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Summary   

Emergence of Next Generation Sequencing and other technological advancements that boosted                     

high-throughput measurements, facilitated generation of numerous -omics data. As -omics data                     

became more accessible and widespread, integration of them into association studies has become                         

a central challenge in the field. Such synthesis allows investigating the interplay between different                           

organisational layers of a biological system and aids building a more holistic view of the                             

organism.  

We had access to various datasets including genomics, metabolomics and gene expression data                         

that were collected under a collaborative effort of the Cohort Lausannoise study. We used                           

RNA-Seq data from lymphoblastoid cell lines (LCLs) derived from 555 Caucasian individuals to                         

characterize their transcriptome and in the first part of this work, integrated gene expression data                             

with genotypes to study the genetic variants affecting the gene expression levels, an analysis                           

known as eQTL analysis. 

In the second part of the work, we investigated the results of a metabolome- and                             

transcriptome-wide association study to identify genes influencing the human metabolome. As                     

for the metabolome we took an untargeted approach using binned features from 1H nuclear                           

magnetic resonance spectroscopy (NMR) of urine samples from the same subjects allowing for                         

data-driven discovery of associated compounds (rather than working with a limited set of                         

quantified metabolites). We identified 21 study-wide significant associations between                 

metabolome features and gene expression levels. The most significant association was between                       

the gene ALMS1 and two adjacent metabolome features at 2.0325 and 2.0375 ppm. By using our                               

previously developed metabomatching methodology, we found N-Acetylaspartate (NAA) as the                   

potential underlying metabolite whose urine concentration is correlated with ALMS1 expression.                     

Indeed, a number of metabolome- and genome-wide association studies (mGWAS) had already                       

suggested the locus of this gene to be involved in regulation of N-acetylated compounds, yet                             

were not able to identify unambiguously the exact metabolite, nor to disambiguate between                         

ALMS1 and NAT8, another gene found in the same locus as the mediator gene. The second                               

highest significant association was observed between HPS1 and two metabolome features at                       

2.8575 and 2.8725 ppm. Metabomatching of the association profile of HPS1 with all metabolite                           
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features pointed at trimethylamine (TMA) as the most likely underlying metabolite. mGWAS had                         

previously implicated a locus containing HPS1 to be associated with TMA concentrations in                         

urine but could not disambiguate this association signal from PYROXD2, a gene in the same                             

locus.  

In the third part of the work we studied causality between gene expression levels and metabolite                               

concentrations by Mendelian Randomization analysis. We showed for both ALMS1 and HPS1                       

genes that their expression is causally linked to their associated metabolite concentrations. Our                         

study provided evidence that the integration of metabolomics with gene expression data can                         

support mQTL analysis, helping to identify the most likely gene involved in the modulation of                             

the metabolite concentration.   
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Résumé 

L'émergence du séquençage de la prochaine génération et d'autres avancées technologiques qui ont                         

permis les mesures à haut débit, ont facilité la production de nombreuses données de type                             

"omiques". Les données omiques étant ainsi devenues plus accessibles et plus répandues, leur                         

intégration dans les études d'association est devenue un défi central. Une telle synthèse permet                           

d'étudier l'interaction entre les différentes couches organisationnelles d'un système biologique et                     

aide à construire une vision plus globale de l'organisme.  

Nous avons eu accès à divers ensembles de données, notamment des données de génomique, de                             

métabolomique et de transcriptomique (expression de gènes), recueillies dans le cadre de l'étude                         

de la Cohorte Lausannoise. Nous avons utilisé les données RNA-Seq de lignées de cellules                           

lymphoblastoïdes (LCL) provenant de 555 individus caucasiens pour caractériser leur                   

transcriptome et dans la première partie de ce travail, nous avons intégré les données                           

d'expression des gènes avec les génotypes pour étudier les variantes génétiques affectant les                         

niveaux d'expression des gènes, une analyse connue sous le nom d'analyse eQTL. 

Dans la deuxième partie du travail, nous avons étudié les résultats d'une étude d'association à                             

l'échelle du métabolome et du transcriptome pour identifier les gènes influençant le métabolome                         

humain. En ce qui concerne le métabolome, nous avons adopté une approche non ciblée en                             

utilisant directement les données spectrales obtenues par résonance magnétique nucléaire (RMN)                     

d'échantillons d'urine de ces mêmes 555 individus, ce qui a permis de découvrir des métabolites                             

associés à partir de données (plutôt que de travailler avec un ensemble limité de métabolites                             

quantifiés). Nous avons ainsi identifié 21 associations significatives à l'échelle de l'étude entre les                           

caractéristiques des métabolomes et les niveaux d'expression des gènes. L'association la plus                       

significative était entre le gène ALMS1 et deux caractéristiques métabolomiques adjacentes à                       

2.0325 et 2.0375 ppm. En utilisant notre méthodologie de metabomatching, nous avons trouvé                         

le N-Acetylaspartate (NAA) comme candidat sous-jacent potentiel dont la concentration urinaire                     

est corrélée avec l'expression de l'ALMS1. En effet, un certain nombre d'études d'association à                           

l'échelle du métabolome et du génome (mGWAS) avaient déjà suggéré que le locus de ce gène                               

était impliqué dans la régulation des composés N-acétylés, mais elles n'ont pas pu identifier sans                             

ambiguïté le métabolite exact, ni faire la distinction entre ALMS1 et NAT8, un autre gène trouvé                               
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dans le même locus que le gène médiateur. La deuxième association significative la plus élevée a                               

été observée entre HPS1 et deux caractéristiques du métabolome à 2,8575 et 2,8725 ppm. Le                             

mGWAS avait précédemment impliqué un locus contenant HPS1 pour être associé aux                       

concentrations de TMA dans l'urine mais n'a pas pu désambiguïser ce signal d'association de                           

PYROXD2, un gène dans le même locus.  

Dans la troisième partie du travail, nous avons étudié la causalité entre les niveaux d'expression                             

des gènes et les concentrations de métabolites par analyse de randomisation mendélienne. Nous                         

avons montré pour les gènes ALMS1 et HPS1 que leur expression est causalement liée aux                             

concentrations des métabolites qui leur sont associés. Notre étude a fourni la preuve que                           

l'intégration de la métabolomique avec les données d'expression des gènes peut soutenir l'analyse                         

mQTL, aidant à identifier le gène le plus probablement impliqué dans la modulation de la                             

concentration du métabolite.   
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1 Introduction  

In this chapter I introduce the simultaneous analysis of multi-omics data, the concept of                           

precision medicine, the difference between hypothesis-generating versus hypothesis-driven               

research, and ‘CoLaus’, a cross-sectional multi-omics human cohort that we use for the analyses.                           

I also describe various statistical methods and modular approaches I used for the analyses and                             

Mendelian Randomization as a tool of choice to infer causality. 

1.1 Integrative analysis of multi-omics data 

Understanding the relationship between genotype and phenotype is of fundamental importance                     

in biology. It is also highly relevant in biomedical research in order to better understand the                               

molecular basis of many diseases. It is well known that genetic variants together with the                             

environmental factors influence risk of developing certain diseases and determine complex                     

phenotypic traits [1]. After the completion of The Human Genome Project in 2003 [2] millions of                               

DNA sequence variants in the human genome were discovered by the HapMap [3] and other                             

projects. Since around this time Next Generation Sequencing (NGS) technologies have been                       

emerging with a fast pace, creating billions of DNA sequences cheaper and faster than previously                             

anticipated [4]. Thanks to these advancements, genome sequence data of humans and other                         

model organisms became widely available and marked the last two decades as the Genomics era,                             

signifying the transition from a gene-centric to a genomic view. With the rise of genomic data,                               

genome-wide association studies (GWAS) emerged, where common genetic variants are                   

associated with complex traits and common diseases [5]. As millions of SNPs across the genome                             

can be assayed simultaneously, GWAS represent a promising way to study complex and                         

common diseases in which many genetic variants contribute to disease risk [6-8]. GWAS                         

discoveries therefore provide insights into the contribution of individual variation to the                       

susceptibility of many diseases including multiple sclerosis, Crohn’s disease, diabetes, cancer and                       

schizophrenia [9-14] and to continuous traits such as lipids, height and fat mass [15-17]. While                             

GWAS is a powerful tool to connect traits to genetic variability, it is not without limitations.                               

Many trait associated SNPs do not map to protein coding open reading frames and even if they                                 

do, they often correspond to synonymous nucleotide changes, not altering the amino acid                         
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sequence of the protein [18]. Moreover, pinpointing causal variants discovered in GWAS                       

remains difficult since the lead variants associated with a trait are often in high linkage                             

disequilibrium (LD) with other variants in the same region with only slightly lower association                           

signals. Such associated LD blocks typically contain several genes or functional elements,                       

preventing the accurate identification of causal variants. For these reasons, it is often difficult to                             

get deeper insight into the biological mechanisms underlying these associations. A criticism of                         

GWAS is on missing heritability, a concept referring to the candidate loci reported by GWAS                             

typically having small effect sizes and even jointly explaining only a small fraction of the                             

estimated variance of a trait [19]. However recently it has been shown that explained heritability                             

is getting closer to those of estimated from twin studies [6].  

In addition to generating genotypic data, technological advancements have promoted                   

high-throughput measurements also in other fields such as gene expression, epigenetics,                     

metabolomics and proteomics. As high-throughput measurements of these molecular traits                   

become more accessible and widespread, integration of them into association studies has become                         

a central challenge in the field. Such synthesis allows investigating the interplay between different                           

organisational layers of a biological system. 

Integration of gene expression with genotypic data, is one of the frequently used methods to                             

derive functional relevance of genetic variants. Associating gene expression levels with genetic                       

variants results in the discovery of expression quantitative trait loci (eQTL) and many studies                           

reported that trait associated genetic variants discovered in GWAS are significantly enriched in                         

eQTLs, suggesting that many trait associated variants affect the phenotype by altering gene                         

expression [20-23]. There is also a growing body of literature highlighting the more pronounced                           

effects of genetic variants on molecular traits compared to phenotypic traits [24-26]. This is not                             

surprising as molecular traits representing fundamental biological processes such as gene                     

expression are intermediates in the genotype to trait causality chain.  

Another type of molecular traits that is of interest to GWAS is metabolomics. GWAS with                             

metabolomic traits (mGWAS) search for genetic variants that influence human metabolism.                     

Metabolites are small molecules that reflect various cellular processes taking place in the cells of                             

an organism. Metabolomics techniques, such as mass-spec and NMR allow for estimating the                         

concentrations of large sets of metabolites thus providing snapshots of the physiological states of                           
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a cell. They complement transcriptome and proteome measurements, which reflect events, such                       

as the expression of a particular gene, which may be the cause or the effect of metabolomic                                 

changes. In general, metabolite concentrations are influenced by the genetic background and the                         

environment including diet, infections as well as chronic diseases, and interactions between the                         

two. To date more than 150 loci have been identified as modulators of serum and 26 loci for                                   

urine metabolites [27]. Having genotype, metabotype and phenotype data, one can start to                         

investigate to what degree the metabolomics data reflect the genotypic background and how                         

informative it is about the phenotype, e.g. disease susceptibility. Changes in metabolite                       

concentrations may be the consequence of the genetic background modulated by the                       

environment, and some of these changes can be causal for developing diseases. Conversely,                         

some changes in metabolites may occur as a results of an organismal dysfunction. Being able to                               

distinguish between these two scenarios, would be of great clinical usefulness, as metabolite                         

changes which are causally upstream are good candidates for developing presymptomatic                     

biomarkers indicating increased disease risk well ahead of the various homeostatic organismal                       

processes leading to disease manifestation. 

Despite metabolism and gene expression regulation both being fundamental biological processes                     

that are commonly studied as molecular phenotypes, there are very few studies in humans that                             

focus on the interplay between them. Several studies investigated the relationship between                       

untargeted serum metabolites and whole blood gene expression in humans [28-30], but, to the                           

best of our knowledge no transcriptome- and metabolome-wide association study has been                       

performed using urine metabolome data of healthy human subjects, which we were able to                           

investigate in the context of this work. 

1.2 Precision medicine 

Personalised medicine seeks tailoring the medical treatments according to the individual                     

characteristics of each patient. The recently emerged term precision medicine, while often used                         

interchangeably, is intended to convey a slightly different message. As therapeutics are rarely                         

developed for individuals, precision medicine implies the treatment accuracy among a spectrum                       

of patients, e.g subgroups of patients, instead of single individuals.  
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The concept was in response to the scientific discoveries that changed the perception of how the                               

unique molecular profile of a person affects its susceptibility to certain diseases. Yet the notion                             

of precision medicine is also in line with many other advancements that took place in recent                               

decades. Having access to more readily available genomics data, improved understanding in the                         

population-level genetic variation, increased digitization of medical records and creative                   

approaches to integrate data, are all contributing to the formation of this notion. With improved                             

prediction, prevention, diagnosis and treatment of the disease, precision medicine has the                       

promise of advancing the traditional methods and endorsing genome-driven medical decision                     

making. Some of the postulated benefits of precision medicine include: 

● Screening, diagnostic and prognostic tests to determine the predisposition to common                     

genetically determined diseases and predicting the severity of the disease 

● Drug targeting according to disease sub-types and adjusting the effective dose to achieve                         

better therapeutic outcome while reducing the side-effects  

● Assessing drug hypersensitivities 

● Reduced healthcare costs due to more efficient therapies and reduced side-effect related                       

treatments 

Pharmacogenomics is one of the earliest fields that adopted the precision medicine practices by                           

providing support to clinical decision making. Decision support in this sense is making use of                             

genotypic variability among individuals to favor drugs and adjust dosages individually for                       

patients in order to reduce the chances of patients suffering from life threatening side-effects and                             

administering an effective dose for better therapeutic outcomes. Studies associating genetic                     

markers with pharmacogenomic traits, in other terms GWAS with pharmacogenomic traits, have                       

high potential for getting translated into clinical practice and therefore have an immediate impact                           

on human health. GWAS with pharmacogenomic traits are also known to have larger effect sizes                             

compared to the GWAS with complex diseases [31]. One important example of such association                           

study is the investigation of genetic determinants of Hepatitis C virus (HCV) persistence and                           

response to therapy. Several groups, including one at the CHUV, studied patients with HCV                           

infection and found SNPs in the IL28B locus, encoding antiviral cytokine interferon lambda,                         

associating with the progression of chronic HCV infection [32]. Findings of this study facilitated                           

stratification of patients according to their genotypes and revealing their likelihood to respond to                           
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the known therapies. As a result this subgroup of patients were recommended to be prioritized                             

for novel therapeutic strategies in order to avoid drug resistance mutations and treatment failure.                           

Other GWAS applications with pharmacogenomic traits that had sizable effect size estimates                       

include response to tamoxifen in breast cancer and response to statin treatment [31]. Another                           

benefit of GWAS in pharmacogenomic research is the value of disease associated genetic                         

variants as biological targets for drug development. 

The role of metabolomics in pharmacogenomic research is important. As metabolism is closely                         

related to cellular processes, any kind of perturbation in cellular physiology can result in altered                             

metabolism and therefore an altered metabolic profile. This shows the great potential of                         

metabolomic profiling of body fluids such as blood and urine in the context of health status                               

monitoring. Due to potential confounding factors, drug response studies are usually designed in                         

vitro, using cell-line based models where different drug doses are administered to the cell lines                             

and in return changes in their gene expression and cell growth are observed. However drug                             

response may not be well reflected when gene expression of a surrogate tissue is used. For                               

instance, gene expression of a cell line might not reflect the metabolic response required to                             

metabolize a drug and likewise blood might not well imitate the drug-organ interaction.                         

Integrating metabolomics into drug response studies can be especially beneficial in this context,                         

where it would be possible to study the drug response in vivo by measuring metabolic response                               

created in return to drug administration and dose adjustment. 

Despite the premises of precision medicine it also receives a fair amount of criticism on its                               

validity, applications and consequences. One of the major criticisms it receives is its reliance on                             

algorithms that were developed to tackle cohort or population level genetic variation rather than                           

individual level. Low level of accuracy in a population study translates into a lost opportunity of                               

a discovery whereas it has more destructive consequences in the clinical testing context. Another                           

skepticism of its usefulness is due to the perception of the increased genetic risk by society.                               

Joyner argues that in most cases genetic information will be overvalued and received as                           

deterministic, resulting in devaluation of likely beneficial lifestyle advice [33]. This will either                         

discourage people to make healthier lifestyle choices or in the opposite scenario it will increase                             

the demand for medical surveillance and therefore medical costs, which might be unnecessary.                         

While some see precision medicine as hope for the future generations to come, others see it as a                                   

distraction from otherwise simple issues that need attention, “for the sake of a revolution that                             
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might never come” as Joyner states [33-36]. All in all, precision medicine is no doubt an exciting                                 

emerging field, yet as it is true for every scientific advancement one should acknowledge its                             

limitations and be cautious about the interpolation of nishe successes for other domains. 

1.3 The CoLaus study 

Cardiovascular diseases (CVDs) and related risk factors are recognized as the main cause of                           

death in the world, accounting for almost a third of all deaths globally in 2016 [37]. While CVDs                                   

are common, the associated risk factors show substantial variation across global regions [38]. The                           

Cohorte Lausannoise (short CoLaus) Study belongs to one of the many international efforts aiming                           

to assess population specific prevalence of CVD risk factors, in this case the population of                             

Lausanne. Another aim of this population-based cross-sectional study is to help discovering new                         

genetic determinants of cardiovascular risk factors [39]. Recruitment to the project was done on                           

the basis of a simple, non-stratified random selection of 19,830 Swiss residents from the wider                             

Lausanne area who were aged 35-75 years in 2003. Overall 6,738 subjects participated in the                             

CoLaus Study undergoing extensive phenotyping, but only the subpopulation of 6,188 Caucasian                       

was genotyped. Baseline sampling procedure started in 2003 and ended in 2006 (see Figure 1).  
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Figure 1: Flowchart of CoLaus study, adapted from Firman et al. 2008 [39]. 
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The clinical phenotypic data were assessed through questionnaires, following face-to-face                   

interviews and medical examinations. The questionnaires and face-to-face interviews recorded                   

information on socio-economic status, lifestyle factors, personal and familial history of CVD and                         

related risk factors, while medical examinations measured anthropomorphic traits and clinical                     

characteristics. An overview of measured phenotypes is listed in Table 1. 

 

Table 1: Overview of measured phenotypic traits in the CoLaus study. 

 

Genotypic data were acquired using DNA from lymphoblastoid cell lines (LCLs) derived from                         

the subjects’ blood cells. Nuclear DNA was extracted from these LCLs for SNP genotyping                           

using the Affymetrix GeneChip Human Mapping 500K array set. Genotypes were called using                         

BRLMM [40]. Next, duplicate individuals and first and second degree relatives were identified                         

through measuring genomic identity-by-descent coefficients by PLINK [41] and the duplicates                     

and the younger individual from the relative pair were removed from the analysis. The 390,631                             

measured SNPs (with Hardy-Weinberg P-value above 10-7 and MAF above 1%) were then                         

imputed to the full set of unmeasured HapMap II SNPs (release 21) by using IMPUTE version                               

0.2.0 [42]. Lastly, expected allele dosages were computed for 2,557,249 SNPs of 6,188 subjects.                           
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Urine metabolomics profiles were generated for 974 subjects using proton nuclear magnetic                       

resonance (NMR). 1H NMR spectra were acquired at 300 K on a Bruker 16.4 T Avance II 700                                   

MHz spectrometer (Bruker Biospin, Rheinstetten, Germany) employing a standard 1H detection                     

pulse sequence with water suppression. Subsequently 1H spectra were binned in chemical shift                         

increments of 0.005 ppm, resulting in metabolic profiles of 2,200 metabolome features. Filtering                         

out features, and then samples with more than 5% of missing values, a dataset composed of                               

1,276 features for 835 individuals was obtained. 

Serum metabolomics profiles of 983 subjects were analyzed by 1H NMR spectroscopy on the                           

same spectrometer. 1H NMR spectra were referenced according to the glucose signal at 5.223                           

ppm, phase-corrected, and baseline-corrected. No binning was applied. Instead a peak picking                       

approach by using Focus [43] was applied to obtain a reduced set of metabolome features. Later                               

on these features were log-transformed and z-score normalized (both row- and column-wise) to                         

obtain zero mean and unit variance. The final dataset consisted of 388 features for 838 subjects. 

Gene expression profiles of LCLs were obtained using the Illumina HiSeq2000 platform.                       

RNA-seq data was produced by the Department of Genetic Medicine and Development at the                           

University of Geneva. Mapping was done onto Genome Reference Consortium Human Build 37                         

(GRCh37), hg19. Overall 45,470 gene expression profiles were quantified for 555 subjects for                        

whom we also had the metabolomics data.  

The systematic follow-up studies of CoLaus were realized in 2009, 2014 and 2018 respectively.                           

During the follow-up information regarding cardiovascular events and deaths were collected.                     

Having access to such longitudinal data will allow for studying the onset and progression of                             

CVD and related risk factors. In particular, having time ordered data opens new ways to                             

investigate causality and search for presymptomatic biomarkers that predict disease risk. 

1.4 Hypothesis-driven versus hypothesis-generating research 

Hypothesis-driven and hypothesis-generating research are two different approaches to conduct                   

research. In hypothesis-driven research a specific research question is already defined based on a                           

prior groundwork. The goal of the experiments is then to test this hypothesis, in the context of                                 
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biomedical research usually through a sequence of assays applied to selected phenotypes of cases                           

and controls.  

In contrast, in hypothesis-generating research there is no specific hypothesis a priori. Rather, the                         

objective is to explore comprehensive sets of data in order to reveal the patterns or structures                               

within. Eventually, results from a hypothesis-generating research can be used as a basis to                           

formulate concrete testable hypotheses. This is a non-biased way of discovering knowledge                       

where scientists are not constrained by preconceived ideas. The availability of large datasets and                           

advancements in statistical methods to analyze them has facilitated this approach to such an                           

extent that hypothesis-generating research has now also come to be known as data-driven research.                           

Genome-wide association studies (GWAS) is an illustration of this type of research, where                         

genetic variants of the entire genome are tested for association with diseases/traits. Resulting                         

discoveries can then be followed up on in a more focussed manner, by translating the results                               

derived from hypothesis-generating research into hypothesis-testing research. Nevertheless,               

hypothesis-driven and hypothesis-generating research should not be seen as mutually exclusive,                     

while in fact they are complementary to each other. After all, the motivation of                           

hypothesis-generating research is to formulate better and more relevant hypotheses that can be                         

tested.  

A more specific example that we accomplished in the scope of this thesis is our CoLaus                               

transcriptome- and metabolome-wide association study. This association study is an example of                       

hypothesis-generating research and it represents the first stage of our work. In the first stage, we                               

were interested in studying the relationship between the two different molecular entities and                         

investigated to what extent their respective features were correlated with each other. By                         

examining the association results we were able to point out metabolite-gene pairs that correlated                           

with each other more than expected by chance. In the second stage, we were then in a position                                   

to proceed with some of the interesting results from the first stage and formulate concrete                             

testable hypotheses with them. In our case, we were interested in the causal relationship between                             

specific metabolite-gene pairs and the Mendelian Randomization analysis served to test the                       

specific hypothesis; if the expression of a particular gene was causally upstream to the metabolite                             

concentration it was associated with.  
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1.5 Some basic statistical concepts 

1.5.1 Statistical tests  

Parametric vs non-parametric tests 

In statistics parameter refers to the feature of a population whereas statistic refers to a feature of                                 

the sampling distribution. A parametric statistical test makes various assumptions on the                       

population parameters and the distribution of the data from which these parameters come from.                           

Student’s t-tests and ANOVA tests are among the well known parametric tests. 

Non-parametric tests which are also known as distribution-free tests do not make any assumptions                           

on the population parameters and are often used when the data from which these parameters                             

come from are non-normally distributed. Mann-Whitney and Krustal-Wallis tests are among the                       

well known non-parametric tests that are used in place of Student’s t-tests and ANOVA tests                             

respectively. 

