and for the “conventional” and “non-conven-
tional” sets of sequences using the Wilcoxon signed-rank test. The goal
of this comparison was to evaluate the advantage of modelling partial
volume and using non-conventional MRI on WM and cortical lesion
detection in a longitudinal scenario.

Wilcoxon signed-rank test was also used to compare the FP obtained
from the proposed approach and from the other strategies used in the
literature to compute new and enlarged lesions.

The significant variables were identified with P values below 0.05.

3. Results

3.1. Manual segmentation

Only WM lesions were found in the healthy control cohort. The
median of WM lesion volume in this cohort was 0.006ml (range 0.0012
to 0.1032ml), which was used to define the minimum lesion size in the
patient cohort for both WM and cortical lesions. Consequently, lesions
with volumes lower than 0.006ml (approximately 5 voxels with the
image resolution used here) were excluded from the masks and not
considered for evaluation.

Fig. 2 shows the percentage (y-axis) and the number of new,

enlarged, shrunken, and stable WM (orange numbers) and cortical (blue
numbers) lesions in our follow-up cohort of patients. Overall, stable
WM lesions were more frequent (total number of lesions/average vo-
lume: 691/0.1898 ml) followed by stable cortical lesions, enlarged and
new WM lesions (281/0.1506 ml, 169/0.1733ml, and 60/0.0737ml,
respectively). Enlarged and new cortical lesions (40/0.2661ml, 16/
0.0416ml), and shrunken lesions (41/0.0821ml, and 2/0.102ml for
WM and cortical lesions, respectively) were less frequent in our cohort.

Twenty-three patients appeared to show a positive disease activity
with a median ± median absolute deviation of 0.78 ± 0.67ml and
6 ± 5 for volume and count of new and enlarged lesions, respectively.

3.2. Lesion detection and false positive rate

Except for the shrunken category, detection of WM lesions improved
significantly when the partial volume estimation algorithm (LeMan-PV)
was used with the “non-conventional” protocol (P < .001, Fig. 3)
reaching the best TPRs in each longitudinal lesion category (median
TPR of 87%, 87%, 100%, and 83% for new, enlarged, shrunken, and
stable lesions, respectively).

Although the TPR improved when partial volume was estimated, the
results were not significantly different for new and enlarged lesions
(P= .25).

Except for stable cortical lesions, TPR did not appear significantly
different for new, enlarged and shrunken lesions in the different con-
figurations of the method (P≥ .25). However, the detection of stable
cortical lesions improved (P < .05) when the “non-conventional”
protocol was used. As for WM lesions, the best results in cortical lesion
detection were obtained using the LeMan-PV algorithm with the “non-
conventional protocol (median TPR of 50%, 60%, 50%, 80%, for new,
enlarged, shrunken, and stable lesions, respectively, see Fig. 3).

Overall, the configuration that provided the best TPR (LeMan-PV
with “non-conventional” protocol) showed that missed lesions are
much smaller with respect to the mean lesion size for each longitudinal
category (see Fig. 4). The mean lesion size for missed WM lesions were
0.0240ml, 0.0282ml, 0.0300ml, and 0.0253ml for new, enlarged,
shrunken, and stable lesions, respectively. Missed cortical lesions were
of a bigger mean size: 0.0365ml, 0.0531ml, 0.0174ml, and 0.0323ml
for new, enlarged, shrunken, and stable lesions, respectively.

Examples of WM and cortical lesion segmentations from LeMan and
LeMan-PV obtained using the “conventional” and “non-conventional”

Fig. 2. Stacked bar plot of longitudinal manual segmentation results of WM (in
orange) and cortical lesion (in blue) load, for all types of lesions and for each
lesion category: new, enlarged, shrunken and stable. Numbers next to the bars
represent the number of WM (button number) and cortical (top number) lesions
in our cohort for each lesion category. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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protocols for the different longitudinal lesion categories are presented
in Figs. 5 and 6.

We found that the optimal threshold for the generation of the lesion
progression maps correspond to intensity 0.3 in the normalized joint
difference image. Using the “non-conventional” imaging set, the pro-
posed lesion progression map showed the lowest number of false po-
sitives with a median of 0 (range 0 to 9), against 6 (range 1 to 20), and
20 (range 8 to 90) for segmentation-based, and change detection-based
strategies, respectively. Similar results were obtained when the

“conventional” protocol was used (see Fig. 7). An example of the lesion
progression map obtained using the “conventional” imaging set is
shown for comparison with the outputs from the segmentation-based,
and change detection-based strategies in Fig. 8.

3.3. Lesion volume difference estimation

Fig. 9 shows the results of new lesion tissue volume agreement
between the manual and automatic segmentations by Bland-Altman
plots. The agreement was computed for the different configurations of
the algorithm. Except for one patient, the quantification of new lesion
tissue lies within the deviations, indicating a good agreement with the
ground truth. The best agreement was achieved by LeMan-PV using
either the “non-conventional” (0.01 ± 1.5ml), or “conventional”
protocol (0.01 ± 1.4ml), followed by LeMan with the “non-conven-
tional” protocol (0.01 ± 1.8ml) and LeMan with the “conventional”
(0.4 ± 1.7 ml) protocol.

