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Abstract: Language is typically a function of the left hemisphere but the right hemisphere is also essential
in some healthy individuals and patients. This inter-subject variability necessitates the localization of lan-
guage function, at the individual level, prior to neurosurgical intervention. Such assessments are typically
made by comparing left and right hemisphere language function to determine ‘‘language lateralization’’
using clinical tests or fMRI. Here, we show that language function needs to be assessed at the region and
hemisphere specific level, because laterality measures can be misleading. Using fMRI data from 82 healthy
participants, we investigated the degree to which activation for a semantic word matching task was lateral-
ized in 50 different brain regions and across the entire cortex. This revealed two novel findings. First, the
degree to which language is lateralized across brain regions and between subjects was primarily driven by
differences in right hemisphere activation rather than differences in left hemisphere activation. Second, we
found that healthy subjects who have relatively high left lateralization in the angular gyrus also have rela-
tively low left lateralization in the ventral precentral gyrus. These findings illustrate spatial heterogeneity in
language lateralization that is lost when global laterality measures are considered. It is likely that the com-
plex spatial variability we observed in healthy controls is more exaggerated in patients with brain damage.
We therefore highlight the importance of investigating within hemisphere regional variations in fMRI acti-
vation, prior to neuro-surgical intervention, to determine how each hemisphere and each region contributes
to language processing.Hum Brain Mapp 32:1602–1614, 2011. VC 2010Wiley-Liss, Inc.
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INTRODUCTION

In this article, we investigate how the relative involve-
ment of the left and right hemisphere in language process-
ing varies with the individual and the anatomical region.
Our questions have implications for both theoretical and
clinical perspectives of language function. From a theoreti-
cal perspective, the key observations are that (a) language
is more impaired after lesions to the left than right hemi-
sphere; (b) language processing activates the left more
than the right hemisphere in functional neuroimaging
experiments; but (c) the degree to which language is left
lateralized varies greatly, along a continuum, with some
individuals showing bilateral or right hemisphere laterali-
zation [Knecht et al., 2000; Springer et al., 1999]. From the
clinical perspective, inter-subject variability in language
lateralization has important implications for predicting
how neurosurgical intervention will impact upon language
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function (e.g., for review see [Bookheimer, 2007; Ganslandt
et al., 2009; Stippich et al., 2007; Tharin and Golby, 2007]).
For example, if a patient typically uses the right hemi-
sphere for language, then neurosurgery in the right hemi-
sphere may unexpectedly impair language. As language

lateralization varies with the anatomical region (for a

review, see [Seghier, 2008], the importance of the left or

right hemisphere for language function will depend on

which region is affected and tested (e.g., [Berl et al., 2005;

Deblaere et al., 2004]).
Traditionally, the method used to assess language func-

tion prior to neurosurgery is the Wada (intracarotid amo-
barbital) test [Wada, 1949]. This procedure suppresses the
function of each hemisphere individually which allows the
language capabilities of each hemisphere to be assessed.
There are several factors that complicate the interpretation
of the Wada test (e.g., [Baxendale, 2009; Meador and Lor-
ing, 1999]) and this invasive procedure is not risk-free for
patients [Loddenkemper et al., 2008]. Its use in the clinical
setting is therefore on the decline [Baxendale et al., 2008]
and there has been a great deal of interest in replacing the
Wada test with functional MRI which is both noninvasive
and regionally specific [Abou-Khalil, 2007; Baxendale,
2009; Bookheimer, 2007; Medina et al., 2007; Rutten and
Ramsey, 2010].

Many studies have conducted within subject compari-
sons of language lateralization assessed with Wada versus
fMRI [Binder et al., 1996; Desmond et al., 1995]. Although
the results are consistent in �90% of cases, the residual
inconsistencies have led to the conclusion that clinicians
cannot rely on fMRI results, particularly when language
lateralization is atypical [Arora et al., 2009; Benke et al.,
2006; Giussani et al., 2010; Jayakar et al., 2002; Lee et al.,
2008; Paolicchi, 2008; Wellmer et al., 2008; Westerveld
et al., 1999; Woermann et al., 2003]. For example, in a
recent survey across 26 European epilepsy centres (a
review of 1,421 Wada procedures), Haag et al. [2008] con-
cluded that clinicians currently do not feel that they can
rely solely on fMRI results, with the majority of them
agreeing on the necessity of performing a Wada test if
fMRI revealed atypical laterality [Haag et al., 2008].