Both parametric and non-parametric tests have their advantages and use cases where one should                           

be prefered over the other. Some of the advantages of parametric tests are summarised below: 

● They give accurate results when the sample size is large enough and the data is normally                               

distributed. Contrary to common conception, parametric tests can also be used when the                         

data is not normally distributed [44]. In this case however, a higher sample size is                             

required so as to satisfy the central limit theorem, which states that given a sufficiently                             

large sample size, the sampling distribution of the mean will be approximately normally                         

distributed even if the distribution of the population is non-normal. The sample size                         

required to achieve this effect depends on the underlying population distribution of the                         

variable. The further from normal the distribution, the higher the sample size necessary                         

to achieve the normal sampling distribution of the mean. 

● When appropriate, parametric tests have greater statistical power to detect true                     

significant effects and they tend to be more accurate.  
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Some of the advantages of non-parametric tests include: 

● They are well suited when the assumptions of parametric tests are not met, typically in                             

the case of small sample sizes.  

● Non-parametric tests assessing the median can be favorable in cases where the median is                           

a better measure of central tendency, as in the case of skewed distributions, for example. 

● Most of the non-parametric tests compare the distribution of ranks, therefore they are                         

more robust to the presence of outliers.  

To summarise, both the distribution and sample size of the data should be considered when                             

making a choice between parametric and non-parametric tests. An evaluation of which central                         

tendency measures suit the data, mean or median, also would help to decide over the two types                                 

of tests.  

P-values in statistical hypothesis tests 

The purpose of statistical tests is to test a hypothesis, where the hypothesis is often an educated                                 

guess that can be tested by experiments or observations. In hypothesis-testing terminology, the                         

alternative hypothesis corresponds to the proposed relationship between the datasets, whereas the                       

null hypothesis corresponds to no relationship between the datasets. Prior to hypothesis-testing, a                         

level of significance, or alpha level, is picked. The alpha level represents the probability of rejecting                               

the null hypothesis when it was in fact true, which is known as a type I error. Alpha levels should                                       

not be seen as definitive in characterizing a hypothesis as valid or invalid; rather, they serve to                                 

qualify statistical results in a commonly agreed on manner. For many the consensus value for                             

alpha is 0.05, although lower values have been argued for in favor of reproducibility [45]. A test                                 

statistic is calculated on the observed data, then compared to the rejection region defined by                             

alpha in order to support or reject the null hypothesis. A p-value stands for the probability of                                 

observing a particular test statistic, given that the null hypothesis chosen for the test statistic is                               

valid. Thus smaller the p-value of an observed statistic, more likely it is that the null hypothesis is                                   

not adequately explaining the observed phenomenon.  
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Multiple hypothesis testing 

To every single performed statistical test, there is an associated false discovery rate, defined by                             

the alpha level. When the number of tests performed increases, the number of false discoveries                             

also rises accordingly. The potentially large number of false discoveries resulting from multiple                         

hypotheses testing is known as multiple hypothesis testing problem. 

There are several different ways to account for the multiple hypothesis testing problem. One of                             

the most traditional methods is the Bonferroni correction, a type of Family-Wise Error Rate                           

(FWER) correction [46]. A Bonferroni-adjusted p-value is calculated by dividing the significance                       

level by the number of tests and it measures the probability of having at least one false positive                                   

result. It is a conservative correction method: it focuses on the reduction of false positives, but                               

may in turn also suppress true positives. The False Discovery Rate (FDR) is another popular                             

alternative concept to account for the multiple hypotheses testing problem. Unlike FWER, FDR                         

only controls the number of false discoveries in those tests that result in discovery. Therefore                             

FDR is less conservative than the Bonferroni approach and has greater power to find truly                             

significant discoveries. The FDR concept was first introduced by Hochberg and Benjamini                       

(1990) (called HB-FDR) [47] and then later on improved by Benjamini and Hochberg (1995)                           

(called BH-FDR) [48]. Calculation of FDR simply starts with ranking the p-values from smallest                           

to largest. A BH-critical value is then calculated by multiplying the p-value with (i/m )Q, where i                                 

is the rank of the p-value, m is the total number of tests and Q is an a priori defined false                                         

discovery rate. P-values below the BH-critical value are considered significant. Adaptive methods                       

to BH-FDR have been proposed including the one suggested by Storey (2003) called positive                           

FDR (pFDR) [49] which requires at least one significant discovery among all the tests                           

performed. With the introduction of pFDR, Storey also introduces an error measurement called                         

q-value, which is the analogue of p-value related to the false positive rate.  

1.5.2 Linear regression analysis 

Regression analysis is a well established, commonly used statistical tool in biological, social and                           

behavioral sciences. In the simplest terms, regression analysis models the linear relationship                       

between variables 𝑦 and 𝑥, where 𝑦 corresponds to observational data (dependent variable) and 𝑥                             
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corresponds to explanatory variable (independent variable). In simple linear regression,                   

observational data 𝑦 only depends on one explanatory variable 𝑥, whereas in multivariable linear                           

regression 𝑦 can be modeled by several explanatory variables 𝚇=(𝑥1,𝑥2,...,𝑥n). The general form of                           

multivariable linear regression can be written as: 

𝑦 = 𝛽 0 + 𝛽1𝑥1 + 𝛽2𝑥 2 + … 𝛽n𝑥n + 𝜀 , 

for i=(1,...,n), where 𝛽0 refers to the intercept, 𝛽i refers to the regression coefficient of 𝑥i and 𝜀                                   

refers to the error term. 

Regression analysis serves three main purposes that can be summarised as model specification,                         

model fitting and prediction.  

● Model specification is the process of selecting the explanatory variables 𝚇 =(𝑥1,𝑥2,...,𝑥n) most                       

relevant to the dependent variable y. Having too few explanatory variables in the model                           

can give rise to underspecified and biased models and too many explanatory variables in                           

the model can give rise to overspecified and less precise models. Model specification will                           

often derive from field expertise. In addition to this, statistical assessments like adjusted                         

R-squared and predicted R-squared can help during the model specification process.                     

These values reflect the improvement of the model with the addition of every new                           

explanatory variable to it. P-values of the regression coefficient estimates is also another                         

way to judge the importance of the variable in the model. Besides these statistics, various                             

regression methods exist that are designed to pick up the most relevant variables for the                             

model in an automated fashion; like stepwise and LASSO regressions. Stepwise                     

regression evaluates the F-test statistics resulting from adding or removing variables to                       

the model, and in the light of these decides which variables should be included in the                               

model. LASSO regression uses shrinkage to shrink data values towards a central point,                         

therefore encouraging sparse models. Nevertheless model specification is by no means                     

an easy task and it indeed causes regression analysis being regarded as an art. 

● Model fitting refers to fitting a regression model to describe the relationship between                         

dependent variable 𝑦 and the explanatory variables 𝚇=(𝑥1,𝑥2,...,𝑥n). When the model is fit,                         

the overall fraction of the variation in Y explained by explanatory variables can be                           

examined as well as the contribution of each explanatory variable, 𝑥i , to explain the                             

variation in Y known as effect size. Ordinary Least Squares method (OLS) is the                           
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standard fitting method used in linear regression. Least squares regression line refers to                         

the line that minimises the distance of data points to the regression line as much as                               

possible, which is also known as minimizing the sum of squared residuals. In simple                           

linear regression, the regression line is fitted in two-dimensional space, to the values of 𝑥                             

and 𝑦. On the other hand when there are multiple explanatory variables in the model, as                               

in multivariate linear regression, the regression line is replaced by a regression plane and                           

the OLS method still remains valid and applicable. The OLS corresponds to the                         

maximum likelihood criterion when the errors (residuals) of the model are normally                       

distributed. Another least squares method alternative to ordinary least squares, is called                       

regularised least squares. In regularised least squares a penalised version of least squares                         

loss function is minimised as in ridge or LASSO regression. 

● Prediction is another use of regression where the mean of the dependent variable Y, can be                               

predicted given the values of the explanatory variables 𝚇 =(𝑥1,𝑥2,...,𝑥n). 

Regression models are not limited to linear fits, also non-linear regression alternatives exist. Yet                           

the interpretation of the linear model remains more straightforward when translating the effect                         

of explanatory variables on the dependent variable, as in effect sizes. Even though linear                           

regression models are commonly used and intuitive, they also suffer from numerous drawbacks.                         

First of all it is limited to linear relationships therefore it would not be suitable when the                                 

relationship is curved. Second, it only looks at the mean of the dependent variable and when the                                 

mean is a poor description of the dependent variable linear regression fails to describe the                             

complete relationship between variables. Third, linear regression is very sensitive to outliers and                         

depending on the nature of the outliers additional effort should be given to account for them.  

As mentioned, linear regression models assume the error term to have a normal distribution,                           

meaning a constant change in variable 𝑥 giving rise to a constant change in 𝑦. While this is the                                     

case when the variables are normally distributed, certainly it would not hold for all types of                               

relationships. A solution to address this problem is a flexible generalization to OLS, called                           

Generalised Linear Models (GLM). GLM can be seen as an extension to OLS, where the dependent                               

variable is allowed to have an error distribution model other than a normal distribution including                             

binomial, poisson and gamma distributions. 
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1.6 Modular approaches 

For GWAS with molecular phenotypes, such as gene expression, methylation or metabolomics                       

data, there is a substantial need to reduce the complexity in the phenotype data. The complexity                               

in such datasets is due to their high dimensional nature and the noise in their measurements.                               

Assigning the data to modules or groups based on a defined criteria and using the weighted                               

average of the group members as a phenotype in the downstream statistical analysis would have                             

several advantages such as; reduction of the complexity of the data as there will generally be                               

fewer groups than individual measurements; reduction of noise as the individual fluctuations of                         

the data would cancel out each other on their average; and finally providing biological focus as                               

the members of a group would share common features. 

1.6.1 Principal Component Analysis 

Principal component analysis (PCA) takes high-dimensional data as an input and uses the                         

dependencies between variables to project the high-dimensional data into a lower-dimensional                     

space in a way that minimizes the loss of information content of the data. More specifically, PCA                                 

uses weighted averages of the original variables to construct new variables, so-called principal                         

components (PCs), that are orthogonal to each other and ordered in such a way that the first                                 

component explains the greatest variance in the data, the second component explains the second                           

greatest variance, and so on. It can be shown that the PCs are the eigenvectors of the covariance                                   

matrix of the input data. PCA functions usually return two vectors for each component: the                             

component scores and the loadings. The former are the transformed variable values                       

corresponding to a particular data point and the latter are the weights by which each                             

standardized original variable should be multiplied to get the component score. As first leading                           

principal components together typically explain a considerable proportion of the variance, PCA                       

is used to achieve dimensionality reduction in high-dimensional data as well as to inspect the                             

internal variance structure of the data. 

In GWAS, PCA is mainly used to identify differences in genotypic information that might be                             

caused by population structure rather than the disease or trait of interest. By performing PCA on                               

genotypic data, the information across millions of SNPS is reduced to a couple of PCs that                               
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typically are governed by differences in studied population. For example PCA on genotypes                         

from studies combining subjects from different regions, countries or ethnicities usually reveals                       

clusters of these structures in the leading PCAs. Since such groups often vary in a given                               

phenotype due to non-genetic factors (such as diet or environmental factors) it is customary to                             

use PCs as covariables in the association model to account for the population stratification of the                               

data. In molecular datasets such as gene expression and metabolomics, PCA can be used for the                               

initial inspection of the data to detect outliers or batch effects that manifest themselves as                             

subgroups of samples whose data received the same bias in some of its features. 

1.6.2 Hierarchical Clustering 

Hierarchical clustering is a statistical method to discover similar groups in a given dataset. More                             

specifically it uses cluster trees (dendrograms) to represent the data, where every group (node)                           

links two or more successor groups. By definition hierarchical clustering is a nested and                           

organised tree where every node is expected to represent a meaningful group. Hierarchical                         

clustering algorithms are monotonic algorithms that either build by bottom-up or top-down                       

approach. The bottom-up approach, known as hierarchical agglomerative clustering, starts with                     

treating every item as a single cluster and gradually merges two items based on their dissimilarity                               

with other merged items. Pairing continues until all the items are merged into a single cluster.                               

The top-down approach, called divisive clustering, is less frequently used and it starts with one                             

single cluster and splits the clusters into parts based on a defined similarity. The process is                               

repeated until every cluster contains only one item. 

Hierarchical clustering is known to be computationally costly and it has high storage                         

requirements. This makes it less convenient for the analysis of large datasets. As the algorithm                             

would find clusters even in the most unsuitable data, the resulting cluster tree can be completely                               

wrong. Also the similarity measures used to define the clusters have a big impact on the                               

appearance of the final tree and it can be puzzling to decide on the most suitable similarity                                 

measure to use. Nevertheless hierarchical clustering is a widely used clustering algorithm. 
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1.6.3 ISA 

Iterative signature algorithm (ISA) is a biclustering algorithm that clusters both the rows and the                             

columns of input data into biclusters, or modules [50-52]. ISA was developed to find transcription                             

modules (TM) in large scale gene expression data. As a soft clustering algorithm, the convenience                             

of ISA over other clustering algorithms is that it allows genes to be involved in multiple clusters                                 

which is especially critical when the genes have multiple different functions, a concept known as                             

pleiotropy. Another advantage of ISA, as a biclustering algorithm it allows to study clusters of                             

gene expression under individual experimental conditions unlike clustering algorithms where the                     

expression is generalized under all experimental conditions. This is beneficial as cellular                       

processes are often influenced by a subset of conditions and combining the expression profile                           

over the entire set of conditions would yield an increase in the background noise. By definition, a                                 

TM given by ISA contains a group of genes and a group of experimental conditions. Genes in a                                   

given TM have more similar expression profiles over the conditions of the TM. Likewise,                           

conditions of the TM are more similar to each other over the genes in the TM. Even though                                   

originally the algorithm was designed to work with gene expression over different experimental                         

conditions, it is also possible to apply ISA on gene expression of different samples.  

ISA starts with selecting a random subset of genes or conditions, and applies thresholding on                             

these entities in an iterative way. Thresholding is defined as keeping the elements that are certain                               

standard deviation away from the mean, where the standard deviation is specified by the user                             

with row.threshold and col.threshold parameters. Another parameter called direction is used to specify                         

the values to keep if they are significantly higher (‘up’), lower (‘down’) or higher or lower                               

(’updown’) than the mean. To give an example; for an input matrix of E(m x n) with m number                                     

of genes and n number of conditions, ISA starts with a random seed vector (r0), a binary vector                                   

of length m, and multiplies it with E’. Next, the result is thresholded and the new thresholded                                 

vector c0 becomes the column signature of r0. In the next step E is multiplied by c0 and                                   

thresholded to get r1. This iteration is performed until both ri and r i-1 , ci and c i-1 are similar to each                                         

other where the similarity is defined by Pearson correlation. Another parameter, cor.limit , allows                           

the modules to converge if they are correlated with each other with specified Pearson correlation                             

coefficient. In the end, ISA outputs modules that consist of similarly expressed genes under a                             

subset of experimental conditions or for a subset of samples. Contribution of each gene or                             

30 



 

experimental condition/sample to a module is then summarised by row and column scores.                         

These scores vary between -1 and 1, and further the number is from zero, stronger is the                                 

association of the given row/column to the bicluster.  

1.7 Mendelian Randomization 

Instrumental variable analysis is a statistical method that uses instrumental variables (IVs) to                         

investigate the causal effect of an exposure on an outcome. The principle behind this method is                               

to make use of IVs that affect a particular exposure, and only through this exposure affect an                                 

outcome of interest. Effect size estimates of the IV on the exposure and on the outcome are                                 

then used to assess the causal effect of the exposure on the outcome. Mendelian randomization                             

(MR) is a particular adaptation of instrumental variable analysis into epidemiology, where genetic                         

variants, SNPs, are utilized as IVs [53, 54].  

The validity of the causal estimates relies on the three assumptions of MR (see Figure 2). In                                 

order to ensure an unbiased causal inference it is crucial to verify that these assumptions are                               

satisfied. The validity assumption states that the instruments chosen for the analysis should be                           

strongly related with the exposure. This assumption is satisfied by choosing genetic variants as                           

IVs that are quantitative trait loci (QTLs) of the exposure. The independence assumption states that                             

the instruments should not be associated with any confounders of the exposure-outcome                       

relationship. Any known variable that is suspected to confound this relationship should be                         

tested. Typically population stratification can be an example of such a confounding factor. And                           

finally the third exclusion restriction assumption states that the instruments should not be linked to                             

the outcome through anything but the exposure, in other words the instruments should not be                             

pleiotropic. This assumption is more difficult to verify, but the plausibility of the assumption can                             

be evaluated in several ways. Pleiotropy can be detected simply by investigating the heterogeneity                           

among genetic variants used in MR. A genetic variant is called heterogeneous if its effect on the                                 

exposure and the outcome is inconsistent compared to the rest of the genetic variants used in the                                 

analysis. This inconsistency is often a sign of horizontal pleiotropy which causes violation of the                             

exclusion restriction assumption. Cochran’s Q test or other tests can be used to detect the                           

heterogeneity among the candidate SNPs [55]. Also robust MR analysis methods such as median                           

estimator and MR-Egger regression can be used to evaluate the significance of the causal                           
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estimates [56]. These methods are known to have more relaxed MR assumptions and they can                             

tolerate some degree of heterogeneity among the genetic variants. Agreeing causal estimates                       

given by multiple MR methods are considered as a sign of robust causal estimation [56]. 

 

Figure 2: MR assumptions. (1) Validity assumption: the instrumental variable (IV) associates with 
the exposure; (2) independence assumption: the IV does not associate with any confounding 
factor U of the exposure-outcome association; (3) exclusion restriction assumption: the IV 
associates with the outcome only through the exposure. 

 

MR can be applied in two ways depending on the type of the available data. In the case where                                     

individual level data is available, effect sizes of SNPs on the exposure and the outcome are                               

estimated by using the same matching samples. However having effect size estimates from                         

matching samples is less common compared to publicly available summary statistics. Fortunately,                       

MR can be applied by using the summary statistics from higher powered studies where effects of                               

SNPs on the exposure and the outcome are estimated by using different samples. 

In the same sample MR, causality is studied by using the two stage least squares method (TSLS).                                 

In the first stage of TSLS the exposure is regressed on the genetic variants, and in the second                                   

stage, the outcome is regressed on the fitted values provided by the first regression. The two                               

stage approach allows to estimate the effect of the exposure on the outcome by using the                               

variability in exposure data driven by genetic variants. Accordingly, the detected causality can be                           

attributed to the causal effect of the exposure on the outcome as the effect of genetic variants                                 

can only be upstream of any phenotype. The validity of MR assumptions should be examined                             

prior to the TSLS. Finally, Durbin-Wu-Hausman test of endogeneity [57] can be used to                           
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compare the efficiency and bias of the TSLS estimates against and ordinary least squares ( OLS)                               

estimates, in order to justify use of TSLS over OLS estimates. 

In two sample MR, summary statistics from higher powered studies are used. Causal estimate is                             

calculated by Wald Ratio method where the effect of the genetic variant on the outcome is                               

divided by the effect of the genetic variant on the exposure [58]. Later, individual ratios from                               

different SNPs are often combined by inverse variance weighted method (IVW) to calculate the                           

causal estimate. When using heterogeneous SNPs as IVs, IVW method could give biased causal                           

estimates. On the other hand other meta-analysis methods such as median estimator and                         

MR-Egger are known to be less prone to bias if some of the IVs are not valid. 
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2 Expression data from CoLaus LCLs 

In this chapter I first introduce lymphoblastoid cell lines from which we derived the gene                             

expression profiles, followed by RNA-Seq technology as the method of choice to measure gene                           

expression. Next I describe the initial inspections we performed on CoLaus gene expression data                           

including examining the correlation structure of the data, studying the presence of potential                         

batch effects and detecting outliers via principal component analysis. Finally, I demonstrate a                         

modular analysis on CoLaus gene expression and phenotypic data, where I detect phenotypically                         

relevant subsets of samples for functionally enriched groups of genes.  

2.1 Lymphoblastoid cell lines 

Lymphoblastoid cell lines (LCLs) are considered immortal cell lines that can grow for many                           

generations without turning tumorigenic [59]. Simple preparation of the cell line, effortless and                         

convenient storage in biobanks and the potential to serve as a limitless source of genomic DNA                               

with somatic mutation rate as low as 0.3% are much appreciated in functional and molecular                             

studies [60]. Eliminating the need for resampling is highly beneficial as the discomfort to the                             

donor can be avoided and the concern of unavailable donors due to death or geographic                             

relocation are ruled out. Moreover, having a continuous source of biological material                       

accommodates the growing movement of international biobanking well. Even though LCLs are                       

not the only method to amplify the whole genome, three decades after its discovery it is still                                 

considered as the gold standard for long term management of high molecular weight genomic                           

DNA [61].  

While there are various ways to generate LCLs, infecting the cell with the Epstein-Barr virus                             

(EBV) remains the most common practice. The method has been used successfully since 1986                           

and was originally described by Neitzel in detail [62]. Briefly the procedure involves separating                           

the lymphocyte cells from the peripheral whole blood, subsequently infecting the resting B                         

lymphocyte cells with EBV while removing T lymphocyte cells, and finally allowing the EBV                           

infected B cells to proliferate in the growth medium before cryopreservation (see Figure 3) [63]. 
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Figure 3: Generation of lymphoblastoid cell line (taken from Sie et al. [63]). 

 

One of the main reasons of LCLs extensive use is due to their ability to maintain an intact                                   

genome over many generations [63, 64]. However it is critical to realize to what extent the                               

genetic makeup of LCLs represent that of conventional DNA sources such as whole blood. To                             

date, many studies have reported high correlation between DNA sourced from LCLs and                         

conventional whole blood. For instance, it has been demonstrated that the LCL formation does                           

not cause reproducible change in the structural variation, insertion and deletion polymorphism                       

compared to whole blood [65, 66]. Hence DNA sourced from LCLs recognised as not                           

distinguishable from its genetic counterparts and widely accepted as a faithful copy of their                           

donor’s genome. 

Besides being used as a renewable source of DNA in genomic screenings, LCLs are also a                               

continuous source of RNA and protein. Thanks to their capacity to produce diverse                         

biomolecules, LCLs are increasingly used in other areas of genomic research such as                         

transcriptomics, epigenetics, proteomics and pharmacological studies. Remarkably, it has been                   

argued that based on the genes expressed in LCLs, these cell lines appear to use a wide range of                                     

metabolic pathways in a way that is representative for blood cells but also other cell types of the                                   

individuals from whom the cell lines were derived, making them a good model system for use in                                 

functional and molecular studies [61]. One of the first publicly available large-scale human                         

35 



 

transcriptomics datasets was that of the LCLs derived from HapMap participants [67]. This                         

dataset was first used to identify SNPs that influence inter-individual mRNA variation, known as                           

expression-QTL (eQTL) [68, 69]. Since then, studies based on LCLs have become routine to                           

study inter-population and inter-individual differences in gene expression [70-74]. Differential                   

gene expression studies have become a mainstream tool to understand the etiology of many                           

complex diseases, and have given rise to the discovery of biomarkers [75-81]. LCLs express                           

various proteins found in neuronal cells [82-84]. Among these proteins, amyloid precursor                       

protein (APP) has been associated with Alzheimer’s disease and its transcriptional regulation has                         

been found to be similar to those in LCLs [85]. Given the similarity of certain genes’ expression                                 

and regulation in LCLs and neural cells, LCLs have been suggested as surrogate models for                             

neurological studies [63]. Before the use of LCLs in psychiatric research, where the access to the                               

relevant primary cells were always limited, primary cells such as skin and blood have been                             

traditionally adopted as surrogates of the central nervous system and used to measure peripheral                           

biomarkers. However these cells are confounded by immediate environmental factors such as                       

diet, smoking, alcohol consumption and exposure to toxins and drugs [86]. These primary cells                           

also reflect the acute state of the person, including her circadian rhythm, diet as well as                               

health-related parameters [86]. On the contrary LCLs are less likely to suffer from these                           

environmental and state related changes thus they can be used to study functional aspects of                             

psychological diseases [87]. To summarise, numerous studies showed well use of LCLs in both                           

proteomics and transcriptomics especially in the context of neurological diseases [86-89].  

