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Résumé :

Objectif : Etudier les résultats cliniques du traitement de patients atteints par une épilepsie
mésiale du lobe temporal (MTLE) réfractaire, par stimulation cérébrale profonde (DBS) de
I'hippocampe, en fonction de I'emplacement de 1'électrode.

Meéthodes : Huit patients atteints de MTLE implantés dans I'hippocampe et stimulés par DBS
a haute fréquence ont été inclus dans cette étude. Cing ont subi des enregistrements invasifs
avec des électrodes profondes dans le but d'estimer la localisation du foyer ictal avant de
procéder a une DBS chronique. La position des contacts actifs de 1'électrode a été mesurée en
utilisant une imagerie post-opératoire. Les distances par rapport au foyer ictal ont été
calculées, et les structures hippocampiques influencées par la stimulation ont été identifiées
au moyen d'un atlas neuro-anatomique. Ces deux parametres ont été corrélés avec la réduction
de la fréquence d'apparition des crises.

Résultats : Les distances entre la localisation estimée des contacts actifs de 1'électrode et le
foyer ictal étaient respectivement 11.0 +/- 4.3 ou 9.1 +/- 2.3 mm pour les patients présentant
une réduction de > 50% ou < 50% de la fréquence des crises. Chez les patients (N = 6)
montrant une réduction de > 50% de la fréquence des crises, 100% avaient des contacts actifs
situés a < 3 mm du subiculum (p < 0,05). Les 2 patients ne répondant pas au traitement étaient
stimulés par des contacts situés a > 3mm du subiculum.

Conclusion : La diminution de l'activité épileptogene induite par DBS sur I'hippocampe dans
les cas de MTLE réfractaires : 1) ne semble pas directement liée a la proximité des contacts
actifs de I'électrode au foyer ictal déterminé par les enregistrements invasifs ; 2) pourrait &tre

obtenue par une neuro-modulation du subiculum.



Rapport de synthese

Enjeu et contexte de la recherche

L'épilepsie est une maladie neurologique fréquente qui affecte 0.5-1% de la population
(Hauser et al., 1993). Parmi ces patients, environ 30% souffriraient d'une forme réfractaire
aux traitements médicamenteux (Kwan et Brodie, 2000), dont certains avec un foyer
épileptique localisé dans la région du lobe temporal moyen (MTLE, « Mesial temporal lobe
epilepsy ») (Engel, 2001) contenant notamment le complexe amygdalo-hippocampique. Bien
que la résection chirurgicale de la partie antérieure du lobe temporal ait montré son efficacité
dans le traitement de ce type d'épilepsie, elle n'est pas possible chez de nombreux patients
pour qui la résection du complexe amygdalo-hippocampique aurait des conséquences
déléteres séveres sur le plan neurologique (Kwan et Brodie, 2000 ; Helmstaedter et al., 2003),
ou dans les cas impliquant des foyers épileptiques bitemporaux. Pour ces patients, la
stimulation cérébrale profonde (DBS, « Deep brain stimulation ») a ét€ proposée comme
traitement alternatif consistant 2 moduler I'activité du tissu nerveux ciblé par la décharge

d'impulsions électriques.

Cette technique a déja démontré une efficacité dans la réduction de l'activité épileptiforme
corticale (Iadarole et Gale, 1982; Ben-Menachem, 2002 ; Velasco er al., 2005). Dans ces cas,
les investigations faites avec des électrodes intracraniales (Swanson, 1995 ; Spencer, 2002)
suggerent fortement que l'initiation et la propagation de la crise de MTLE impliquent

I'amygdale et I'hippocampe.