Here we argue that both the Wada and fMRI laterality
indices, assessed across hemisphere, are misleading in the
clinical setting because they do not indicate which regions
within a hemisphere are involved in language function.
Nor do they account for spatial heterogeneity in language
lateralization. Previous reports have already suggested
that lateralization measured with fMRI depends on the
location and size of the volume of interest (for a critical
review see [Josse and Tzourio-Mazoyer, 2004; Seghier,
2008]). There is also evidence that the direction of laterality
can reverse within the same individual, even when task
and stimuli are held constant. For instance, in a patient
with focal epilepsy, lexical activation was right lateralized
in frontal cortex and left lateralized in temporal cortex
[Baciu et al., 2003]. Conversely, in a presurgical fMRI
study of a patient with schizencephaly performing a silent

reading task, language was left-lateralized in frontal cortex

and right-lateralized in temporal cortex [Ries et al., 2004].

Recently, this dissociation in laterality between frontal and

temporal regions has also been demonstrated in one

healthy subject during a verbal fluency task [Jansen et al.,

2006a] and in another healthy subject during a semantic

matching task [Bethmann et al., 2007]. Critically, however,

the studies showing regional differences in language later-

alization are based on individuals or small samples of

patients in a few regions of interest selected on the basis

of a priori knowledge. These intriguing observations moti-

vate a more extensive investigation of regional differences

in laterality at the population level using unsupervised

and unconstrained laterality measures with high spatial

definition. The first aim of our study was therefore to

assess regional differences (dissociations) in language lat-

eralization, in a large population of healthy participants,

by computing lateralization scores at each voxel across the

entire brain [Liegeois et al., 2002].
The need to assess language function in each region indi-

vidually rather than across the whole hemisphere highlights
a useful contribution for fMRI in presurgical investigations
because fMRI can provide a rich source of regionally spe-
cific information. However, a second aim of our study was
to demonstrate that fMRI laterality indices are misleading
because they do not take into account the relative contribu-
tion of each hemisphere. For example, two patients may
both activate and need the left hemisphere to the same
degree but, depending on the degree of right hemisphere
activation, one of these patients may have left lateralized
language function and the other may have right lateralized
language function. Thus, right lateralization does not indi-
cate whether the left hemisphere is necessary or not for lan-
guage. It only indicates that activation is relatively higher in
the right than left hemisphere. To address this second aim
of our study, we compared individuals with stronger versus
weaker left lateralization and asked whether those with
stronger left lateralization had more left hemisphere activa-
tion, less right hemisphere activation or both.

In summary, we computed individual laterality measures
of activation for semantic matching of words at both the
global level (across the whole hemisphere) and regional
level in 82 left- and right-handed healthy volunteers. Our
aims were to (i) characterize the relative contribution of left
and right hemisphere activity to lateralization values, and
(ii) identify regional dissociations in laterality in an unsu-
pervised manner and with high spatial definition.

MATERIALS AND METHODS

Subjects

Eighty-two healthy subjects (43 females, 39 males) gave
written informed consent to participate in this study. Sub-
jects were native English speakers, had normal or
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corrected-to-normal vision, and had no history of neuro-
logical or psychiatric disorders. Their handedness was
assessed with the Edinburgh questionnaire [Oldfield,
1971]: 44 were right-handed and 38 were either left-
handed or ambidextrous. Their age ranged from 13 to 71
years: 21 subjects under 20 years old, 43 subjects between
20 years and 40 years old, and the remaining 18 subjects
were more than 60 years old (mean ¼ 30.3 � 15 years).

The study was approved by the National Hospital for
Neurology and Institute of Neurology Joint Ethic’s
Committee

Task and Experimental Design

Our semantic word matching task involved categoriza-
tion of three visually presented words, each with one tar-
get above and two choices below. The subject is required
to indicate which of the two choices below is most seman-
tically related to the target above. The baseline task
involved the same spatial display of three items but words
were replaced with strings of unfamiliar greek letters and
participants were instructed to indicate which of the two
choices looked identical to the target above. For both tasks,
the participants indicated their response on a key pad
with either the index and middle finger on their right
hand indicating the lower left or lower right stimulus
respectively (50 subjects) or the middle and index finger
on their left hand indicating the lower left or lower right
stimulus respectively (32 subjects). Comparison of the
semantic to the perceptual decisions reliably identifies
semantic activations and their laterality (e.g., [Josse et al.,
2008; Vandenberghe et al., 1996]).

