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ABSTRACT

Seismic waves may exhibit significant dispersion and attenu-
ation in reservoir rocks due to pore-scale fluid flow. Fluid flow
at the microscopic scale is referred to as squirt flow and occurs
in very compliant pores, such as grain contacts or microcracks,
that are connected to other stiffer pores. We have performed
3D numerical simulations of squirt flow using a finite-element
approach. Our 3D numerical models consist of a pore space em-
bedded into a solid grain material. The pore space is represented
by a flat cylinder (a compliant crack) whose edge is connected
with a torus (a stiff pore). Grains are described as a linear iso-
tropic elastic material, whereas the fluid phase is described by
the quasistatic linearized compressible Navier-Stokes momen-
tum equation. We obtain the frequency-dependent effective

stiffness of a porous medium and calculate dispersion and at-
tenuation due to fluid flow from a compliant crack to a stiff pore.
We compare our numerical results against a published analytical
solution for squirt flow and analyze the effects of its assump-
tions. Previous interpretation of the squirt flow phenomenon
based mainly on analytical solutions is verified, and some new
physical effects are identified. The numerical and analytical sol-
utions agree only for the simplest model in which the edge of
the crack is subjected to zero fluid pressure boundary condition
while the stiff pore is absent. For the more realistic model that
includes the stiff pore, significant discrepancies are observed.
We identify two important aspects that need improvement in the
analytical solution: the calculation of the frame stiffness moduli
and the frequency dependence of attenuation and dispersion at
intermediate frequencies.

INTRODUCTION

Seismic methods are widely used for detection and characteriza-
tion of fluid-saturated porous rocks (Yan et al., 2019). Many studies
show that a passing wave loses energy propagating through fluid-
saturated rocks (Mavko and Jizba, 1991; Dvorkin et al., 1995; Pride
et al., 2004; Müller et al., 2008, 2010; Gurevich et al., 2010;
Pimienta et al., 2015a, 2015b). There are several phenomena res-
ponsible for energy loss associated with the pore fluid (Müller et al.,
2010): for example, wave-induced fluid flow in partially saturated
rocks and in fractures at the mesoscopic scale, and squirt flow
in cracks or in grain-to-grain contacts at the pore scale. Rocks are

heterogeneous at all scales and can be described with respect to a
particular scale: the wavelength scale, the mesoscopic scale, and
the pore scale. The wavelength scale obviously refers to the wave-
length of a propagating wave; the mesoscopic scale is much larger
than the size of individual grains and pores but smaller than the
wavelength; the pore scale is of the size of individual grains, pores,
and microcracks. Here, we identify fractures as discontinuities at the
mesoscopic scale and cracks as discontinuities at the pore scale.
At the wavelength scale, so-called global flow occurs due to fluid

pressure gradients between peaks and troughs of a passing wave
(Biot, 1956, 1962). At the mesoscopic scale, fluid pressure gra-
dients occur at scales much larger than the pore scale but smaller
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than the wavelength of a propagating wave: For example, flow may
occur between fractures and the porous background of the rock
(Brajanovski et al., 2005; Masson et al., 2006; Masson and Pride,
2007; Rubino et al., 2014; Grab et al., 2017). This wave-induced
fluid flow in fractures at the mesoscopic scale can be described us-
ing the theory of Biot (1956, 1962) assuming heterogeneous
material properties (i.e., soft, highly permeable fractures and stiff,
low-permeability rock matrix). Analytical solutions for mesoscopic
heterogeneities of specific geometries were developed, for example,
by White et al. (1975), White (1975), Pride and Berryman (2003a,
2003b), and Pride et al. (2004).
Fluid flow in cracks at the pore scale (squirt flow) occurs between

cracks and pores of different stiffness, sizes, and orientations. Such
flow is believed to be significant at ultrasonic and sonic frequencies
(Mavko and Nur, 1975) and also at seismic frequencies (Mavko
et al., 2009; Müller et al., 2010). Several experimental studies con-
firmed the importance of squirt flow at different frequency ranges
(Mayr and Burkhardt, 2006; Mikhaltsevitch et al., 2015; Pimienta
et al., 2015a, 2015b; Subramaniyan et al., 2015; Chapman et al.,
2019). An overview of early theoretical studies on squirt flow is
given by Jones (1986).
Simple analytical solutions for squirt flow exist and are based

on interconnected pores with different aspect ratios (O'Connell and
Budiansky, 1977; Palmer and Traviolia, 1980), on the connection of
a compliant crack and a stiff pore (Murphy et al., 1986; Mukerji and
Mavko, 1994; Dvorkin et al., 1995; Pride et al., 2004; Gurevich
et al., 2010) or on the connection of small-aspect-ratio cracks
and spheroidal pores (Xu, 1998; Chapman et al., 2002; Chapman,
2003; Jakobsen and Chapman, 2009). In real rocks, examples of
compliant pores are microcracks and grain contacts. The low- and
high-frequency limits of the stiffness moduli in such media when
saturated with a liquid are reasonably well understood (Gassmann,
1951; Mavko and Jizba, 1991; Gurevich et al., 2009b; Mavko et al.,
2009). However, the frequency-dependent behavior of velocity
and attenuation at intermediate frequencies is not fully understood.
Numerically, squirt flow can be studied by simulating the coupled
fluid-solid deformation at the pore scale, which is a difficult exer-
cise from a computational point of view. A few numerical ap-
proaches appeared in the literature (Zhang and Toksöz, 2012;
Quintal et al., 2016, 2019; Das et al., 2019). The very recent study
by Das et al. (2019) simulates the coupled fluid-solid deformation
at the pore scale, including inertial and nonlinear terms in the
Navier-Stokes equation.
The wavelength of a passing wave is much larger than the size

of individual cracks and pores; therefore, wave propagation is
controlled by effective rock properties. Squirt flow is frequency-
dependent; thus, effective frequency-dependent stiffness moduli re-
present volume-averaged rock properties. This is called upscaling
(going from the microscale to larger scales through averaging).
We calculate the effective stiffness tensor over a representative
elementary volume and analyze the corresponding stiffness moduli
dispersion and attenuation. Our numerical simulation is based
on the approach proposed by Quintal et al. (2016, 2019). This
numerical approach describes rock matrix properties using Hooke’s
law and the fluid flow using the quasistatic linearized compressible
Navier-Stokes momentum equation, and then, through volume
averaging, calculates the effective viscoelastic stiffness tensor. We
compare our numerical results with those of an analytical solution
for squirt flow in anisotropic media (Collet and Gurevich, 2016).

We choose this particular analytical solution because it uses very
specific material properties (e.g., pore-space geometry, elastic prop-
erties of the background medium, crack compliances, porosity, and
fluid viscosity) without adjusted abstract parameters, so that the
direct comparison with the numerical results is possible. The aim
of this work is to (1) numerically evaluate the energy loss caused by
squirt flow at the pore scale for a specific 3D pore geometry (a torus
connected to a crack) and (2) compare the numerical results against
a published analytical solution to examine the assumptions made
during the derivation of this analytical solution. Our conclusions
can also be applied to the analytical solution for squirt flow in iso-
tropic media proposed by Gurevich et al. (2010).
The paper is organized as follows. First, we briefly describe the

physics behind the squirt flow mechanism. We then describe the
theory and methodology of the numerical solution. After, we briefly
explain the analytical solution by Collet and Gurevich (2016).
Next, we show the numerical results and the comparison with the
analytical solution. Finally, we discuss the results and draw some
conclusions.

A BRIEF OVERVIEW OF THE PHYSICS

Squirt flow causes seismic wave dispersion and attenuation due
to the energy dissipation caused by fluid pressure diffusion at the
pore scale. Assume that the pore space consists of big isometric
pores and cracks with low aspect ratios, pores and cracks are fully
saturated with a liquid. Cracks are much more compliant than iso-
metric pores; therefore, a passing wave induces pressure gradients
in compliant cracks. These pressure gradients force fluid to move
between compliant cracks and stiff isometric pores until the pore
pressure equilibrates. Due to the fluid’s viscosity and associated
viscous friction, this mechanism causes strong energy dissipation.
Here are some useful definitions: “rock matrix” or “porous back-
ground” refer to grains and pores; “frame” refers to grains, pores,
and cracks; and “modified frame” refers to grains, pores, and cracks
saturated with a liquid while pores are dry.

