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Polyphenism is the phenomenon in which alternative phenotypes are
produced by a single genotype in response to environmental cues. An
extreme case is found in social insects, in which reproductive queens
and sterile workers that greatly differ in morphology and behavior
can arise from a single genotype. Experimental evidence for maternal
effects on caste determination, the differential larval development
toward the queen or worker caste, was recently documented in
Pogonomyrmex seed harvester ants, in which only colonies with
a hibernated queen produce new queens. However, the proximate
mechanisms behind these intergenerational effects have remained
elusive. We used a combination of artificial hibernation, hormonal
treatments, gene expression analyses, hormone measurements, and
vitellogenin quantification to investigate how the combined effect of
environmental cues and hormonal signaling affects the process of
caste determination in Pogonomyrmex rugosus. The results show
that the interplay between insulin signaling, juvenile hormone, and
vitellogenin regulates maternal effects on the production of al-
ternative phenotypes and set vitellogenin as a likely key player
in the intergenerational transmission of information. This study
reveals how hibernation triggers the production of new queens
in Pogonomyrmex ant colonies. More generally, it provides im-
portant information on maternal effects by showing how envi-
ronmental cues experienced by one generation can translate into
phenotypic variation in the next generation.

Many plants and animals can express specific adaptive respon-
ses to their environment through phenotypic plasticity,

whereby a given genotype can develop into different phenotypes
depending on environmental conditions (1, 2). Maternal effects,
through which the environmental conditions experienced by the
mother are translated into phenotypic variation in the offspring
(3, 4), contribute to many phenotypic traits in a wide variety of
taxa (5, 6) and have important ecological and evolutionary con-
sequences (7, 8). Investigating the mechanisms of cross-genera-
tional transmission of information underlying maternal effects is
needed to better understand the optimization of phenotypes in
changing environments (6) and, more generally, the evolution of
life history strategies (9).
In many insect species, maternal effects are known to affect

polyphenism (3, 10), an extreme form of phenotypic plasticity
characterized by the production of alternative and discrete
phenotypes from a single genotype (1, 11–13). Such maternal
effects allow adequate responses to environmental cues such as
temperature, photoperiod, nutrition, and population density in
many species (10). Examples of maternal effects on insect
polyphenism include the production of sexual versus parthe-
nogenetic morphs in aphids (14, 15), winged versus wingless
morphs in firebugs (16), and dispersal versus solitary morphs in
locusts (17, 18). The endocrine system was found to play a role in
the regulation of some maternal effects on insect polyphenisms
(19–21), but the nature of the physiological and genetic pathways

interacting with the hormonal system to translate environmental
cues into offspring polyphenism remains mostly unknown (22).
The most striking example of polyphenism is found in insect

societies (23), where a reproductive division of labor leads to the
coexistence of fertile queens and sterile workers that greatly differ
in morphology and behavior (24, 25). Even though recent studies
revealed genetic influences on caste determination in social insects
(reviewed in ref. 26), female caste fate is primarily influenced by
environmental factors in most species studied (27–39). In ants,
several studies suggested that maternal factors such as tempera-
ture or queen age may affect caste determination (40–44). How-
ever, it is only recently that the first example of maternal effects on
female caste polyphenism was documented experimentally (45).
Cross-fostering of eggs between hibernated and nonhibernated
Pogonomyrmex colonies revealed strong maternal effects on caste
production, as only eggs produced by a hibernated queen were
able to develop into queens, irrespective of the hibernation status
of the rest of the colony (45). Such maternal effects on the caste
fate of the female offspring require that the hibernation triggers
changes in the queen that affect polyphenism in the offspring.
Hormones may be involved in this process in Pogonomyrmex ants,
as Pogonomyrmex rugosus queen- and worker-destined eggs dif-
fered in their ecdysteroid content (45) and Pogonomyrmex barbatus
mature queens treated with juvenile hormone (JH) were recently
found to produce larger workers (46).
Studies on the mechanisms regulating insect polyphenisms