In addition to the semantic decisions on words and per-
ceptual decisions on greek letters, the experiment also
included semantic matching on photographs of familiar
objects and perceptual matching on photographs of unfa-
miliar nonobjects. All stimuli during the two semantic
matching conditions were derived from a set of 192 objects
with three to six letter familiar names (e.g., cat, bus, hat,
ship, bell, frog, hand, teeth, camel, snake, spider, dagger,
and button) that were first divided into two different sets
of 96 items. Half of subjects were presented with the first
set of 96 items as written words and the second set of 96
items as pictures, and the other half of subjects were pre-
sented with the reverse order of sets. Post hoc checks
ensured that inter-subject variability in lateralization could
not be explained by the stimulus set.

Conditions and sets were fully counterbalanced within
and across subjects. The two additional conditions of pic-
tures of familiar and unfamiliar objects are not the focus
of the current paper but they were used in post hoc tests
to examine functional specialization in regions within the
semantic word matching network. The four conditions
were counterbalanced within each of two experimental
runs/sessions. Across sessions, there were 32 stimuli pre-
senting triads of written words, 32 stimuli presenting tri-

ads of pictures of objects, 16 stimuli presenting triads of
greek letters and 16 stimuli presenting triads of unfamiliar
nonobjects. Each stimulus (trial) stayed on the screen for
4.32 s followed by 180 ms fixation before the next stimu-
lus. To maximize efficiency, four stimuli of the same type
were presented successfully (i.e., blocks of 18 s). In addi-
tion, we included 12 blocks of fixation, each lasting 14.4 s,
every two stimulus blocks. To facilitate task switching,
each block was preceded by a written instruction for 3.6 s
(e.g., ‘‘match words’’).

Stimulus presentation was via a video projector, a front-
projection screen and a system of mirrors fastened to a
head coil. To ensure that the task was understood cor-
rectly, all subjects were provided with detailed instruc-
tions and underwent a short training session before
entering the scanner with a different set of stimuli. Addi-
tional details about the paradigm and stimuli can be found
in our previous work (c.f., [Josse et al., 2008]).

MRI Acquisition

Experiments were performed on a 1.5T Siemens system
(Siemens Medical Systems, Erlangen, Germany). Func-
tional imaging consisted of an EPI GRE sequence (repeti-
tion time/echo time/flip angle ¼ 3,600 ms/50 ms/90�,
field of view ¼ 192 mm, matrix ¼ 64 � 64, 40 axial slices,
2 mm thick with 1 mm gap). Functional scanning was
always preceded by 14.4 s of dummy scans to insure tis-
sue steady-state magnetization. Anatomical T1-weighted
images were acquired using a three-dimensional modified
driven equilibrium Fourier transform sequence (repetition
time/echo time/inversion time ¼ 12.24 ms/3.56 ms/530
ms, matrix ¼ 256 � 224, 176 sagittal slices with a final re-
solution of 1 mm3).

fMRI Data Preprocessing

Data processing and statistical analyses were performed
with the Statistical Parametric Mapping SPM5 software
package (Wellcome Trust Centre for Neuroimaging, Lon-
don UK, http://www.fil.ion.ucl.ac.uk/spm/). All func-
tional volumes were spatially realigned, unwarped, and
normalized to the MNI space using the unified normaliza-
tion-segmentation procedure [Ashburner and Friston,
2005] with resulting voxels size of 2 � 2 � 2 mm3.

Symmetrical Images

The priors used during the normalization-segmentation
step were a symmetrical version of the default priors
implemented in SPM5. These symmetrical priors were cre-
ated by simply copying, flipping along the x-axis, and
averaging the original and the mirror (flipped) versions of
the priors [Salmond et al., 2000]. The resulting normaliza-
tion-segmentation parameters were then applied to the
subject’s functional images thereby rendering them
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symmetrical. This was relevant to the laterality maps (LM)
where we directly compared left and right hemisphere
activation; see below. The normalized (symmetrical) func-
tional images were then spatially smoothed with a 6 mm
full width half maximum isotropic Gaussian kernel.

First level Analyses

For each individual subject, we carried out a fixed-effect
analysis on all preprocessed functional volumes of that
subject, using the general linear model at each voxel. Each
stimulus onset was modeled as an event in condition-spe-
cific ‘‘stick-functions’’ with a duration of 4.32 sec per trial
and a stimulus onset interval of 4.5 sec. This event related
analysis, in the context of a block design, is more sensitive
[Mechelli et al., 2003] and also allows us to exclude trials
with incorrect responses. The resulting stimulus functions
were convolved with a canonical hemodynamic response
function which provided regressors for the linear model.
Time-series from each voxel were high-pass filtered (1/128
Hz cut-off) to remove low-frequency noise and signal drift.
The appropriate summary or contrast images were then
generated in all subjects for the contrast of interest
‘‘semantic matching on words versus perceptual matching
on unfamiliar greek letters.’’