Low frequencies

In the low-frequency regime, the fluid pressure has enough time
to equilibrate during a half-cycle of the wave and become uniform
throughout the pore space; therefore, Gassmann’s equations are
valid (Gassmann, 1951). This is called the relaxed state. Only a few
parameters are needed to calculate the effective properties of the
rock in the low-frequency limit: the bulk modulus of the grains, the
bulk modulus of the drained frame, the bulk modulus of the fluid,
and the total porosity. Then, isotropic or anisotropic Gassmann’s
equations can be used to calculate the effective elastic moduli of
the saturated medium. Typically, the relative volume of cracks is
very small (i.e., two orders of magnitude smaller compared with
the volume of the stiff pores); therefore, in Gassmann’s equations,
only the porosity of the stiff pores can be used instead of the total
porosity (Mavko and Jizba, 1991; Gurevich et al., 2010).

High frequencies

In the high-frequency regime, the fluid pressure does not equili-
brate between cracks and stiff pores during a half-wave cycle.
Furthermore, for cracks with very low aspect ratios saturated with
a liquid, the normal crack compliance is equal to zero (but not the
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tangential compliance). Therefore, cracks become stiffer with re-
spect to normal deformation. In other words, cracks behave as hy-
draulically isolated and are stiffened by the liquid. This is called
unrelaxed state. The fluid in the cracks is assumed to be part of
the frame material (Mavko and Jizba, 1991).
Isotropic or anisotropic Gassmann’s equations can be used to cal-

culate the effective elastic moduli of the saturated medium, but the
frame moduli are stiffer compared with those at the low frequency
because the normal crack compliance is negligible. Gassmann’s
equations are still valid because the pore pressure is uniform in all
stiff pores. Thus, the effective elastic moduli are different in the
high-frequency regime from those in the low-frequency regime.

Intermediate frequencies

At intermediate frequencies, a quantitative description of the
physics becomes more complicated. Roughly, during the transition
from a relaxed state to an unrelaxed state, the pressurized fluid
stiffens the cracks as frequency increases. Therefore, this frequency-
dependent stiffening phenomenon also stiffens the effective stiffness
moduli. This nonlinear stiffening effect is difficult to model analyti-
cally. The present numerical study sheds some light on this problem
and provides a quantitative description on the frequency-dependent
behavior of the moduli dispersion and attenuation.

MATHEMATICAL FORMULATION

We consider that at the pore scale, a rock is composed by a solid
phase (grains) and a fluid-saturated pore space. Grains are described
as a linear isotropic elastic material for which the conservation of
momentum is

∇ · σ ¼ 0; (1)

where σ is the stress tensor and ∇ · denotes the divergence operator
acting on a tensor field σ. The stress-strain relation is written as

σ ¼ C∶ϵ; (2)

where ϵ is the strain tensor, C is the fourth rank stiffness tensor, and
: denotes the double dot product. For an isotropic material, the com-
ponents of the stiffness tensor can be fully described by the bulk K
and shear μ moduli.
The fluid phase is described by the quasistatic linearized com-

pressible Navier-Stokes momentum equation (Landau and Lifshitz,
1959):

−∇pþ η∇2vþ 1

3
η∇ð∇ · vÞ ¼ 0; (3)

where v is the particle velocity, p is the pressure, η is the shear vis-
cosity, and ∇ denotes the nabla operator acting on vector v and sca-
lar p fields. Equation 3 is valid for the laminar flow of a Newtonian
fluid (i.e., low Reynolds numbers Re, Re < 1).

NUMERICAL METHODOLOGY

For the numerical simulation, we solve the conservation of mo-
mentum equation 1 in the frequency domain for the solid and fluid
phases and the generalized stress-strain relation resulting from
combining equations 2 and 3 (Quintal et al., 2016, 2019). Thus,

the stress-strain relation in the temporal-frequency domain is (in
index form):

σij ¼ λeδij þ 2μϵij þ iω

�
2ηϵij −

2

3
ηeδij

�
; (4)

where ϵij are the components of the strain tensor,

ϵij ¼
1

2

�
∂ui
∂xj

þ ∂uj
∂xi

�
; (5)

where e is the trace of the strain tensor, λ and μ are the Lamé
parameters, ui denotes the displacement in the ith direction, δij is
the Kronecker delta, and ω is the angular frequency.
Equations 1 and 4 are implemented into a finite-element solver.

In the domain of the model representing a solid material, equation 4
reduces to Hooke’s law (equation 2) by setting the shear viscosity η
to zero. Similarly, in the domain of the model representing a
compressible viscous fluid, the shear modulus μ is set to zero,
and hence equations 4 and 1 reduce to the linearized compressible
Navier-Stokes equation (equation 3). An advantage of the proposed
formulation is the natural coupling between the solid and fluid dis-
placements at the boundaries between subdomains (Quintal et al.,
2016). In our simulation, the energy dissipation is caused only by
fluid pressure diffusion because inertial effects are neglected.
The whole domain is discretized using an unstructured mesh

with tetrahedral elements. A direct PARDISO solver (Schenk and
Gärtner, 2004) is used for solving a linear system of equations. For
all models, the total number of elements ranges from 4.3 × 106 to
6.3 × 106. The total number of degrees of freedom is 17 × 106 or
more. The simulation is performed for 13–25 different frequencies
(depending on the model) from 1 to 106 Hz. For each frequency,
the solver uses approximately 0.9 TB of RAM memory. Under a
100% performance of 32 Intel dual-socket E5-2683 v4 2.1GHz
cores, 2 h of calculations are needed for each frequency.
Direct relaxation tests are performed for numerically computing

the five independent components of the effective stiffness tensor.
Only five components are needed because the symmetry of the pro-
posed geometry is transversely isotropic with the vertical axis of
symmetry (VTI) (the model’s geometry is explained below). For
simplicity purposes, we use Voigt notation for the stress, strain,
stiffness, and compliance tensors. For the normal compression test,
in the vertical z-direction (C33 component), the boundary conditions
are as follows: At the top boundary, a vertical displacement is as-
signed of the form u3 ¼ 10−6 × expðiωtÞ; at the bottom, the vertical
displacement is set to zero; at the side boundaries, the normal dis-
placement is set to zero. For the xy shear test (C66 component), the
top boundary is assigned a displacement in x-direction of the form
u1 ¼ 10−6 × expðiωtÞ; at the bottom, all displacements are set to
zero; at the side boundaries, displacements in y- and z-directions
are set to zero. Equivalent sets of boundary conditions are applied
to obtain the relationships between the other stress and strain com-
ponents and, hence, the C11, C44 components. For the C13 compo-
nent, a mixed direct test is used, the corresponding boundary
conditions are given in Appendix A. The initial conditions for dis-
placements are set to zero. The resulting stress and strains are aver-
aged over the entire spatial domain for each frequency. Then, the
complex-valued CijðωÞ component is calculated for each frequency.
For example,
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C33ðωÞ ¼
hσ3ðωÞi
hϵ3ðωÞi

; (6)

where h·i represents the volume averaging over the sample volume.
Equation 6 is valid because all our models exhibit VTI symmetry.
We calculate the C11ðωÞ, C22ðωÞ, C44ðωÞ, C66ðωÞ, C12ðωÞ ¼
C11ðωÞ − 2C66ðωÞ components in the same way. The inverse qual-
ity factor is calculated as (O’Connell and Budiansky, 1978)

1

QijðωÞ
¼ ImfCijðωÞg

RefCijðωÞg
: (7)

ANALYTICAL SOLUTION OF
COLLET AND GUREVICH (2016)