Cliniquement, il a été montré que la stimulation hippocampique utilisant des électrodes
profondes a significativement réduit la fréquence des crises chez une proportion variable de
patients présentant une épilepsie réfractaire du lobe temporal (Velasco et al., 2000 ; Velasco
et al., 2007 ; Vonck et al., 2002 ; Vonck et al., 2005 ; Tellez-Zenteno et al., 2006 ; Boéx et
al., 2007 ; Boon et al., 2007 ; Boéx et al., 2011). Les mécanismes exacts par lesquels la DBS
réduit la fréquence des crises restent inconnus. L'hypothése que la réduction des crises serait
liée & une 1ésion induite par l'insertion de I'électrode a pu étre écartée par des études incluant

une période initiale avec implantation d'électrodes sans stimulation (Osorio et al., 2007).

En résumé, peu de patients ont bénéficié de la DBS amygdalo-hippocampique comme
traitement alternatif pour la MTLE. L'efficacité clinique, bien qu'évidente, reste cependant

variable en terme de réduction de fréquence des crises. Ceci nécessite donc une meilleure



compréhension des mécanismes étant a la base de l'effet de I'application de courant électrique
sur le tissu neural, aussi bien que l'identification de cibles et de parametres de stimulation

optimaux.

Les buts de cette étude sont d'évaluer la distance entre les électrodes profondes implantées et
les foyers épileptiques supposés par le calcul de la distance euclidienne entre leurs
coordonnées déterminées dans un référentiel stéréotaxique, puis de caractériser la relation
entre cette distance et le résultat clinique. Les structures potentiellement influencées par la
stimulation électrique seront également identifiées par mesure directe sur des projections
fusionnées d'images post-opératoires avec un atlas neuro-anatomique, et les cibles potentielles

permettant d'obtenir un effet clinique suffisant seront déterminées.

Conclusions et perspectives

Aucune relation claire n'a été observée entre les emplacements des contacts actifs des
électrodes et les foyers ictaux présumés. Ces contacts ont tous été localisés a plus de 6 mm de
la position estimée du foyer ictal, ne permettant plus une influence directe du courant
électrique. Cependant, une réduction suffisante de la fréquence des crises a pu étre observée,
suggérant que des effets indirects puissent &tre obtenus par la stimulation d'une structure, ou
d'une partie de cette structure, potentiellement impliquée dans I'initiation ou la propagation du

courant épileptique.

Deuxiémement, l'analyse des structures amygdalo-hippocampiques situées dans la sphére
d'influence des contacts actifs, réalisée sur la base d'un atlas neuro-anatomique, a montré que
les contacts des électrodes qui étaient les plus proches du subiculum, ou qui pourraient avoir
eu un effet microlésionel sur le subiculum pendant I'insertion de I'électrode, sont associés a
des réductions importantes de la fréquence des crises, tandis qu'aucune diminution
significative n'a été observée quand les électrodes étaient placées a plus de 3 mm du
subiculum, suggérant un role de cette structure dans l'efficacité de la DBS pour les cas de
MTLE. Ces observations sont en accord avec la littérature récente (Huberfeld ef al., 2011),
cependant notre étude est la premiére a fournir des données cliniques chez I'humain suggérant

une telle implication potentielle du subiculum.

D'autres études prospectives multicentriques conduites sur un plus grand nombre de patients
seront nécessaires afin de fournir un ensemble de données plus cohérent permettant

d'augmenter la fiabilit¢ de nos résultats afin de démontrer le réle du subiculum dans la



stimulation électrique pour le traitement de la MTLE réfractaire, ainsi que pour confirmer

l'effet neuro-modulatoire de la DBS hippocampique sur le subiculum.
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Purpose; To study the clinical outcome in hippocampal deep brain stimulation (DBS) for the treatment of
patients with refractory mesial temporal lobe epilepsy (MTLE) according to the electrode location.
Methods: Eight MTLE patients implanted in the hippocampus and stimulated with high-frequency DBS
were included in this study. Five underwent invasive recordings with depth electrodes to localize ictal
onset zone prior to chronic DBS. Position of the active contacts of the electrode was calculated on
postoperative imaging. The distances to the ictal onset zone were measured as well as atlas-based
hippocampus structures impacted by stimulation were identified. Both were correlated with seizure
frequency reduction.