Global Laterality Index

To express the relative difference in the involvement of
the two hemispheres during semantic matching at the
global level [Desmond et al., 1995], we computed the later-
ality index (LI) for each subject. LI values were computed
here on the statistical SPM{t} maps using Nagata et al.’s
approach [Nagata et al., 2001] that is independent of the
statistical threshold and assessed over the whole hemi-
sphere after excluding the cerebellum and mesial part of
the brain (i.e., around the inter-hemispheric fissure). In
brief, this procedure calculates the number of left and
right hemisphere voxels activated for language relative to
baseline, at a range of different statistical thresholds. Non-
linear regression of the shape of the curve, describing the
relationship between the number of voxels and the statisti-
cal threshold, provides a constant term that is used to
compute a normalized difference between left and right
hemisphere activity [Nagata et al., 2001]. A positive LI
(towards þ1) indicates left hemisphere dominance,
whereas a negative LI (towards �1) indicates right hemi-
sphere dominance.

Voxel Based Laterality Maps

To express regional differences in the involvement of
the two hemispheres, we generated maps of the laterality
difference at each voxel for each subject [Baciu et al., 2005;
Cousin et al., 2007; Josse et al., 2008; Liegeois et al., 2002;
Salmond et al., 2000] as follows: (i) contrast images from

the first-level analysis (i.e., the symmetrical images) were
copied and each copy was flipped along the inter-hemi-
spheric fissure (i.e., x-axis mirror images), and (ii) the
resulting flipped image was then subtracted from its origi-
nal (unflipped) version to create a map of language lateral-
ity. Voxel based LM therefore code the relative difference
between the contrast ‘‘semantic word matching versus per-
ceptual matching on unfamiliar greek letters’’ at every
voxel and at its homologue in the other hemisphere. Thus,
LM images code the interaction [Liegeois et al., 2002]
between task (semantic versus perceptual matching) and
hemisphere (left versus right) at each voxel. Importantly,
LM are symmetrical with respect to the inter-hemispheric
fissure, and can be described by the relationship
LM(�x,y,z) ¼ �LM(x,y,z).

Voxel Based Second Level Group Analyses

We conducted three different voxel based second-level
analyses on either original (unflipped) contrast images or
voxel based LM:

1. One sample t-test over the original contrast images to
reveal the most consistently activated voxels for
semantic word matching across our 82 subjects.

2. One sample t-test over the voxel based LM to reveal
the voxels with the most consistently lateralized acti-
vation for semantic word matching across our 82 sub-
jects (as previously illustrated in eight epileptic
children [Liegeois et al., 2002]).

3. The same analysis as (1) repeated with global LI val-
ues included as a covariate of interest. This analysis
will show where variability in individual LI values
is predicted by signal changes in left and right
voxels.

The anatomical location of our effects was inferred from
neuroanatomical knowledge after examining the location
of the effect in MNI space and reference to the Duvernoy
atlas [Duvernoy, 1991] when necessary.

Second Level Clustering and Regional

Dissociations

The aim here was to characterize any regional dissocia-
tion within the LM, across subjects. Our rationale was to
search for regions where an increase in laterality in some
voxels was associated with a decrease in laterality in other
voxels.

Prior to correlating laterality measures across regions,
we needed to reduce the search space. To do this, data
from all voxels were summarized into 50 compact clusters
using the second-level fuzzy clustering [Seghier and Price,
2009] on all voxels of the LM showing greater left than
right hemisphere activation (at P < 0.05 uncorrected) for
the comparison of ‘‘semantic word matching versus
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perceptual letter matching.’’ About 9,100 voxels within the
left hemisphere satisfied these criteria (see Supporting In-
formation Fig. S2). The clustering of these voxels was
based on between subject variance such that voxels were
clustered together when variance across subjects was
strongly correlated. We used the following parameters
(c.f., [Seghier and Price, 2009]): 50 for the number of clus-
ters, 1.5 for the degree of fuzziness, and the hyperbolic
correlation as a distance metric [Golay et al., 1998]. All
voxels that belong to a given cluster are then characterized
by the centroid of that cluster. In other words, this data
reduction procedure summarized the laterality of all vox-
els into 50 clusters (i.e., 50 centroids with 82 datapoints in
the across subject dimension).

Once the voxel based laterality map had been reduced
to 50 compact clusters, we correlated laterality at the cent-

roids of each cluster with that in every other cluster (from
1 to 50 clusters). This resulted in a 50-by-50 correlation
(similarity) matrix. The aim was to identify any strong
negative correlations (at P < 0.001 uncorrected). The
results were visualized using multidimensional scaling
(MDS, for a similar procedure see [Kherif et al., 2003;
Welchew et al., 2002]).