In this study, we compare the results of our numerical simulation
against an anisotropic version of the squirt flow analytical solution
of Gurevich et al. (2010) proposed by Collet and Gurevich (2016).
These squirt flow solutions combine the pore pressure relaxation
model of Murphy et al. (1986) with the discontinuity tensor formu-
lation of Sayers and Kachanov (1995). Collet and Gurevich (2016)
consider a double-porosity medium with aligned identical cracks
embedded in a hypothetical background rock matrix made up of
grains and stiff pores only (see also Pervukhina et al., 2010). This
anisotropic squirt flow solution, contrary to our numerical method,
assumes (A) an isotropic rock matrix embedding the cracks (we
extend that assumption to a rock with a transversely isotropic
background) and (B) a smaller crack aspect ratio, in the range of
10–3–10–5 (we show that the crack aspect ratio can be larger).
In the Collet and Gurevich (2016) model, low- and high-

frequency limits are expected to be consistent with the Gassmann
and Mavko-Jizba (Mavko and Jizba, 1991) equations, respectively,
and the frequency dependence is controlled by a frequency-
dependent effective fluid bulk modulus K�

fðωÞ of the fluid filling
the crack (Gurevich et al., 2010). The crack is fully described in
terms of normal and tangential compliances, Zn and Zt, respectively
(Kachanov, 1993; Sayers and Kachanov, 1995; Schoenberg and
Sayers, 1995). They consider the so-called modified frame in which
only the cracks are filled with fluid, whereas the stiffer pores are
empty (Mavko and Jizba, 1991). In the low-frequency limit, the re-
laxed moduli of the modified frame are equal to the rock dry moduli
(which means that Zmf

n ¼ Zn); whereas in the high-frequency limit,
the fluid in the cracks stiffens the frame and the unrelaxed moduli of
the modified frame are equal to the dry moduli of the rock without a
compliant porosity (which means that Zmf

n ¼ 0, i.e., without a
crack) (Mavko and Jizba, 1991; Berryman, 2007; Gurevich et al.,
2009b).
In the analytical solution of Collet and Gurevich (2016), the

frequency-dependent compliance tensor of the modified frame is
written as (for a horizontal transversely isotropic [HTI] medium)
(Kachanov, 1993; Sayers and Kachanov, 1995; Schoenberg and
Sayers, 1995):

SMF
mn ðωÞ ¼ Sbmn þ ΔSMF

mn ðωÞ; (8)

where Sbmn is the compliance tensor of the rock matrix andΔSMF
mn ðωÞ

is the additional compliance due to the crack (Schoenberg and
Helbig, 1997):

ΔSMF
mn ðωÞ ¼

2
66666664

ZMF
n ðωÞ 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Zt 0

0 0 0 0 0 Zt

3
77777775
: (9)

The frequency-dependent normal fracture compliance is

ZMF
n ðωÞ ¼ Zn

1þ Zn
ϕcð1∕K�

fðωÞ−βmfÞ
; (10)

where ϕc is the compliant porosity (crack porosity), Zn is the nor-
mal compliance of the crack, and βmf is the compressibility of the
modified frame (the arithmetic average). Equation 10 differs
slightly from the corresponding equation in Collet and Gurevich
(2016), which erroneously contained the compressibility of the
grain material βg instead of βmf . However, our calculation shows
that the corresponding error has a very small effect on the effective
properties: adding or subtracting 30% from βmf in equation 10 leads
to less than 5% effect on the effective properties.
Gurevich et al. (2010) show that the stiffness of the crack can be

described using a frequency-dependent fluid bulk modulus K�
fðωÞ:

K�
fðωÞ ¼

�
1 −

2J1ðkaÞ
kaJ0ðkrÞ

�
Kf; (11)

where Jξ is Bessel function of the first kind (ξ ¼ 0 or ξ ¼ 1 cor-
respond to the zero- or first-order Bessel function), Kf is the fluid
bulk modulus, a is the radius of the crack, and k is the wavenumber
of the pressure wave:

ka ¼ 1

α

�
−
3iωη
Kf

�
1∕2

; (12)

where α is the aspect ratio of the crack (thickness h divided by
diameter: h∕ð2aÞ) and η is the viscosity of the fluid. Equations 11
and 12 were obtained by imposing a zero fluid pressure boundary
condition (Pf ¼ 0) at the edge of the cylindrical crack (Gurevich
et al., 2010).
The frequency-dependent stiffness tensor of the fluid-saturated

medium is given by the anisotropic Gassmann’s equation (Gassmann,
1951):

Csat
mnðωÞ ¼ CMF

mn ðωÞ þ αmαnM (13)

αm ¼ 1 −
�X3

n¼1

CMF
mn

�
βg∕3 (14)

for m ¼ 1; 2; 3 and α4 ¼ α5 ¼ α6 ¼ 0, and where

M ¼ ðφβf þ ð1 − φÞβg − K�β2gÞ−1; (15)

K� ¼ 1

9

X3
m¼1

X3
n¼1

CMF
mn ðωÞ; (16)
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where φ is the total porosity of the medium without the compliant
porosity (which is neglected because the compliant porosity is two
or more orders of magnitude lower than the stiff pore’s porosity),
K� is the generalized bulk modulus of the modified frame, βf is the
compressibility of the fluid, αm is the Biot-Willis coefficient, and βg
is the compressibility of the grain material. The effective trans-
versely isotropic stiffness matrix can be written for horizontal (HTI)
and vertical (VTI) symmetry axis (see Appendix B). The resulting
VTI stiffness matrix is used to compare the analytical solution with
results from numerical simulations.

RESULTS

Wemodel coupled solid-fluid deformation at the pore scale. In this
study, we consider three 3D numerical models consisting of a pore
space embedded in an elastic solid grain material. The pore spaces are

1) a flat cylinder (crack), whose edge (or tip of the crack) is sub-
jected to zero fluid pressure boundary condition (the Pf ¼ 0

model, Figure 1a and 1b)
2) a flat cylinder whose edge is connected to a big torus (the big

pore model, Figure 1c and 1d)

3) a flat cylinder whose edge is connected to a small torus (the
small pore model, Figure 1e and 1f).

Topologically, a flat cylinder whose edge is connected to a big/
small torus represents one domain. The model geometry 1 with zero
fluid pressure boundary condition is chosen because it represents
the analytical solution of Collet and Gurevich (2016). Originally,
the model geometry in 2 and 3 was proposed by Murphy et al.
(1986). Then, this was modified by Gurevich et al. (2010) and
Collet and Gurevich (2016) to the pore geometry in 1, where the
shape of the stiff pores is irrelevant (which means that a torus is
a possible choice). Each of these three 3D numerical models high-
lights different physical aspects of the squirt flow mechanism. The
used fluid properties are those of glycerol, and the grain material has
properties of quartz (Table 1). Geometric properties are shown in
Table 2. As shown in Table 2, the crack diameter is 20 cm, and
the crack thickness is 0.05 cm; therefore, the crack aspect ratio
is 0.5∕200 ¼ 0.0025. The model geometry is scalable; i.e., if all
geometric parameters are divided or multiplied by any number, the
numerical results will be the same. The results are controlled by the
dimensionless aspect ratio.
The mesh is coarse in the solid domain, finer in the torus, and

the finest in the flat cylinder representing the crack. Due to the

Figure 1. The Pf ¼ 0 model: (a) Sketch illustrating a flat cylinder representing a crack with fluid pressure equal to zero at the edge. The blue
region represents the pore space saturated with a fluid, and the transparent gray area corresponds to the solid grain material. (b) Sketch showing
a quarter of the model. Big pore model: (c) Sketch illustrating a flat cylinder representing a crack whose edge is connected to a torus rep-
resenting a stiff pore. The blue region represents the pore space saturated with a fluid, the transparent gray area corresponds to the solid grain
material. (d) Sketch showing a quarter of the model. Small pore model: (e) Sketch illustrating a flat cylinder representing a crack whose edge is
connected to a small torus representing a stiff pore. The blue region represents the pore space saturated with a fluid, and the transparent gray
area corresponds to the solid grain material. (f) Sketch showing a quarter of the model.
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model’s symmetry and RAM memory limitations, the simulations
are performed on a quarter of the model (Figure 1b, 1d, and 1f),
a cuboid (grain material) whose size is ð0.2 × 0.2 × 0.2Þ m3. In all
simulations, the grain is described as a linear elastic solid material
(equations 1 and 2), and the fluid is described as a compressible
Newtonian fluid (equation 3).