Results: The distances between active electrode location and estimated ictal onset zone were 11 + 4.3 or
9.1 4 2.3 mm for patients with a >50% or <50% reduction in seizure frequency. In patients (N = 6) showing a
>50% seizure frequency reduction, 100% had the active contacts located <3 mm from the subiculum
(p < 0.05). The 2 non-responders patients were stimulated on contacts located >3 mm to the subiculum,
Conclusion: Decrease of epileptogenic activity induced by hippocampal DBS in refractory MTLE: (1)
seems not directly associated with the vicinity of active electrode to the ictal focus determined by

Keywords:

Deep brain stimulation
Temporal lobe epilepsy
Hippocampal sclerosis
Pharmacoresistance
Outcome

invasive recordings; (2) might be obtained through the neuromodulation of the subiculum.
© 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Epilepsy is a frequent neurological disease that affects 0.5-1% of
the population.' About 30% of patients have a pharmacologically
intractable form of epilepsy.2 Mesial temporal lobe epilepsy
(MTLE) is a particularly common form of pharmacoresistant
epilepsy.® Surgical resection of the amygdalo-hippocampal striic-
tures alone or together with the anterior portion of temporal lobe is
an effective treatment of MTLE.*S However, ablative surgery is not
possible in up to 30% of patients in whom resection of the
amygdalo-hippocampal complex will result in severe neurological
impairments such as memory deficits,>® or in cases involving
bitemporal epileptic foci. In these patients electrical stimulation of
the amygdala and hippocampus has been proposed as an
alternative treatment.”"'°

* Corresponding author at: Department of Neurosurgery, University Hospital
Bern, CH-3010 Bern, Switzerland, Tel.: +41 031 632 08 10; fax: +41 031 382 24 14,
E-mail address: claudio.pollo@insel.ch (C. Pollo).

Previous studies have highlighted the efficacy of high frequency
deep brain stimulation (DBS) to reduce epileptic activity either by
targeting intracerebral structures believed to have a triggering role
in the epileptic network, such as the thalamus, the subthalamic
nucleus, the caudate nucleus, and the cerebellum or the vagal
nerve,'’-1* Alternatively, the ictal onset zone may be targeted,
with the hypothesis that stimulation may interfere with seizure
initiation. The latter strategy has been described to be suitable to
control seizures in patients with MTLE. In these cases investiga-
tions using intracranial electrodes'*'> have strongly suggested
that seizure onset and propagation involve the amygdala and
hippocampus.

Clinically, it has been shown that hippocampal stimulation
using depth electrodes significantly reduces interictal EEG
spikes™!7 and improves seizure outcome in patients with
temporal lobe epilepsy.”-1%1618.19 However, responses are variable
in terms of seizure frequency reduction leading to the need for a
better understanding of the mechanism by which DBS reduces
seizure frequency, as well as identification of optimal targets and
optimization of stimulation parameters. One hypothesis is that
DBS may act through local inhibition of neurons adjacent to the

1059-1311/$ - see front matter © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016fj.seizure,2013.02.007
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area of electrode implantation, thereby modulating the activity of
cerebral structures triggering seizure onset. Alternatively, DBS
may have an effect on the network of neuronal projections
connecting several cerebral structures.?® Since mesial temporal
lobe structures are potentially involved in epileptic networks, the
targeting of ictal foci in this region may also affect adjacent
networks.

We previously published a study that focused on the efficiency
of hippocampal stimulation on reducing seizure frequency and on
the influence of stimulation parameters. One unresolved issue
concerns the impact of electrode positioning on seizure treatment,
which may in turn prove informative for targeting practices in
general. i

Therefore, in the present study, we retrospectively analyzed (1)
the distance between the implanted DBS stimulating contact(s)
relative to the ictal onset focus determined invasively, and (2) the
anatomical structures possibly influenced by electrical stimula-
tion. These two parameters were compared with the clinical
outcome,