RESULTS

Voxel Based Second Level Analyses

The analysis of the original (unflipped) contrast images
from 82 subjects revealed a left dominant pattern of
semantic word matching activation, see Figure 1A. In the

Figure 1.

A: Main effect of semantic matching on words relative to per-

ceptual matching on unfamiliar greek letters (random-effect

analysis over 82 subjects, at P < 0.001 uncorrected). Signifi-

cant effects are shown in red-to-yellow color coding and pro-

jected on an individual T1-weighted image in neurological

convention. B: Consistent effect of laterality at the voxel

level (random-effect analysis on the LM maps over 82 sub-

jects, at P < 0.001 uncorrected). C: laterality indices (LI) of

our 82 subjects. For display purposes, individual LI values are

sorted from weak to strong left-lateralization. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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left hemisphere, this pattern included inferior and middle
frontal regions, middle and superior temporal regions,

precentral cortex, occipito-temporal cortex, angular gyrus,
and supplementary motor area. In the right hemisphere,
activation was only significant in the cerebellum.

The analysis of the voxel based LM identified the voxels

with the most consistently lateralized activation for semantic

word matching in our 82 subjects, see Figure 1B. This revealed

the typical crossed cerebro-cerebellar language lateralization,

with consistent left lateralization in frontal and occipito-

temporal regions and right lateralization in the cerebellum.

The most consistent effect in LM (i.e., the strongest interaction

between task and hemisphere) was observed in the left occi-

pito-temporal cortex at [x ¼ �44, y¼ �52, z ¼ �16; Z ¼ 7.5].
Calculation of the global LI across the whole hemisphere

[Nagata et al., 2001] demonstrated that the majority of our
subjects (67 of 82 subjects) showed lateralization to the left
hemisphere (global LI >0; median LI ¼ 0.26), as shown in
Figure 1C. As expected, only handedness showed a signifi-
cant effect on global LI values, as right-handed subjects

were more left-lateralized than left-handed subjects (t ¼
3.34, P ¼ 0.001, df ¼ 80). The effect of age on global LI

values was not significant across all subjects (see Support-

ing Information Section 3). The continuous range of LI val-

ues, across subjects, was entered as a covariate in the one

sample t-test of the original (unflipped) images to identify

voxels that were either positively (red in Fig. 2), or nega-

tively (blue in Fig. 2) correlated with global LI. Our expec-

tation was that differences in global LI between subjects

would mainly result from variance in left hemisphere acti-

vation. Surprisingly, however, we found strong correlations

between global LI and right hemisphere activation (see the

extensive blue areas distributed over the 3D-rendering of

the brain in Fig. 2).

Second Level Clustering and Regional

Dissociations in Laterality

The aim of this analysis was to characterize any regional
dissociations in laterality, across subjects performing the
same task. Evidence to support this investigation came from
observations that voxel based LI was not closely correlated
with global LI; see Supporting Information Figure S1. The
50 clusters obtained from the fuzzy clustering are visualized
in Figure 3A. A strong negative correlation (r ¼ �0.36, P <
0.001; see scatter plot of Fig. 3B) was observed between lat-
erality in clusters centered on the angular gyrus [�48, �66,
28] and laterality in clusters centered on the ventral precen-
tral gyrus [�58, 2, 16]. Thus, when laterality increased in the
angular gyrus (left > right) it decreased in the ventral pre-
central gyrus. Critically, this double dissociation across sub-
jects was not determined by handedness or any of our other
variables (age, gender, stimulus set). Thus there was no evi-
dence that these variables were positively correlated with

laterality of one region and negatively corrected with later-
ality of the other region (or vice-versa).

Post Hoc Tests

To investigate whether the opposing effects of laterality
in the left angular gyrus and left ventral premotor cortex
were driven by left or right hemisphere activation, we
compared activation in the left and right angular gyrus
and left and right ventral precentral gyrus, using data
from the original (unflipped) images for the contrasts
‘‘semantic word matching versus perceptual matching’’
and ‘‘semantic picture matching versus perceptual match-
ing’’ (Fig. 3C). The left angular gyrus was activated by
semantic matching on both words and pictures, whereas
left ventral precentral activation was only significant for
semantic word matching (see Fig. 3C). These regions were
not consistently activated in the right hemisphere during
semantic word matching; but the right angular gyrus was
activated by semantic picture matching.