The Pf � 0 model

Numerical solution

We consider a 3D numerical model of a flat cylinder embedded in
the grain material (Figure 1a and 1b). Besides the boundary con-
ditions applied to the external walls of the cubic model, the tip
of the crack is subjected to a zero fluid pressure boundary condition
(Pf ¼ 0). This specific boundary condition corresponds to that of
the analytical solution proposed by Collet and Gurevich (2016). By
applying this Pf ¼ 0 boundary condition, we simulate the condi-
tions in which the crack is filled with the liquid, whereas a virtual
stiff pore acts as a sink for the fluid flow from the crack but, at
the same time, has the grain material properties. The total porosity
of the model is equal to the crack porosity. The proposed geometry
belongs to the VTI symmetry class. Figure 2 shows the whole
model domain discretization using an unstructured mesh with tetra-
hedral elements. The colors represent the element’s size. The mesh
is coarse in the grain (the elements sizes are 0.038–0.008 m) and the
finest in the cylinder (the elements sizes are 0.00025–0.00015 m).
Because the fluid flow and, thus, the dissipation take place inside
the crack, a fine, regular mesh is compulsory there, whereas in the
grain material, the mesh can be much coarser. The corresponding
numerical results are shown in Figure 3.

Analytical solution

To obtain the results from the anisotropic squirt flow model of
Collet and Gurevich (2016), a crack embedded into an isotropic
background (grain material) can be described in terms of the normal
and tangential compliances of the crack Zn and Zt, respectively.
These parameters are calculated numerically using the following
approach: The dry crack is embedded into the isotropic solid grain
material, and the effective compliance tensor is calculated numeri-
cally (SVTIcrack compliance tensor). Then, we calculate the difference
between the SVTIcrack and the grain material SVTIgrain compliance tensors.
In the resulting compliance matrix, only the S(3,3), S(4,4), and
S(5,5) components are nonnegligible. Thus, Zn ¼ Sð3; 3Þ and

Zt ¼ Sð4; 4Þ ¼ Sð5; 5Þ. Using equations 8–16,
the effective stiffness tensor is calculated, which
then is transformed from HTI to VTI symmetry.

Comparison

Only the results for the C33 component are
shown in Figure 3 because the other components
are constant with frequency, except C13, which
varies slightly. The analytical and numerical re-
sults are in a very good agreement including
the low- and high-frequency limits, the frequency
dependence of the dispersion and attenuation
curves at intermediate frequencies, and the left
and right asymptotes of the attenuation curve (Fig-
ure 3). This comparison shows that our numerical
result is correct and can be used to simulate more
complicated models. Furthermore, such a good
agreement indicates that our numerical solution
fulfills conditions A and B of the analytical
solution.
Figure 4 shows snapshots of the fluid pressure

Pf in the crack at three different frequencies. In

Table 1. The material properties used for all numerical
simulations.

Material parameter Solid Fluid

Bulk modulus K 36 GPa 4.3 GPa

Shear modulus μ 44 GPa 0 GPa

Shear viscosity η 0 Pa · s 1.414 Pa · s

Figure 2. The element’s size distribution for the Pf ¼ 0 model (Figure 1b): (a) Full
model and (b) magnified part of the model showing elements in the crack (element size
0.00025–0.00015 m) and in the surrounding grain material (element size 0.038–
0.008 m). The element’s size is the smallest inside the crack and grows toward the walls
of the model domain.

Table 2. Geometric properties for Pf � 0 model, big pore
model, and small pore model. Major radius — the distance
from the center of the tube to the center of the torus. Minor
radius — the radius of the tube.

Geometric
parameter

Pf ¼ 0
model

Big pore
model

Small pore
model

Crack radius 0.1 m 0.1 m 0.1 m

Crack thickness 0.0005 m 0.0005 m 0.0005 m

Crack aspect ratio 0.0025 0.0025 0.0025

Major radius of torus — 0.124 m 0.1067 m

Minor radius of torus — 0.024 m 0.0067 m

Total porosity ≈4.9 × 10−4 0.045 0.0034

Crack porosity ≈4.9 × 10−4 ≈4.9 × 10−4 ≈4.9 × 10−4
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the relaxed state, there is enough time for pressure equilibration be-
tween the crack and zero fluid pressure at the crack tip (because of
the Pf ¼ 0 boundary condition) (Figure 4, LF). Therefore, the fluid
in the crack does not impose any stiffening to the crack. The stiff-
ness of the crack is the same as if it was dry (thus, the Pf ¼ 0model
is not consistent with Gassmann equations in the low-frequency
limit). At intermediate frequencies, there is a large pressure gradient
in the crack, which corresponds to the maximum attenuation (Fig-
ure 4, FC). In the unrelaxed state, there is no equilibration between
the fluid pressure inside the crack and zero fluid pressure at the tip
of the crack (Figure 4, HF). Therefore, the crack behaves as hy-
draulically isolated and the fluid highly stiffens the crack, so that
the normal compliance of the crack approaches zero (tangential
compliance is not zero).

Big pore model

Numerical solution

We consider a 3D numerical model of a flat cylinder whose edge
is connected with a big torus (Figure 1c and 1d). The flat cylinder

representing a crack has the same radius and thickness as in the
Pf ¼ 0 model. The torus represents a much stiffer pore. The torus
and the crack are embedded into a cuboid of grain material and are
fully saturated with a liquid. The proposed geometry belongs to the
VTI symmetry class. Numerical results for the Cmn components
using five direct tests are shown in Figure 5. From this figure, only
the C33 component seems to be frequency-dependent, but the C13

component is also slightly frequency dependent.

Extended analytical solution

For the comparison between the analytical solution and the
numerical results, all stiffness properties of the dry medium are cal-
culated numerically (or are the same as in the numerical simulation)
and used as the input to the analytical solution. To obtain the
corresponding results from the analytical solution, normal Zn and

Figure 3. Numerical and analytical results for the model with fluid
pressure equal to zero at the edge of the crack (Pf ¼ 0) (Figure 1a
and 1b): (a) Real part of the C33 component and (b) dimensionless
attenuation for the C33 component. Each red circle corresponds to a
numerical calculation.

Figure 5. Numerical results for the real part of Cmn components for
the big pore model (Figure 1c and 1d) using five direct tests.

Figure 4. Snapshots of the fluid pressure Pf in the fracture at three
different frequencies for the Pf ¼ 0 model: LF — low frequency
(relaxed state), FC — intermediate frequency (close to the char-
acteristic frequency), and HF — high frequency (unrelaxed state).
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tangential Zt compliances of the crack are needed. To obtain Zn and
Zt, we numerically calculate several (homogenized) elastic stiffness
tensors of a dry medium (Figure 6): a torus embedded into the solid
grain material (CVTI

1 stiffness tensor), a crack embedded into a
medium described by the CVTI

1 stiffness tensor (CVTI
2 stiffness tensor),

and a torus connected with a crack embedded into an isotropic solid
grain material (CVTI

3 stiffness tensor). Then, all of the CVTI stiffness
tensors are inverted to the corresponding compliance tensors SVTI.
For obtaining Zn and Zt, there are at least two possible workflows.

• Workflow A: We calculate Zn and Zt using the difference
between the SVTI1 compliance tensor and the SVTI2 compliance
tensor (Figure 6). In this case, we first homogenize the torus
(and obtain CVTI

1 ) and then embed the crack into this homo-
genized material CVTI

1 . Thus, Zn and Zt do not account for
the fact that the crack is connected with the stiffer pore,
which implies a different geometry from the one shown in
Figure 1c and 1d for calculating the stiffness tensor of the dry
material. This approach is used by Collet and Gurevich
(2016).

• Workflow B: We calculate the normal and tangential com-
pliances using the difference between the SVTI1 compliance
tensor and the SVTI3 compliance tensor (Figure 6). In this
case, we also first homogenize the torus but then embed the
crack connected to the torus into the solid grain material.
Thus, the CVTI

3 stiffness tensor corresponds to the dry stiff-
ness tensor of the model, so the difference SVTI1 − SVTI3 gives
the correct compliances Zn and Zt for the dry model (using
the homogenized material CVTI

1 ). These compliances Zn and
Zt approximately correspond to the crack embedded into the
CVTI
1 material and have a total effective radius equal to the

radius of the crack itself plus the additional minor diameter
of the torus. This approach is similar to the one used in
Gurevich et al. (2009b).