2. Methods
2.1. Patients and inclusion criteria

Eight patients with intractable MTLE epilepsy were selected for
DBS treatment between June 2002 and April 2008 as previously
described'® (5 women and 3 men, median age: 31.5 years, range:
25-47). The criteria for patient selection to proceed with DBS
included pharmaco-resistance and proven MTLE seizure origin.
Resective surgery is usually proposed as the treatment of choice in
these patients. DBS was considered in patients with either
concerns for possible post-operative significant worsening of
memory, particularly verbal memory, or when bilateral epilepto-
genic zones were suspected, Details of inclusion criteria and of the
presurgical protocol were published previously'® and include
high-resolution brain MR, video-EEG telemetry, interictal positron
emission tomography (PET), ictal and interictal single photon
emission computerized tomography (SPECT), as well as neuropsy-
chological and psychiatric examinations. High-resolution MRI
showed a hippocampal sclerosis in 2 patients; the remaining 6 had
non-lesional MTLE (Table 1).

The study was approved by the local Ethics Committee of the
University Hospitals of Geneva and Lausanne, and an informed
consent was obtained from each patient,

2.2. Identification of ictal focus

In 5 of 8 patients (Pt4, 5, 7, 8, 9), the EEG ictal onset focus was
estimated by invasive recordings using intracerebral depth

Table 1
Clinical characteristics of patients.

electrodes inserted perpendicular to the skull surface at amygda-
lar,"anterior and posterior hippocampal levels in both temporal
lobes as previously described.!® Epileptogenic ictal focus was
assigned to the contact (numbered 1 to 8) recording maximal ictal
activity (pathological waveform). A high-resolution CT scan was
then co-registered with a T1-weighted MRI acquired under
stereotactic conditions (CRW, Radionics®, Burlington, MA, USA)
and processed using the Framelink 5.1 software on a Stealth
workstation (Medtronic In¢, Minneapolis, MN, USA). The postop-
erative imaging was realigned to the anterior commissure-
posterior commissture (AC-PC) coordinates system by identifying
the anterior and posterior commissures and 3 midline landmarks.
Origin was set at the midcommissural point. Three orthogonal
planes of view were then used to localize the electrode contact, Its
coordinates were calculated and expressed as (x) mm lateral to the
midline, (y) mm antero-posterior and (z) mm supero-inferior to the
mid-commissural plane,

2.3, Surgical procedure

Surgical planning and procedure were performed as previously
described.'® The Pisces-Quad 3487A electrode and the Soletra
7426 stimulator (Medtronic Inc, Minneapolis, MN, USA) were
implanted in the first 5 patients. The 4 cylinder-shaped contacts of
the Pisces-Quad electrode are 3 mm in length and 1.27 mm in
diameter, The intercontact distance is 6 mm, and the electrode is
30 mm in total length. The 3 remaining patients received the Sub
Compact Octad 3876 electrode and the Restore stimulator
(Medtronic Inc,, Minneapolis, MN, USA). The Sub Compact Octad
electrode is 34,5 mm in total length with 8 contacts (3 mm length,
1.27 mm diameter, 1.5 mm intercontact distance). The DBS
electrodes were placed parasagittaly in the amygdalo-hippocam-
pal complex so that the distal contact (contact 0) could be
implanted in the area of the amygdala. Internalization of the
electrode and connection to the neurostimulator was performed
3-4days after the implantation procedure to provide EEG
recordings.

2.4. Stimulation parameters and follow-up

The setting of post-implantation stimulation parameters and
neurological evaluations were performed as previously de-
scribed.'® All patients were stimulated at high-frequency, ie.
130Hz, and with pulse width of 045 ms. The amplitude of
stimulation (0.5-2 V) and the number of contacts stimulated (bi-
or quadripolar) were, however, different across patients, In the
quadripolar configuration, the 4 contacts were set as cathodes, and
the case box of the neurostimulator was set as the anode. In the
bipolar configuration, the cathode was set on the contact

Patient Sex Age/onset Follow-up HS Side Ictal focus Interictal Stimulation Amplitude Outcome (% reduction
(months) focus contact (V) in seizure frequency)