(reviewed in ref. 10) suggest that the insulin/insulin-like growth
factor signaling (IIS), JH, and vitellogenin (Vg) pathways, known to
regulate reproduction in adult insects (47–51), play predominant
roles in modulating larval development in response to environ-
mental cues. A well-known example illustrating the role of these
pathways is the caste fate of the female brood (queen or worker)
in the honey bee Apis mellifera (52–58). In this species, worker-
triggered differences in larval diet induce changes in IIS that
affect JH (57), possibly through the release of neuropeptides (e.g.,
allatostatin and allatotropin) that influence JH production by the
corpus allatum, as found in Drosophila (59). Changes in JH in turn
affect the production of Vg (60–62), which may be involved in the
process of caste determination (62, 63). Such effects of JH on Vg
production, also reported in flies (64), locusts (65), and cockroaches
(66), have been proposed to involve the action of ecdysteroids (62,
67–70). IIS, JH, and Vg may also play a role in the regulation of
caste differentiation of larvae in ants, as caste-specific expressions
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of genes involved in the IIS pathway were documented in Solenopsis
invicta (71) and Diacamma sp. (72). Interestingly, caste-specific
differences in IIS, JH, and Vg were also documented in adult ants
and bees (48, 73–78), suggesting further roles of these pathways in
the regulation of social life (74, 79).
We propose that the interplay between IIS, JH, andVg regulates

maternal effects on caste polyphenism in ants by translating the
environmental conditions experienced by the queen during hiber-
nation into the production of alternative phenotypes in the off-
spring. Under this hypothesis, IIS would translate environmental
cues into changes in JH, which would, in turn, affect the amount of
Vg in queens and in eggs, thus possibly affecting the caste fate of
the offspring (62, 63). This hypothesis makes four predictions.
First, a pharmacological increase of JH in queens shouldmimic the
effect of hibernation and stimulate the production of queens.
Second, hibernation should affect IIS and the production of JH in
queens. Third, both hibernation and a JH increase should stimulate
the production of Vg in queens. Finally, Vg content should differ
between queen- and worker-destined eggs. We tested these pre-
dictions by performing artificial hibernation, hormonal treatments,
gene expression analyses, hormone measurements, and Vg quan-
tification in Pogonomyrmex rugosus, an ant species in which tem-
perature-triggered changes in the queen had previously been
shown to affect the relative production of queens and workers.
Each of the four predictions was confirmed by our experiments,
thus revealing that the interplay between IIS, JH, and Vg regulates
maternal effects on caste polyphenism in P. rugosus.

Results
To investigate themechanisms of caste allocation, we compared the
production of queens between control, hibernated, and metho-
prene-treated P. rugosus colonies. There was a great variation
among colonies in the proportion of queens among the offspring
produced, ranging from 0 to 0.47 (0.05 ± 0.11, mean ± SD). There
was a significant effect of the treatments on the proportion of
queens produced [F(2,73) = 40.51, P < 0.001; Fig. 1]. Hibernation
significantly increased the proportion of queens among the female
offspring (t = 2.06, P = 0.04). The methoprene (JH analog) treat-
ment had a similar—albeit stronger—effect, as the queen/worker
ratio among the female offspringwas significantly higher in colonies
fed methoprene-treated food compared with control colonies (t =

5.39, P< 0.001). Interestingly, when only pupae that did not receive
any treatment during larval development but were produced by
treated queens (thus, those collected after week 11) were consid-
ered, there was also a significant difference between control and
methoprene-treated colonies in the proportion of queens produced
(t = 5.56, P < 0.001), showing that at least part of the observed
effect of methoprene on caste determination was triggered by
maternal effects.
Whole-body queen samples were used to measure the expres-

sion of genes involved in the IIS pathway (two insulin-like peptide
genes: ILP1 and ILP2), JH production (one gene coding for JH
epoxidase: JHepox), and vitellogenesis (two Vg genes: Vg1 and
Vg2). The treatments significantly affected the expression of all of
the genes tested [ILP1: F(2,36) = 5.30, P = 0.01; ILP2: F(2,36) =
19.47, P < 0.001; JHepox: F(2,36) = 4.12, P = 0.02; Vg1: F(2,36) =
11.15, P < 0.001; Vg2: F(2,36) = 7.93, P = 0.001]. Compared with
the control group, both hibernation and methoprene treatments
up-regulated the expression of ILP1 (hibernation: t = 1.92, P =
0.06; methoprene: t = 3.24, P = 0.003; Fig. 2), ILP2 (hibernation:
t = 4.02, P < 0.001; methoprene: t = 6.14, P < 0.001; Fig. 2),
JHepox (hibernation: t = 2.28, P = 0.03; methoprene: t = 2.65, P =
0.01; Fig. 3), Vg1 (hibernation: t = 2.20, P = 0.03; methoprene: t =
4.72, P < 0.001; Fig. 4), and Vg2 (hibernation: t = 2.15, P = 0.04;
methoprene: t = 3.98, P < 0.001; Fig. 4).
To determine whether ecdysteroids mediated the effect of JH