The generalization of Collet and Gurevich (2016) to an aniso-
tropic porous background is straightforward because the principal

symmetry axis of the torus (stiff pore), embedded into the grain
material is the same as that of the crack and the torus embedded
into the grain material, and the corresponding frame stiffnesses are
described by the same equations 8 and 9. Thus, we are able to fulfill
condition A for anisotropy of the rock matrix. Moreover, according
to Collet and Gurevich (2016), the assumption Zmf

n ¼ 0 in the high-
frequency limit holds only for cracks with aspect ratios lower than
0.001. However, we have already seen in our numerical results in
Figure 3 (for an aspect ratio of 0.0025) that this assumption also
holds for cracks with larger aspect ratios (up to 0.005). Therefore,
we conclude that our extended numerical simulation fulfills condi-
tions A and B of the analytical solution of Collet and Gure-
vich (2016).
Using equations 8–16, the complex-valued stiffness tensor is cal-

culated for workflows A and B. The difference between these two
solutions is due to the different Zn and Zt parameters that are used in
equations 8–16.

Comparison

Figure 7 shows results for the C33 complex-valued component
of the stiffness tensor obtained from the numerical simulation and
from the analytical solution with two different sets of normal and
tangential compliances derived from workflows A and B (Figure 6).
The dispersion curves show that in the high-frequency limit, the two
analytical solutions and the numerical result are in reasonably good
agreement. In the low-frequency regime, the dispersion curve pre-
dicted by the analytical result with workflow A is much stiffer com-
pared to the numerical result. This is because the calculation of
Zn and Zt involved the strong assumptions described above. The
attenuation curve from workflow A shows, only by chance, a good
match with the numerical result except for the asymptotic behavior
in the high-frequency regime. In the low-frequency regime, the ana-
lytical result with workflow B is close to the numerical dispersion
curve: a difference of approximately 2 GPa because parameters Zn

and Zt cannot fully describe the elastic behavior of a crack. In this

Figure 6. Sketch illustrating the calculation of normal and tangential compliances of the crack for workflows A and B. The term SVTIr denotes
the compliance tensor, which is the inverse of the corresponding stiffness tensor. That is, SVTIr ¼ ðCVTI

r Þ−1, for r ¼ 1; 2; 3. The resulting Zn and
Zt are used to calculate the analytical solution for corresponding models (Figure 1).
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case, the C13 component is affected and causes this difference in the
anisotropic Gassmann’s equations. The attenuation curve predicted
by the analytical solution with workflow B is different from the
numerical result: The characteristic frequency is shifted to the left,
and the maximum attenuation is approximately twice that of the
numerical results.
Figure 8 shows snapshots of the fluid pressure Pf in the frac-

ture and the stiff pore at three different frequencies. In the relaxed
state, the fluid pressure is equilibrated throughout the pore domain
(Figure 8, LF). At intermediate frequencies, there is a large pressure
gradient in the crack, which corresponds to the maximum attenu-
ation (Figure 8, FC). In the unrelaxed state, there is no pressure
equilibration between the fluid pressure inside the crack and the
fluid pressure inside the torus (Figure 8, HF). In the relaxed state
(Figure 8, LF), the pore pressure inside the stiff pore is slightly in-
creased compared to the unrelaxed state (Figure 8, HF). That is due
to a finite volume of the stiff pore. Although the crack porosity is
several orders of magnitude lower than the stiff pore porosity, such a

small volume of fluid still slightly increases the pore pressure inside
the stiff pore in the relaxed state.
Few numerical artifacts (the red points) can be seen in the torus in

the low and intermediate frequencies (Figure 8, LF and FC); this is
due to the fact that the mesh is not very fine inside the torus. Due to
RAM memory limitations, it is difficult to significantly increase the
resolution inside the torus, but the simulation has been run for several
different mesh distributions and element sizes converging to the same
output results. The limits of the dispersion curve were also verified:
The low-frequency limit was verified by running dry elastic simula-
tions and adding fluid using the Gassmann’s equations, and the high-
frequency limit was verified by running elastic simulations and thus
representing fluid as an elastic material. The Kramers-Kronig relation
was also used to verify the consistency of the numerical results: The
attenuation curve was reproduced from the dispersion curve using the
Kramers-Kronig relation. Thus, we conclude that these artifacts are
local and do not affect our results and our results are accurate. There
are also some small boundary effects resulting in minor artifacts in the
crack (artifacts appear near the walls of the cube), which have neg-
ligible effects on our numerical results. The snapshots of fluid pressure
are from a diagonal slice in the xy-plane to avoid boundary effects.

Small pore model

Numerical solution

We consider the same model as in the previous section (the big
pore model), but now the volume of the torus is smaller (Figure 1e
and 1f). The flat cylinder (representing a crack) has the same radius
and thickness as in the Pf ¼ 0 and big pore models. The torus and
the crack are embedded into a cuboid of grain material. The pro-
posed geometry belongs to the VTI symmetry class. Our numerical
results for the C33 component are shown in Figure 9.

Extended analytical solution

To obtain the results from the analytical solution, Zn and Zt are
calculated using the same extended analytical solution as in the big

Figure 7. Numerical and analytical results for the big pore model
(Figure 1c and 1d): (a) Real part of the C33 component and (b) dimen-
sionless attenuation for the C33 component. Each red circle corre-
sponds to one test. The maximum of the attenuation curve (analytical
solution with workflow A, the blue curve) is exactly the same as in the
numerical result by a chance because the comparison between the ana-
lytical solution and numerical result for the modified frame exhibit
discrepancy; it is explained in the text.

Figure 8. Snapshots of the fluid pressure Pf in the fracture at three
different frequencies for the big pore model: LF — low frequency
(relaxed state), FC — intermediate frequency (close to the char-
acteristic frequency), and HF — high frequency (unrelaxed state).
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pore model. Then, using equations 8–16, the complex-valued stiff-
ness tensor is calculated for the output of workflows A and B
(Figure 6).

Comparison

Figure 9 shows the results for the C33 complex-valued compo-
nent of the stiffness tensor obtained from the numerical simulations
and from the analytical solution with two different sets of normal
and tangential compliances derived from workflows A and B. The
dispersion and attenuation are small in this model; therefore, the
two analytical solutions show an apparently better agreement than
for the big pore model (Figure 7). However, the relative difference
between the analytical and numerical results is comparable to those
for the big pore model. Here, both analytical solutions predict much
higher attenuation compared to the numerical result.
Figure 10 shows snapshots of the fluid pressure Pf in the fracture

and in the stiff pore at three different frequencies. The only geomet-
ric difference between this small pore model and the big pore model
is that the torus is smaller. The volume of the small torus is only
approximately seven times bigger than the crack volume; therefore,

the fluid pressure gradient equilibrates faster, and a larger value of
the fluid pressure is observed in the relaxed state than that in the big
pore model (Figure 8, LF). The characteristic frequency is higher,
and the overall dissipation is lower. The numerical artifacts ob-
served in these snapshots have negligible effect on our numerical
solution as explained above.

Modified frame

As mentioned before, the modified frame is a virtual rock, in
which only the crack is filled with fluid, whereas the stiffer pore
is empty (Mavko and Jizba, 1991). In the low-frequency limit, the
relaxed moduli of the modified frame are equal to the rock dry
moduli. In the high-frequency limit, the fluid-saturated crack stiff-
ens the frame, and the unrelaxed moduli of the modified frame are
equal to the dry moduli of the rock without a compliant porosity
(i.e., without a crack).
Considering the big pore model (Figure 1c and 1d), the torus is

dry, whereas the crack is filled with a compressible Newtonian fluid
(glycerol). This configuration corresponds to the modified frame.
Because the torus is dry, this configuration implies Pf ¼ 0 boun-
dary condition at the edge of the crack. The main difference be-
tween this modified frame model and the Pf ¼ 0 model (Figure 1a
and 1b) is the actual presence of the torus, which affects the effec-
tive properties of the model.
To compare the numerical results with the analytical solution,

Zn and Zt are calculated for workflows A and B. Then, using equa-
tions 8–13, the complex-valued stiffness tensor CMF

mn ðωÞ is calcu-
lated. In these analytical solutions, we do not use the Gassmann
equation to saturate the medium because the stiff pore is dry (equa-
tion 13 becomes Csat

mnðωÞ ¼ CMF
mn ðωÞ). Figure 11 shows results for

the C33 complex-valued component of the stiffness tensor obtained
from the numerical result and from the analytical solution with two
different sets of normal and tangential compliances derived from
workflows A and B. The dispersion curves show that in the high-
frequency limit, the two analytical and the numerical solutions are
in a very good agreement, and the analytical solution with workflow
B also shows a good fit in the low-frequency regime. However, the

Figure 9. Numerical and analytical results for the small pore model
(Figure 1e and 1f): (a) Real part of the C33 component and (b) di-
mensionless attenuation for the C33 component.