Pt1 F 37/24 74 Yes Left - C1 quad 1 67
pt2 F 32/3 50 Yes Right - c2 quad 1 88
Pt3 F 44/4 46 No Right - co quad 0.5 72
Pt4 F 31/25 45 No Left LAH1-2 C1 C0-C1 0.5 84
Pt5 M 4721 42 No Right RAH3 n.i. C0-C1 1 100
Pt7 M 31/14 34 No Left LAH2 c2 Cc1-Cc2 1 0
C2-C3 1 0
Pt8 M 25/13 11 No Left LAT? c2 Cc1-C2 1.5 22
Ptg F 26/13 10 No Left LAH2 co off 0 100
c4 off 0 100

HS: hippocampal sclerosis, quad: quadripolar stimulation, LAH: left anterior hippocampus, RAH: right anterior hippocampus, n.i.: not identified, LA: left amygdala, off: not

stimulated, C: electrode contact.
2 Secondary focus,
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corresponding to the maximal interictal epileptogenic activity, as
determined from intracranial EEG recordings before the internali-
zation of the neurostimulator, and the anode was set on the contact
closest to the second major interictal epileptogenic site, After a 3
month off-period, patients were followed for a median duration of
43.5 months (range 10-74 months). Quantification of the clinical
outcome and efficacy of stimulation was performed by the
evaluation of the ratio between the improvement in seizure
frequency after implantation compared to pre-implantation
baselines determined prospectively as the mean number of
seizures per month during the three months prior to implantation
(according to patients’ self-reports). Introduction of any new AED
was not allowed after implantation in order to determine the effect
of DBS, but minor changes in medication dosages were accepted as
previously described.'® Characteristics of patients, stimulation
parameters and clinical outcome are summarized in Table 1. For
the following analysis, patients were then split into 2 groups
according to their rate of seizure frequency reduction (i.e. > or
=50% and <50%).

2.5. Determination of the distance between the active contact(s) of the
DBS electrode and the estimated ictal focus

Postoperative imaging was processed using the Framelink 5.1
software on a Stealth workstation (Medtronic Inc, Minneapolis,
MN, USA) and realigned to the AC-PC coordinates system with
origin set at the midcommissural point. The electrode contact
image artifact was localized in the 3 orthogonal planes of view. The
center of the artifact was identified as the center of the electrode
(Fig. 1A) according to a previous study of DBS in patients with
Parkinson's disease.*' Its coordinates (x), (y) and (z) were
calculated as explained above. In 5 patients, AC-PC coordinates
were subtracted in each plane (dx, dy, dz) to determine the distance
between the estimated ictal focus and the implanted electrode
contacts. Euclidian distance in 3D space was then calculated
(square root of (dx?+ dy? + dz?)). These 4 parameters, as well as
clinical outcome, were used for further analysis. In each case,
distances between the estimated ictal focus and all contacts of the

electrode were calculated in order to estimate the minimal
distance to the electrode.

2.6. Determination of structures in the vicinity of the electrodes
influenced by DBS

To identify structures in the vicinity of active electrode contacts,
postoperative imaging was co-registered and adjusted with the
corresponding template of a neuro-anatomical atlas®? prepared
according to the Talairach standard transformation®* (Fig. 1B).
Structures overlapping a 3 mme-radius circle centered on the
artifact of the electrode contact were considered as possibly
influenced by electrical stimulation (Fig. 1C), according to the
estimation of the volume of tissue activated taken from different
existing finite element models of electrical propagation around the
electrode,?*?> The nonparametric Spearman correlation test was
used for the statistical analysis on small samples.