DISCUSSION

In this article, we have highlighted two important find-
ings that have implications for the clinical interpretation of
language lateralization indices. The first finding is that,
across hemisphere, global LI was significantly correlated
with extensive activation across the right hemisphere (see
Fig. 2). Thus, individual variation in the degree to which
language is left or right lateralized at the global level was
primarily driven by right hemisphere activation, and was
not simply a reflection of the degree to which the left
hemisphere supports language. The second finding is that
healthy subjects who have relatively high left lateralized
activation in the angular gyrus also have relatively low
left lateralized activation in the ventral precentral gyrus.
This demonstrates regional dissociations in language later-
alization in a large population of healthy controls and is
consistent with previous studies of single subjects or small
samples of patients that have demonstrated the reversal of
language lateralization in different regions, even when
task and stimuli are held constant [Baciu et al., 2003; Jan-
sen et al., 2006a; Ries et al., 2004].

The Influence of the Right Hemisphere on

laterality Indices

Although many surgeons do use laterality cautiously, a
recent international survey across 31 countries [Baxendale
et al., 2008] has shown that the majority (86%) of centers
treating patients with temporal lobe epilepsy would take
into account language laterality, if this information was
available. Once language laterality is known, neurosurgical
resections are usually less extensive in the language domi-
nant side than the nondominant side. Our findings high-
light major limitations in the use of such global
lateralization indices for the clinical assessment of
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language function. Specifically, the demonstration that
inter-subject variability in language lateralization is pri-
marily driven by right rather than left hemisphere activa-
tion indicates that right lateralization does not imply that
the left hemisphere has a redundant role in language func-
tion. On the contrary, our findings from a reasonably large
population of subjects indicate that two patients with dif-
ferent global laterality values could have identical left
hemisphere activation. In this case, the left hemisphere
may be as essential for language processing in the patient
with weaker left hemisphere language lateralization as a
patient with strong left hemisphere language lateralization.
Conversely, two patients with identical global LI values

may differ in their dependency on left hemisphere activa-
tion. This is consistent with prior claims that superior lin-
guistic capability in the left hemisphere does not imply
that the right hemisphere is irrelevant for language (for a
review see [Lindell, 2006]).

Understanding the relative contributions of the left and
right hemisphere in language processing is also important
for understanding the different intra- and inter-hemispheric
mechanisms of recovery after brain insult [Cousin et al., 2008;
Lazar et al., 2000; Rosenberger et al., 2009; Seghier et al.,
2001], particularly the interpretation of laterality indices after
brain damage (e.g., [Knecht et al., 2002]). For example, given
the normal inter-subject variability that we observed in the

Figure 2.

Relationship between global LI values and the parameter estimates

of each voxel for the contrast ‘‘semantic word matching versus

perceptual matching on unfamiliar greek letters.’’ Positive (red)

and negative (blue) relationships are shown in neurological con-

vention on axial slices (top) and 3D-rendering volume (bottom).

Significant effects are shown at P < 0.05 corrected (for height or

size). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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right hemisphere, it is not surprising that patients also show
wide variability in right hemisphere language activation fol-
lowing damage to the dominant left-hemisphere.

Regional Dissociation in Laterality

Our second finding, that language lateralization has
high spatial heterogeneity, also has clinical implications
because it implies that one global laterality value is not

sufficient to reflect the underlying spatial variability [Josse
and Tzourio-Mazoyer, 2004], irrespective of how laterality
is assessed at the global level. The opposing effects of lat-
erality that we observed in the angular gyrus and the ven-
tral precentral gyrus (see Fig. 3) are particularly interesting
because they indicate that, when healthy subjects have
increased left lateralization in the angular gyrus they also
had decreased left lateralization in the ventral precentral
activation, even though the stimuli and task are held con-
stant across subjects. This contrasts to rare observations of

Figure 3.

A: Multidimensional scaling projection of the distance between

the 50 clusters (numbered from 1 to 50). The regions belonging

to the most distant clusters (clusters 45 and 49) are displayed on

axial slices. B: Scatter-plot of the negative correlation between lat-

erality in the angular gyrus (cluster 45) and ventral precentral

gyrus (cluster 49). Each subject is shown by a circle-dot shape. C:

Effect size of left and right angular and ventral precentral gyri dur-

ing semantic matching on words and pictures. This displays the

mean parameter estimates over all subjects that code the differen-

ces in activation signal during semantic versus perceptual match-

ing. SW, semantic word matching; SP, semantic picture matching;

PM, perceptual matching on unfamiliar stimuli.
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mixed lateralizations (e.g., [Kamada et al., 2006; Kurthen
et al., 1992; Lee et al., 2008; Risse et al., 1997]) in patients
who showed strong lateralization for expressive language
function to one hemisphere and the opposite lateralization
for receptive language ability.