Figure 10. Snapshots of the fluid pressure P in the fracture at three
different frequencies for the small pore model: LF — low fre-
quency (relaxed state), FC — intermediate frequency (close to the
characteristic frequency), and HF — high frequency (unrelaxed state).
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frequency dependences of the dispersion and attenuation curves ob-
tained via the numerical simulation have a completely different
shape compared to both analytical solutions. More specifically,
the maximum amplitude of the attenuation peak and the right slope
of the attenuation curve are different compared to both analytical
solutions. The previous very good fit of the attenuation magnitude
between the analytical solution with workflow A and the numerical
result for the saturated case (Figure 7) is coincidental. This becomes
apparent by the mismatch of the attenuation curves for the corre-
sponding modified frame between the analytical solution with
workflow A and the numerical solution shown in Figure 11. In
Figure 7, this discrepancy was coincidentally corrected by applying
the anisotropic Gassmann equation to the analytical model with
workflow A.

Comparison to full saturation

Figure 12 shows numerical results for four models: the modified
frame model for the big pore model, the corresponding fully satu-
rated big pore model, the modified frame model for the small pore
model, and the corresponding fully saturated small pore model.

Basically, the difference between the dashed and solid curves is
due to the presence of the fluid in a big or small torus. The right
slope of the attenuation curves of the modified frame models is
approximately the same independently of the size of the torus. The
same behavior follows for the saturated cases: the right slope of the
attenuation curves of saturated models is approximately the same
independently of the size of the torus.

Numerical results for different crack aspect ratios

We consider the fully saturated big pore model and change the
aspect ratio of the crack. In other words, we keep the same length of
the crack but increase its aperture. Figure 13 shows results for the
C33 complex-valued component of the stiffness tensor obtained
from the numerical simulation with aspect ratios of 0.0025,
0.005, and 0.01. For comparison, we also show results for the
C33 complex-valued component of the Pf ¼ 0 model. According
to Figure 13, the frequency dependence of the dispersion and at-
tenuation curves for those three aspect ratios is the same. The shift
in the characteristic frequency is controlled by the aspect ratio of

Figure 11. Numerical and analytical results for the modified frame
big pore model: (a) Real part of the C33 component and (b) dimen-
sionless attenuation for the C33 component. Each rhombus corre-
sponds to a numerical calculation. Crack aspect ratio is 0.0025.

Figure 12. Numerical results and the modified frame big pore, the
modified frame small pore models and corresponding saturated
models: (a) Real part of the C33 component and (b) dimensionless
attenuation for the C33 component. Each red circle or rhombus cor-
responds to a numerical calculation.
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the crack. The attenuation magnitude is the same at those three
characteristic frequencies.

DISCUSSION

There are two main sources of strong discrepancies between the
numerical results and the analytical solution. First, the calculation
of the frame stiffness moduli in the analytical solution considers the
pores and cracks as being disconnected. Second, the frequency
dependence of attenuation and dispersion at intermediate frequen-
cies in the analytical solution is based on several strong assumptions
and shows significant discrepancies compared to the numerical re-
sults. The first one could be improved in the current analytical squirt
flow solutions by using a more complete approach for calculating
the frame moduli. The second one is more difficult and unclear how
to implement via an analytical solution. Another observation from
this study is the frequency dependence of the C13 component of the
frame moduli, which is difficult to take into account in the analytical
solution, but, in general, the effect is of minor importance.

We showed that the analytical solution of Collet and Gurevich
(2016) is accurate for the Pf ¼ 0 model where the stiff porosity
is zero, but it does not accurately approximate the results for models
with nonzero stiff porosity. Despite all of the discrepancies between
the analytical solution and the numerical results, this analytical
solution is probably the best for such an analysis because it uses
specific material and geometric properties without any fitting
parameters.

Design and calculation of the modified frame and dry
frame moduli

One of the most important outcomes of this numerical study is
the adequate calculation of the double-porosity frame moduli. By
double porosity, we mean that the pore space consists of two types
of pores: the stiff isometric pore and the compliant crack. Further-
more, the pore and the crack are connected. The analytical solution
by Collet and Gurevich (2016) is based on the two-step homogeni-
zation approach: They consider a rock matrix (grains and a pore)
and then embed a crack into that rock matrix using the normal and
tangential compliances of the crack. This corresponds to our work-
flow A (Figure 6). Roughly, this workflow gives the frame moduli
accounting for the crack and the stiff pore as being not connected
(i.e., as if the crack and the pore are embedded simultaneously into
the grain material but disconnected and far from each other, so
the elastic interactions are very small; see Figure 14). Hence, this
workflow significantly overestimates the stiffness of the frame
material and significantly underestimates dispersion and the overall
attenuation (Figure 7). In this case, there is a controversial issue:
Gurevich et al. (2010) and Collet and Gurevich (2016) study
the effect of fluid flow between the crack and the stiff pore and,
at the same time, they use the frame moduli of disconnected cracks
and pores. Workflow B shows a better prediction of the low- and
high-frequency limits of the dispersion curve and the overall attenu-
ation but significantly overestimates the maximum attenuation
(due to amplification of the imaginary part of ZMF

n ðωÞ if we connect
the crack and the stiff pore). Quantitatively, Zn in workflow B is

Figure 13. Numerical results for the big pore model (Figure 1c
and 1d) and the Pf ¼ 0 model (with fluid pressure equal to zero
at the edge of the cylinder) (Figure 1a and 1b), cracks with different
aspect ratios of 0.0025, 0.005, and 0.01: (a) Real part of the
C33 component and (b) dimensionless attenuation for the C33
component.

Figure 14. Sketch illustrating that the two-step homogenization ap-
proach produces the CVTI

2 stiffness tensor, which is approximately
equal to the case if we embed the crack and the stiff pore (discon-
nected) into the grain material.
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two times larger than Zn in workflow A, which is only due to the
connectivity effect of the crack and the pore. Thus, any change in
the geometry of the pore space will immediately affect the stiffness
of the rock and the fluid-flow properties; thus these properties are
strongly coupled.
The two-step homogenization approach for calculating the

effective elastic properties of cracked-porous rocks can be used con-
sidering a mesoscopic scenario. In this scenario, the cracks are at
least two orders of magnitude larger than the pores; therefore, the
two-step homogenization approach might work quite well (i.e., the
torus connected to the crack makes no sense at a mesoscopic scale
because cracks or fractures are much larger than the pores). Such
double-porosity media with mesoscopic cracks were studied by
Galvin and Gurevich (2009), Gurevich et al. (2009a), and Guo et al.
(2017a, 2017b).
Collet and Gurevich (2016) assume that the crack can be accu-

rately described by the two parameters: normal and tangential com-
pliances Zn and Zt (however, we show that the C13 component is
also different). This approach is known as the linear-slip theory
(Schoenberg and Sayers, 1995). There are several solutions that
link the crack compliances Zn and Zt with crack geometry and
the stiffness of the background medium (Walsh, 1965; Kachanov,
1993). Some insights into these theories are given by Bakulin et al.
(2000a, 2000b). Note that the linear-slip theory leads to the so-
called noninteractive approximation (Sevostianov and Kachanov,
1999; Kachanov and Sevostianov, 2018), which assumes that differ-
ent cracks (or cracks and surrounding pores) do not interact with
each other; for higher porosity — more complicated effective
methods should be used as shown in the numerical study by Saenger
et al. (2004).
The effect of connectivity of the pore space is usually not taken

into account properly in analytical solutions due to theoretical
difficulties (as far as we know, there is no general analytical solution
of this problem) and due to the fact that the information about the
connectivity of the pore space in real rocks is usually unknown.
However, there are several solutions to this problem, for example,
by introducing an additional “pore space connectivity” parameter.
This parameter can be inverted by linking the effective properties
predicted by the analytical solution to a given real data set (Bayuk
et al., 2007; Alkhimenkov and Bayuk, 2017).