on Vg genes expression, we compared the 20-hydroxyecdysone
(20E) titer between queens from the control, hibernation, and
methoprene groups. Although the 20E titer was lower in the
methoprene group (3.38 ± 4.44 pg/mg) compared with the con-
trol (8.16 ± 8.47 pg/mg) and hibernation (8.18 ± 9.28 pg/mg)
groups, the effect of the treatments was not significant (Kruskal–
Wallis χ2 = 2.76, P = 0.25). However, there was a significant
negative correlation between the 20E titer in queens and the
proportion of queens in their brood (Spearman correlation test,
ρ = −0.40, P = 0.01).
There was no significant difference between treatments in the

number [F(2,72)= 1.35,P= 0.27] andweight [F(2,72)= 1.09,P= 0.34]
of eggs produced. However, the treatments significantly affected
the proportion of Vg among total proteins (Kruskal–Wallis χ2 =
6.63, P = 0.04; Fig. 5). The proportion of Vg in the protein content
of eggs produced by both hibernated (U = 42, P = 0.038) and
methoprene-treated (U = 53.5, P = 0.026) queens was significantly
higher than in eggs produced by control queens. By contrast, this
proportion did not differ significantly between eggs produced by
hibernated and methoprene-treated queens (U = 79, P = 0.93).

Discussion
Each of the four predictions developed under the hypothesis that
the interplay between IIS, JH, and Vg regulates maternal effects
on caste polyphenism in P. rugosus was confirmed by this study.
In line with the first prediction that an artificial increase of JH in
queens should stimulate the production of queens, the feeding of
P. rugosus colonies with a JH analog (methoprene) mimicked the
effect of hibernation, with both hibernated and methoprene-
treated colonies showing an increased production of queens.
These results reveal a role of JH in the regulation of caste poly-
phenism in P. rugosus. In this species, maternal effects were pre-
viously found to stimulate the production of queens in response to
hibernation, as only colonies headed by a hibernated queen pro-
duced queens, whether or not the workers had been exposed to
cold (45). The exposure to cold therefore triggers changes in
queens that make them more likely to lay queen-destined eggs. In
this study, the methoprene treatment also targeted the queen, as
evidenced by an increase in the proportion of queens among the
offspring developing in a non–methoprene-treated environment
from eggs laid by methoprene-treated queens. Similar results were
found in Pheidole pallidula, in which direct topical application of
JH on the queen stimulated the production of queens (80), and in
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P. barbatus, in which it affected the size of the workers produced
(46). Overall, the observed effects of hibernation and methoprene
treatments show that hibernation-triggered JH changes in queens
are involved in the production of queens in P. rugosus.
The second prediction was that hibernation should affect IIS and

JH in queens. In line with this prediction, our results revealed that
genes involved in IIS (ILP1 and ILP2) were up-regulated in
P. rugosus hibernated queens. This suggests that hibernation can
translate into changes in the IIS pathway. Low temperature or
the associated photoperiod changes could directly affect IIS, as
reported in the regulation of insect diapause (81). Alternatively,
the effect of exposure to cold could have been mediated by
a change in the queen nutritional status due to decreased ac-
tivity and metabolism (82) or lower food intake during hiber-
nation. Such effects of nutrition on IIS have been reported in
Drosophila (83–85). Changes in IIS usually result in the release
of neuropeptides (e.g., allatostatin, allatotropin) that influence

the production of JH by the corpus allatum (59, 64). Accord-
ingly, the exposure to cold also up-regulated the expression of
the JHepox gene, which encodes JH epoxidase, the enzyme that
catalyzes the oxidation of methyl farnesoate into JH III (86, 87),
the last step in the JH biosynthesis in most insects (88–91).
The finding that the expression of IIS genes was also affected by

the methoprene treatment could be explained by JH translating
environmental cues into IIS changes rather than the opposite. This
is consistent with the report that RNAi-mediated manipulation of
JH production affects IIS in Tribolium beetles (49). However, the
effect of methoprene on IIS is not incompatible with IIS regu-
lating JH production, as it may have been mediated by the asso-
ciated changes in Vg (48, 92), of which levels are known to affect
IIS through the target-of-rapamycin pathway in bees (55, 57, 78).
Furthermore, IIS is known to regulate the production of JH in
flies (59, 64). Although our data and the available literature do not
provide a definite answer on the directionality of the relationship
between IIS and JH in ants, our results clearly show interactions
between these pathways in response to environmental changes
such as those experienced during hibernation.
The third prediction was that both hibernation and an artificial