LCLs have been used to study proteome expression response to DNA damage, in particular                           

DNA double-strand break which is a highly cytotoxic event that challenges the genomic integrity                           

of the cell [90]. It is known that the DNA double-strand break plays an important role in the                                   

early stages of tumorigenesis and LCLs provide sufficient biological material for the studies to                           

tackle the pathways induced by this damage. Other use of LCLs is in the comparative proteomics                               

field, where a proteome atlas specific to LCLs are build [91, 92] to understand the pathological                               

mechanisms involved in the immortalization process, which is a common process between                       

Epstein-Barr virus (EBV) and many other tumorigenic viruses including papilloma viruses and                       

human T-cell leukemia viruses. 

It has been shown that the genetic makeup of a person has a considerable effect on how the                                   

person responds to a particular treatment, otherwise known as a hot research topic in precision                             

36 



 

medicine. LCLs have been widely used to study the genetics of the drug response in particular                               

drug toxins. They are employed as cost-effective systems to study the effects of drug dosage.                             

Besides the genetic variant discovery they also used in functional genomic studies, where the                           

mechanism of action of the potentially relevant genes are discovered through molecular                       

manipulation of these cell lines [93, 94].  

Regardless of LCLs wide use in various fields it is important to be aware of its potential                                 

limitations when it comes to its use in genetic and functional studies. As part of the                               

EBV-transformation process the cells go through biological alterations and perturbation in their                       

molecular pathways become inevitable. Also adaptation to culturing, differences in culturing                     

conditions, the age of the cell from newly established to mature, all considered as factors that                               

might affect the appropriate use of LCLs in cell biology. Limitations of LCL model as surrogates                               

of primary B cells are fairly well characterised. As previously mentioned, genetic alterations                         

caused by viral infection is considered negligible thanks to extrachromosomal, circular episome                       

of the viral genome and limited expression of viral genes [62, 95]. Gene expression on the other                                 

hand showed difference between transformed and non-transformed B cells, yet it has been                         

shown that the inter-individual differences in gene expression is maintained through the                       

transformation process [96-100]. DNA methylation studies also showed differences between                   

transformed and non-transformed cells, where transformed cells were hypomethylated compared                   

to their non-transformed counterparts [96, 100, 101]. 

As described there are debates on the use of LCLs as surrogate model systems, however they                               

have proven their worth in genomic studies, they have had great importance in providing                           

essentially inexhaustible supply of DNA and they will likely continue to be a valuable tool to                               

meet the high demands of genetic material in the biobank-omics era [102]. 

2.2 RNA-Seq technology 

Individual transcripts were studied as early as the 1980s with low-throughput sequencing                       

methods. Expressed Sequence Tag was used to sequence random complementary DNA (cDNA)                       

fragments, and therefore informed about both the sequence and the abundance of RNA [103].                           

On the other hand, early attempts to study the transcriptome, i.e. the sum of all RNA transcripts                                 

of an organism, started with Serial Analysis of Gene Expression (SAGE) in the 1990s, where short                               
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tags of cDNA were sequenced [104]. In the mid 1990s these methods were overtaken by a more                                 

affordable high-throughput method called DNA microarray [105, 106]. The microarray technology                     

relies on hybridization of fluorescently labeled reverse-transcribed DNA to probes that are                       

attached to an array, therefore enabling quantification of predetermined sequences. This                     

technology was widely used until quite recently, and sometimes still is the tool of choice for                               

economic reasons, because it does not require large-scale sequencing, yet allows reasonably                       

accurate quantification of most genes in many samples in a very cost-effective manner. While                           

this revolutionary technology allows the study of genome-wide transcription, it has also                       

important shortfalls. One of the major drawbacks of this technology is its reliance on a priori                               

sequence knowledge for the design of the microarray probes. The need for a reference                           

genome/transcriptome makes this technology not suitable for discovery applications. Other                   

drawbacks of microarrays include limited dynamic detection range caused by both background                       

noise due to cross-hybridization and saturation of signals. By the beginning of 2000s, Next                           

Generation Sequencing (NGS), a massive parallel sequencing tool, became available and it changed                         

the transcriptomics field by emerging RNA-Seq technology [107-110]. RNA-Seq analysis is a                       

hypothesis-free approach where the transcripts are sequenced individually instead of hybridizing                     

to pre-designed sequences as in microarray. Thanks to this single nucleotide resolution, unlike                         

microarrays, RNA-Seq allows for discovery of novel transcriptional variants. Compared to                     

microarrays it also has a large dynamic range of expression detection and higher reproducibility                           

of the results [111]. To this day RNA-Seq continues to be the method of choice for transcript                                 

profiling. 

A major application of RNA-Seq is differential gene expression (DGE) analysis and steps                         

involved in this kind of analysis have not changed considerably from the first publications [111,                             

112]. In a typical RNA-Seq experiment, researchers are interested in the quantification of protein                           

coding and/or long non-coding RNAs. These RNA species bear a polyA tail, and therefore                           

laboratory experiment starts with RNA extraction step followed by an enrichment step which                         

can be achieved by either selection of polyadenylated RNA or depletion of ribosomal RNA                           

(rRNA). Both of these methods serve the same purpose of enriching the polyadenylated RNA                           

while getting rid of the other common RNA species such as rRNA. Next is the fragmentation                               

step, where the RNA samples get fragmented into a certain size range as sequencing platforms                             

usually have size limitations. In the following amplification step, first the RNA samples are                           
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converted to cDNA by reverse transcription (RT) and later these cDNA copies of transcripts get                             

amplified by PCR to overcome the detection limit of sequencers. This step is also useful to allow                                 

sequencing of samples with very low input RNA. In the final step, prepared cDNA libraries are                               

sequenced either in one direction (single-end) or both directions (pair-end). Former method is                         

quicker and cheaper compared to the latter method and usually regarded as sufficient to do gene                               

expression analysis. Yet, the latter has benefits of providing more accurate alignments which is                           

especially valuable for novel transcript discovery and gene annotation. As RNA-Seq relies on                         

converting RNA molecules to cDNA before sequencing, the sequencing platforms used for                       

RNA-Seq are the same platforms that are used for high-throughput DNA sequencing. In the                           

final step the cDNA library is sequenced to a read depth of 10-30 million reads per sample,                                 

depending on the sequencing platform used [113]. As the accuracy of the RNA-Seq experiment                           

to detect low abundance transcripts is dependent on the number of reads obtained per sample,                             

also known as transcriptome coverage, choosing a sequencer with appropriate transcriptome                     

coverage is of great importance. It has been shown that already 10 million reads per sample is                                 

enough for 9 out of 10 genes to be covered by at least 10 reads [113, 114]. 

Both most recent transcriptomics technologies, microarrays and RNA-Seq, rely on challenging                     

data analysis tasks as part of the experiments. While in microarrays the challenge is handling high                               

resolution images and extracting features from it, in RNA-Seq the challenge is to align millions                             

of short DNA reads into reference genome or reconstruct a de-novo transcriptome without a                           

reference genome. Once the alignment/reconstruction step is achieved, in a typical DGE                       

experiment the next steps include estimation of gene expression by quantifying the reads overlap                           

with transcripts, normalizing the estimates and finally identifying differentially expressed genes                     

(DEGs). There are many tools to identify DEGs such as EdgeR [115], DEseq2 [116], Cuffdiff2                             

[117], Limma/Voom [118]. 

2.3 CoLaus RNA-Seq data 

In CoLaus, both the genotype and the gene expression data were gathered from the                           

Epstein–Barr-virus-transformed lymphoblastoid cell lines (LCLs) derived from (cryopreserved)               

whole blood of CoLaus subjects. Total RNA was extracted from these LCLs by following the                             

Illumina TruSeq v2 RNA Sample Preparation protocol (Illumina, Inc., San Diego, CA). Later,                         
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mRNA sequencing was performed on the Illumina HiSeq2000 platform producing 49bp                     

paired-end reads. Paired-end reads were mapped to human genome assembly GRCh37 (hg19)                       

with GEM-Tools using GENCODE v15 as gene annotation [119]. The reads were then filtered                           

for correct orientation of the two ends, a minimum quality score of 150 and allowing 5                               

mismatches in both ends. Gene level read counts were quantified with in-house script. This                           

resulted in expression profiles of 45,470 genes for 555 individuals, which were quantified as                           

RPKM (Reads Per Kilobase of transcript, per Million mapped reads) values. Above analyses                         

were done at the Department of Genetic Medicine and Development at the University of                           

Geneva.  

2.3.1 First look in our RNA-Seq data 

We wanted to visualise the RNA-Seq data of CoLaus before using it in downstream statistical                             

analysis. Figure 4 visualizes the entire gene expression matrix of the 45,470 genes across 555                             

samples, in terms of z-scored log2 transformed RPKM+1 values on the left and a histogram of                               

log2 transformed RPKM+1 values on the right. One can see that the majority of RPKM values                               

are small (i.e. < 1), but that some genes (mostly, but not exclusively, protein-coding ones) can                               

obtain much larger values. 
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Figure 4: Left: Heatmap of CoLaus RNA-Seq data comprising 45,470 genes of 555 samples. 
Gene expression is represented as log2(RPKM+1) values that are z-scored across samples to 
make genes comparable. Values above 8 are mapped to 8 in order to achieve better visualisation. 
Protein coding genes, lincRNA and pseudogenes are annotated in the plot, while rest of the 
genes such as miRNA, processed transcript are under the category called ‘others’. Right: 
Histogram of all log2(RPKM+1) expression values. 

 

Next we wanted to inspect the correlation structure in the gene expression data. Figure 5 shows                               

the sample-to-sample Pearson correlations across the z-scored log2(RPKM+1) gene expression                   

values of 45,470 genes (left) and their histogram (right). These correlations ranged from -0.35 to                             

0.37. 

 

Figure 5: Sample-to-sample correlation plot of 555 samples. Pearson correlation coefficients are 
calculated on log2(RPKM+1) values of 45,470 genes that were z-scored across samples to make 
genes comparable. Colour bar represents the correlation coefficients where the coefficients 
above 0.3 were mapped to 0.3 in order to achieve better visualisation. 

 

2.3.2 Batch effect detection 

High-throughput technologies rely on the use of diverse reagents, hardware equipment and                       

technicians to create accurate measurements. During the course of an experiment, varying                       
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conditions in any of these components affect the measurements simultaneously. These effects                       

are known as batch effects, and they manifest as subgroups of samples whose data received the                               

same bias in some of its features. Failing to control for such effects in analyses may result in                                   

erroneous biological conclusions. For instance it has been shown that in DGE analysis most of                             

the observed variance is driven by different batches rather than the biological groups [120].                           

Batch effects can cause serious problems especially when they are correlated with the biological                           

outcome of interest. In such cases not accounting for these batch effects would give rise to                               

misleading and incorrect conclusions. Fortunately, these batch effects can be detected when large                         

amounts of data are available, as it is often the case with high-throughput experiments. Some of                               

the common batch effects in RNA-Seq experiments are driven by DNA preparation, processing                         

groups and processing dates. The protocols used to prepare samples and cDNA libraries might                           

differ among the laboratories, which in turn might also give rise to batch effects when combining                               

data from different labs. The processing date of the samples is also among the other known                               

sources of batch effects and may reflect subtle changes such as temperature or humidity. 

Batch effects are more pronounced in studies combining data from different experiments that                         

were generated by different research groups. Even though this is not the case for CoLaus                             

RNA-Seq data, we tested for the potential batch effects that might have an effect on the                               

downstream analysis. We investigated the date of the analysis and the sequencing lane as two                             

potential batch effects. Regarding processing dates; a total of 555 samples were analysed in five                             

days: 192 samples on 20th of June, 192 samples on 27th of June, 84 samples on 4th of July, 84                                       

samples on 10th of July and 3 samples on 13th of November 2014. Regarding sequencing lanes;                               

a total of 555 samples were analysed in eight sequencing lanes. The number of samples analysed                               

in each lane were 75, 72, 72, 72, 72, 72, 72 and 48 respectively.  

First we visually inspected the sample-to-sample correlation plot where the samples belonging to                         

the same processing day were grouped together (see Figure 6). Next we examined the correlation                             

between the samples belonging to the same day and samples that were processed in different                             

days (see Figure 7). We tested if the within and between day correlations differed from each                               

other and the results of two sample t-test showed these distributions as significantly different                           

from each other (p-value = 4×10-263). 
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Figure 6: Sample-to-sample correlation plot of 555 samples where samples processed in a given 
day are grouped together. Heatmap inside the red squares represent the within day correlations 
of the samples whereas outside the squares represent among day correlations. Day 5 is on the 
bottom right corner of the plot however as it has three samples it is not visible. Pearson 
correlation coefficients are calculated on log2(RPKM+1) values of 45,470 genes that were 
z-scored across samples to make genes comparable. Correlation coefficients above 0.3 were 
mapped to 0.3 in order to achieve better visualisation. 
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Figure 7: Distribution of sample-to-sample Pearson correlation coefficients given for two 
groups. Pearson correlation coefficients are calculated on log2(RPKM+1) values of 45,470 genes 
that were z-scored across samples to make genes comparable. Blue histogram represents 'within 
days correlations' ; correlations of samples that were processed in the same day summed over 
five processing days. Red histogram represents ‘between days correlations' ; correlations of 
samples that were processed in different days. 

 

We repeated the same analysis for lanes. First we visually inspected the sample-to-sample                         

correlation plot where the samples analysed in the same lane were grouped together (see Figure                             

8). Next we examined the correlation between the samples belonging to the same lane and                             

samples that were processed in different lanes (see Figure 9). We tested if the within and                               

between lane correlations differed from each other and the results of two sample t-test showed                             

these distributions as significantly different from each other (p-value = 0.0261 ).  
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Figure 8: Sample-to-sample correlation plot of 555 samples where samples processed in the same 
lane are grouped together. Heatmap inside the red squares represent the within lane correlations 
of the samples whereas outside the squares represent between lane correlations. Pearson 
correlation coefficients are calculated on log2(RPKM+1) values of 45,470 genes that were 
z-scored across samples to make genes comparable. Correlation coefficients above 0.3 were 
mapped to 0.3 in order to achieve better visualisation. 
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Figure 9 : Distribution of sample-to-sample Pearson correlation coefficients given for two 
groups. Pearson correlation coefficients are calculated on log2(RPKM+1) values of 45,470 genes 
that were z-scored across samples to make genes comparable. Blue histogram represents 'within 
lanes correlations' ; correlations of samples that were processed in the same lane summed over 
eight lanes. Red histogram represents between lanes correlations; i.e. correlations of samples that 
were processed in different lanes. 

 

To summarise, when within batch groups and between batch groups correlations were compared                         

we found correlations between samples processed on the same date were significantly smaller                         

than those of samples processed on different dates, therefore suggesting that processing dates                         

incurred batch effects. This was also observed for the sequencing lanes but their effect was much                               

smaller compared to the processing dates. 
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Principal component analysis  

As described in section 1.6.1 one of the uses of principal component analysis (PCA) is to                               

investigate the variability in the data. Therefore anything that would affect the variance structure                           

of the data can be detected by PCA. Here we apply PCA to detect both the outlier samples and                                     

the potential batch effects, processing dates and sequencing lanes. Figures 10 and 11 are showing                             

the PCA plots of gene expression data where the samples are color coded based on the day they                                   

have been processed and the lane they have been sequenced, respectively. None of the PCA                             

plots show clear outliers, hence we choose not to remove any samples from the gene expression                               

data. Also none of the PCA plots show strong formation of clusters where the samples are                               

enriched for particular processing date or sequencing lane. 

 

 

Figure 10: PCA plots showing pairs of principal components from first to fifth. Subjects are 
color coded based on the processing date. PCA analysis was done on log2(RPKM+1) values of 
45,470 genes that were z-scored across samples to make genes comparable. 
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Figure 11: PCA plots showing pairs of principal components from first to fifth. Subjects are 
color coded based on the sequencing date. PCA analysis was done on log2(RPKM+1) values of 
45,470 genes that were z-scored across samples to make genes comparable. 

 

We also wanted to quantitatively measure whether the principal components were capturing the                         

batch effects. To this end we did regression analyses where each of the first 10 principal                               

components of the gene expression data was used as response variable and the batch effects                             

coded as a design matrix, were the explanatory variables. In the case of processing dates, day 1                                 

was omitted from the coding of the design matrix whereas in the sequencing lanes, lane 1 was                                 

omitted. We did remove these variables as they were redundant and not removing them would                             

create a multicollinearity problem for the analysis. P-values resulting from the regressions are                         

shown in Table 2 and 3, for processing dates and lanes, respectively.  
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Table 2: Linear regression analysis testing whether principal components are associated with 
processing dates. Day 1 was omitted as it was a redundant variable in the regression. Adjusted 
R-square is highest for the PC 4 and PC 5, as these PC’s also more significantly associated with 
processing days compared to other PCs.  

 

 

Table 3: Dummy variable regression to test whether principal components are associated with 
sequencing lanes. Lane 1 was omitted as it was a redundant variable in the regression. Adjusted 
R-square is highest for the PC 4, as it is also more significantly associated with processing lanes 
compared to other PCs. 
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To summarise, even though PCA plots did not show signs of strong batch effects, the regression                               

analyses where individual principal components were associated with batch effects, showed that                       

some of the PCs significantly associated with dates and lanes. Especially some of the processing                             

dates were strongly associated with principal components 4 and 5, while the association was                           

much weaker for the lanes. This is in agreement with what we observed in the previous section                                 

when we compared within and between batch sample-to-sample correlations. Given the above,                       

we decided to use the first 10 principal components of the gene expression data to represent                               

batch effects including processing date, sequencing lane and other batch effects that we are not                             

aware of.  

2.4 Modular analysis of CoLaus expression data 

We performed a modular analysis of the CoLaus gene expression data by using the Iterative                             

Signature Algorithm (ISA) [50-52] (see section 1.6.3 for details). The ISA identifies groups of genes,                             

termed modules that are co-expressed across subsets of samples. The goal of our analysis was not                               

to discover novel modules of co-expressed genes, as our data have limited sample size and stem                               

from one type of cells growing under the same experimental condition. Rather, we wanted to see                               

whether despite these limitations our data would nevertheless capture relevant groups of genes                         

enriched in certain functional annotations, and whether the samples in which these genes are                           

co-expressed would also point to groups of subjects with some of their clinical phenotypes being                             

unusual. 

For the analysis we used RPKM values of 19,903 protein coding genes for 555 samples. We                               

added a constant of 1 to the RPKM values prior to log2 transformation. Next we z-score                               

normalised the data first among the samples and then among the genes, therefore making the                             

genes and the samples comparable, respectively. Stringency of the modules depend on the two                           

parameters: row.threshold and column.threshold. These parameters control how far from the mean, in                         

units of standard deviation, genes and samples, respectively, have to be for inclusion in the                             

module. As a result, the higher these parameters are, the more similar are the module genes or                                 

samples to each other. Conversely, the lower these thresholds are, the bigger and less coherent                             

the modules become. We explored a parameter space of these thresholds from 1 to 6, with 0.5                                 

standard deviation increments for both gene and sample selection. We selected the direction                         
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parameter as ‘updown’ to select genes/samples that are either a certain number of standard                           

deviations higher or lower than the average. By setting the cor.limit parameter to 0.5, we allowed                               

only those modules to be kept which were correlated with any other modules by a Pearson                               

correlation coefficient less than 0.5. The analysis yielded 204 modules which consisted of 6 to                             

3,962 genes and 1 to 106 samples.  

Following the module discovery in the gene expression data, we wanted to explore the samples                             

and the genes found in the modules. In particular, we were interested in the enrichment of                               

phenotypes for the module samples in order to see the similarities among subjects that are                             

attributed to the same modules. We were also interested in the enrichment of the                           

pathways/diseases of the module genes, to observe the shared function of the genes belonging                           

to a module. To explore the former, we chose 39 phenotypes, including measurements of                           

diastolic/systolic blood pressure, height, weight, waist circumference, hip circumference, BMI,                   

glucose, cholesterol, HDL, LDL, triglycerides, urinary and serum creatinine, heart rate,                     

bioimpedance, several liver enzymes, alcohol consumption, metabolic syndrome, heart failure                   

and CVD risk markers (see Table 4).  

To study the enrichment of modules with these phenotypes, we first stratified module samples                           

based on their sex in order to prevent faulty associations due to sex confounding. Next, we used                                 

the sample score of each module and tested its correlation with each of the 39 phenotypes. The                                 

module score of samples is represented by a vector consisting of numbers between -1 and 1, for                                 

each sample, where the absolute value of its magnitude corresponds to the strength of its                             

association with the bicluster. Overall 19 module-phenotype pairs had a Pearson correlation                       

p-value lower than 0.001, involving 13 unique modules.  

Next, for these 13 phenotype enriched modules we did gene enrichment analysis using the                           

following libraries in enrichR [121]: GO molecular function, GO biological process, KEGG                       

2016, OMIM disease, Disease signatures from GEO and WikiPathways 2016. Six out of 13                           

phenotype-enriched modules showed gene- and phenotype enrichment that are functionally                   

coherent. 
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The first module contains samples that were phenotypically similar in their Pro-BNP profiles, a                           

heart failure marker; and genes enriched for amyotrophic lateral sclerosis (in GWAS catalog), a                           

multi-system neurodegenerative disorder that has implications on cardiac function. The second                     

module was phenotypically enriched for glucose; and its genes were enriched for                       

hemochromatosis (in OMIM), which is a disease related to high iron accumulation in the body.                             

It has been reported that more than 50% of the patients diagnosed with hemochromatosis suffer                             

from diabetes due to beta-cell damage caused by high iron levels [122]. The third module                             

contains samples similar in their LDL profile; and genes enriched for multiple sclerosis (in                           

OMIM). It has been shown that patients with relapsing-remitting multiple sclerosis patients have                         

smaller LDL compared to healthy people [123]. The fourth module contains samples enriched                         

for total homocysteine, a non-classical cardiovascular risk factor; and genes enriched for atrial                         

fibrillation (in GWAS catalog) and fibrosis (in OMIM). The fifth module contains samples                         

similar in their heart rate profile; and genes enriched for cardiovascular diseases (in GWAS                           

catalog). Finally, the sixth module contains samples similar in their levels of Gamma GT, a liver                               

enzyme and alcohol consumption marker; and genes enriched in high alcohol use (in GWAS                           

catalog). 

To summarize, in this study we demonstrated an application of ISA using gene expression data                             

from LCLs (see Section 1.5.2 for details of the algorithm). Thanks to the biclustering nature of                               

the algorithm, we could study clusters of gene expression for a subset of samples, unlike                             

clustering algorithms where co-expression is always computed over all samples, which for large                         

sets of samples often fails to identify genes whose co-expression is only observed in small                             

subsets of samples, as this is masked by the background noise. In addition to investigating the                               

gene enrichment of the cluster to infer the functional relevance of it, we used the sample                               

specificity of each module to study the phenotypic enrichment of the subjects corresponding to                           

its samples which resulted in some interesting matches. These results not only underline the                           

capacity of ISA to detect functionally relevant biclusters from our LCL expression data but also                             

demonstrate that these data are rich in information reflecting the phenotypic state of the subjects                             

from whom the LCLs were derived from, which was one of our main motivations to perform                               

this analysis.  
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3 Integration with genotypes  

In this chapter I give a brief overview of the studies that investigated the genetic variation in the                                   

human genome sequence and the genotyping technologies used for this purpose. Next I                         

introduce genome-wide association studies (GWAS) - a line of research that has emerged thanks                           

to the advancements in the genomics field. I also discuss expression quantitaive trait loci (eQTL)                             

analysis and present the cis-eQTL analysis I performed on CoLaus data. The final two sections                             

of the chapter are dedicated to two collaborations that resulted in publications. The first focused                             

on characterizing the regulatory roles of biologically and trait-relevant lincRNAs (TR-lincRNAs)                     

in human LCLs. My role in this project was to perform genome-wide lincRNA cis-eQTLs                           

analysis on CoLaus, which served as a replication study. The second aimed to gain further                             

insights on how genetic variants influence genes and converge on pathways that are essential for                             

complex traits. To this end, the study uses trans-eQTLs and significant polygenic risk score                           

(PGS) - gene expression associations. My role in the project was to perform various QTL                             

analysis on CoLaus data, which served as one of the LCL replication cohorts. 