Frequency-dependent fluid bulk modulus

Gurevich et al. (2010) show that the stiffness of the crack in
relaxed and unrelaxed states can be described by the frequency-
dependent fluid bulk modulus K�

fðωÞ. Our numerical results con-
firmed that this is true if the crack having Pf ¼ 0 boundary condition
at the edge is embedded into the grain material whereas the torus is
replaced by the grain material. This occurs because the Gurevich
et al. (2010) solution for the frequency-dependent fluid bulk modu-
lus applies boundary conditions to the walls of the crack and does
not take into account the stiffness of the pore space surrounding the
crack. Our numerical simulation of the modified frame clearly
shows that once we include a small volume (0.3%) of the dry stiff
pore connected to the crack, the frequency dependence of the ef-
fective properties changes completely (Figure 11). However, it is
very difficult to fully solve that coupled elasticity-fluid flow prob-
lem analytically.
The slopes of the high-frequency asymptote of the attenuation

curve in the numerical and analytical solutions are different (ω−1

for the analytical solution versus ω−1∕2 for the numerical solution).
In both numerical models, the big pore and the small pore models,
the frequency range over which attenuation is significant broadens
compared to the analytical solution due to the different asymp-
totic behavior of the attenuation curve in the high-frequency regime.
It is interesting that the ω−1∕2 power law also describes the high-
frequency asymptote of the attenuation curves due to flow between
stiff pores and mesoscopic cracks (i.e., cracks much larger than
pores but still smaller than the wavelength) (Galvin and Gurevich,
2009; Guo et al., 2017a).

The C13 component of the frame moduli

Our numerical simulations show that the C13 component of
the modified frame (the big pore model) is frequency dependent.
Furthermore, the crack connected to the torus cannot be accurately
described by only two parameters in the compliance domain: Zn

and Zt. Equation 17 shows the difference in the compliance do-
main ΔSmn ¼ SVTI1 − SVTI3 , which is used to calculate Zn and Zt in
workflow B (Figure 6). It can be seen that ΔS33 ¼ 4.251 × 10−12

and ΔS44 ¼ ΔS55 ¼ 7.680 × 10−12 are the actual Zn and Zt param-
eters in the workflow B. But ΔS13 ¼ 0.486 × 10−12 is still signifi-
cant. Hence, if we ignore the nonnegligible off-diagonal elements,
the corresponding C13 in the stiffness domain diverges from the
correct numerical C13 by approximately 4.5 GPa. This affects
the analytical model in two ways. First, the difference between
the low- and high-frequency limits of the C13 component of the
modified frame is approximately 4.5 GPa in the big pore model,
so the modified frame C13 component gradually increases with
frequency during the transition from the low to the high frequency.
Second, in the generalized Gassmann’s equation (equation 16), the
calculation of K� involves the C13 component four times (because
C13 ¼ C23 ¼ C31 ¼ C32), which leads to more than 15 GPa over-
estimation of the correct K� (thus, K� is also frequency depen-
dent). Therefore, if we neglect the frequency dependence of the
C13 component, the generalized bulk modulus of the frame will
become significantly different from the actual value. It is clearly
visible in Figure 7 in which the low-frequency limit of the ana-
lytical solution with workflow B does not match the numerical
result because this analytical solution is saturated using Gass-
mann’s equations. However, the low-frequency limit of the modi-
fied frame for the analytical solution with workflow B is in
excellent agreement with the numerical result because the stiff pore
is dry, and the C13 component effects vanish (Figure 11). For the big
pore model,

ΔSbigporemn ¼ SVTI1 − SVTI3 ¼ 10−12

·

2
666666666664

0.034 −0.037 0.486 0 0 0

−0.037 0.034 0.486 0 0 0

0.486 0.486 4.251 0 0 0

0 0 0 7.680 0 0

0 0 0 0 7.680 0

0 0 0 0 0 0.018

3
777777777775

:

(17)
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For the small pore model,

ΔSsmallpore
mn ¼ SVTI1 − SVTI3 ¼ 10−12

·

2
666666666664

0.004 −0.0001 0.009 0 0 0

−0.0001 0.004 0.009 0 0 0

0.009 0.009 2.244 0 0 0

0 0 0 3.109 0 0

0 0 0 0 3.109 0

0 0 0 0 0 0.010

3
777777777775

:

(18)

For the small pore model, the C13 component is almost the same
as for the Pf ¼ 0 model and does not change significantly over the
frequency range. Equation 18 shows the difference in the compli-
ance domain ΔSmn ¼ SVTI1 − SVTI3 , which is used to calculate Zn

and Zt in workflow B (see Figure 6). It can be seen that ΔS33 ¼
2.244 × 10−12 and ΔS44 ¼ ΔS55 ¼ 3.109 × 10−12 are the actual
Zn and Zt parameters in workflow B. ΔS13 ¼ 0.009 × 10−12 is
negligible.
In summary, the crack compliance in the Pf ¼ 0model and in the

small pore model can be accurately described by only the two
parameters: Zn and Zt. But, in the big pore model, the crack com-
pliance cannot be described by only Zn and Zt, the C13 component
is also important.

Fluid pressure field as a function of frequency

One of the key parameters in the squirt flow mechanism is the
ratio between the noncompliant and compliant pore volumes. In the
big pore model, the ratio of noncompliant (torus) to compliant
(crack) porosity is 0.045∕ð4.9 × 10−4Þ ≈ 92. Therefore, only a
small increase in the fluid pressure is expected in the big torus at
low frequencies. In the big torus, the fluid pressure is ≈ 1 × 105 Pa

in the low-frequency limit (100 Hz); the fluid pressure is ≈ 0.435 ×
105 Pa in the high-frequency limit (106 Hz). Thus, the increase in
fluid pressure is of approximately 2.3 times. The applied boundary
conditions are for displacement (10−6m), and the fluid pressure
values are given for the P-wave modulus test in z-direction (i.e.,
for C33 component).
In the small pore model, the ratio of noncompliant to compliant

porosity is 0.0034∕ð4.9 × 10−4Þ ≈ 7. Thus, a significant increase in
fluid pressure in the torus is expected in the low-frequency regime,
compared to the high-frequency limit because the difference be-
tween noncompliant and compliant porosity is small (less than
one order of magnitude). In the small torus, the fluid pressure is
≈3.3 × 105 Pa in the low-frequency limit (100 Hz); the fluid pres-
sure is ≈ 0.58 × 105 Pa in the high-frequency limit (106 Hz). Thus,
the increase in the fluid pressure is of approximately 5.7 times.

CONCLUSION

We have numerically calculated the frequency dependence of the
effective stiffness properties of a fluid-saturated porous medium
caused by squirt flow. Our 3D numerical models consist of a pore
space embedded into a solid grain material. The pore space is rep-
resented by a flat cylinder, representing a crack, whose edge is con-
nected with a torus, representing a stiff isometric pore. Grains were

described as a linear isotropic elastic material, whereas the fluid
phase filling the pore space was described by the quasistatic linear-
ized compressible Navier-Stokes momentum equation.
We compared the numerical results to a published analytical sol-

ution for squirt flow. The numerical and analytical solutions agree
only for the simplest model: The edge of the crack is subjected to
zero fluid pressure boundary condition, whereas the stiff pore is
absent. For this model, the low- and high-frequency limits of the
dispersion and attenuation curves, intermediate-frequency behavior,
and all asymptotes are in very good agreement between the numeri-
cal and analytical solutions. However, the considered model is not
realistic.
For the model with a stiff pore modeled as a torus, there are sig-

nificant differences between the numerical and analytical solutions:
(1) the maximum attenuation predicted by the analytical model is
significantly under- or overestimated, depending on the frame
moduli calculation in the analytical model, (2) the transition from
the low to high frequencies is much sharper compared with the
numerical results, and (3) the slopes of the high-frequency asymp-
tote of the attenuation curve in the numerical and analytical solu-
tions are different (ω−1 for the analytical solution versus ω−1∕2 for
the numerical solution).
Our analysis suggests that there are two main sources of discrep-

ancies between the numerical results and the analytical solution.
First, the calculation of the frame stiffness moduli in the analytical
solution does not take into account the fact that pores and cracks are
connected because it assumes a porous background and in the next
step embeds cracks into this homogenized medium. The numerical
results show that this two-step homogenization approach corre-
sponds to the double-porosity media where the crack and pores
are disconnected, which contradicts the concept of fluid flow in
the analytical solution. Second, the frequency dependence of the
attenuation and dispersion at intermediate frequencies in the ana-
lytical solution is based on several strong assumptions: The analyti-
cal model assumes that the frequency dependence is controlled only
by the fluid flow in the crack, whereas the numerical results show
that the frequency dependence is also affected by surrounding stiff
pores connected to the crack. Further research should involve the
modification of the analytical solution to include more adequate
frame moduli calculation of the double-porosity model, more ad-
equate modeling of the flow between compliant and stiff pores, and
a more realistic geometry of the pore space.
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APPENDIX A