4. Discussion

In this work, we assessed the performance of the LeMan and LeMan-
PV algorithms on a longitudinal MRI dataset. We also extended the
methods to evaluate disease activity automatically by introducing a
“lesion progression map”, aimed at directly visualising the clinically
relevant information. We performed automatic detection and segmen-
tation of new, enlarged, shrunken and stable lesions located in both WM
and the cortex; in this context it is worth noting that cortical lesions
were recently included in the MS diagnostic criteria (Thompson et al.,
2018) and proved to be an independent predictor of disease progression
(Treaba et al., 2019).

We also evaluated the advantage of modelling PV to detect new
small lesions and to improve the lesion segmentation as well as the
detection of lesion volume changes. Indeed, new lesions may be very
small and therefore susceptible to PV effects. In addition, a precise
segmentation of the lesion boarders is essential to detect volume

Fig. 3. Boxplots of the TPR for all patients for white matter (WML) and cortical (CL) lesions across different longitudinal categories of lesions: new (red), enlarged
(yellow), shrunken (blue), and stable (pink). The x-axis labelled different configurations of the lesion segmentation approach: LeMan (LM, approach without partial
volume estimation); LeMan-PV (LM-PV, approach with partial volume estimation); Results using the “conventional”, and “non-conventional” imaging sets are present
in the darker and lighter grey background, respectively. The crosses in the plots represent outliers in our cohort. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Scatter plot of the volume of missed white matter (WM, orange) and
cortical (blue) lesions for each longitudinal lesion category: new, enlarged,
shrunken and stable. The dashed lines represent the mean lesion volume in each
category according to the ground truth. These results were computed using the
configuration that provided the best true positive rate: LeMan-PV with “non-
conventional” protocol. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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changes, i.e. lesion enlargement or shrinkage.
Our results demonstrate that new, enlarged and stable WM lesion

detection improved when the PV framework and the “non-conven-
tional” MRI, such DIR and MP2RAGE were used. However, the method
showed lower performance when applied to cortical lesion detection in

all lesion categories. Similar to the observations in WM lesions, the TPR
was higher when LeMan-PV with the “non-conventional” protocol was
used, confirming our findings in previous work (Fartaria et al., 2016).
However, this improvement was only significant for stable cortical le-
sions, most probably due to the relatively small number of samples in

Fig. 5. From top to bottom: Axial FLAIR image in a 34-year-old woman; Axial FLAIR image in a 32-year-old man; Coronal FLAIR image in a 39-year-old woman. All
cases are relapsing-remitting MS. FLAIR images are shown for the registered time point 1 (TP1) and the respective time point 2 (TP2). Results from algorithm before
(LeMan) and after (LeMan-PV) applying the partial volume model using the conventional protocol are shown in the 3rd-4th and 5th–6th columns, respectively. The
output of Leman is a binary mask and the output of LeMan-PV is a concentration map. Examples of new, stable, shrunken, and enlarged WM lesions are indicated with
red, pink, blue, and yellow arrows, respectively. Patches of the zoomed area of the different lesion categories in each image contrast (MPRAGE, MP2RAGE, FLAIR,
and DIR) are shown at the bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the other categories (the number of new cortical lesions in the entire
cohort was 16).

The minimum lesion size has a strong influence on detection per-
formance (Fartaria et al., 2016; Fartaria et al., 2018). Yet, there is still

no clear definition of minimum MS lesion size in the literature. Current
criteria are based on 2D sequences suggesting an in-plane diameter of
3mm as the minimum for WM (Polman et al., 2005) and cortical
(Geurts et al., 2011) lesions. This is mainly due to the low resolution in

Fig. 6. From top to bottom: Axial MP2RAGE image in a 24-year-old woman; Axial MP2RAGE image in a 35-year-old man; Coronal MP2RAGE image in a 33-year-old
man. All cases are relapsing-remitting MS. MP2RAGE images are shown for the registered time point 1 (TP1) and the respective time point 2 (TP2). Results from
algorithm before (LeMan) and after (LeMan-PV) applying the partial volume model using the non-conventional protocol are shown in the 3rd-4th and 5th–6th
columns, respectively. The output of Leman is a binary mask and the output of LeMan-PV is a concentration map. Examples of new, stable, shrunken, and enlarged
cortical lesions are indicated with red, pink, blue, and yellow arrows, respectively. Patches of the zoomed area of the different lesion categories in each image contrast
(MPRAGE, MP2RAGE, FLAIR, and DIR) are shown at the bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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these – now considered deprecated – 2D protocols and would amount to
≈0.015ml, i.e. 13 voxels in our 3D acquisitions. However, clinically
relevant new lesions may be smaller than that. Here, we considered a
minimum lesion volume of 0.006ml obtained by evaluating the median
lesion size in a cohort of healthy controls. It should be noted that our
definition of minimum lesion size is considerably lower than in most of
the automated methods for MS lesion segmentation in the literature
(Cabezas et al., 2014; Datta and Narayana, 2013; Guizard et al., 2015;
Sajja et al., 2006; Yamamoto et al., 2010).