3.1 Genotypes and their measurements in cohorts 

Among the 3 billion nucleotides present in the human genome [2], only few vary across a                               

population; while millions of DNA sequence variants were discovered, these only amount to a                           

small fraction of the human genome. Indeed, it has been estimated that common genetic                           

sequence variants, that variants present in over 1% of the population, called single nucleotide                           

polymorphisms (SNPs) account for close to 90% of the genetic variation among humans [124].                           

Other sequence variations of the human genome include rare variants, copy number variants                         

(CNVs) and structural variants. Genotyping is a method to detect the differences in the genetic                             

make-up of an individual, so-called genotype, by screening different genetic variants they carry in                           

their genome.  

To date, many efforts have been made to study genetic variation in genome sequence with a                               

particular focus on SNPs. The international HapMap project [67] was a pioneering project that                           

not only studied the genetic variation across human populations but also defined high-resolution                         

haplotype maps. A haplotype block defines a set of SNPs inherited together due to linkage                             
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disequilibrium (LD) and proved to be useful when choosing the most informative subsets of                           

SNPs, known as tagging SNPs, to design arrays used in genetic screening of the populations [125].                               

A more recent initiative, the 1000 Genomes project [126], aimed to more deeply characterise the                             

human genome variation by extending genotyping to rare variants (allele frequencies below 1%).  

In the past decades, a great deal of effort has been made to develop accurate, fast and cost                                   

effective genotyping methods to achieve population level screenings. Several genotyping                   

methods exist, each with their own benefits and drawbacks yet hybridization to a solid array,                             

known as DNA microarrays, remains as one of the simplest techniques for high-throughput                         

genotyping. DNA microarrays, also known as SNP arrays, rely on hybridization of                       

single-stranded DNA fragments of samples to SNP arrays that contain thousands of unique                         

probe sequences. Marker densities of SNP arrays have been increasing throughout the last                         

decades and nowadays a wide range of SNP arrays are available in the market that are custom                                 

built for different human populations and have different coverages to better suit the needs of the                               

studies. Meanwhile, next generation sequencing (NGS) technologies have been emerging making the                       

acquisition of billions of DNA sequences cheaper and faster than previously anticipated [4].                         

NGS offers all the premises of SNP arrays with the added benefits of greater resolution and                               

accuracy. Use of paired-end reads in NGS allows to discover additional CNVs that would                           

otherwise be missed, and to discover structural variants such as inversions and translocations                         

that would be entirely missed by SNP arrays [5].  

To be able to detect more loci, while NGS requires deeper sequencing, SNP microarrays require                             

denser probes. To compensate for the limited number of tag-SNPs present in microarrays,                         

genotype imputation is used to predict unmeasured genotypes based on the reference haplotype                         

panels. Currently many national large-scale whole-genome sequencing projects are realized all                     

over the world including UK [127], Japan [128], Netherlands [129] and Singapore [130],                         

discovering more population specific genetic variants and forming more accurate reference                     

haplotype panels.  

Regardless of the choice of genotyping platform, genotypes are at the center of biomedical                           

research and there is no reason to believe that they will lose their popularity in the near future,                                   

given that we describe the present-day as the genomics era, where genomic information is not a                               

limiting factor for discoveries anymore.  
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Genome-wide association studies (GWAS) is a line of research that makes extensive use of these                             

genetic variants. A GWAS employs genomics data acquired for a large collection of samples to                             

search for SNPs that are associated with certain traits or diseases [5]. Due to their abundance and                                 

high density, SNPs have been ideal polymorphic markers for these association studies. To date,                           

GWAS improved our understanding of the genetic basis of many complex diseases including                         

multiple sclerosis [12], Crohn’s disease [9], diabetes [14], cancer [10, 11]; and schizophrenia [13].                           

Several common variants influencing the continuous traits such as lipids, height and fat mass                           

have also been found [15-17]. While GWAS have identified thousands of common variants that                           

are associated with complex traits [8], the regulatory mechanisms behind these associations                       

mostly remain poorly understood. Pinpointing causal variants is difficult, since the lead variants                         

associated with a trait are often in high linkage disequilibrium (LD) with other variants in the                               

same region with only slightly lower association signal. Such associated LD blocks typically                         

contain several genes or functional elements, preventing the accurate identification of causal                       

variants. Furthermore, some trait associated variants fall into intergenic regions of the genome                         

with no obvious functional role at all [18]. Nevertheless the knowledge on the LD structure                             

around the SNPs has been crucial to fine-map the trait associated SNPs and predict disease                             

related genes [131].  

In the meantime, a number of studies reported that trait associated genetic variants are                           

significantly enriched in expression quantitative trait loci (eQTLs), suggesting that many trait                       

associated variants affect the phenotype by altering gene expression [20-23]. There is also a                           

growing body of literature highlighting the more pronounced effects of genetic variants on                         

molecular traits compared to phenotypic traits [24-26]. This is not surprising as molecular traits                           

representing fundamental biological processes such as gene expression are intermediate in the                       

genotype to trait causality chain.  

Genetic variants can affect gene expression in two ways: they could affect the expression of the                               

gene which is nearby (cis-eQTL) or expression of the gene that is further away or is even on                                   

different chromosome (trans-eQTL). The cis-eQTL is potentially useful to pinpoint the true                       

disease gene from an associated locus implicated by GWAS. The trans-eQTL however, allows us                           

to identify the downstream affected disease associated genes which were not implicated by                         

GWAS studies at all, thereby potentially revealing previously unknown pathways. 
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3.2 Cis-eQTL analysis of CoLaus 

Genotypes of CoLaus were measured by using the Affymetrix GeneChip Human Mapping 500                         

K array set. The full set of unmeasured HapMap II SNPs (release 21) was imputed and expected                                 

allele dosages were computed for 2,557,249 SNPs. Gene expression data was generated by                         

Illumina HiSeq2000 platform and mapped onto human genome 19 (Genome Reference                     

Consortium Human Build 37 (GRCh37)), resulting in RNA-Seq profiles of 45,470 genes. eQTL                         

analysis was done on 555 subjects whom we had genotype and gene expression data.  

For the cis-eQTL analysis we considered 19,903 protein coding genes and further removed genes                           

which had RPKM value smaller than 1 for 10% or more of the samples. Motivation in doing so                                   

was to eliminate problematically distributed gene expression values, which then could give rise to                           

faulty association signals. By applying this criteria, 49% of the protein coding genes were                           

removed from the analysis. Next we removed the genes that did not distribute continuously                           

between 2.5th and 97.5th percentiles, in order to exclude ill-distributed genes that can cause                           

biased inferences in the downstream statistical analysis. This criteria removed an additional 6%                         

of the protein coding genes. Overall 8,924 protein coding genes were selected for the analysis. 

For each gene, we defined a cis-window ranging 500kb out from the gene mid-point, and                             

calculated the Spearman rank correlation between the gene expression value and the SNPs                         

within the corresponding gene’s cis-window. For each gene only the SNP with minimum                         

Spearman rank correlation p-value was recorded (pobs). Subsequently, we accounted for multiple                       

hypothesis testing by controlling Benjamini-Hochberg false discovery rate at 5% and found that                         

almost all genes had an eQTL. As shown in Figure 12 for chromosome 19, we see that the                                   

p-value distribution of the cis-SNPs - gene expression correlations significantly deviates from the                         

standard uniform distribution while we do not observe this for the non-cis-SNPs - gene                           

expression corrleations. When the performed statistical tests are independent, p-values are                     

expected to follow a standard uniform distribution. Yet, in the eQTL analysis this assumption                           

does not hold due to the correlation structure in both genotype (LD) and gene expression data                               

(co-expression). To account for this we used a type of non-parametric randomization test called                           

permutation test where the expected null distribution of the p-values are calculated and the                           

likelihood of observed p-values originating from this computed null distribution is assessed                       
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along with the multiple testing correction method of choice. In our case, we estimated the null                               

distribution of the p-values by randomly permuting the sample labels of the expression data                           

1,000 times and recording the most significant SNP - gene pair Spearman rank correlation                           

p-value each time (pexp). For a given gene, we considered the highest correlated cis-SNP a                             

cis-eQTL, if pobs was smaller than 95% of the pexp values calculated for the given gene. As                                 

described the significance of the cis-eQTLs are therefore reported on the basis of permutation                           

adjusted BH-FDR of 5%. 

Figure 13 shows the distance between gene-midpoint and the discovered cis-eQTLs. We found                         

that the majority of the cis-eQTL SNPs map within 100 kb of the gene-midpoint. 

 

 

Figure 12: Distribution of -log10 p-values coming from SNPs association with gene expression 
values. Left panel shows all chromosome 19 genes’ Spearman rank correlation p-values with 
their respective cis-SNPs. Right panel shows the same genes’ Spearman rank correlation p-values 
with randomly selected SNPs outside their cis-windows. Red line in both panels represents the 
-log10 of uniform distribution, the expected distribution of p-values under null hypothesis. 
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Figure 13: Distribution of cis-eQTLs distance to gene-midpoint. 

 

Out of 8,643 genes analysed 3,811 were found to have a significant eQTL at                           

permutation-adjusted BH-FDR of 5%. Figure 14a shows the proportion of the genes that have                           

eQTL by chromosomes. Chromosome 19 had the lowest number of genes with a cis-eQTL                           

(34%), whereas chromosome 21 had the highest rate (59%). On average we found 44% of the                               

genes having an eQTL in CoLaus LCL derived gene expression data. Out of 1,655,025 SNPs                             

analysed, 165,944 SNPs found to be an eQTL at permutation adjusted BH-FDR of 5%. Figure                             

14b shows the proportion of the eQTLs by chromosomes. Chromosome 13 had the lowest                           

eQTL rate (5%), whereas chromosome 19 had the highest eQTL rate 18%. On average we                             

observed 10% of the analysed SNPs being an eQTL. 
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Figure 14: a) Number of genes with an eQTL reported by chromosome b) Number of eQTLs 
reported by chromosome. 
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We also investigated whether highly or lowly expressed genes tend to have more cis-eQTLs. To                             

investigate this, we split genes on chromosome 19 into five quantiles according to their mean                             

RPKM values. As shown in Figure 15, we found lowly expressed genes to be more likely to have                                   

a cis-eQTLs. 

 

Figure 15: Percentage of genes with cis-eQTLs, stratified into five quantiles by mean RPKM 
values (lowest quantile Q1 to highest quantile Q5). 

 

3.2.1 Comparison with other studies 

We compared CoLaus cis-eQTL results with two other studies. The first study is Blood eQTL                             

Browser [132] which is an eQTL meta-analysis of non-transformed peripheral blood samples                       

based on microarray gene expression data. For the comparison of discovered eQTLs, first we                           

wanted to define the set of SNPs and the genes analysed in both Blood eQTL Browser and                                 

CoLaus studies. As genotypes were imputed to Hapmap Phase 2 in both studies, there was no                               

need to identify the overlap in SNP space. On the other hand, the sets of genes analysed in the                                     

two of the studies differed, with an intersection counting 8,643 genes. Among these common                           
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genes, Blood eQTL Browser identified eQTLs for 3,562 genes, while CoLaus identified 3,786                         

genes (see Figure 16). 1,806 of these genes with an eQTL overlapped between two studies. This                               

overlap is significant, with a Fisher’s exact test p-value (over representation) of 1.81 x 10-27).  

 

 

Figure 16: Overlap between BLOOD and CoLaus; BLOOD has 3562 and CoLaus has 3786 
unique genes that have a significant eQTL, while 1806 of these eQTL overlap.. The gene 
universe refers to the 8643 genes that were included in the cis-eQTL analysis of both CoLaus and 
BLOOD. 

 

The second study we compared our results to is GEUVADIS [70], an eQTL analysis reported in                               

LCLs using RNA-Seq technology. We restricted our analysis to genes and SNPs present in both                             

studies resulting in 1,515 genes in GEUVADIS and 3,811 genes in CoLaus with at least one                               

significant eQTL. We found 1,343 genes overlapping between two studies and the enrichment of                           

the overlap was very significant (Fisher's Exact Test, right tail ‘over representation’ p-value =                           

numerically zero). Figure 17 shows the Venn diagram representation of the cis-eQTL                       

comparison. Given the difference in batch effect treatment in GEUVADIS and CoLaus, where                         

GEUVADIS uses a sophisticated batch effect detection method called PEER [133] as opposed                         

to CoLaus not attempting to remove any batch effects, a remarkable 89% of GEUVADIS                           

eQTLs were replicated in CoLaus.  
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Figure 17: Overlap between GEUVADIS and CoLaus; GEUVADIS has 1,515 and CoLaus has 
3,811 unique genes that have a significant eQTL, while 1343 of these eQTL overlap. The gene 
universe refers to the 8643 genes that were included in the cis-eQTL analysis of both CoLaus and 
GEUVADIS. 

 

The fact that GEUVADIS and CoLaus both use LCLs and Illumina RNA-seq, is the likely                             

reason why we observed a larger overlap with GEUVADIS compared to Blood eQTL Browser                           

which uses blood tissue and microarray technology. 

3.2.2 Conclusions 

We selected a rather small set of protein coding genes (8,643 genes) that passed strict QC criteria                                 

and ran a cis-eQTL discovery analysis for these genes. We found an eQTL for 44% of these                                 

genes in CoLaus LCL derived gene expression data (BH-FDR of 5% against a permutation                           

derived null distribution). The proportion of protein coding genes with cis-eQTLs reported as                         

27% in the literature [134], lower than what we observe in our study. It is very likely that we                                     

observed higher percentage of genes having eQTL as the set of genes considered for the                             

cis-eQTL analysis were less to begin with, due to stringent QC we used in our analysis. On                                 

average we observed 10% of the analysed SNPs being an eQTL, however this number largely                             

affected by the density of genotype imputation and the definition of cis-window. We found the                             

majority of the cis-eQTLs to be in the 100 kb neighborhood of the gene-midpoint, in aggreement                               
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with published results [135]. We observed lowly expressed genes having more cis-eQTLs                       

compared to highly expressed genes. This result is contradictory to what has been reported in the                               

literature by Westra et al. [132], yet we think the observed disagreement might be due to the                                 

different gene expression technologies used in two studies. While Westra et al. uses microarray                           

technology where the low expression values are known to be noisy, CoLaus uses RNA-seq                           

technology which is known to detect lowly expressed genes more accurately.  

When we compared our cis-eQTL results with two studies, Blood eQTL browser and                         

GEUVADIS, we found that the CoLaus cis-eQTLs are significantly overrepresented in the other                         

studies, demonstrating the robustnes of our cis-eQTL analysis.  

3.3 cis-Acting Complex-Trait-Associated lincRNA Expression         

Correlates with Modulation of Chromosomal Architecture 

In this chapter, I describe the above titled project I have been involved in. 

3.3.1 Background 

It has been shown that despite 75% of the human genome being transcribed, only a small                               

proportion of these transcripts are translated into proteins [136]. The transcripts without                       

protein-coding capacity are called non-coding RNA and they are classified into two categories                         

based on their length. RNAs that are shorter than 200 nucleotides are known as small                             

non-coding RNAs and they mainly consist of microRNAs, small nucleolar RNAs. RNAs that are                           

longer than 200 nucleotides are known as long intergenic non-coding RNAs (lincRNAs). The                         

long nature of the lincRNAs serves as an added functionality, by allowing them folding upon                             

themselves and creating complex structures. As a result their interactions are not solely based on                             

base-pairing but also the tertiary structure [137]. Due to their lack of protein coding ability,                             

lincRNAs were formerly seen as ‘junk RNA’. However this perception has been drastically                         

changed after many studies showing their regulatory role in disease and normal phenotypes                         

[138-140]. A large proportion of GWAS variants fall into non-coding regions of the genome and                             

they are enriched for eQTLs [141]. To date, eQTL analysis of many protein-coding genes helped                             

us to better understand how these genetic variants affect the human complex traits [76, 142].                             
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Recently similar studies have been done on lincRNAs and like their protein-coding counterparts,                         

lincRNAs were also found to contribute to phenotypes [70, 134, 143, 144]. 

3.3.2 Scope of the project 

Although many studies associate lincRNAs with complex traits, the underlying mechanism of                       

action of these associations remain largely unknown. So far the functional role of lincRNAs has                             

been shown for regulation of epigenetic markers and gene expression; in particular in                         

transcriptional and post-transcriptional regulation [145-147]. Marques et al. [148] reported                   

chromatin signature at lincRNA transcription start sites exhibiting differences depending on the                       

functional role of lincRNA. More specifically they show the lincRNAs with enhancer-like                       

chromatin signatures correlating more often with neighboring protein-coding genes, thus                   

pointing to local acting regulatory function of lincRNAs. They also remark the trait associated                           

eQTL variants being enriched for enhancer regions[149], and accordingly suggest a link between                         

enhancer associated lincRNAs and complex human traits.  

Aim of the current study is to extensively characterize the regulatory roles of biologically and                             

trait-relevant lincRNAs (TR-lincRNAs) in human LCLs. Biological relevance of these                   

TR-lincRNA was decided upon them being conserved in recent human history and genetic                         

interactions with other trait-associated loci.  

3.3.3 My contribution 

My role in this project was to do genome-wide lincRNA cis-eQTLs analysis on CoLaus LCL gene                               

expression data, which served as a replication study.  

For the analysis we considered two types of lincRNA: lincRNAs that were in GENCODE                           

version 19 and de-novo LCL expressed lincRNAs that were detected in the discovery cohort.                           

First we used HTSeq [150] to quantify RNA-Seq reads that overlap lincRNAs (GENCODE                         

version 19 + de-novo LCL expressed lincRNA) and protein coding genes (GENCODE version                         

19). Expression level of each gene for each sample was subsequently estimated as RPKM by                             

mapping the total number of exonic reads of the gene. Next, the genes that were unexpressed                               

across the population were removed from the analysis by discarding the genes that had zero                             

RPKM values upto half of the samples. Later we performed PEER normalization to account for                             
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potential technical variation across samples [151]. PEER-corrected expression values were then                     

transformed to standard normal distribution.  

The cis-eQTL analysis was performed for genome-wide significant trait-related autosomal SNPs                     

(p< 5×10-8 ; [152]) located within two MB window centered on the transcription start site (TSS)                               

of each expressed lincRNA and protein-coding gene. For the analysis we used Pearson’s                         

correlation coefficient, rho (r), to estimate the association between PEER-corrected and                     

transformed expression values and trait-associated SNPs. Global significance of the associations                     

were assessed by using permutation adjusted false discovery rate. More specifically we permuted                         

the gene expression values of each gene 1,000 times and recorded the maximum absolute rho                             

value in each permutation (rexp). Then only the cis-eQTLS with robs higher than 95% of all rexp                                 

values were considered to be significant (FDR controlled at 5%). 

3.3.4 Results and conclusions 

In the discovery cohort 111 and 1,479 cis-eQTLs were detected for 73 lincRNAs and 756 protein                               

coding genes respectively. Despite the number of lincRNA cis-eQTLs being relatively low                       

compared to protein-coding gene cis-eQTLs, authors showed when the differences in gene                       

lengths and expression level in two groups are taken into account, both groups have                           

indinguishable proportion of eQTLs (p=0.68, two-tailed χ2 test) suggesting that lincRNA                     

properties limit the power to detect eQTLs.  

Overall 68% of the identified lincRNA cis-eQTLs and 71% of the identified protein-coding                         

cis-eQTLs were replicated in CoLaus. The proportion of eQTLs in both groups remained similar                           

(p=0.69, two-tailed Fisher’s exact test). Additionally, authors adopted regulatory trait concordance                     

(RTC) method to reduce false positive eQTL detections by taking into account local LD                           

structure [153]. RTC method assesses the likelihood of the identified cis-eQTL to be most likely                             

driven by the complex trait associated genetic variant and not due to LD with another SNP. The                                 

high confidence lincRNAs and protein-coding genes resulting from this analysis are likely to be                           

true trait-relevant gene candidates and they are called trait-relevant lincRNAs (TR-lincRNA) and                       

trait-relevant protein-coding genes (TR-pcgenes). Interestingly, when the TR-lincRNA and the                   

TR-pcgenes were considered together, 73% of the GWAS cis-eQTLs were replicated in CoLaus. 
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Authors did additional analysis and illustrated following: i) TR-lincRNA are enriched for                       

enhancer-like chromatin signatures ii) TR-lincRNA interact with nearby TR-pcgenes iii)                   

TR-lincRNA are enriched at topologically associated domain (TAD) boundaries. Taken together,                     

they suggest TR-lincRNAs are likely to regulate proximal trait-ralated gene expression in cis by                           

modulating local chromosomal architechture. 

The paper entitled, cis-Acting Complex-Trait-Associated lincRNA Expression Correlates with Modulation                   

of Chromosomal Architecture, was published in Cell Reports in February 2017. The manuscript is                           

accessible in Appendix 1 and also online: http://dx.doi.org/10.1016/j.celrep.2017.02.009. 

3.4 Unraveling the polygenic architecture of complex traits using                 

blood eQTL meta-analysis 

In this chapter, I describe the above titled project I have been involved in. 

3.4.1 Background 

Despite the widespread use of cis-eQTLs to interpret the regulatory mechanisms of GWAS                         

variants, they explain only a modest proportion of the disease heritability [132]. Trans-eQTLs                         

however used to provide insights of the effects of a single genetic variant on many genes and                                 

they have been already successfully used to elucidate putative key driver genes involved in                           

diseases [154]. Yet the discovery of trans-eQTLs require larger samples as their effects tend to be                               

much weaker compared to those of cis-eQTLs. 

While identifying the downstream effect of a genetic variant with trans-eQTL analysis is quite                           

straightforward, other approaches needed to combine the consequences of trait-associated                   

variants. Polygenic risk scores (PGS) have been proposed to sum up the effects of individual                             

variants contributing to a disease and used to comprehensively characterise the overall                       

genome-wide risk of a disease [155]. As much as PGS being useful, the way polygenic effects                               

manifest themselves still remain largely unknown.  
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3.4.2 Scope of the project 

This paper systematically investigates the trans-eQTLs along with associations of PGS with gene                         

expression (expression quantitative trait score, eQTS). The aim of the work is to gain further                             

insights on how genetic variants influence genes and converge on pathways that are essential for                             

complex traits. To maximise the power to detect trans-eQTL and eQTS effects, study combines                           

data from 37 cohorts reaching to 31,684 blood samples in the context of eQTLGen consortium.                             

The meta-analysis achieves a six-fold increase in size over the previous large-scale studies [132]. 

3.4.3 My contribution 

CoLaus was one of the LCL replication cohorts along with ALSPAC [156], MuTHER [157] and                             

Geuvadis [70], which were meta-analysed together. I used the recommended RNA-Seq pipeline                       

to replicate their various QTL analysis, which consisted following steps: 

Step 1 - Preparation of expression data: The suitability of the CoLaus RNA-Seq quantification                           

for the replication analysis was discussed with the authors. We concluded that the quality of the                               

sequencing, performed sample quality control and mapping parameters were well suited for the                         

purpose of the replication study. 

Step 2 - Preparation of genotype data: I first computed 4 MDS components of the                             

non-imputed autosomal SNPs of CoLaus, to use for correction of expression data in the                           

downstream statistical analysis. Genotype Harmonizer [158] was used to harmonize, filter and                       

convert the genotype data to match the GIANT release of 1000G. 

Step 3 - Formatting expression data: First I investigated the outliers of the expression data by                               

performing a PCA on the data without prior centring or scaling. As seen in Figure 18, by plotting                                   

the first two principal components, I haven’t detected any clear outliers, therefore did not                           

remove any samples from the analysis. 
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Figure 18: Principal components of gene expression data prior to transformations. Plotting 
components 1 vs 2 suggesting none of the samples as clear outliers. 