increase in JH should stimulate the production of Vg. In our
experiments, both hibernation and methoprene treatments stim-
ulated the production of queens and up-regulated the expression
of Vg genes (Vg1 and Vg2) in queens. The effect of hibernation
on vitellogenesis is likely to have been triggered by the increase in
JH production. This is supported by the finding that the metho-
prene treatment also up-regulated Vg expression. These results
show that JH-regulated vitellogenesis in adult P. rugosus queens is
involved in the regulation of caste polyphenism.
In insects, effects of JHonVg production have been proposed to

bemediated by the ecdysteroid pathway (62, 67–70).Our results do
not provide evidence for such a role of ecdysteroids, as the 20E
titer in queens did not differ significantly among treatments. In-
terestingly, the results revealed a trend toward a reduction of 20E
titer in methoprene-treated queens and a significant negative re-
lationship between the 20E titer in queens and the proportion of
queens in their offspring. This suggests that ecdysteroids may be
involved in the process of caste determination (45, 93).
Finally, the fourth prediction was that the Vg content in eggs

should correlate positively with their likelihood of developing into
queens. This prediction was also supported by our data. Although
neither the number nor the weight of eggs produced differed be-
tween control, hibernated, and methoprene-treated queens, the
proportion of Vg in the protein content was significantly higher in
eggs produced by both hibernated andmethoprene-treated queens
than by control queens. It is likely that the increased production of
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Fig. 2. ILP1 and ILP2 were up-regulated in hibernation and methoprene treatments. The y axis indicates the relative gene expression in queens, corre-
sponding to the ILP1 and ILP2 mRNA levels relative to the RP49 (control) mRNA level (mean ± SE). (*)P = 0.06; **P < 0.01; ***P < 0.001.
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Vg in hibernated and methoprene-treated queens translated into
a higher Vg content in the eggs, increasing their likelihood of de-
veloping into queens. How the Vg content in eggs alters the caste
fate remains to be investigated, but, as Vg is thought to act as
a nutritive source for the embryo (94), more Vg in the egg could
result in more energy during early development, facilitating the
path toward queen development. The finding of a higher pro-
portion of Vg in eggs produced by queen-producing hibernated
and methoprene-treated queens is consistent with our fourth
prediction, and shows that the quantity of Vg injected in the eggs is
involved in the early regulation of caste allocation and plays a role
in the intergenerational transmission of information required for
maternal effects on polyphenism to happen.
Overall, this study describes the mechanisms that allow the en-

vironmental cues experienced by one generation to be translated
into phenotypic variation in the next generation. The interaction
between IIS and JH in queens translates environmental cues into

changes in Vg production. This affects the quantity of Vg injected
into the eggs produced, influencing their development toward the
queen or worker caste. In addition to the insights provided on the
regulation of caste determination in social insects, this study raises
the possibility that the interplay between IIS, JH, and Vg is also
involved in the maternal regulation of other insect polyphenisms.
More generally, this study provides routes to study the proximate
mechanisms regulating maternal effects on any phenotypic traits.

Methods
Pogonomyrmex rugosus founding queens were collected during nuptial
flights on July 15, 2008, in Bowie, AZ (N32°18′54″//W109°29′03″). Although
it is affected by genetic compatibility effects, caste determination in this
species remains mostly environmental with very strong maternal effects (26,
32, 45). After worker eclosion, the colonies were kept in laboratory con-
ditions (30 °C, 60% humidity, and 12-h/12-h light:dark cycle) in plastic boxes
containing a nest, a foraging area, and water tubes, and were fed once a
week with grass seeds and a mixture of eggs, honey, and crushed mealworms.
The experiments were performed on 92 2.5-y-old colonies that had never been
exposed to cold and never produced queens. The colonies were divided in
three groups: control (n = 26), hibernation (n = 25), and methoprene (n = 26).