BOUNDARY CONDITIONS

Let us consider a cuboid with volume V ¼ ð0; LxÞ × ð0; LyÞ ×
ð0; LzÞ and Γ its boundary Γ ¼ Γxz0 ∪ ΓxzL ∪ Γyz0 ∪ ΓyzL ∪
Γxy0 ∪ ΓxyL, where, for example, Γxz0 represents a xz-plane with
zero coordinate and, e.g., ΓxzL represents a xz-plane with Ly coor-
dinate. There are six planes in total. Because we are dealing with a
VTI medium, only five independent components of the stiffness
tensor are needed. Three kinds of tests were applied: a normal com-
pression relaxation test, a simple shear test, and one mixed test
for the C13 component. The general approach is the following:
We apply displacement boundary conditions for a certain frequency.
Then, we calculate the volume average stress and strain fields over
the whole model domain using the following equations for a given
frequency ω:

hϵiji ¼
1

V

Z
V
ϵijðxÞdV; (A-1)

where V is a model domain and

hσiji ¼
1

V

Z
V
σijðxÞdV: (A-2)

Volume-averaged stress hσiji and strain hϵiji fields are related via
the Hooke’s law

hσiji ¼ Cijkl∶hϵkli; (A-3)

which is the Cijkl ¼ Cmn component of the stiffness matrix. Thus,
we need several tests to obtain a relation between different hσiji
and hϵkli.

Normal compression relaxation test

Normal compression relaxation test is needed to calculate
M ¼ λþ 2μ component of the stiffness tensor.
For the C33 component (hσ3i ¼ C33 · hϵ3i):

ΓxyL is set to uzz ¼ Δu; uxx; uyy are free

Γxy0 is set to uzz ¼ 0; uxx; uyy are free

Γxz0 andΓxzL are set to uyy ¼ 0; uzz; uxx are free

Γyz0 andΓyzL are set to uxx ¼ 0; uzz; uyy are free; (A-4)

where Δu ¼ 10−6. The same relaxation tests are used to calculate
C11 and C22 components.

Simple shear relaxation test

A simple shear relaxation test is needed to calculate the shear
modulus μ component of the stiffness tensor.

For the C55 (xz) component (hσ5i ¼ C55 · hϵ5i),

ΓxyL is set to uxx ¼ Δu; uzz; uyy are free;

Γxy0 is set to uzz ¼ 0; uxx ¼ 0; uyy ¼ 0;

Γxz0 and ΓxzL are set to uyy ¼ 0; uzz ¼ 0; uxx is free;

Γyz0 and ΓyzL are set to uyy ¼ 0; uzz ¼ 0; uxx is free. (A-5)

The same type of relaxation tests are used to calculate the C44 and
C66 components.

The C13 mixed test

The mixed test for C13 component can be easily derived from the
anisotropic stress-strain relation (Hooke’s law) (similar to the 2D
approach by Carcione et al., 2011).

ΓxyL is set to uzz ¼ Δu; uxx; uyy are free;

ΓxzL is set to uyy ¼ Δu; uzz; uxx are free;

Γxy0 is set to uzz ¼ 0; uxx; uyy are free;

Γxz0 is set to uyy ¼ 0; uxx; uzz are free;

Γyz0 and ΓyzL are set to uxx ¼ 0; uzz; uyy are free; (A-6)

Then, using the following equations:

C13 ¼
hσ2i · C33 − hσ3i · C22

hσ3i − hσ2i
; (A-7)

or

C13 ¼
hσ2i
hϵ2i

− C22; (A-8)

the C13 component is calculated (C33 and C22 ¼ C11 are taken from
the direct tests). Equations A-7 and A-8 are found from the Hooke’s
law considering nonzero strains in y- and z-directions and, then,
solving a system of two equations analytically.

Direct test approach

The direct test approach for calculating effective stiffness
moduli can be used when the model’s symmetry is known, which
is the case in our modeling. According to the stress-strain relation
(equation A-3), Cmn components are calculated via

Cmn ¼ hσmi
hϵni

: (A-9)

We are dealing with a VTI medium, so only five independent
components of the stiffness tensor are needed. Thus, we need two
normal compression relaxation tests for C11 and C33 components
(because C11 ¼ C22), two simple shear relaxation tests for C55 and
C66 components (because C44 ¼ C55), and one mixed direct test for
the C13 component.
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APPENDIX B

ROTATION OF A FOURTH-RANK TENSOR:
HTI VERSUS VTI

The stiffness matrix of a VTI medium is (in Voigt notation)
(Tsvankin, 2012)

CVTI
mn ¼

2
66666664

CVTI
11 CVTI

11 − 2CVTI
66 CVTI

13 0 0 0

CVTI
11 − 2CVTI

66 CVTI
11 CVTI

13 0 0 0

CVTI
13 CVTI

13 CVTI
33 0 0 0

0 0 0 CVTI
44 0 0

0 0 0 0 CVTI
44 0

0 0 0 0 0 CVTI
66

3
77777775
;

(B-1)

where the superscript ð·ÞVTI means that the component belongs to
VTI media. In this study, all numerical simulations are performed
in VTI media. The analytical solution of Collet and Gurevich (2016)
is developed for horizontal transverse isotropy media (HTI).
The stiffness matrix of HTI media with the symmetry axis along
x-direction is

CHTI
mn ¼

2
66666664

CHTI
11 CHTI

13 CHTI
13 0 0 0

CHTI
13 CHTI

33 CHTI
33 − 2CHTI

44 0 0 0

CHTI
13 CHTI

33 − 2CHTI
44 CHTI

33 0 0 0

0 0 0 CHTI
44 0 0

0 0 0 0 CHTI
66 0

0 0 0 0 0 CHTI
66

3
77777775
;

(B-2)

where the superscript ð·ÞHTI means that the component belongs to
HTI media. Generally speaking, the fourth rank stiffness tensor in
Euclidean space can be rotated using Euler angles. Fortunately, VTI
and HTI symmetry classes belong to a transversely isotropic (TI)
medium, which has a single axis of rotational symmetry (Fedorov,
1968). Therefore, the transformation from HTI media to VTI, and
vice versa, doesn’t require any sophisticated operations. Thus, the
transformation from the VTI stiffness matrix to the HTI stiffness
matrix, and vice versa, can be done by interchanging indices 1 and
3 and slightly modifying the structure of the stiffness matrix. The
recipe is as follows: (1) Using the analytical solution of Collet and
Gurevich (2016), calculate the resulting stiffness matrix that is of an
HTI symmetry (equation B-2) and (2) construct the VTI stiffness
matrix using the components of the HTI stiffness matrix from
step (1) by the following rule:

CVTI
mn ¼

2
66666664

CHTI
33 CHTI

33 − 2CHTI
44 CHTI

13 0 0 0

CHTI
33 − 2CHTI

44 CHTI
33 CHTI

13 0 0 0

CHTI
13 CHTI

13 CHTI
11 0 0 0

0 0 0 CHTI
66 0 0

0 0 0 0 CHTI
66 0

0 0 0 0 0 CHTI
44

3
77777775
:

(B-3)

The resulting stiffness matrix (equation B-3) corresponds to VTI
media, but all components are those from the HTI stiffness matrix
(equation B-2).
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