 

In the next step I applied a series of normalizations to the expression data. I started with TMM                                   

(Trimmed Mean of M-values) normalization as implemented in edgeR package [115], removed                       

genes with no variance, applied logarithm 2 and Z-score transformation (centering and scaling                         

the genes). Finally the first 4 MDS of the genotype data was removed from expression data to                                 

account for possible population stratification. 

Step 4 - MixupMapper: As demonstrated in Westra et al. [159], sample mix-ups often occur in                               

genomic datasets. By analysing five publicly available human genomics datasets they found 3% to                           

23% of the samples being assigned to wrong expression phenotypes. MixupMapper calculates                       

the predicted gene expression values solely based on on the genotype of the cis-SNPs and                             

compares the predicted gene expession values with the observed gene expression values to                         
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detect anomalies. Using the distance measures the method is able to detect and correct sample                             

mix-ups with high specificity and sensitivity [159].  

I used MixupMapper on CoLaus genotype and gene expression data and found five problematic                           

samples. Figure 19 shows the best matching expression file per genotype file. The strength of                             

original genotype-expression matching samples (on the x-axis) is plotted against the strength of                         

best-matching genotype-expression samples (on the y-axis), where the smaller numbers represent                     

more likely matches. Examining Figure 19, I detected one obvious mix-up, where the best                           

matching trait score was much smaller than the original linked trait score, indicating a strong                             

probability of one-to-one mixup (indicated as empty red circles). Indeed, looking into sample                         

identifiers I realised they differed from each other only in one digit, in one sample it being ‘O’                                   

(AA02JWO) and in the other one it being ‘0’ (AA02JW). I fixed this one-to-one mix-up. There                               

were some other genotype-expression pairs which were flagged as mix-ups, in the upper right                           

corner of Figure 19, where some expression dataset seemed to match slightly better to the given                               

genotype file, but the difference was not dramatic. For those expression files, I checked the                             

strength of the link with original, assigned genotype files (highlighted as red dots in the diagonal)                               

and as they had relatively smaller scores I concluded that the original assigned matches for those                               

genotype files being more trustworthy than the match proposed by the tool. Thus, I did not                               

remove these samples.  
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Figure 19: Best-matching expression file per genotype file. X-axis denotes the strength of original 
genotype-expression matching and y-axis denotes the strength of best-matching 
genotype-expression samples. Two samples detected as one-to-one mix-ups, are marked with 
empty red circles. 

 

Next I investigated a similar plot, where this time the best matching genotype file was given per                                 

expression file (see Figure 20). I could detect the previously mentioned very strong and obvious                             

mix-ups (empty red circles), however based on Figure 20 there were three additional mix-ups                           

where the originally assigned genotype file was not the best-matching one (empty blue circles). I                             

removed these three samples from the analysis. Additionally, there were some samples flagged as                           

mix-ups in the upper right corner of Figure 20, but the difference was not very big so I did not                                       

remove these samples. 
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Figure 20: Best-matching genotype file per expression file. X-axis denotes the strength of original 
expression-genotype matching and y-axis denotes the strength of best-matching 
expression-genotype samples. Two samples detected as one-to-one mix-ups are marked with 
empty red circles while additional three samples detected as mix-ups are marked with blue 
circles. 

 

Step 5 - Removing principal components: Before the QTL analysis, removal of first 20                           

principal components of expression was recommended to increase the power to detect cis- and                           

trans-eQTLs. However we wanted to avoid removing principal components of expression which                       

explained genetic variation. To this end, we associated the first 20 principal components of                           

expression with genotypes and found the principal component 17 and 20 as significantly                         

associating with genotype at FDR of zero. We removed all but 17th and 20th principal                             

components of expression from the gene expression data. 

Step 6 - Performing the cis-eQTL analysis: For genotypes I used 1000 Genomes imputed                           

SNPs with the following criteria: Hardy-Weinberg equilibrium P-value >10-4, MAF > 0.01 and                         

call rate > 0.95. Cis-eQTL analysis was performed on CoLaus RNA-Seq gene-level quantified                         

and normalized data. For cis-eQTL mapping, the maximum distance between the SNP and the                           
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middle of the gene was 1,000,000 bp (=1 Mbp). To control for multiple testing I performed 10                                 

permutations, thereby shuffling sample labels to calculate the FDR controlled at 0.05. 

Step 7 - Performing conditional cis-eQTL analysis: Authors noted that removing the cis                         

effects greatly enhances the power to detect trans effects. To maximize the power to identify                             

trans effects, I wanted to regress out all the independent cis-eQTL effects. To do so, I performed                                 

an iterative conditional cis-eQTL analysis which enabled the identification of                   

secondary/tertiary/quaternary/... cis-eQTLs. In the first round, a cis-eQTL analysis is performed                     

as in the discovery cis-eQTL analysis (Step 6). For all significant (FDR<0.05) cis-eQTL effects,                           

the most significant SNP effect for each gene was regressed out from the gene expression                             

matrix. The next round of cis-eQTL mapping analysis was conducted on the adjusted expression                           

matrix while testing only genes that had any significant cis-eQTL effect prior regression. The                           

analysis was performed iteratively until no significant (FDR<0.05) effects remained for a given                         

gene. In CoLaus gene expression data it took nine iterations and resulted in removing the effects                               

of 13,934 SNPs in order to conditionaly remove entire cis-eQTL effects from the gene                           

expression data.  

Step 8 - Performing the trans-eQTL analysis: Two different versions of the expression data                           

were used in trans-eQTL analysis in order to observe the effect of principal component                           

correction on eQTL discoveries. Used gene expression data were: The gene expression data                         

where the first 18 non-genetic expression principal components were removed and the                       

expression data where no principal components were removed. In both cases, the effect of                           

cis-eQTLs found in Step 7 were used to correct the expression matrices before trans-eQTL                           

mapping. Standard settings for the trans-eQTL mapping were: Hardy-Weinberg equilibrium                   

P-value > 10-4, MAF > 0.01, and call rate > 0.95. Due to the limitations on the computational                                   

power and file sizes I tested only a preselected list of SNPs in this phase, consisting of EBI                                   

GWAS Catalogue and Immunobase (all GWAS catalog SNPs with p-value < 5×10-8). For                         

trans-eQTL mapping, the minimum distance between the SNP and the middle of the probe was                             

5,000,000bp (=5 Mbp). To control for multiple testing, I performed 10 permutations by                         

shuffling sample labels, to calculate the false discovery rate (FDR) at 0.05.  

Step 9 - Performing the Polygenic Risk Score eQTL analysis: I calculated polygenic risk                           

scores (PRS) for all the individuals in the eQTL dataset, using publicly available GWAS summary                             
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statistics for traits specified by the authors. Those risk scores were then correlated with                           

expression levels of all genes to identify novel trait-associated "hub" genes and pathways. PRS -                             

trans-eQTL analysis was done for two different expression matrices similar to Step 8, principal                           

component corrected expression matrix and not corrected expression matrix, again with the                       

motivation to observe the effect of principal component correction on eQTL discoveries. 

3.4.4 Results and conclusions 

64% of the identified trans-eQTL SNPs in the discovery cohort have been previously associated                           

with blood composition phenotypes [160]. This was expected as SNPs that regulate the                         

abundance of a specific blood cell type were also expected to have trans-eQTL effects on genes,                               

especially expressed in that cell type. To disentangle this, authors wanted to distinguish the blood                             

cell type specific trans-eQTLs from the trans-eQTLs caused by intracellular mechanisms. To this                         

end they acquired eQTL data from LCLs, induced pluripotent cells, several purified blood cell                           

types and blood DNA methylation data. CoLaus data was meta-analysed with two other cohorts                           

that had LCL gene expression data to study the profoundness of this cell type specific effect.  

Replication efforts resulted in 3,853 significant trans-eQTLs that are replicated in at least one of                             

the methylation or cell type specific data including LCLs. Replication rate corresponded to 6.4%                           

of the entire set of discovered trans-eQTLs. Authors denoted this set of trans-eQTLs as intracellular                             

eQTLs, and suggested them being less likely to be driven by cell type composition. They also                               

acknowledged the replication effort as conservative due to limited sample size of the replication                           

study (N=1,460). More specifically when only LCL data was considered, the replication rate of                           

the trans-eQTLs was as low as 0.6%, where the 88% of the replications agreed on the direction of                                   

the effect (see Figure 21).  
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Figure 21: Trans-eQTL replication in purified cell type LCLs. Z-score comparisons between 
discovery and replication dataset and corresponding statistics are shown (taken from Vosa et 
al.[135], Extended Data Figure 11).  

 

To further validate the discovered blood trans-eQTLs in purified cell types, similar analysis was                           

done on GTEx data where 32 cell types and cell lines were analysed in total. Replication rate of                                   

blood trans-eQTLs in non-blood tissues of GTEx data was also very low ranging from 0% to                               

0.03%. The enrichment of trans-eQTLs in LCLs in particular, ranked as the lowest among all the                               

cell types analysed, with the replication rate of 0%. Liver, kidney and non-sun exposed skin                             

however, were among the tissues that were most enriched for blood trans-eQTLs.   

Another focus of the paper was performing an association analysis between PGS and gene                           

expression levels, so-called PGS - trans-eQTL analysis, in order to find eQTS (expression                         

quantitative trait score). Rationale behind this approach was that when the expression level of a                             

gene is associated with PGS of a certain trait/disease, downstream trans-eQTL effects of the                           

individual genetic variants would converge on the very same gene, therefore highlighting the gene                           

as the driver of the trait/disease. The meta-analysis resulted in the discovery of 18,210 eQTS                             

effects (FDR<0.05) of which only 10 replicated in LCL replication cohorts (see Figure 22). Out                             
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of 10 replicated eQTS, nine agreed on the direction of the effect between blood tissue and LCL.                                 

All things considered the very low replication rate of blood eQTS in non-blood tissues, lead to                               

the conclusion of these effects being highly cell-type specific.  

 

 

Figure 22: Replication of eQTS results in LCLs. Z-score comparisons between discovery and 
replication dataset and corresponding statistics are shown (taken form Vosa et al.[135], Extended 
Data Figure 16A).  

 

The undertaken work has many other remarkable results in addition to the cell-type specific                           

effects of QTLs which the CoLaus data have contributed. Authors found cis-eQTLs for 16,989                           

genes, trans-eQTLs for 6,298 genes and eQTS effects for 2,568 genes out of 19,960 genes studied.                               

When specifically looking at the genes expressed in blood, 88% of the genes had significant                             

cis-eQTL and 32% of the genes had significnat trans-eQTL effects. They observed 84% of the                             

strong cis-eQTL SNPs mapping within 20 kb of the transcription start or end site of the genes,                                 

suggesting variants close to start or end of the transcripts driving cis-eQTL effects. Yet the 80%                               

trait-associated variants mapped within 33 kb from the gene, which lead them to conclude that                             

trait-associated variants having a different genetic architechture compared to those of cis-eQTLs,                       
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therore limiting the ability to use cis-eQTLs to pinpoint casual genes from susceptibility loci                           

suggested by GWAS.  

In contrast, they suggested trans-eQTLs being more informative than cis-eQTLs on disease                       

etiology. They showed multiple unlinked genetic variants which are associated with the same trait,                           

frequently converging on trans-genes that are known to be important for the disease. This was                             

also observed when PGS were associated with expression levels of the genes, where many of the                               

significantly associated genes were known to drive these traits. 

The paper entitled, Unraveling the polygenic architecture of complex traits using blood eQTL                   

meta-analysis, is submitted to Nature in October 2018 and currently under revision. The                         

manuscript is accessible in Appendix 2 and also online:                 

https://www.biorxiv.org/content/10.1101/447367v1. 
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4 Integration with metabotypes  

I start this chapter by introducing CoLaus metabolome data and explaining ‘metabomatching’, a                         

method developed to identify metabolites underlying novel SNP associations with NMR                     

metabolomic features. I briefly describe metabolome and genome-wide association studies                   

(mGWAS) and report mGWAS results of CoLaus. Next I point to the importance of                           

simultaneous analysis of cross-sectional multi-omics data from large population studies and                     

describe the metabolome and transcriptome-wide association study of CoLaus. In the last                       

section I present a paper published by our group that uses the metabomatching method to                             

generate metabolic signatures from large-scale NMR data in an unsupervised fashion.  

4.1 CoLaus metabolome data 

Urinary metabolic profiles were generated using one-dimensional proton nuclear magnetic                   

resonance (NMR) spectroscopy. NMR spectra were acquired at 300 K on a Bruker 16.4 T                             

Avance II 700 MHz spectrometer (Bruker Biospin, Rheinstetten, Germany) using a standard 1H                         

detection pulse sequence with water suppression. The spectra were referenced to the TSP signal                           

and phase- and baseline corrected. We binned the spectra into chemical shift increments of 0.005                             

ppm, obtaining metabolome profiles of 2,200 metabolome features, of which 1,276 remain after                         

filtering for missing values [161]. Lastly, the dataset was log10-transformed and standardised                       

across features then samples, to make samples and feature intensities comparable.  

4.2 Metabomatching 

Metabomatching is a method to identify metabolites underlying novel SNP associations with                       

metabolome features [161]. It compares the significance profile of the associations with a given                           

variable with all metabolome features across the full chemical shift range, the so-called                         

pseudospectrum, with NMR spectra of pure metabolites available in public databases such as                         

HMDB [162] and BMRB [163]. For each metabolite m, metabomatching defines a set of features                             

that contains all the features f that fall within a δ ppm vicinity of any NMR spectrum(m)F δ                                    

peak of m listed in the database. Metabomatching then computes the sum 
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between f and m. Assuming a -distribution if α = 2, or a Z-distribution if α = 1, for the sum            χ2                              

with degrees of freedom, metabomatching defines a score for each m as the negative  F (m)|
| δ

|
|                            

logarithm of the nominal p-value corresponding to the observed sum. These scores are                         

calculated for all the metabolites with NMR spectra in the database, allowing to rank them with                               

regard to their likelihood to underlie the association of the variable with the metabolomic                           

features. 

Although metabomatching was originally developed to use pseudospectra from SNP -                     

metabolome associations, we have recently shown that it can also use co-varying features of                           

metabolome data itself to identify metabolites [164]. In our metabolome- and                     

transcriptome-wide association study we used metabomatching to identify metabolites                 

underlying gene expression - metabolome associations. 

4.3 Metabolome and genome-wide association studies (mGWAS) 

GWAS with metabolic traits (mGWAS) search for genetic variants that influence human                       

metabolism. Metabolites are unique chemical fingerprints that reflect various cellular processes                     

taking place in the cells of a subject, thus serving as snapshots of the physiological states of a cell.                                     

Together with transcriptome and proteome they serve as molecular phenotypes that reflect the                         

functional status of events occurring further upstream. To date more than 150 independent                         

genetic variants have been identified as modulators of serum metabolites, and 26 for urine                           

metabolites [27]. Once having the genotype, metabotype and phenotype data, one can start to                           

investigate to what degree the metabolomics data reflect the genotypic background and how                         

informative it is about the phenotype, e.g. disease susceptibility. Changes in metabolite                       

concentrations may be the direct consequence of the genetic background modulated by the                         

environment, and some of these changes can be causal for developing or progressing a disease.                             

Conversely, some changes in metabolites may occur as a results of an organismal dysfunction.                           

Importantly, being able to distinguish between these two scenarios, would be of great clinical                           
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usefulness, as metabolite changes which are causally upstream are good candidates for                       

developing presymptomatic biomarkers indicating increased disease risk well ahead of the                     

various homeostatic organismal processes leading to disease manifestation. 

4.4 mQTLs of CoLaus 

In his work, Rico et al. [161] performed a metabolome-wide genome-wide association study                         

(mGWAS) of CoLaus untargeted urine NMR data. He discovered 139 independent                     

genome-wide significant associations of which 56 replicated in an independent cohort (p-value <                         

5×10-8). He designed a method called metabomatching to identify the metabolites underlying the                         

observed genotype - metabolome features associations (see section 4.2 for details). When                       

metabomatching was applied to the 56 replicated SNP-feature associations, he found 11                       

locus-metabolite associations that are reported in Table 5, SNPs mapping to ALMS1, ADXT2,                         

PSMD9 and PYROXD2 genes have been previously reported to associate with the respective                         

metabolites listed in the table, thus the current study served as a replication. SNPs in NAT2 and                                 

PYROXD2 genes on the other hand had robust metabomatching with several metabolome                       

features which did not overlap with those of reported metabolites in the literature. SNPs in                             

ACADL, ABO and ACADS genes have been previously associated with serum metabolites yet                         

the current study could not distinguish if the associations of these genes in urine corresponded                             

to the urine analogs of those in serum or they were novel discoveries. Two novel findings of the                                   

study were FUT2’s association with fucose and SLC7A9’s association with lysine. Urine fucose                         

levels concentration has been linked to gut microbial health and Crohn’s disease, whereas lysine                           

has been linked to kidney function and kidney failure, hence two novel findings of the study                               

showing clinical relevance. 
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Table 5: Association results of mGWAS (Adapted from Rueedi et al. 2014 [161] ). 

 

This study reported a high level of replication rate in an independent cohort where the                             

experimental conditions were considerably different. Also most of the significant associations                     

found in this study were previously reported in the literature. This demonstrates the reliability                           

and robustness of feature-based NMR metabolomics. 

4.5 Associating metobotypes with gene expression levels  

Genome-wide association studies (GWAS) have identified thousands of common variants that                     

are associated with complex traits [8], but the regulatory mechanisms behind these associations                         

mostly remain poorly understood. Pinpointing causal variants is difficult, since the lead variants                         

associated with a trait are often in high linkage disequilibrium (LD) with other variants in the                               

same region with only a slightly lower association signal. Such associated LD blocks typically                           

contain several genes or functional elements, preventing the accurate identification of causal                       

genes. Furthermore, some trait associated variants fall into intergenic regions of the genome with                           

no obvious functional role at all [18].  

A number of studies reported that trait associated genetic variants are significantly enriched in                           

expression quantitative trait loci (eQTLs), suggesting that many trait associated variants affect the                         

phenotype by altering gene expression [20-23]. There is also a growing body of literature                           

highlighting the more pronounced effects of genetic variants on molecular traits compared to                         
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phenotypic traits [24-26, 165]. This is not surprising, since molecular traits representing                       

fundamental biological processes such as gene expression and metabolism are intermediates in                       

the genotype to trait causality chain.  

With high-throughput measurements becoming more accessible and widespread, integration of                   

molecular traits into association studies has become a central challenge in the field. Such                           

synthesis allows investigating the interplay between different organisational layers of a biological                       

system. Despite metabolism and gene expression regulation both being fundamental biological                     

processes that are commonly studied as molecular phenotypes, there are very few studies in                           

humans that focus on the interplay between them. Several studies investigated the relationship                         

between untargeted serum metabolites and whole blood gene expression in humans [28-30], but,                         

to the best of our knowledge no transcriptome- and metabolome-wide association study has                         

been performed using urine metabolome data of healthy human subjects. 

Most metabolome- and genome-wide association studies (mGWAS) reporting metabolite                 

quantitative trait loci (mQTL) use targeted approaches where the concentrations of a limited                         

number of metabolites are estimated from the metabolome data generated by mass spectrometry                         

or NMR spectroscopy. This targeted approach is limited to the number of known quantifiable                           

metabolites in the biofluid under study. In the current study we adopted an untargeted approach,                             

making use of the entire metabolomic data captured by binned 1H NMR spectra as our                             

molecular traits. So here we present an untargeted metabolome- and transcriptome-wide                     

association study using the entire NMR spectral information to characterize the urine                       

metabolomes of 555 subjects and RNA-Seq data of lymphoblastoid cell lines (LCLs) derived                         

from the same set of individuals. LCL have been widely used in genomic studies and proven                               

their worth as faithful surrogates of primary tissues for studying both gene expression variation                           

among individuals and the genetic architecture underlying regulatory variation of gene                     

expression[96, 97, 99, 166]. LCLs thus present an interesting system whose genetic variance in                           

expression resembles that of the cell types affecting the urine metabolome, with the added                           

advantage of not being influenced by immediate environmental factors such as recent changes in                           

the diet or exposure to a drug. Despite having limited statistical power and using surrogate tissue,                               

we identified two strong associations between gene expression levels and urine metabolome                       

features, which allowed us to refine previous links between the corresponding genes and                         

metabolites.  
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4.5.1 Association analysis 

We performed an untargeted metabolome- and transcriptome-wide association study by pairwise                     

linear regression of log-transformed expression levels of each of the 43,614 genes (as response                           

variable) onto each of the 1,276 metabolome features (as explanatory variable). The metabolome                         

features resulted from binning the raw urinary NMR spectra with a bin-size of 0.005 ppm, and                               

rank normalizing each bin passing QC (see Section 4.1 for details). The gene expression levels,                             

quantified as RPKM, were measured using RNA-Seq on lymphoblastoid cell lines derived from                         

the same set of 555 subjects (see Section 2.3 for details). The model also included the following                                 

common confounding factors: age, sex, the first four principal components of the genotypic data                           

(correcting for population stratification) and the first 10 principal components of the gene                         

expression data (correcting for potential batch effects). For the completeness of the analysis we                           

did not apply any exclusion criteria to remove genes from the analysis. As a consequence, the                               

significant associations need to be further evaluated in order to remove problematically                       

distributed genes that could give rise to inaccurate regression estimates. We applied a nominal                           

Bonferroni threshold for multiple testing pmax = 0.05/(125×1109) = 3.6×10-7 by taking into                         

account the effective number of tests which we estimated to be 125 for metabolome features and                               

1109 for genes (i.e. the number of principal components explaining more than 95% of the data                               

[167]). Only associations with a p-value below pmax were considered significant. All statistical                         

analyses were performed using Matlab [168].  

Figure 23 shows the qq-plot of all pairwise associations. It is well calibrated, and only two                               

association p-values (both involving the ALMS1 gene, see below) are highly significant                       

(FDR<0.05). Yet, applying an adjusted Bonferroni threshold of 3.6×10-7 to account for the                         

effective number of independent variables, we identified 25 additional marginally significant                     

feature-gene associations. The 27 association pairs involved 22 unique genes and 25 unique                         

features. 
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Figure 23: QQ-plot showing -log10 (p)-values of metabolome- and transcriptome-wide 
association analysis. The features that significantly associate with ALMS1 expression are ranking 
as 1st , 2nd and 8th; the features associated with HPS1 expression are ranking as 3rd and 5th and 
the features associated with ALMS1P expression are ranking as 6th and 7th. 

 

As we did not apply any a-priori exclusion criteria to remove genes from the analysis, we                               

inspected the expression value distributions of these 22 significant genes in order to identify                           

cases in which the small p-value may be due to a problematic distribution of the expression                               

values. Indeed, we observed that some of the genes had zero expression values for a sizable                               

fraction of the samples and very low expression values otherwise. Based on the distributions we                             

filtered out all genes with zero RPKM values in more than 95% of the samples if all these                                   

expression values were below 1. Applying this rather mild filtering removed 11,547 out of the                             

43,614 all autosomal genes (26%) and 1,994 out of 19,123 protein-coding genes (10%). Amongst                           

the 22 marginally significant associations five (23%) were removed. Scatter plots of gene                         

expression and associated metabolite feature can be seen in Figure 24 and 25 for the discarded                               

and valid associations respectively. We report the remaining 21 significant associations                     

corresponding to 17 unique genes and 19 unique features in Table 6. 
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Figure 24: Scatter plots of six removed study wide significant metabolite feature - gene 
expression associations. X-axis shows the gene’s RPKM values and the Y-axis shows the log10 

transformed and Z-scored metabolite feature that is associated with the respective gene. 
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Figure 25: Scatter plots of 21 study wide significant metabolite feature - gene expression 
associations. X-axis shows the gene’s RPKM values and the Y-axis shows the log10 transformed 
and Z-scored metabolite feature that is associated with the respective gene. 
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Table 6: 21 study-wide significant associations from metabolome- and transcriptome-wide 
association analysis, corresponding to 17 unique genes and 19 unique features. Abbreviations: 
GeneID - Ensembl Gene ID (NCBI build 37), Chr - chromosome, X - effect size, P - P-value. 