The experimental manipulations were divided in two phases (Fig. S1). The
first phase was set up to test the effect of an exposure to cold. Colonies from
the hibernation group were kept for 2.5 mo in a dark climate chamber at
13 °C ± 1 °C and 60% humidity. The transition to and out of hibernation was
done over a period of 2 wk by progressively decreasing or increasing tem-
perature in a 8-h/16-h light:dark cycle. All of the other colonies (control and
methoprene groups) were kept in the usual laboratory conditions (30 °C, 60%
humidity, and 12-h/12-h light:dark cycle). The first phase terminated at week 0,
when the second phase started. The second phase was set up to test the effect
of JH treatment. To do so, we used methoprene (Sigma-Aldrich), a synthetic
analog of JH. The colonies from the methoprene group were fed four meal-
worms crushed with 0.1 mg of methoprene in 0.1 mL of acetone eachweek for
8 wk (from week 0 to week 7), whereas colonies from the hibernation and
control groups received four mealworms crushed in 0.1 mL of acetone. There is
a drawback to this whole-colony approach because it affects all of the indi-
viduals in the colony. To circumvent this problem and determine whether the
methoprene treatment acted on the queens to affect caste determination,
we performed an additional analysis restricted to the offspring that pupated
after week 11. These individuals were produced by methoprene-treated
queens, but were not exposed to methoprene during larval development.
The experimental design also required to control for a potential effect of
acetone: feeding colonies mealworms crushed in acetone had no significant
effect on the proportion of queens produced (food with acetone: n = 26;
food without acetone: n = 15; Mann–Whitney U test: U = 204, P = 0.15).

Samples were collected in each colony to assess the proportion of queens
among the female offspring produced, the number, weight, and Vg content
of eggs produced, the expression of candidate genes, and the ecdysteroid
titers in queens. All of the pupae produced were collected from week 3 until
no brood remained (Fig. S1) and observations of size and morphology allowed
the assignation of each pupa to the queen or worker caste. The proportion of
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queens among the offspring produced was then calculated for each colony
(except one that did not produce enough offspring; control: n = 26; hiber-
nation: n = 25; methoprene: n = 25). At week 4, the queen of each colony was
isolated for 24 h in a 2-mL plastic tube closed with wire mesh and placed in the
colony. Thus, the queen could still communicate with workers, reducing the
stress of isolation. This method allowed us to collect and count the number of
eggs produced by each queen in 24 h (control: n = 26; hibernation: n = 25;
methoprene: n = 25). At week 5, a batch of eggs was collected in each colony
(between 5 and 52 eggs per colony; 26.1 ± 8.9, mean ± SD) and weighed using
a microbalance (Mettler Toledo MT5) to a precision of 1 μg (control: n = 26;
hibernation: n = 25; methoprene: n = 25). The eggs were then stored at −80 °C
for further measurement of Vg content, successfully performed on eggs pro-
duced by 40 colonies (control: n = 15; hibernation: n = 11; methoprene: n = 14).
At week 7, the queen was collected in each colony. One-half of the queens
were flash-frozen in liquid nitrogen and stored at −80 °C for later RNA ex-
traction (control: n = 13; hibernation: n = 13; methoprene: n = 13), whereas the
other half was used for ecdysteroid measurement (control: n = 12; hibernation:
n = 12; methoprene: n = 13).

RNA extractions from whole-body queen samples were performed using
a modified protocol including the use of TRIzol (Invitrogen) for the initial
homogenization and the RNeasy Plus Micro extraction kit (Qiagen). For each
individual queen, cDNAs were synthesized using 500 ng of total RNA, random
hexamers, and Applied Biosystems reagents. Levels of mRNAwere quantified
by quantitative real-time PCR (qRT-PCR) using ABI Prism 7900 sequence de-
tector and SYBR Green. All qRT-PCR assays were performed in triplicate and
subjected to the heat-dissociation protocol following the final cycle of the
qRT-PCR to check for amplification specificity. qRT-PCR values of each gene
were normalized by using an internal control ribosomal protein 49 (RP49)

gene. Paralog-specific primers (Table S1) were designed using sequence
alignment (95) and primer analysis (96) programs. Primer sequences over-
lapped coding regions split by introns, allowing the specific amplification of
cDNA levels over potential genomic DNA contaminations. Transcript quan-
tification calculations were performed by using the ΔΔCT method (97).

The ecdysteroid titer in queens was determined using the liquid chro-
matography–mass spectrometry method developed by Westerlund and
Hoffmann (98), with some minor modifications (see SI Text for details). The
amount of Vg in eggs was measured by dot-blotting using Ectatomma
tuberculatum (Formicidae: Ectatomminae) anti-Vg antibodies (99) (see SI
Text for details).

To test for the effect of the treatments on the proportion of queens among
the offspring, gene expression, and egg number and weight, we conducted
ANOVAs onmodels optimized tofit our data. Theproportion of queenswasfit
using a generalized linear model with quasi-binomial errors. The gene ex-
pression data were fit using a general linear model with normal errors. The
ecdysteroid and Vg data could not be normalized and were analyzed using
Kruskal–Wallis and Mann–Whitney nonparametric tests. The correlation be-
tween the ecdysteroid titer and the proportion of queens produced was
tested using a Spearman rank correlation test. All statistical analyses were
performed with R (www.R-project.org).
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