3. Results
3.1. Clinical outcome and stimulation parameters

Postoperative seizure frequencies were compared with a pre-
implantation baseline period. Six of the 8 patients exhibited a
reduction of seizure frequency of >50%, including 2 seizure-free
patients (i.e. 100% reduction of seizure frequency). The 2 remaining
patients were non-responders (i.e. no significant change in seizure
frequency). Reasons that could explain such good results compared
to other studies have been previously discussed.’® In the first
group, Pt1 and Pt2 did not show any reduction when stimulated in
a bipolar configuration with contacts CO and C1. When stimulated
in a quadripolar configuration, they experienced a significant
reduction in seizure frequency (67% and 88%, respectively) as
published previously.'® Pt3 and Pt4 also showed a major seizure
reduction of 72% and 84% with the quadripolar and bipolar
configuration, respectively. Pt5 and Pt9 became seizure free with a
bipolar configuration; the latter remained seizure free after the
electrode was implanted, and during the off-period without

Fig. 1. MRI analysis using the surgical navigation system Stealth workstation (Medtrenic Inc., Minneapolis, MN, USA). (A) Measurement of electrode contact (C1) position on
post-operative brain T1-weighted MRI of Pt3 treated with DBS, enabling determination of stereotactic coordinates based upon the stereotactic surgical frame, Realignment of
the scan to the AC-PC line is shown in the coronal plane. The white asterisk indicates the center of the DBS electrode contact. (B) Overview of the hippocampal and subicular
regions with superimposed standard neuro-anatomical atlas (adapted from Mai JK, Assheuer J, Paxinos G. Atlas of the human brain. San Diego: Academic Press; 1998). (C) The
white 3 mm-radius circle reflects the brain area supposed to be influenced by the electrode contact. CA, cornu ammonis; DG, dentate gyrus; Ent, entorhinal cortex; FD, fascia
dentata; opt, optic tract; TLV, temporal horn of lateral ventricle; PaS, parasubiculum; PrS, presubiculum; S, subiculum.
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stimulation, Pt7 and Pt8 did not show significant reductions in
seizure frequencies during bipolar stimulation, Findings regarding
Pt7 were previously reported and indicated a seizure reduction
during the first 6 months, but unfortunately the electrode had to be
reimplanted due to a fracture of the first Pisces Quad electrode,
With the new Sub Compact Octad electrode, no seizure reduction
was achieved during the months of bipolar stimulation at 1 V. The
follow-up for each patient is indicated in Table 1. The outcome was
not correlated to the follow-up (Spearman test, p = —0.0599, n.s.).

3.2. Distance of active contact to estimated ictal focus

The ictal focus was estimated in the 5 investigated patients with
invasive recordings. Since Pt9 was seizure-free even without
stimulation, distances of the estimated ictal focus to the contacts
were not considered for the analysis. For the 4 remaining patients,
the Euclidian distances between the location of electrode contacts
used for stimulation and the contacts registering maximal ictal
activity during pre-surgical invasive investigations were all greater
than 6 mm (see Table 2). These values ranged from 1.6 to 7.8 mm in
the latero-medial (x) axis, from 0.7 to 14.8 mm in the antero-
posterior (y) axis, and from 0.8 to 7.0 mm in the supero-inferior (z)
axis. The mean Euclidian distances are 11.0 +4.3 or 9.1 +: 2.3 mm
for patients with a >50% or <50% reduction in seizure frequency,
respectively. No relation could be observed between the distance of
active electrode contacts to the estimated ictal focus and clinical
outcome, Interestingly, the entire electrode of Pt9 is localized far from
the estimated ictal focus (>10 mm).

3.3. Identification of cerebral structures impacted by electrode
stimulation

In order to further characterize mechanisms underlying DBS
effect on seizure frequency reduction, the amygdalo-hippocampal
areas stimulated by the electrodes were identified on coronal MRI-
slices. Most of the active electrode contacts are localized close to
the CA1 field of the hippocampus and the subiculum (Table 3). In
patients showing a >50% seizure frequency reduction, 100% had
their subiculum localized at less than 3 mm from the active
contacts. Pt7 and Pt8 presented no significant reductions in seizure
frequency and were not stimulated in an area including the
subiculum, The clinical outcome was significantly correlated with
the proximity of the subiculum to the closest active contact

Table 2
Distances from electrode contacts to estimated ictal focus.