 

4.5.2 Metabolite discovery 

To find the metabolites underlying these significant associations between gene expression levels                       

and metabolome features we used metabomatching. Metabomatching has been previously                   

established as an effective tool for prioritizing candidate metabolites underlying                   

SNP-metabolome features association profiles, so-called pseudospectra [161, 169]. In this study                     

we used association profiles of genes which had at least one significantly associated metabolite                           

feature as input to metabomatching and found that the pseudospectra of ALMS1 and ALMS1P                           

matched well with the N-Acetylaspartate (NAA) NMR spectrum and that the pseudospectrum                       

of HPS1 matched well with the trimethylamine (TMA) NMR spectrum (see Figure 26). 
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Figure 26: Metabomatching figures showing the pseudospectra derived from gene expression - 
metabolome features associations [170]. The features in each pseudospectrum are color-coded by 
the sign of the effect size and the four highest ranking candidate metabolites are listed on the 
lower left with their reference NMR spectra shown on the right (color coding indicating their 
relative peak intensities). A) CoLaus urine metabolome-ALMS1 gene expression association 
profile metabomatching figure. Leading features allowing metabolite identification are at 2.03 
ppm and 7.92 ppm regions which match well with the highest intensity peak of NAA and one of 
the lower intensity peaks of the NAA NMR spectrum, respectively. B) CoLaus urine 
metabolome - HPS1 gene expression association profile metabomatching figure. Leading 
features allowing metabolite identification are at 2.87 and 2.86 ppm which match well with TMA 
singlet. C) CoLaus urine metabolome-ALMS1P gene expression association profile 
metabomatching figure. Leading features allowing metabolite identification are at 2.03 ppm and 
7.92 ppm regions which match well with the highest intensity peak of NAA and one of the lower 
intensity peaks of the NAA NMR spectrum respectively. 

 

As shown in Table 6, the expression of ALMS1 significantly associates with three neighboring                           

features at 2.0375 ppm (p-value=2×10-16), 2.0325 ppm (p-value=7×10-16) and 2.0275 ppm                     

(p-value=3×10-7). There are few metabolites with resonances in this region and usually a singlet                           

signal in this area is interpreted as the N-acetylated resonance detected in the 1H NMR spectrum                               

of N-acetylated compounds [171]. As illustrated in Figure 26A, among the top three metabolites                           

suggested by metabomatching that have a peak at 2.03 ppm, the only one with the highest                               

intensity peak at this position is NAA. Also the presence of a secondary peak in the                               

pseudospectrum at 7.9225 ppm matches well with one of the lower intensity peaks of the NMR                               

spectrum of NAA reported at 7.92 ppm in HMDB, even though the association p-value of this                               

feature is below the Bonferroni threshold (p-value=2×10-4). Similarly, metabomatching the                   

pseudospectrum of ALMS1P (ALMS1 pseudogene) points to NAA as the most likely matching                         

N-acetylated compound (Figure 26C). The metabolome features pointing to NAA are the same                         

features as in ALMS1 but with lower association p-values (2.0375 ppm with p-value=1×10-7,                         

2.0325 ppm with p-value= 8×10-8 , 7.9225 ppm with p-value= 2×10-4). 

The third and fifth strongest associations in Table 6 are between HPS1 gene expression and two                               

neighboring metabolome features at 2.8725 ppm (p-value=2×10-8) and 2.8575 ppm (p-value=                     

8×10-8), respectively. Figure 26B shows the metabomatching result of the HPS1                     

pseudospectrum. Among the top three metabolites suggested by metabomatching,                 

89 



 

trimethylamine (TMA) is the most plausible metabolite driving the association pattern, as it is the                             

only metabolite with its highest intensity NMR peak at 2.86 ppm region and no missing peaks.                               

Schematic representation of the match between pseudospectra and the NMR spectra for both                         

ALMS1 and HPS1 can be seen in Figure 27. 

 

 

Figure 27: Schematic representation of the match between ALMS1 association pseudospectrum 
and NAA NMR spectrum(top plot) and the match between HPS1 association pseudospectrum 
and TMA NMR spectrum (bottom plot). Each figure shows -log10 transformed gene expression 
- metabolome features association p-values on the top and the reference NMR spectrum of the 
matching metabolite on the bottom. In the NAA - ALMS1 match, leading features allowing 
metabolite identification are at 2.03 ppm and 7.92 ppm regions which match well with the 
highest intensity peak of NAA and one of the lower intensity peaks of the NAA NMR spectrum 
respectively. In the TMA - HPS1 match, leading features allowing metabolite identification are 
2.87 and 2.86 ppm which match well with TMA singlet.  
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The reference spectrum of NAA in the Urinary Metabolome Database (UMDB) that we used for                             

metabomatching was recorded in water. In order to verify that the peaks of this spectrum are                               

comparable to those of NAA in urine, we spiked NAA into pooled urine samples from our                               

collection at a concentration of 1 and 10 mM and recorded their 1H NMR spectrum. Inspecting                               

the 5 multiplet regions of NAA, we concluded that the NAA peak positions are very similar in                                 

both solvents (see Figure 28). 

To further investigate if a better match exists among all the N-acetylated family of compounds,                             

we built a library consisting of all N-acetylated compounds proton NMR spectra available in                           

HMDB and the Biological Magnetic Resonance Data Bank (BMRB). NAA remained the best                         

metabomatching hit for the ALMS1 pseudospectrum (see Figure 29). Figure 30 illustrates the                         

relationship between ALMS1 gene expression level and the NAA metabolite concentration                     

where every point in the plot represents a study sample and each of the samples are color coded                                   

according to the genotype at rs7566315 SNP, that is an eQTL of ALMS1 and mQTL of NAA. 
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Figure 28: Combined NMR profile of 3 different NMR experiments. Blue spectrum: randomly 
selected and pooled urine samples. Red spectrum: NAA spike-in into pooled samples where the 
NAA concentration in the solution is 1 mM. Yellow spectrum: NAA spike-in into pooled 
samples where the NAA concentration in the solution is 10 mM. 
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Figure 29: CoLaus urine metabolome- ALMS1P gene expression association profile 
metabomatching figure. Leading features allowing metabolite identification are at 2.0375 ppm, 
2.0325 and 7.9225 ppm regions, respectively, which match well with the highest intensity peak of 
NAA and one of the lower intensity peaks of NAA NMR spectrum, respectively.  
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Figure 30: SNP rs7566315, showing a mQTL effect on NAA and an eQTL effect on ALMS1 gene 

expression. Each point represents a study sample. NAA concentration is approximated by the feature at 
2.0375 ppm that is log10 transformed after feature- and sample-wise z-scoring (y-axis). ALMS1 

expression is quantified as log2 transformed RPKM+1 values (x-axis). Color code represents the genotype 

of rs7566315 (legend). 

 

4.5.3 Validation of ALMS1, HPS1 and ALMS1P associations 

To the best of our knowledge, there is no other study with urine NMR spectra and expression                                 

data of LCLs derived from the same subjects that is of comparable or larger sample size,                               

precluding proper out-of-sample replication of our results. We have, however, access to                       

additional urine NMR spectra from samples collected for a subset of 301 CoLaus subjects in a                               

follow-up study conducted five years after the baseline data collection. We note that the                           

follow-up NMR data are not independent from the baseline data, yet they were obtained from                             

physically different samples collected at a significantly later time and processed in a different                           

NMR spectrometer and facility. As for the expression data, we only have those from LCLs                             

derived from blood taken at baseline, so we could only test whether the associations we                             

observed between baseline metabolomics and baseline transcriptomics measurements would                 

persist as associations between follow-up metabolomics and baseline transcriptomics data. 
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We thus asked whether our significant and marginally significant results can be confirmed also                           

using the follow up metabolomics data. We focused on the ALMS1 and ALMS1P gene                           

expression association with NAA and the HPS1 gene expression association with TMA. As                         

baseline and follow-up urine NMR data were each processed and binned individually, the                         

features did not correspond one-to-one between the studies. To test the association of these                           

three genes with relevant features, we selected all features within +/- 0.03 ppm neighborhood of                             

top features associated with these genes from baseline dataset; i.e. 2.0375 ppm for ALMS1 and                             

ALMS1P, and 2.8575 ppm for HPS1. This resulted in 12 features to test for each of the genes.                                   

We used a Bonferroni multiple testing corrected p-value threshold of 0.05/(12 features x 3                           

genes) = 1.4×10-3. 

In the follow-up, ALMS1 gene expression level significantly associated with three neighboring                       

features at 2.042 ppm (p-value=5.1×10-7), 2.037 ppm (p-value=3.7×10-6) and 2.032 ppm                     

(p-value=3.9×10-4), likely corresponding to the features at 2.0375 and 2.0325 ppm in the                         

baseline association study. HPS1 gene expression level significantly associated with 2 features at                         

2.869 ppm (p-value=2.2×10-5) and 2.859 ppm (p-value=1.3×10-3) that likely correspond to the                       

features at 2.8725 and 2.8575 ppm in the baseline dataset. ALMS1P however did not show any                               

significant association with candidate features in the follow-up study. Table 7 summarises our                         

validation results. 

 

 

Table 7: Validation of three essential associations discovered in CoLaus baseline. Association 
statistics coming from associating CoLaus follow-up urine NMR data with the expression levels 
of ALMS1, HPS1 and ALMS1P.  
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4.5.4 Comparison with mGWAS results  

We performed a mGWAS study with metabolome features in NAA and TMA NMR peak                           

regions using data from 826 individuals of the CoLaus cohort for whom the urinary NMR                             

spectra are available (similar to [161]). Figure 31A shows the locuszoom figure of SNPs in loci                               

surrounding ALMS1/NAT8 locus with significant association p-values with metabolome feature                   

at 2.0375 ppm. The SNPs most strongly associated with this metabolome feature are correlated                           

with each other and lie within a locus containing ALMS1, ALMS1-IT1, NAT8 and ALMS1P                           

genes (r2>0.8). In Figure 31B we show the p-values for association of expression values from 15                               

genes with five different metabolome features that represent all multiplet regions of NAA.                         

ALMS1 and ALMS1P have the most significant association results with 2.0375 ppm feature,                         

compared to the rest of the genes. ALMS1 and ALMS1P have the most significant association                             

results with the 2.0375 ppm feature, compared to the rest of the genes. Concordantly, ALMS1                             

and ALMS1P gene expression levels are associated more significantly to the feature at 7.9225                           

ppm, the secondary feature in our NAA identification, compared to the other genes at the locus.                               

Figure 32A shows the significant association pattern of SNPs in the loci surrounding                         

HPS1/PYROXD2 locus with metabolome feature at 2.8725 ppm and Figure 32B shows the                         

significance level for association of expression values from seven genes with the same                         

metabolome feature. Even though the SNPs with the most significant association with feature                         

2.8725 are physically located closer to PYROXD2 gene rather than HPS1 gene, the expression                           

level of PYROXD2 does not show significant association with this feature. Inspecting the list of                             

published mGWAS in humans [27], we found that the SNPs in both ALMS1 and HPS1 loci                               

have been previously reported to associate with a number of metabolic traits. The ALMS1 locus                             

has previously been associated with a number of N-acetylated compounds, while HPS1 locus has                           

been associated with various metabolites including trimethylamine and dimethylamine (see Table                     

8) [161, 169, 172]. In mGWAS studies determining the mediator genes is not a straightforward                             

procedure, as mQTL SNPs are indistinguishable from neighboring SNPs in LD, and mediator                         

genes of the mQTLs are often inferred based on their physical proximity to the SNPs or                               

functional relevance. Consequently, published mGWAS studies were not able to distinguish                     

between NAT8 and ALMS1 or HPS1 and PYROXD2 as mediator genes of NAA and TMA,                             

respectively. In contrast, in the current association study we use gene expression data allowing us                             

to pinpoint ALMS1 and HPS1 as mediator genes. 
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Table 8: List of published mGWAS results in humans concerning ALMS1/NAT8 and 
HPS1/PYROXD2 loci. MS:Mass Spectrometry, numbers in reported mGWAS results section 
refer to NMR spectral shift positions in ppm. 

 

To further evaluate the possible regulation of NAA and TMA by other genes suggested by                             

published mGWAS studies, we investigated the metabomatching plots of these genes in order to                           

see if they pointed to any N-acetylated compounds/TMA. The investigated genes either (a) were                           

the target of an eQTL SNP that is mQTL of NAA/TMA, or (b) were within 500kb of                                 

ALMS1/HPS1. However none of these candidate genes produced a pseudospectrum containing                     

even a single nominally significant signal pointing to NAA/TMA. 
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Figure 31: A) LocusZoom plot for ALMS1/NAT8 locus, where the SNPs are associated with 
metabolome feature at 2.0375 ppm, LD colored with respect to lead mQTL. B) Bar plot shows 
-log10 transformed p-values from associating expression value of 15 genes in the locus with the 
five NAA features. 
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Figure 32: A) LocusZoom plot for HPS1/PYROXD2 locus, where the SNPs are associated with 
metabolome feature at 2.8725 ppm, LD colored with respect to lead metaboliteQTL. B) Bar plot 
shows -log10 transformed p-values from associating expression values of seven genes in the locus 
with the TMA feature at 2.87 ppm. 
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4.5.5 Discussions & Conclusion 

In this study, we present a metabolome- and transcriptome-wide association study using                       

matching RNA-Seq and NMR urine profiles from 555 subjects of the CoLaus cohort. This is the                               

first time such a study is performed on untargeted urine metabolome of healthy individuals. In                             

contrast to targeted approaches that are restricted to a limited set of urine metabolites, our                             

association study uses the binned features of the entire 1H NMR spectra as metabolic traits. We                               

identified one gene (ALMS1) whose association with two adjacent NMR features around 2.03                         

ppm is highly significant, surviving even the most conservative correction for multiple                       

hypotheses testing. 16 additional genes are associated with metabolic features with marginal                       

significance of p-value below an adjusted threshold accounting for the estimated number of                         

independent variables (see Table 6). Among the top 17 genes, 12 are in loci with SNPs that have                                   

been previously reported as mQTLs. This shows the sensitivity of our study to extract likely                             

candidates of metabolically relevant genes, despite its small sample size and low power. 

We used metabomatching to search for promising metabolite candidates underlying gene                     

expression-metabolome features associations. This approach was particularly insightful for our                   

top hit ALMS1, as well as the strongest marginally significant association involving HPS1: Both                           

genes had previously been implicated by mGWAS linking their loci to compound families.                         

However, in both cases the reported mQTL also harbored other genes, leaving the exact                           

gene-metabolite association ambiguous. Figures 33 and 34 are summarising what has been                       

previously reported about the loci and the findings of this study. 

 
Figure 33: Previously reported mQTL SNPs associated with N-acetylated compounds (in grey). 
These mQTLs are also eQTLs of ALMS1 expression in GTex eQTL database (in black). In the 
current study we found ALMS1 gene expression being casual on N-Acetyl L-Aspartate (green 
dashed line). 
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Figure 34: Previously reported mQTL SNPs pointing to TMA in urine. In the current study we 
found HPS1 gene expression correlated with TMA in agreement with previous studies. 

 

Specifically, the locus associated through mGWAS with N-acetylated compounds includes both                     

ALMS1 and the NAT8 gene [161, 169, 172, 173], and the latter seemed to be the more likely                                   

candidate due to its known N-acetyltransferase activity. Yet, our association study using                       

transcriptomics data only implicates ALMS1 and not NAT8. Thus, while we cannot rule out a                             

functional role of NAT8, the mQTLs of this locus likely act, at least predominantly, as eQTLs                               

through ALMS1, pointing to its regulatory role in modulating the compound concentration.                       

This metabolic role of ALMS1 is also supported through its known role in Alström syndrome                             

characterised by metabolic deficits (PMC6327082) and kidney health disorder phenotypes [174].                     

Interestingly, in the mGWAS reported by Montoliu et al. using data from a Brazilian cohort, the                               

authors observed the association between N-acetylated compounds and the SNPs located in                       

ALMS1/NAT8 locus with stronger SNP associations in the ALMS1 gene rather than NAT8                         

[173]. They argued that the high ethnic diversity of their study population might have been                             

responsible for breaking down the linkage disequilibrium in the ALMS1/NAT8 region of the                         

genome, resulting in a stronger association for SNPs close or in the ALMS1 gene compared to                               

other studies. 

Our study also sheds more light onto the involved compound: Applying metabomatching on the                           

pseudospectrum from association of all NMR features with the ALMS1 expression level using a                           

database composed of all N-acetylated compounds NMR spectra, suggested NAA as the best                         

matching metabolite due to the presence of a secondary peak at 7.92 ppm and not missing any                                 
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high intensity peaks unlike other N-acetylated compounds (see Figure 29). Interestingly, NAA is                         

the second most abundant metabolite in the brain and involved in neural signalling by serving as                               

a source of acetate for lipid and myelin synthesis in oligodendrocytes [175]. NAA can be                             

detected in urine of both healthy and unhealthy individuals in low concentrations [176] and it has                               

a long history of being a surrogate marker of neural health and a broad measure of cognitive                                 

performance [177, 178]. Recently it has been shown that NAA correlates with time measures of                             

neuropsychological performance [179]. The signals of SNPs in ALMS1 by GWAS with                       

intellectual phenotypes such as self-reported ability in mathematics [180, 181] might therefore be                         

due to its role in modulating NAA. This conjecture of course assumes that NAA levels in                               

relevant brain tissues reflect those in urine and that the ALMS1 expression variation, and in                             

particular its genetic component, in LCLs or blood, can serve as a proxy for brain tissue. As for                                   

HPS1, our second strongest association of a gene expression level with urine NMR features, we                             

note that mGWAS previously associated its locus with TMA levels [161, 169, 172]. Yet, most of                               

these studies, including the aforementioned GWAS using a Brazilian cohort [173] considered the                         

PYROXD2 gene, which is in the same locus, as the most likely modulator of TMA                             

concentrations due to its known function as pyridine nucleotide-disulfide oxidoreductase. While                     

we cannot rule out that this gene is indeed involved in TMA metabolism, in contrast to HPS1 we                                   

have no evidence for association of PYROXD2 expression levels with TMA. Thus, our data                           

indicates that the mQTLs of this locus act predominantly as eQTLs through HPS1, pointing to                             

its regulatory role in modulating TMA. 

Our work illustrates the potential of metabolome- and transcriptome-wide association studies for                       

deciphering gene-metabolite relationships. In particular, even with our modest sample size of                       

555 matched profiles we already had enough power to detect one significant and several                           

marginally significant associations. Moreover, our two strongest associations pinpointed genes in                     

loci implicated by mGWAS as the most likely candidates for transcriptional metabolite                       

regulation. We also showed the possibility of extending correlative work and studying the causal                           

relationship between gene expression levels and metabolite concentrations. Furthermore, this                   

work demonstrated that our metabomatching tool, whose usefulness for elucidating candidate                     

metabolites from mGWAS association profiles [161, 170] as well as auto-correlation signals in                         

NMR data [164] was demonstrated previously, performs equally well on pseudospectra generated                       

by association with gene expression levels. In our two examples the compounds implicated by                           
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previous mGWAS were amongst the top metabomatching candidates and in the case of ALMS1                           

restriction of the search space to the relevant compound family clearly favored a particular                           

compound. This suggests that a future version of metabomatching could profit from                       

implementing feature weighting (since in the case of ALMS1 the lead feature clearly pointed to                             

N-acetylated compounds). 

Our study has many limitations: First, we only had access to gene expression levels of LCLs.                               

While blood and such blood-derived cells are the easiest samples one can obtain from healthy                             

subjects, their expression levels in many cases may only reflect poorly those of the relevant cells                               

and tissues. Furthermore, metabolic reactions are of course driven by enzymes whose protein                         

concentration determines the metabolic rate, and variation in gene expression levels is only one                           

source of variation in active enzyme concentration (next to post-transcriptional and                     

post-translational modifications, as well as their decay rate). Second, metabolite concentrations in                       

urine correspond to excess that is cleared from the body, which depends on food intake and                               

provide a poor proxy for many metabolite concentrations in their relevant location.                       

Nevertheless, our study shows the promise of co-analyzing two or more distinct molecular traits                           

observed in the same cohort.  

The preprint entitled, Untargeted metabolome- and transcriptome-wide association study identifies causal genes                       

modulating metabolite concentrations in urine, is submitted to bioRxiv in May 2020. The manuscript is                             

accessible in Appendix 3 and also online: https://doi.org/10.1101/2020.05.22.110197 . 

 

4.6 Automated Analysis of Large-Scale NMR Data Generates               

Metabolomic Signatures and Links Them to Candidate             

Metabolites 

In this chapter, I describe the above titled project I have been involved in. 

4.6.1 Background 

Nuclear magnetic resonance (NMR) spectroscopy is a widely used method for metabolomic                       

profiling, thanks to its accuracy and reproducibility. Single proton NMR spectroscopy (1H NMR)                         
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allows generating high throughput spectral data at low cost for different biofluids. The first step                             

in NMR analysis usually involves identification of metabolites that are giving rise to the                           

spectrum. However identification of the metabolites is usually not a straightforward procedure as                         

human biofluids typically contain a large number of metabolites and often their corresponding                         

peak positions overlap. Therefore when sample size permits expert annotation is still the most                           

accurate way to identify metabolites. Nonetheless for the large dataset this approach is not                           

scalable due to time and cost involved as well as potential compromise on reproducibility. It has                               

been shown that analyzing the co-varying features in NMR data can facilitate identification of                           

metabolites simply because the features belonging to the same metabolite are expected to be                           

significantly correlated in large datasets [182]. Once the metabolites are identified, often the next                           

task is to quantify the identified metabolites. Many publicly available tools exist to serve this                             

purpose yet they also require expert refinement. There are multiple reasons why it remains                           

challenging to achieve a fully automated metabolite quantification. First, human biofluids contain                       

large numbers of metabolites whose concentrations vary across multiple orders of magnitude.                       

This makes it difficult to gauge the contribution of the metabolites with low concentrations,                           

especially if their peaks overlap with other metabolites’ peaks. Second, the exact position of the                             

peaks depends on the biofluid, which does not necessarily match to the one used while acquiring                               

the reference spectra. Third, the peak positions are very sensitive to pH, ionic strength and the                               

protein content of the sample. And lastly, the reference databases are certainly growing but they                             

are far from being complete. 

In recent studies, colleagues demonstrated that the limitations of the tragated NMR                       

metabolomics can be addressed specifically in the context of metabolome-GWAS, where the                       

genetic determinants of metabolites are studied [161, 170]. Rueedi et al. observed that the effect                             

of a genetic variant on the concentration of a metabolite often translates into associations with                             

many features in the NMR spectrum. To identify the metabolites underlying the significant                         

associations he developed a method called metabomatching, which uses association results of NMR                         

features with a genetic variant to suggest the most likely metabolites underlying this association                           

[161, 170].  
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4.6.2 Scope of the project 

In this project we used metabomatching method to generate metabolic signatures from                       

large-scale NMR data in an unsupervised fashion. More specifically we identified metabolites                       

from untargated urine NMR data by using covarying features of the NMR data among a large                               

number of samples, instead of associating them with external variables. Covarying spectral                       

features were selected based on three different methods including the iterative signature                       

algorithm (ISA), averaged correlation profiles (ACP) and principal component analysis (PCA).                     

Summary of the workflow is shown in Figure 35. ISA is a biclustering method that is designed to                                   

find coherent subsets in the data as described in Section 2.4. Parameters of the algorithm were                               

set in a way that the discovered modules corresponded to NMR features that on average have                               

higher or lower intensities in the selected samples compared to the remaining samples. ACP on                             

the other hand is a greedy approach that we used for generating correlation profiles of feature                               

pairs ƒi and ƒj that are at least 0.1 ppm further away from each other. We started with the most                                       

highly correlated feature pair and consecutively added other pairs if they had no other feature                             

pair that is already selected in 0.1 ppm neighborhood. In the final step we calculated the averaged                                 

correlation profiles of feature pairs ƒi and ƒj : ck = (Cik + Cjk)/2. Standard PCA was implemented                                   

to compute loadings of all features onto eigenvectors of the sample-sample correlation matrix of                           

all features. 
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Figure 35: Workflow of unsupervised analysis of NMR data. 