All the missed lesions in each longitudinal lesion category were
below the mean lesion size estimated using the ground truth lesion
masks. In our cohort of patients, the mean lesion size for new lesions
was approximately 0.070ml and the mean lesion size for missed new
WM and cortical lesions was 0.024ml and 0.037ml, respectively.

Beyond lesion detection and segmentation, we propose a lesion

progression map as a binary mask showing areas of new lesional tissue,
i.e. new lesions and the enlarged part of existing lesions. These maps
showed a very low number of false positives when compared to seg-
mentation-based and detection-based evaluation strategies. The re-
maining false positives were found on the pons region, due to flow
artefacts common in 3D FLAIR images (Naganawa et al., 2004). The
proposed approach combines segmentation-based and detection based
techniques to reduce the dependency on baseline lesion segmentation
and the sensitivity to noise, registration errors and artefacts.

Furthermore, the Bland-Altman analyses showed the advantage of
using PV estimation, where volumes of new and enlarged fractions of
lesions were close to the ground truth when LeMan-PV was used. The
proposed method showed better results for longitudinal WM lesion
assessment than for cortical lesions regardless whether the “conven-
tional” or the “non-conventional” protocol was used; this is mainly due

Fig. 7. Boxplots of number of new and enlarged false positives using the “conventional” and “non-conventional” protocols from: I) segmentation-based and II) change
detection-based methods, and III) proposed lesion progression map.

Fig. 8. Examples of the proposed lesion progression
map, and output from segmentation-based, and
change detection-based methods. Top row shows the
coronal slices of FLAIR images in a 26-year-old
woman with relapsing-remitting MS at time point 1
(TP1) and time point 2 (TP2), and skull-stripped joint
difference image obtained using the “conventional”
set of images: FLAIR and MPRAGE. Red and yellow
arrows indicate examples of new and enlarged le-
sions, respectively, according to the ground truth.
The bottom row shows the output of new and en-
larged fractions of lesions in yellow, orange, and red
from segmentation-based, change detection based
strategies, and the proposed lesion progression map.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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to the particular size and shape of cortical lesions and their resulting
susceptibility to PV effects on tissue borders, as well as, their low
contrast-to-noise ratio (Fartaria et al., 2017; Fartaria et al., 2016;
Fartaria et al., 2019).

One of the main limitations of this study is the low number of lesion
samples, especially for cortical lesions. As reported in our previous
study (Fartaria et al., 2016), our cohort of early MS patients is char-
acterized by low lesion loads compared to studies reported in the lit-
erature (Garcia-Lorenzo et al., 2013; Datta and Narayana, 2013;
Schmidt et al., 2012; Shiee et al., 2010). This small number of samples
is a disadvantage for the supervised step of our approach (since there is
less training data), which is likely to compromise the performance of
lesion detection. In addition, the number of missed lesions has an ar-
tificially large penalizing effect in metrics like TPR when applied to
patients with low lesion loads. Another limitation is linked to the type
of the data used for the validation of the proposed method. We used the
same consistent protocol and the same scanner for the follow-up ac-
quisitions. It should be noted that this ideal setting cannot always be
achieved in routine clinical practice.

In conclusion, we evaluated the longitudinal performance of LeMan
and LeMan-PV, which are methods designed to detect and segment WM
and cortical lesions. LeMan-PV showed the best performance in de-
tecting new, enlarged, shrunken and stable lesions in the WM. To the
best of our knowledge, our method is the first attempt to segment
cortical lesions, although the lower performance on detection of this
type of lesions leaves room for improvement. We have also developed a

lesion progression map that might be useful in clinical trials or clinical
routine to evaluate disease activity and treatment response.

Future work should aim at including patients in more non-conven-
tional stages, with higher number of samples of cortical lesions in order
to increase the number of examples in the training set, which will im-
prove the detection of lesions located in the cortex. Sophisticated sta-
tistical change techniques (Bosc et al., 2003), and methods based on
deformation fields (Rey et al., 2002) should also be investigated and
combined to LeMan-PV to evaluate their improvements in sensitivity to
new and enlarged lesion detection. We also aim at augmenting the in-
formation from the proposed lesion progression map by adding the
quantification of resolved lesional tissue. Quantification of resolved
lesional tissue is not yet suggested in MS follow-up guidelines (Rovira
et al., 2015), but can provide additional insights on treatment response
in clinical routine. Lastly, an evaluation of the applicability of the
method to images from different scanners and protocols is currently
ongoing. Another work in progress, not yet explored, is to use the
quantitative T1 maps from MP2RAGE (Kober et al., 2012; Marques
et al., 2010). This could improve the robustness of the segmentation
results, especially for longitudinal assessment and multicenter trials due
to the increased independence of quantitative maps from the used
hardware and reconstruction.
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