The negative covariance in regional laterality that we
observed across subjects may reflect the use of different
task strategies that are supported by different regions (e.g.,
[Reinke et al., 2008; Seghier et al., 2008b; Seghier and Price,
2009; Sugiura et al., 2007]. For example, our post hoc tests
indicated that left angular gyrus activation was strongly
associated with amodal semantic processing (activated for
semantic matching on both words and pictures) but left
ventral precentral activation was more activated for words
than pictures (see Fig. 3C) consistent with a role in trans-
lating orthography to phonology [Fiez et al., 2006]. Irre-
spective of the exact cause of this regional dissociation in
laterality, damage to one region is likely to increase activa-
tion and lateralization in the other region, during the
semantic word matching task. Therefore, the negative cor-
relation we observed between lateralization in different
regions of the same semantic word matching network
clearly has implications for interpreting laterality changes
following brain damage (e.g., [Crosson et al., 2009; Hertz-
Pannier et al., 2002; Klingman and Sussman, 1983; Saur
et al., 2006; Thomas et al., 1997]).

Regional Activation Versus Laterality

Given the difficulties interpreting LI at the individual
subject level (irrespective of how LI is assessed), we suggest
that the contribution of many right and left hemisphere
regions should be considered independently. This high-
lights the potential contribution of fMRI for presurgical
investigations (e.g., [Petrella et al., 2006; Pouratian et al.,
2002]). It also emphasizes that, if global or regional laterali-
zation indices are assessed, the relative contributions of the
left and right hemispheres need to be considered so that the
contribution of the right hemisphere is not ignored.

A further advantage of using regionally specific activa-
tions, within hemisphere, for presurgical planning is that
this approach circumvents the challenges associated with
the computation of regionally specific LI. Specifically, the
problem with assessing LI in multiple regions is that voxel
based analyses of fMRI data are complex and therefore
widespread heterogeneity needs to be reduced to a few
manageable variables that minimize the number of regions
tested [Chlebus et al., 2007; Deblaere et al., 2004; Hund-
Georgiadis et al., 2002; Seghier, 2008; Spreer et al., 2002].
In this context, Seghier [2008] suggested that, to avoid mis-
interpretation (and the generalization) of a single global LI
per subject, a minimum of three regional LI values should
be assessed per subject, including LI from an anterior
region (frontal), a posterior region (temporal), as well as
across the whole hemisphere. More recently, Guillen et al.
[2009] parcellated the brain into 48 anatomical regions and

calculated an LI for each region [Guillen et al., 2009]. They
also suggested combining LI measures (e.g., one frontal
and one temporal) in a 2D projection plane that displays
the laterality of each subject in a more intuitive manner
(see similar discussion in [Seghier et al., 2004]).

Furthermore, assessing laterality in patients presents fur-
ther complications due to the impact of the damage upon
structure and vasculature. Previous reports have shown
that even lateralities at the regional level might be mislead-
ing when the regions of interest are at the vicinity of the
damage (e.g., Ulmer et al., 2004; Wellmer et al., 2009]. The
optimal procedure for computing regional LIs would obvi-
ously depend on the nature and the location of the damage
(for more details see Wellmer et al., 2009]. At the voxel
level, Liegeois et al. [2004] have recommended that high
definition laterality measures should not be used in
patients, as the matching between homologues structures of
both hemispheres can be hindered by the spatial deforma-
tions that are caused by lesions (e.g., mass effect). In this
particularly challenging context, there are some general
principles that can help to optimize LM in patients if neces-
sary, although we are arguing here that such complicated
methodological procedures could be avoided if the relative
contribution of each hemisphere is preserved (see below).
First, improved normalization is the key for accurate LM,
using for instance the unified normalization-segmentation
algorithm [Ashburner and Friston, 2005] that has previously
been shown to be robust in brain-damaged subjects [Crin-
ion et al., 2007]. Second, using procedures that can explicitly
model lesions as an additional class would minimize tissue
misclassification during segmentation [Seghier et al., 2008c]
and thus would improve brain normalization. Third,
excluding lesioned voxels (with abnormal signal) and their
homologue voxels in the other hemisphere, by explicit
masking procedures, would avoid mixing voxels with
abnormal/atypical signal. Fourth, at the group level, it is
more judicious to limit second-level analyses on LM to
patients with comparable lesions (those showing maximum
lesion overlap). Irrespective of the exact procedure, our
point here is that these challenges are avoided if presurgical
planning focuses on region specific activations within hemi-
sphere at the site of the intended surgery.