 

4.6.3 My contribution 

My main contribution to the study was to perform association analysis of the 14 metabolites                             

discovered in the study, with gene expression profiles. First I employed a candidate gene                           

approach to study the potential links between the metabolites and the genes. I investigated                           

whether or not the 14 discovered metabolites were linked to a gene in the virtual metabolic                               

human database (VMH) and found five metabolites including oxoglutarate, creatine, ethanol,                     

lactate and citrate linked to various genes. Later I performed association analysis between these                           

genes and pseudo-quantified metabolite concentrations however results were not significant.                   
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Next I performed a transcriptome-wide association with 43,614 genes instead of focusing on a                           

set of candidate genes. In the transcriptome-wide association analysis I also investigated the                         

association results gathered for different pseudo-quantifications; pseudo-quantification of the                 

metabolites only considering the NMR spectral peaks that are captured as the signatures in the                             

ACP and ISA method, and the pseudo-quantification of the metabolites based on all the NMR                             

spectral peaks of the metabolite as reported in HMDB. Results showed no strong association                           

between any of the 14 metabolites concentrations and gene expression levels, regardless of the                           

method of pseudo-quantification. Nonetheless, I observed a suggestively significant association                   

between citrate (pseudo-quantified based on the peaks suggested by ACP) and SLC29A4P2 gene                         

which is a solute carrier pseudogene (see Figure 36). Interestingly in the first candidate gene                             

approach I found citrate being associated with two genes SLC25A1 and SLC13A5, which are                           

both solute carrier genes that code for transporter proteins that help the mobility of citrate in                               

and out of the cell. However the SLC29A4P2 gene being a pseudogene, we could not conclude                               

the functional relevance of the observed association. Despite considering different covariables in                       

the association models, the associations failed to point to any other promising metabolite-gene                         

associations. 

 

 

Figure 36: QQ-plot showing expected versus observed p-values of citrate concentration’s 
association with 43,614 genes. 
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My other contributions to this paper includes creating some of the main figures, discussing the                             

results and implications, and contribution to the manuscript. 

4.6.4 Results and conclusions 

In this study we showed that metabomatching can be used to identify metabolites based on the                               

internal structure of the large-scale NMR data. We suggest that in a large collection of NMR                               

samples there is enough power to identify metabolites based on the coherent features present                           

across the samples. 

Using ACP and ISA driven pseudospectra metabomatching identified a number of metabolites                       

that are present in human urine. Five metabolites identified by both methods included citrate,                           

ethanol, P-hydroxyphenylacetate, D-glucose and hippurate; whereas five metabolites identified                 

only by ISA were 3-aminoisobutyrate, 3-methylhistidine, creatinine, α-lactose and lactate; and                     

four metabolites identified only by ACP were taurine, creatine, oxoglutarate and                     

3-hydroxyisovalerate (see Figure 37). These compounds are all urinary metabolites that are                       

known to be present in high concentrations in urine. In contrast to ACP and ISA, PCA did not                                   

generate pseudospectra robustly matching to a metabolite. We hypothesize that this is due to                           

leading principal components possessing variation signatures that are driven by many                     

metabolites. 

By design of the ISA, it finds subsets of data where many features show coherent variation only                                 

over a subset of samples. We think this property of ISA is very suitable for integrating data from                                   

heterogeneous samples such as diseased or medicated subpopulations. Current implementation                   

of metabomatching allows simultaneous identification upto two compounds. We observed this                     

when an ISA module captured both ethanol and its specific product ethyl glucuronide,                         

demonstrating the power of identifying compounds in the same pathway. Extending                     

metabomatching beyond two compound identification is challenging due to the high number of                         

combinations, yet future work can address this issue by limiting the tested metabolites to those                             

belonging to a particular pathway. 

108 



 

  

Figure 37: Metabolites robustly matched by metabomatching to pseudospectra driven by iterative 
signature algorithm (ISA, in blue), average correlation profile (ACP, in green), or both methods 
(black). 

 

To conclude we believe this work shows the potential for large-scale automated analysis of                           

NMR, and increased sample size shall allow identification of further metabolites. The paper                         

entitled, Automated Analysis of Large-Scale NMR Data Generates Metabolomic Signatures and Links Them                         

to Candidate Metabolites, was published in the Journal of proteome research in July 2019. The                             

manuscript is accessible in Appendix 4 and also online: 

https://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.9b00295 . 
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5 Causality analysis - Integration of genotype, gene 

expression & metabolomics data 

In this chapter I further study the association between the metabolome and the gene expression                             

by exploring the causality between them. To this end I use SNPs as instrumental variables and                               

analyze the direction of the causality between gene-metabolite pairs that were significantly                       

associated in the metabolome-transcriptome association study. 

5.1 Methodology 

We performed Mendelian randomization (MR) analysis [53, 54] to assess the causal relationship                         

between gene expression and metabolite concentration. While we used SNPs as instrumental                       

variables (IVs), gene expression and metabolome features were interchangeably used as exposure                       

and outcome to determine the direction of causality. For the MR analysis, we used summary                             

statistics from mQTL/eQTL studies with higher statistical power [135, 169]. Causal effects were                         

estimated by using Wald method where the effect of a genetic variant on the outcome is divided                                 

by the effect of the same genetic variant on the exposure [58]. Next, ratio estimates from                               

different instruments (SNPs) were combined by the inverse variance weighted method (IVW) to                         

calculate the causal estimate [183].  

IVs were selected based on them being significant eQTL/mQTL in the relevant databases. To                           

detect the independent SNPs we used a stepwise pruning approach where first we selected the                             

strongest lead eQTL/mQTL and stepwise pruned the rest of the SNPs if they were correlated                             

with the lead SNP (r2 > 0.2). We repeated the pruning process with the next available SNP until                                   

there were no SNPs left to prune. We used Cochran’s Q test to determine heterogeneity among                               

the candidate instruments [55]. The SNPs were pruned in a stepwise manner from the model                             

until the model did not show any more signs of heterogeneity (Cochran’s Q statistic p-value >                               

0.05/#of original instruments). We also applied more robust MR analysis methods than IVW,                         

such as the median estimator and MR-Egger regression to evaluate the significance of the causal                             

estimates [56]. These methods are known to have more relaxed MR assumptions and they can                             
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tolerate the violation of the exclusion-restriction assumption for some instruments. For all MR                         

analysis we used the Mendelian Randomization package implemented in R [184]. 

5.2 Results & Conclusions  

We performed MR analysis using summary statistics from the eQTLGen Consortium [135] and                         

Raffler et al. [169] for eQTL and untargeted mQTL results, respectively. We investigated both                           

the causal effect of the gene expression on the metabolite concentration and vice versa for the                               

ALMS1-NAA and HPS1-TMA gene-metabolite pairs. 

In the MR analysis where we investigated the causal effect of ALMS1 gene on NAA                             

concentration, instrumental variables (IVs) were selected among the SNPs that were reported as                         

significant eQTLs (FDR<0.05) in eQTLGen and that were also measured in Raffler et al.,                           

resulting in 86 SNPs. By applying the stepwise pruning approach (see Methods) we found 14                             

independent SNPs as candidate IVs. Next, we performed Cochran’s Q test to detect                         

heterogeneity among these 14 SNPs and removed a further three of those, resulting in 11 SNPs                               

as potentially valid IVs to use in the MR analysis (see Methods). As for the outcome, we used                                   

NMR peak intensities as proxies for the concentration of NAA as there were no targeted studies                               

reporting summary statistics explicitly for NAA concentration. To this end we used the peak at                             

2.0308 ppm reported in Raffler et al., as this peak is the highest peak in the NAA spectrum and                                     

often used to estimate the concentration of N-acetylated compounds (NAC) [172,173]. NAA has                         

other NMR peaks in its spectrum, yet the observed intensities at these peaks are much lower and                                 

therefore difficult to detect robustly by NMR spectroscopy. Indeed these peaks were only weakly                           

correlated amongst themselves and with the main peak at 2.03 ppm region (Pearson correlation                           

coefficient<0.5), so they were too noisy to define a more robust estimate of the NAA                             

concentration than the main peak on its own. For these reasons we decided to perform our MR                                 

analysis using only the intensity measure at 2.03 ppm as outcome, which implies therefore that                             

we studied the causality of any NAC rather than NAA specifically. Causal effect estimates given                             

by different meta-analysis methods are reported in Table 9. All methods agreed on ALMS1                           

expression level being causal for NAC concentrations. 

For the completeness of the analysis, we also tested the causal effect of NAC on ALMS1 gene                                 

expression level. IVs were selected among the SNPs that were reported as significant mQTLs                           
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(p-value < 1×10-6) in Raffler et al. [27]. Amongst the cis-eQTLs of ALMS1 from eQTLGen,                             

most candidate IVs seemed to have direct pleiotropic effect on ALMS1 expression in cis,                           

reflected by the strong heterogeneity between their expected and observed effects. To overcome                         

this problem we sought to use also trans-eQTLs of ALMS1, however none of the candidate IVs                               

were measured in the trans-eQTL study of eQTLGen. As an alternative, we performed an                           

association study between the candidate IVs and ALMS1 gene expression level as measured in                           

CoLaus and used these eQTL results in the MR analysis. Overall, we identified 26 significant                             

mQTLs for the 2.03 ppm feature in Raffler et al. (p-value < 1×10-6) which corresponded to six                                 

independent SNPs. Two of the six candidate IVs exhibited pleiotropic effects and they were                           

removed from the analysis. Finally, we had four SNPs as potentially valid IVs to use in the MR                                   

analysis (see Methods). Causal effect estimates given by different meta-analysis methods are                       

reported in Table 9. None of the methods found NAC concentration to be causal for ALMS1                               

gene expression level. However, it should be noted that due to low sample size of trans-eQTL                               

study, this particular MR analysis was underpowered. 

 

 

Table 9: MR results for testing causal effect of ALMS1 gene expression levels on N-acetylated 
compounds (ALMS1 -> NAC) and MR results for testing causal effect of N-acetylated 
compounds on ALMS1 gene expression levels (NAC -> ALMS1) using summary statistics data. 

 

For the MR analysis of the HPS1 gene, IVs were selected among the SNPs that were reported as                                   

significant eQTLs (FDR<0.05) in eQTLGen and that were also measured in Raffler et al. [27].                             

As for the outcome, similarly to NAA, there were no studies reporting targeted summary                           

statistics for TMA concentration, therefore we used the NMR peak intensities to estimate the                           

concentration of TMA. According to HMDB, TMA has one singlet at 2.89 ppm where the peak                               

position ranges from 2.79 to 2.99 ppm. In the Raffler et al. dataset we used the intensity of                                   

feature at 2.8541 ppm as a proxy of TMA concentration. For the MR analysis we had 77                                 
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candidate SNPs six of which were selected as valid IVs as they were independent and did not                                 

exhibit heterogeneity (see Methods). Causal effects estimated by using different meta-analysis                     

methods are reported in Table 10. All of the methods agreed on HPS1 gene expression having a                                 

causal effect on TMA concentration.  

We also explored the causal effect in the other direction, testing the causal effect of TMA                               

concentration on HPS1 gene expression. There were 87 significant mQTLs in Raffler et al. [27]                             

that were also measured in eQTLGen. By applying the stepwise pruning approach and removing                           

the SNPs showing heterogeneity (see Methods) we had 18 SNPs to use as IVs in the MR                                 

analysis. Causal effects estimated by using different meta-analysis methods are reported in Table                         

10. All of the methods agreed on TMA concentration being causal on HPS1 expression. To sum                               

up, the estimated causal effect size of HPS1 on TMA ranged from 0.27 to 0.37 depending on the                                   

method, while the causal effect size of TMA on HPS1 was around -0.09, pointing to the                               

existence of a negative feedback loop.  

 

Table 10: MR results for testing causal effect of HPS1 gene expression level on TMA 
(HPS1 -> TMA) and MR results for testing causal effect of TMA on HPS1 gene expression level 
(TMA -> HPS1) using summary statistics data.   
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6 Conclusions  

6.1 Summary of findings 

The main findings of this thesis relate to gene expression data; either about the patterns we                               

observed within these data (via modular analysis) or the association of these data with other                             

molecular phenotypes and genotypes.  

For the modular analysis of CoLaus gene expression data, we used the biclustering algorithm                           

Iterative Signature Algorithm, to identify clusters of genes whose expression levels were similar over                           

a subset of samples. Reducing the expression data to modules lowers both the complexity and                             

the noise of the data. This modular analysis of gene expression provides particular insight when                             

genes belonging to a module are enriched for a certain biological function, characterized for                           

example by a gene ontology (GO) term, a phenotype in the GWAS catalog, or a disease in                                 

OMIM (Online Mendelian Inheritance in Man). As the enriched modules would potentially                       

involve genes that are poorly annotated or not annotated at all, these unannotated genes become                             

plausible candidates to further study their relevance for the enriched GO term or disease. By                             

working with data from the phenotype rich cohort CoLaus, we also had the chance to investigate                               

phenotypic enrichment of the module samples. Concordance in phenotype and gene enrichment                       

then indicates modules of particular biological relevance. However, the low sample size of our                           

gene expression data did constitute a limiting factor, so that the modular approach was unlikely                             

to provide novel results. Our focus for the modular analysis was therefore to verify the integrity                               

of the gene expression data and of the processing procedure we applied. Overall we found six                               

modules whose phenotype and gene enrichment were concordant. The phenotype and the                       

corresponding gene enrichment of the six modules are as follows: 1) Pro-BNP, a heart failure                             

marker; and amyotrophic lateral sclerosis, a multi-system neurodegenerative disorder that has                     

implications on cardiac function 2) glucose; and hemochromatosis, a disease related to high iron                           

accumulation in the body where the patients are reported to suffer from diabetes 3) LDL size;                               

and the multiple sclerosis where it has been reported that relapsing-remitting multiple sclerosis                         

patients having smaller LDL compared to healthy people 4) homocysteine, a non-classical                       
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cardiovascular risk factor; and atrial fibrillation and fibrosis 5) heart rate; and cardiovascular                         

diseases 6) Gamma GT, a liver enzyme and alcohol consumption marker; and high alcohol use. 

By integrating CoLaus gene expression data with genotypes we performed a cis-eQTL analysis.                         

Even though we considered a limited subset of protein coding genes for the analysis, had a low                                 

sample size and did not apply preprocessing steps to boost the cis-eQTL discovery, we found                             

that the cis-eQTLs of Colaus were overrepresented in other eQTL databases representing blood                         

(Blood eQTL browser) and LCL (GEUVADIS) eQTLs. Even though Blood eQTL browser is a                           

more powerful study with 5,311 samples compared to Geuvadis with 373 samples, CoLaus had a                             

larger overlap with GEUVADIS. The fact that GEUVADIS and CoLaus both use LCLs and                           

Illumina RNA-seq, is the likely reason why we observed a larger overlap with GEUVADIS                           

compared to Blood eQTL Browser which uses blood tissue and microarray technology. 

We investigated the association between CoLaus gene expression and urine metabolome data to                         

identify genes influencing the human metabolome. To the best of our knowledge, this was the                             

first time such a study was performed on the untargeted urine metabolome of healthy                           

individuals. We identified one gene, ALMS1, whose association with NMR features was highly                         

significant, surviving even the most conservative correction for multiple hypothesis testing. We                       

also identified other genes including ALMS1P and HPS1, that were associated with metabolome                         

features with marginal significance with p-values below an adjusted threshold accounting for the                         

estimated number of independent variables. We also observed that among the top genes we                           

discovered through this transcriptome-metabolome association analysis, many were in loci with                     

SNPs that have been previously reported as mQTLs. This shows the sensitivity of our study to                               

extract likely candidates of metabolically relevant genes, despite its small sample size and low                           

power. We used metabomatching to search for promising metabolite candidates underlying gene                       

expression-metabolome features associations. This approach was particularly insightful for our                   

top hit ALMS1, as well as the strongest marginally significant association involving HPS1: both                           

genes had previously been implicated by mGWAS linking their loci to compound families.                         

However, in both cases the reported locus also harbored other genes, leaving the exact                           

gene-metabolite association ambiguous. We found N-Acetylaspartate (NAA) as the potential                   

underlying metabolite whose urine concentration is correlated with ALMS1 expression. Indeed,                     

a number of metabolome- and genome-wide association studies (mGWAS) had already                     

suggested the locus of this gene to be involved in regulation of N-acetylated compounds (NAC),                             
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yet were not able to identify unambiguously the exact metabolite, nor to disambiguate between                           

ALMS1 and NAT8, another gene found in the same locus as the mediator gene. We also found                                 

HPS1 associating with trimethylamine (TMA). mGWAS had previously implicated a locus                     

containing HPS1 to be associated with TMA concentrations in urine but could not disambiguate                           

this association signal from PYROXD2, a gene in the same locus. Finally we used Mendelian                             

Randomization (MR) to study the direction of causality between the ALMS1 and HPS1 genes                           

and their respective associated metabolites. For ALMS1- NAA association, the MR results                       

suggested ALMS1 gene expression levels being causal on NAC. For the HPS1 - TMA                           

association causal estimates were significant in both directions yet the causal effect size was                           

much smaller for the effect of TMA on HPS1. In addition the causal effect sizes had opposite                                 

signs, thus showing presence of negative feedback loop between HPS1 gene expression and                         

TMA concentration. Our study provides evidence that the integration of metabolomics with                       

gene expression data can support mQTL analysis, helping to identify the most likely gene                           

involved in the modulation of the metabolite concentration. 

We also performed metabolome-genome wide association study on Colaus data and discovered                       

mQTLs. When we compared some of the results from this study to the                         

metabolome-transcriptome association study of CoLaus, we observed at times using gene                     

expression data instead of genetic variants were more effective for the metabolite identification;                         

in particular metabomatching plots had more precise matches as the association signals were less                           

noisy.  

Throughout these projects I had the opportunity to take different steps involved in scientific                           

research. I started with a broad view, an open question on how two molecular datasets of                               

matching samples relate to each other. I employed a data-driven approach by performing an                           

association study. The findings pointed to a handful of associations allowing me to construct                           

more concrete testable hypotheses to further study them in detail as in the case of causality                               

analysis between the entities. In a way we were fortunate enough to have a reasonable number of                                 

results that allowed me to do more focused analysis. If I were to have many more associations I                                   

would probably pursue different approaches such as pathway enrichment / annotation analyses                       

to study the relevance of the association results. 
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6.2 Outlook  

The results presented in this thesis are derived from a relatively small subset of a larger cohort;                                 

with 555 samples of matching gene expression and metabolome data out of 6,187 samples                           

genotyped. Having a small sample size limits the statistical power to detect variants with small                             

effect sizes. Nowadays it is not uncommon to have cohorts as large as half million participants                               

and of course the discovery capacity of those cohorts is not comparable to CoLaus. Although                             

our analysis using CoLaus data showed the premise of integrating molecular phenotypes, it                         

would certainly benefit from having a larger sample size.  

The gene expression dataset we used was gathered from lymphoblastoid cell lines. While such                           

cell lines have many advantages, including a reduction of environmental perturbations that affect                         

in-vivo tissues, these cells are not very similar to those that directly affect the urine metabolome.                               

Indeed, having access to gene expression data from more relevant tissue such as the kidney,                             

could have yielded more associations. Yet, given the design of the cohort this was not an option,                                 

since CoLaus participants were randomly selected people from the Lausanne population and                       

therefore not a viable source to give tissue samples or biopsies. If we used another cohort that                                 

kidney samples were available for the gene expression analysis then most likely they would not                             

be healthy individuals. Therefore it was always a tradeoff between having more appropriate                         

tissue to couple with urine metabolism and having the chance to study the                         

transcriptome-metabolome link in healthy individuals. Nevertheless it would be interesting to see                       

to what extent the discovered associations would persist if gene expression of a more relevant                             

tissue was used in the association analysis.  

We used untargeted urine metabolomics data of CoLaus and used metabomatching method to                         

identify the metabolites underlying the association signals. We found two metabolites in                       

particular that are strongly associated with gene expression levels, namely N-acetylaspartate and                       

trimethylamine. It would be interesting, if we were to do targeted metabolomics and quantify                           

these two metabolites specifically in order to see if we continue to observe the associations                             

between these metabolites and the genes.  

We took a data-driven approach and generated hypotheses that could potentially be further                         

tested. A good way to validate the hypothesis we generated by integrating gene expression and                             
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metabolome data, would be to set up a knockdown experiment in mice where the homologs of                               

human genes ALMS1 and HPS1, Alms1 and Hps1 respectively, are inactivated. And indeed if the                             

metabolite concentrations of N-acetylaspartate and trimethylamine were to respond to the                     

silencing of these genes. On the other hand, extrapolating results gathered from rodent                         

knockdown experiments to humans can be questionable at times. A more straightforward way to                           

evaluate the validity of the discovered gene-metabolite links would be to reach out to human                             

patients suffering from the malfunctioning of the mentioned genes. For instance it is known that                             

mutations in the ALMS1 gene can give rise to Alstrom syndrome, a rare genetic disorder                             

affecting multiple systems of the patient including hearing/vision abnormalities, obesity, heart                     

disease, diabetes, kidney and liver problems. If there were a possibility to design a study with the                                 

people affected by this syndrome and acquire their urine samples, we could analyse their urine to                               

look for abnormalities in their urine N-acetylaspartate concentrations. 

To the best of our knowledge, there were no other studies with urine NMR spectra and gene                                 

expression data of LCLs derived from the same subjects that are of comparable or larger sample                               

size to the data we analysed. As a result, we could not perform proper out-of-sample replication                               

of our results. It would be intriguing to perform such a replication study in the future when such                                   

a replication cohort becomes available. 

CoLaus being a longitudinal study, we had access to follow-ups of clinical phenotypes and urine                             

metabolomics data, whereas gene expression data was only acquired in the baseline sampling.                         

Availability of the longitudinal phenotypic and metabolomics data would allow us to perform                         

prospective studies, with the aim to identify whether any metabolic markers measured at baseline                           

have predictive power for new incidences (during the follow-up period) or for significant                         

changes of risk factors or disease incidents. The prospective design of metabolomics would also                           

be useful as the metabolic markers would have been measured years before the clinical event                             

manifested itself, as its treatment and comorbidities would have confounded the analysis. 

Even though we had the chance to investigate the association of baseline gene expression with                             

follow-up metabolomics data, it would have also been interesting to see to what extent the                             

association between metabolome and gene expression would be persisted throughout the                     

matching follow-ups of both datasets. Whether a change in expression correlates with a change                           

in the metabolome across several years or decades is a very interesting question to examine the                               
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relatedness of the two molecular entities and also their robustness to changing conditions.                         

Another curious question would be if the baseline gene expression values could predict the                           

follow-up urine metabolome or vice versa; yet given the not so high correlation of gene                             

expression values with metabolome, more powerful studies with higher sample sizes would be                         

required to investigate this.  

We performed pathway enrichment analysis for the genes we found in our modular analysis of                             

gene expression data alone. We could have also performed a pathway enrichment analysis for the                             

genes that reached to study-wise significance with their association with metabolome features,                       

even though their association profile did not point to clear metabolite matches in                         

metabomatching. It might as well be that the genes associating with metabolome features are                           

enriched for metabolism related functions. Complementary to this we could have also performed                         

metabolic pathway enrichment analysis for the candidate metabolites pointed by                   

metabomatching. However with our untargeted urine metabolome data we would be always                       

limited to a small number of metabolites which would have a limited value for pathway analysis.  

We could also quantify gene expression in transcript level and study the effect of isoforms in our                                 

association studies. Lastly, having access to epigenomics data of CoLaus participants would have                         

been of great use given its relatedness with gene expression data. 

 

 

 

 

 

 

 

 

 

119 



 

References 

1. King, R.A., J.I. Rotter, and A.G. Motulsky, The genetic basis of common diseases. Vol. 44.                             
2002: Oxford university press. 