Patient Stimulated Distance (mm)
contact dx dy dz 3D
Pt4 co* 7.7 6.9 3.9 111
Cc1- 7.2 1.8 0.8 7.5
Pt5 co- 4.6 14.8 7.0 17.0
c1r 16 6.7 5.0 8.5
Pt7 c1+ 4,2 8.2 6.2 111
c2- 4.8 2.7 4.2 7.0
c3* 5.0 0.8 3.5 6.1
Pt8 c1+ 7.6 0.7 6.7 10.1
c2- 7.8 36 6.9 110
Pt9 co 6.7 13.0 0.5 146
1 8.2 7.9 1.3 114
2 94 4.5 24 10.7
c3 11.2 0.1 3.8 11.8
c4 126 47 54 145
c5 133 8.2 6.0 16.7
Cc6 14.8 12.0 7.0 20.3
Cc7 15.9 16.7 8.5 24,6

*~: Polarity of the stimulated contacts,
3D: Euclidian distance,

(Spearman test, p = 0.677, p < 0.05). On the other hand, all patients
had their active contacts close to the CA1 field of the hippocampus,

" including the two non-responders, and no correlation was

observed (p=-0.5668, n.s.). Furthermore, as described above,
Pt1 and Pt2 showed better outcomes when stimulated in a
quadripolar configuration including the contact C2, the nearest
contact to the subiculum.

4. Discussion

DBS has been shown to be successful in the treatment of
refractory epilepsy, despite the wide spectrum of results produced
in clinical experiences in the literature. Pioneering studies
concerning hippocampal stimulation for MTLE are based on small
patient populations,®®1819 Jts mechanisms of action remain
largely unknown. In the present study we first examined the
relationship between electrode contacts and estimated ictal onset
zone locations to further investigate its impact on clinical outcome
in MTLE, We did not observe any clear relationship between the
location of active contacts and the presumed ictal onset focus. DBS
active electrode contacts were all found to be positioned more than
6 mm from the estimated ictal onset focus. The accuracy of ictal
onset focus localization by invasive recordings may be questioned,
especially in the antero-posterior direction where the sampling
with depth electrodes was performed in the range of 1 cm, and as
the recorded EEG (local field potentials) is supposed to reflect the
synchronous activity of numerous neurons.?® However, it is
reasonable to think that the error in the antero-posterior direction
should not exceed the range of 5 mm (i.e. half the distance between
two electrodes). Moreover, as the mean Euclidian distance
between the ictal focus and the stimulated contacts for patients
with a >50% or <50% reduction in seizure frequency are
comparable, and calculated with the same probability of error,
we suggest that the seizure outcome is not directly related to the
vicinity of the ictal focus determined with invasive electrodes. As
an illustrative example, Pt9 showed a good outcome without
stimulation (probably due to a micro-lesional effect). Since the
entire electrode of Pt9 is localized >10.6 mm from the estimated
ictal focus, it seems difficult to associate this outcome through a
direct effect on the ictal focus.

Due to the small number of patients it was difficult to perform
statistical analyses, but no trend seems to separate one group from
the other in any axis, or according to patients’ characteristics
(presurgical seizure frequency, type of seizure, hippocampal
sclerosis). However, considering that the current spread from
the electrode is presumed to be smaller than 4 mm in radius
according to DBS models, we observed that sufficient reduction in
seizure frequency was obtained even when the contacts were
localized at higher distances. This suggests that indirect effects
could be produced by stimulation of a particular structure, or part
of it, potentially involved in the onset or propagation of the
epileptic current of mesio-temporal seizure. In our experience,
patients with hippocampal sclerosis generally needed a more
extended area of stimulation and had more electrode contacts
stimulated, compared to the non-lesional cases. Although we do
not have a definitive explanation, one speculation is that
morphological changes induced by sclerosis may result in less
functional tissue that can be stimulated and/or in an increase in
tissue impedance,