Beyond Laterality in the Clinical Setting

All current methods for assessing laterality in fMRI act
as reductionist tools that aim to homogenize (simplify) the
complexity of fMRI maps. Despite all the well-known limi-
tations in assessing LI in fMRI [Chlebus et al., 2007; Jansen
et al., 2006b; Seghier, 2008], there is still a growing interest
in optimizing such laterality measures in clinics (e.g.,
[Suarez et al., 2009; Wang et al., 2009]). This over-reliance
on LI in the clinical setting is a direct consequence of the
history of the development of this field that aimed to con-
vince clinicians about the validity and reliability of fMRI.
This validation era, inaugurated by two seminal papers
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[Binder et al., 1996; Desmond et al., 1995], was mainly con-
cerned with demonstrating the concordance between fMRI
LI values and well-established clinical tools such as the
Wada test. However, this historical approach is still moti-
vating further investigation into how the consistency
between laterality indices from fMRI and Wada can be fur-
ther improved (e.g., see [Arora et al., 2009; Lee et al., 2008;
Rutten and Ramsey, 2010; Suarez et al., 2009; Wellmer
et al., 2008]), despite the fact that a total agreement
between Wada and fMRI assessments may never be
reached because they are measuring different things (see
critical review in [Rutten and Ramsey, 2010]).

In the context of using fMRI for preoperative assess-
ments, we suggest that a shift needs to be made in the
way fMRI is presented and implemented in the clinical set-
ting. The rich source of information provided by fMRI
needs to be preserved rather than over-simplified into lat-
erality indices that can be misleading rather than helpful.
This perspective is in accordance with the recent attempts
to integrate fMRI maps into clinical navigation systems
which assist clinicians in making optimal decisions during
surgery (e.g., [Ganslandt et al., 2009; Rutten et al., 2003;
Sankar and Cosgrove, 2009; Wurn et al., 2008]). As recently
stressed, neurosurgeons are more comfortable with inter-
preting fMRI results when shown in a navigation system.
This approach provides high spatial definition (e.g., [Yoo
et al., 2004]) which can be especially helpful in defining
the extent of the surgical exposure [Wurn et al., 2008].

A shift from fMRI based language LI to fMRI based lan-
guage mapping for preoperative investigations would be
beneficial for the whole field of clinical fMRI. Neverthe-
less, to pursue this perspective, and to address previous
criticisms of the clinical interpretation of fMRI maps [Bell
and Racine, 2009; Desmond and Chen, 2002; Giussani
et al., 2010; Matthews et al., 2006; Robinson, 2004], further
investigations are required to: (i) establish reliable ways of
differentiating indispensable regions from less critical
regions [Paolicchi, 2008; Rutten and Ramsey, 2010], (ii)
minimize the occurrence of false negatives in the presence
of abnormal neuronal or hemodynamic responses (e.g.,
[Jayakar et al., 2002; Westerveld et al., 1999]), and (iii)
characterize variability across subjects that may confound
the definition of normative functional responses [Seghier
et al., 2008a]. This will necessitate standardization of fMRI
protocols (tasks and analyses), and their validation in dif-
ferent clinical populations [Allen and Fong, 2008; Binder
et al., 2008; Rutten et al., 2002].

CONCLUSION

In summary, our findings highlight the limitations of
interpreting laterality indices, irrespective of whether later-
alization is assessed with fMRI or the WADA test. From a
nonclinical theoretical perspective, the interpretation of
global LI needs to consider the relative contribution of the
left and right hemispheres as well as between subject dis-

sociations in regional lateralization. Future work is also
required to further our understanding of how laterality
changes: with the underlying anatomy (e.g., [Josse et al.,
2008, 2009]), with genetic variables (e.g., [van Rijn et al.,
2008]); and following brain damage [Crosson et al., 2009;
Hertz-Pannier et al., 2002]. Specifically, the implications of
our findings need to be tested in patients with variable
focal or nonfocal damage. This will allow the impact of
damage on laterality to be assessed while considering the
relative contribution of the ipsilesional and contralesional
regions. Extensive postsurgical language testing would
also allow the presurgical conclusions to be evaluated in a
systematic way so that the contribution of both fMRI maps
and laterality values can be better understood.

From a clinical perspective, our findings highlight the
need for fMRI evaluation of language function because
this will provide precision in the spatial localization of lan-
guage areas. More specifically, we suggest that presurgical
language assessments with fMRI should not rely solely on
laterality indices but should focus on individual regions,
at the site of the intended surgery, and consider the contri-
bution of the right and left hemisphere independently.
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