Interestingly, the contacts presenting maximal ictal activity
during presurgical invasive recordings were the contacts closest to
the subiculum in 3 of 5 patients. Due to the spatial resolution,?® it is
not possible to exclude that ictal activity of other structures could
be nonetheless recorded at these sites. Therefore, caution should
be taken before drawing conclusions regarding the possible role of
the subiculum in generation or in propagation of epileptic currents.
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Table 3
Structures localized near the stimulated contacts.
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Patients with a »>50% reduction in seizure frequency are grouped in the upper part of the table and indicated in bold type. The proximity of the subiculum to the stimulated
contacts is also indicated in bold type. + to +++: proportion of the structure localized in a 3 mm-radius area around the electrode contact. BL: basolateral amygdaloid nucleus,
BLI: basolateral amygdaloid nucleus intermediate part, BLVM: basolateral amygdaloid nucleus ventromedial part, BM: basomedial amygdaloid nucleus, CA1: CA1 field of the
hippocampus, CA2: CA2 field of the hippocampus, CA3: CA3 field of the hippocampus, DG: dentate gyrus, Ent: entorhinal cortex, HiH: hippocampal head, LaDA: lateral amygd.
nucl. dorsal anterior part, Lal: lat. amygdaloid nucl. intermed, part, LaV: lateral amygdaloid nucl. ventral part, PHG: parahippocampal gyrus, PrS: presubiculum, S; subiculum,

TLV: temporal horn of lateral ventricle.

Second, atlas-based analysis of amygdalo-hippocampal struc-
tures located within a 3 mm-radius sphere around the active
contacts of stimulation showed that all patients were well-
stimulated in the CA region of the hippocampus. Interestingly, the
electrode contacts that were closer to the subiculum, or may have
had a lesional effect on the subiculum during the electrode
insertion, were associated with important reductions in seizure
frequency, whereas no significant effect was observed when the
electrode was located farther than 3 mm from the subiculum. This
observation suggests that the efficacy of DBS might be associated
with the involvement of the subiculum, which also carries axons of
the perforant pathway, and that the beneficial effects may be
obtained through neuromodulation of this structure,

Several studies have highlighted the role of the dentate gyrus
and CAl region in hippocampal sclerosis models.>”*® More
recently, several studies?®? have demonstrated that the sub-
iculum and parahippocampal structures, but not the hippocampus
itself, play an active role in the generation and propagation of
temporal lobe seizures, even in non-sclerotic hippocampal
tissues.>* Our study is the first to provide clinical data in humans
supporting a potential involvement of the subiculum in the
generation and/or propagation of seizures in MTLE.

There are no data underlying the direct neuromodulatory effect
of electrical stimulation on the subiculum in refractory MTLE.
Studies have suggested that changes in GABAergic signaling
causing (1) hyperexcitability in the subiculum, that recalls the
GABAergic excitation®®35 of early development, as well as (2) the

vulnerability of GABAergic interneurons, that may give rise to an
input-specific impairment of inhibition,*? are the mechanisms
underlying development of MTLE at a cellular level, According to
these observations, neuromodulatory effects of high-frequency
DBS may decrease the excitability of the subiculum and then
improve the inhibitory effect of GABAergic pathways on genera-
tion and/or propagation of MTLE.

The reliability of our results could be improved by increasing
the series size, especially when subgroups are considered. Further
prospective multicentric studies involving a greater number of
patients are necessary to provide more consistent data confirming
the role of the subiculum in electrical stimulation in refractory
MTLE.

In conclusion, our results suggest that decreases of epilepto-
genic activity induced by hippocampal high frequency DBS in
refractory MTLE seem not to be associated with the vicinity of
the active electrode to the ictal focus determined by invasive
recordings. Instead, they might be associated with the vicinity of
the active electrode to the subiculum and obtained through the
neuromodulation of this structure, Further prospective studies
conducted on a larger group of patients are necessary to confirm
the neuromodulatory effect of hippocampal DBS on the
subiculum,
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