2. Consortium, I.H.G.S., Finishing the euchromatic sequence of the human genome. Nature, 2004.                       
431(7011): p. 931. 

3. Consortium, I.H., Integrating common and rare genetic variation in diverse human populations.                       
Nature, 2010. 467(7311): p. 52. 

4. Goodwin, S., J.D. McPherson, and W.R. McCombie, Coming of age: ten years of                         
next-generation sequencing technologies. Nature Reviews Genetics, 2016. 17(6): p. 333. 

5. LaFramboise, T., Single nucleotide polymorphism arrays: a decade of biological, computational and                       
technological advances. Nucleic acids research, 2009. 37(13): p. 4181-4193. 

6. Tam, V., et al., Benefits and limitations of genome-wide association studies. Nature Reviews                         
Genetics, 2019. 20(8): p. 467-484. 

7. McCarthy, M.I. and J.N. Hirschhorn, Genome-wide association studies: potential next steps on a                         
genetic journey. Human molecular genetics, 2008. 17(R2): p. R156-R165. 

8. Buniello, A., et al., The NHGRI-EBI GWAS Catalog of published genome-wide association                       
studies, targeted arrays and summary statistics 2019. Nucleic acids research, 2018. 47(D1): p.                         
D1005-D1012. 

9. Franke, A., et al., Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease                             
susceptibility loci. Nature genetics, 2010. 42(12): p. 1118. 

10. Eeles, R.A., et al., Multiple newly identified loci associated with prostate cancer susceptibility. Nature                           
genetics, 2008. 40(3): p. 316. 

11. Turnbull, C., et al., Genome-wide association study identifies five new breast cancer susceptibility loci.                           
Nature genetics, 2010. 42(6): p. 504. 

12. Beecham, A.H., et al., Analysis of immune-related loci identifies 48 new susceptibility variants for                           
multiple sclerosis. Nature genetics, 2013. 45(11): p. 1353. 

13. Ripke, S., et al., Genome-wide association analysis identifies 13 new risk loci for schizophrenia.                           
Nature genetics, 2013. 45(10): p. 1150. 

14. Billings, L.K. and J.C. Florez, The genetics of type 2 diabetes: what have we learned from GWAS?                                 
Annals of the New York Academy of Sciences, 2010. 1212: p. 59. 

15. Wang, K., et al., A genome-wide association study on obesity and obesity-related traits. PloS one,                             
2011. 6(4): p. e18939. 

16. Wood, A.R., et al., Defining the role of common variation in the genomic and biological architecture of                                 
adult human height. Nature genetics, 2014. 46(11): p. 1173. 

17. Willer, C.J., et al., Newly identified loci that influence lipid concentrations and risk of coronary artery                               
disease. Nature genetics, 2008. 40(2): p. 161. 

18. Hardy, J. and A. Singleton, Genomewide association studies and human disease. New England                         
Journal of Medicine, 2009. 360(17): p. 1759-1768. 

19. Manolio, T.A., et al., Finding the missing heritability of complex diseases. Nature, 2009.                         
461(7265): p. 747-753. 

20. Consortium, G., The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation                     
in humans. Science, 2015. 348(6235): p. 648-660. 

21. Maurano, M.T., et al., Systematic localization of common disease-associated variation in regulatory                       
DNA. Science, 2012. 337(6099): p. 1190-1195. 

120 



 

22. Nicolae, D.L., et al., Trait-associated SNPs are more likely to be eQTLs: annotation to enhance                             
discovery from GWAS. PLoS genetics, 2010. 6(4): p. e1000888. 

23. Ward, L.D. and M. Kellis, Interpreting non-coding variation in complex disease genetics. Nature                         
biotechnology, 2012. 30(11): p. 1095. 

24. Lloyd-Jones, L.R., et al., The genetic architecture of gene expression in peripheral blood. The                           
American Journal of Human Genetics, 2017. 100(2): p. 228-237. 

25. Montgomery, S.B., et al., Transcriptome genetics using second generation sequencing in a Caucasian                         
population. Nature, 2010. 464(7289): p. 773. 

26. Wright, F.A., et al., Heritability and genomics of gene expression in peripheral blood. Nature                           
genetics, 2014. 46(5): p. 430. 

27. Kastenmüller, G., et al., Genetics of human metabolism: an update. Human molecular genetics,                         
2015. 24(R1): p. R93-R101. 

28. Bartel, J., et al., The Human Blood Metabolome-Transcriptome Interface. PLoS Genet, 2015.                       
11(6): p. e1005274. 

29. Burkhardt, R., et al., Integration of Genome-Wide SNP Data and Gene-Expression Profiles Reveals                         
Six Novel Loci and Regulatory Mechanisms for Amino Acids and Acylcarnitines in Whole Blood.                           
PLoS Genet, 2015. 11(9): p. e1005510. 

30. Inouye, M., et al., Metabonomic, transcriptomic, and genomic variation of a population cohort.                         
Molecular systems biology, 2010. 6(1). 

31. Ritchie, M.D., The success of pharmacogenomics in moving genetic association studies from bench to                           
bedside: study design and implementation of precision medicine in the post-GWAS era. Human                         
genetics, 2012. 131(10): p. 1615-1626. 

32. Rauch, A., et al., Genetic variation in IL28B is associated with chronic hepatitis C and treatment                               
failure: a genome-wide association study. Gastroenterology, 2010. 138(4): p. 1338-1345. e7. 

33. Joyner, M.J., Precision medicine, cardiovascular disease and hunting elephants. Progress in                     
cardiovascular diseases, 2016. 58(6): p. 651-660. 

34. Ashley, E.A., Towards precision medicine. Nature Reviews Genetics, 2016. 17(9): p. 507. 
35. Collins, F.S. and H. Varmus, A new initiative on precision medicine. New England journal of                             

medicine, 2015. 372(9): p. 793-795. 
36. Jameson, J.L. and D.L. Longo, Precision medicine—personalized, problematic, and promising.                   

Obstetrical & gynecological survey, 2015. 70(10): p. 612-614. 
37. Naghavi, M., et al., Global, regional, and national age-sex specific mortality for 264 causes of death,                               

1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 2017.                             
390(10100): p. 1151-1210. 

38. Kaptoge, S., et al., World Health Organization cardiovascular disease risk charts: revised prediction                         
models to estimate risk in 21 global regions. 2019. 

39. Firmann, M., et al., The CoLaus study: a population-based study to investigate the epidemiology and                             
genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC cardiovascular                     
disorders, 2008. 8(1): p. 6. 

40. Affymetrix, BRLMM: an improved genotype calling method for the genechip human mapping 500k                         
array set. 2006, Affymetrix Santa Clara, CA. 

41. Purcell, S., et al., PLINK: a tool set for whole-genome association and population-based linkage                           
analyses. The American journal of human genetics, 2007. 81(3): p. 559-575. 

42. Marchini, J., et al., A new multipoint method for genome-wide association studies by imputation of                             
genotypes. Nature genetics, 2007. 39(7): p. 906-913. 

43. Alonso, A., et al., Focus: a robust workflow for one-dimensional NMR spectral analysis. Analytical                           
chemistry, 2014. 86(2): p. 1160-1169. 

121 



 

44. Lumley, T., et al., The importance of the normality assumption in large public health data sets.                               
Annual review of public health, 2002. 23(1): p. 151-169. 

45. Benjamin, D.J., et al., Redefine statistical significance. Nature Human Behaviour, 2018. 2(1): p.                         
6. 

46. Dunn, O.J., Multiple comparisons among means. Journal of the American statistical                     
association, 1961. 56(293): p. 52-64. 

47. Hochberg, Y. and Y. Benjamini, More powerful procedures for multiple significance testing.                       
Statistics in medicine, 1990. 9(7): p. 811-818. 

48. Benjamini, Y. and Y. Hochberg, Controlling the false discovery rate: a practical and powerful                           
approach to multiple testing. Journal of the Royal statistical society: series B (Methodological),                         
1995. 57(1): p. 289-300. 

49. Storey, J.D., The positive false discovery rate: a Bayesian interpretation and the q-value. The Annals                             
of Statistics, 2003. 31(6): p. 2013-2035. 

50. Bergmann, S., J. Ihmels, and N. Barkai, Iterative signature algorithm for the analysis of large-scale                             
gene expression data. Physical review E, 2003. 67(3): p. 031902. 

51. Ihmels, J., S. Bergmann, and N. Barkai, Defining transcription modules using large-scale gene                         
expression data. Bioinformatics, 2004. 20(13): p. 1993-2003. 

52. Ihmels, J., et al., Revealing modular organization in the yeast transcriptional network. Nature                         
genetics, 2002. 31(4): p. 370-377. 

53. Burgess, S., D.S. Small, and S.G. Thompson, A review of instrumental variable estimators for                           
Mendelian randomization. Statistical methods in medical research, 2017. 26(5): p. 2333-2355. 

54. Davey Smith, G. and S. Ebrahim, ‘Mendelian randomization’: can genetic epidemiology contribute                       
to understanding environmental determinants of disease? International journal of epidemiology,                   
2003. 32(1): p. 1-22. 

55. Greco M, F.D., et al., Detecting pleiotropy in Mendelian randomisation studies with summary data                           
and a continuous outcome. Statistics in medicine, 2015. 34(21): p. 2926-2940. 

56. Staley, O.Y.J., MendelianRandomization: Mendelian Randomization Package. R package version                 
0.4.1. 2019. 

57. Baum, C.F., M.E. Schaffer, and S. Stillman, Instrumental variables and GMM: Estimation and                         
testing. The Stata Journal, 2003. 3(1): p. 1-31. 

58. Wald, A., The fitting of straight lines if both variables are subject to error. The Annals of                                 
Mathematical Statistics, 1940. 11(3): p. 284-300. 

59. Sugimoto, M., et al., Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid                         
cell lines transformed by Epstein-Barr virus. Cancer research, 2004. 64(10): p. 3361-3364. 

60. Mohyuddin, A., et al., Genetic instability in EBV-transformed lymphoblastoid cell lines.                     
Biochimica et Biophysica Acta (BBA)-General Subjects, 2004. 1670(1): p. 81-83. 

61. Amoli, M., et al., EBV Immortalization of human B lymphocytes separated from small volumes of                             
cryo-preserved whole blood. International journal of epidemiology, 2008. 37(suppl_1): p.                   
i41-i45. 

62. Neitzel, H., A routine method for the establishment of permanent growing lymphoblastoid cell lines.                           
Human genetics, 1986. 73(4): p. 320-326. 

63. Sie, L., S. Loong, and E. Tan, Utility of lymphoblastoid cell lines. Journal of neuroscience                             
research, 2009. 87(9): p. 1953-1959. 

64. Thorley-Lawson, D.A. and A. Gross, Persistence of the Epstein–Barr virus and the origins of                           
associated lymphomas. New England Journal of Medicine, 2004. 350(13): p. 1328-1337. 

65. Nickles, D., et al., In depth comparison of an individual’s DNA and its lymphoblastoid cell line using                                 
whole genome sequencing. BMC genomics, 2012. 13(1): p. 477. 

122 



 

66. Redon, R., et al., Global variation in copy number in the human genome. nature, 2006. 444(7118):                               
p. 444. 

67. Consortium, I.H., A haplotype map of the human genome. Nature, 2005. 437(7063): p. 1299. 
68. Morley, M., et al., Genetic analysis of genome-wide variation in human gene expression. Nature,                           

2004. 430(7001): p. 743. 
69. Stranger, B.E., et al., Population genomics of human gene expression. Nature genetics, 2007.                         

39(10): p. 1217. 
70. Lappalainen, T., et al., Transcriptome and genome sequencing uncovers functional variation in                       

humans. Nature, 2013. 501(7468): p. 506. 
71. Li, J.-W., et al., Transcriptome sequencing of Chinese and Caucasian population identifies                       

ethnic-associated differential transcript abundance of heterogeneous nuclear ribonucleoprotein K                 
(hnRNPK). Genomics, 2014. 103(1): p. 56-64. 

72. Martin, A.R., et al., Transcriptome sequencing from diverse human populations reveals differentiated                       
regulatory architecture. PLoS genetics, 2014. 10(8): p. e1004549. 

73. Storey, J.D., et al., Gene-expression variation within and among human populations. The American                         
Journal of Human Genetics, 2007. 80(3): p. 502-509. 

74. Stranger, B.E., et al., Relative impact of nucleotide and copy number variation on gene expression                             
phenotypes. Science, 2007. 315(5813): p. 848-853. 

75. Chen, Y., et al., Variations in DNA elucidate molecular networks that cause disease. Nature,                           
2008. 452(7186): p. 429-435. 

76. Emilsson, V., et al., Genetics of gene expression and its effect on disease. Nature, 2008. 452(7186):                               
p. 423-428. 

77. Cookson, W., et al., Mapping complex disease traits with global gene expression. Nature Reviews                           
Genetics, 2009. 10(3): p. 184-194. 

78. Hu, V.W., et al., Gene expression profiling of lymphoblastoid cell lines from monozygotic twins                           
discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC                         
genomics, 2006. 7(1): p. 118. 

79. Baron, C.A., et al., Utilization of lymphoblastoid cell lines as a system for the molecular modeling of                                 
autism. Journal of autism and developmental disorders, 2006. 36(8): p. 973-982. 

80. Kakiuchi, C., et al., Up-regulation of ADM and SEPX1 in the lymphoblastoid cells of patients in                               
monozygotic twins discordant for schizophrenia. American Journal of Medical Genetics Part B:                       
Neuropsychiatric Genetics, 2008. 147(5): p. 557-564. 

81. Joehanes, R., et al., Gene expression analysis of whole blood, peripheral blood mononuclear cells, and                             
lymphoblastoid cell lines from the Framingham Heart Study. Physiological genomics, 2012. 44(1):                       
p. 59-75. 

82. Abe, K., et al., Induction of amyloid precursor protein mRNA after heat shock in cultured human                               
lymphoblastoid cells. Neuroscience letters, 1991. 125(2): p. 169-171. 

83. Gutekunst, C.-A., et al., Identification and localization of huntingtin in brain and human                         
lymphoblastoid cell lines with anti-fusion protein antibodies. Proceedings of the National Academy                       
of Sciences, 1995. 92(19): p. 8710-8714. 

84. Kobayashi, H., et al., Haploinsufficiency at the α-synuclein gene underlies phenotypic severity in                         
familial Parkinson’s disease. Brain, 2003. 126(1): p. 32-42. 

85. Arosio, B., et al., Fibroblasts from Alzheimer's disease donors do not differ from controls in response                               
to heat shock. Neuroscience letters, 1998. 256(1): p. 25-28. 

86. Hayashi-Takagi, A., M.P. Vawter, and K. Iwamoto, Peripheral biomarkers revisited: integrative                     
profiling of peripheral samples for psychiatric research. Biological psychiatry, 2014. 75(12): p.                       
920-928. 

123 



 

87. Sanders, A.R., et al., Transcriptome study of differential expression in schizophrenia. Human                       
molecular genetics, 2013. 22(24): p. 5001-5014. 

88. Yoshimi, A., et al., Proteomic analysis of lymphoblastoid cell lines from schizophrenic patients.                         
Translational psychiatry, 2019. 9(1): p. 126. 

89. Kitchen, R.R., et al., Decoding neuroproteomics: integrating the genome, translatome and functional                       
anatomy. Nature neuroscience, 2014. 17(11): p. 1491. 

90. Dirksen, E.H., et al., Human lymphoblastoid proteome analysis reveals a role for the inhibitor of                             
acetyltransferases complex in DNA double-strand break response. Cancer research, 2006. 66(3): p.                       
1473-1480. 

91. Toda, T. and M. Sugimoto, Proteome analysis of Epstein–Barr virus-transformed B-lymphoblasts                     
and the proteome database. Journal of Chromatography B, 2003. 787(1): p. 197-206. 

92. Caron, M., et al., Proteomic map and database of lymphoblastoid proteins. Journal of                         
Chromatography B, 2002. 771(1-2): p. 197-209. 

93. Welsh, M., et al., Pharmacogenomic discovery using cell-based models. Pharmacological reviews,                     
2009. 61(4): p. 413-429. 

94. Wheeler, H.E. and M.E. Dolan, Lymphoblastoid cell lines in pharmacogenomic discovery and                       
clinical translation. Pharmacogenomics, 2012. 13(1): p. 55-70. 

95. Farrell, P.J., Epstein-Barr virus immortalizing genes. Trends in microbiology, 1995. 3(3): p.                       
105-109. 

96. Çalışkan, M., et al., The effects of EBV transformation on gene expression levels and methylation                             
profiles. Human molecular genetics, 2011. 20(8): p. 1643-1652. 

97. Bullaughey, K., et al., Expression quantitative trait loci detected in cell lines are often present in                               
primary tissues. Human molecular genetics, 2009. 18(22): p. 4296-4303. 

98. Mazzei, F., et al., 8-Oxoguanine DNA-glycosylase repair activity and expression: a comparison                       
between cryopreserved isolated lymphocytes and EBV-derived lymphoblastoid cell lines. Mutation                   
Research/Genetic Toxicology and Environmental Mutagenesis, 2011. 718(1-2): p. 62-67. 

99. Dimas, A.S., et al., Common regulatory variation impacts gene expression in a cell type–dependent                           
manner. Science, 2009. 325(5945): p. 1246-1250. 

100. Ozgyin, L., et al., Extensive epigenetic and transcriptomic variability between genetically identical                       
human B-lymphoblastoid cells with implications in pharmacogenomics research. Scientific reports,                   
2019. 9(1): p. 1-16. 

101. Grafodatskaya, D., et al., EBV transformation and cell culturing destabilizes DNA methylation in                         
human lymphoblastoid cell lines. Genomics, 2010. 95(2): p. 73-83. 

102. Nam, H.-Y., et al., Human lymphoblastoid cell lines: a goldmine for the biobankomics era.                           
Pharmacogenomics, 2011. 12(6): p. 907-917. 

103. Sutcliffe, J.G., et al., Common 82-nucleotide sequence unique to brain RNA. Proceedings of the                           
National Academy of Sciences, 1982. 79(16): p. 4942-4946. 

104. Velculescu, V.E., et al., Serial analysis of gene expression. Science, 1995. 270(5235): p.                         
484-487. 

105. Lockhart, D.J., et al., Expression monitoring by hybridization to high-density oligonucleotide arrays.                       
Nature biotechnology, 1996. 14(13): p. 1675-1680. 

106. Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA                           
microarray. Science, 1995. 270(5235): p. 467-470. 

107. Lister, R., et al., Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell,                             
2008. 133(3): p. 523-536. 

108. Emrich, S.J., et al., Gene discovery and annotation using LCM-454 transcriptome sequencing.                       
Genome research, 2007. 17(1): p. 69-73. 

124 



 

109. Metzker, M.L., Sequencing technologies—the next generation. Nature reviews genetics, 2010.                   
11(1): p. 31-46. 

110. Mortazavi, A., et al., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature                       
methods, 2008. 5(7): p. 621. 

111. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics.                         
Nature reviews genetics, 2009. 10(1): p. 57-63. 

112. Oshlack, A., M.D. Robinson, and M.D. Young, From RNA-seq reads to differential expression                         
results. Genome biology, 2010. 11(12): p. 220. 

113. Conesa, A., et al., A survey of best practices for RNA-seq data analysis. Genome biology, 2016.                               
17(1): p. 13. 

114. Hart, S.N., et al., Calculating sample size estimates for RNA sequencing data. Journal of                           
computational biology, 2013. 20(12): p. 970-978. 

115. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, edgeR: a Bioconductor package for                       
differential expression analysis of digital gene expression data. Bioinformatics, 2010. 26(1): p.                       
139-140. 

116. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for                             
RNA-seq data with DESeq2. Genome biology, 2014. 15(12): p. 550. 

117. Trapnell, C., et al., Differential analysis of gene regulation at transcript resolution with RNA-seq.                           
Nature biotechnology, 2013. 31(1): p. 46. 

118. Ritchie, M.E., et al., limma powers differential expression analyses for RNA-sequencing and                       
microarray studies. Nucleic acids research, 2015. 43(7): p. e47-e47. 

119. Klei, L., et al., GemTools: a fast and efficient approach to estimating genetic ancestry. arXiv preprint                               
arXiv:1104.1162, 2011. 

120. Leek, J.T., et al., The sva package for removing batch effects and other unwanted variation in                               
high-throughput experiments. Bioinformatics, 2012. 28(6): p. 882-883. 

121. Chen, E.Y., et al., Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool.                           
BMC bioinformatics, 2013. 14(1): p. 128. 

122. Raju, K. and S.M. Venkataramappa, Primary hemochromatosis presenting as Type 2 diabetes                       
mellitus: A case report with review of literature. International Journal of Applied and Basic                           
Medical Research, 2018. 8(1): p. 57. 

123. Jorissen, W., et al., Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile                         
with dysfunctional HDL. Scientific reports, 2017. 7: p. 43410. 

124. Kruglyak, L. and D.A. Nickerson, Variation is the spice of life. Nature genetics, 2001. 27(3):                             
p. 234-236. 

125. Johnson, G.C., et al., Haplotype tagging for the identification of common disease genes. Nature                           
genetics, 2001. 29(2): p. 233-237. 

126. Consortium, G.P., A map of human genome variation from population-scale sequencing. Nature,                       
2010. 467(7319): p. 1061. 

127. consortium, U.K., The UK10K project identifies rare variants in health and disease. Nature, 2015.                           
526(7571): p. 82-90. 

128. Nagasaki, M., et al., Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese                           
individuals. Nature communications, 2015. 6: p. 8018. 

129. Francioli, L.C., et al., Whole-genome sequence variation, population structure and demographic history                       
of the Dutch population. Nature genetics, 2014. 46(8): p. 818. 

130. Wong, L.-P., et al., Deep whole-genome sequencing of 100 southeast Asian Malays. The American                           
Journal of Human Genetics, 2013. 92(1): p. 52-66. 

131. Schaid, D.J., W. Chen, and N.B. Larson, From genome-wide associations to candidate causal                         
variants by statistical fine-mapping. Nature Reviews Genetics, 2018. 19(8): p. 491-504. 

125 



 

132. Westra, H.-J., et al., Systematic identification of trans eQTLs as putative drivers of known disease                             
associations. Nature genetics, 2013. 45(10): p. 1238-1243. 

133. Stegle, O., et al., A Bayesian framework to account for complex non-genetic factors in gene expression                               
levels greatly increases power in eQTL studies. PLoS computational biology, 2010. 6(5). 

134. Popadin, K., et al., Genetic and epigenetic regulation of human lincRNA gene expression. The                           
American Journal of Human Genetics, 2013. 93(6): p. 1015-1026. 

135. Võsa, U., et al., Unraveling the polygenic architecture of complex traits using blood eQTL                           
meta-analysis. BioRxiv, 2018: p. 447367. 

136. Djebali, S., et al., Landscape of transcription in human cells. Nature, 2012. 489(7414): p.                           
101-108. 

137. Rinn, J.L. and H.Y. Chang, Genome regulation by long noncoding RNAs. Annual review of                           
biochemistry, 2012. 81: p. 145-166. 

138. Esteller, M., Non-coding RNAs in human disease. Nature reviews genetics, 2011. 12(12): p.                         
861. 

139. Batista, P.J. and H.Y. Chang, Long noncoding RNAs: cellular address codes in development and                           
disease. Cell, 2013. 152(6): p. 1298-1307. 

140. Yan, X., et al., Comprehensive genomic characterization of long non-coding RNAs across human                         
cancers. Cancer cell, 2015. 28(4): p. 529-540. 

141. Edwards, S.L., et al., Beyond GWASs: illuminating the dark road from association to function. The                             
American Journal of Human Genetics, 2013. 93(5): p. 779-797. 

142. Gilad, Y., S.A. Rifkin, and J.K. Pritchard, Revealing the architecture of gene regulation: the promise                             
of eQTL studies. Trends in genetics, 2008. 24(8): p. 408-415. 

143. Kumar, V., et al., Human disease-associated genetic variation impacts large intergenic non-coding                       
RNA expression. PLoS genetics, 2013. 9(1). 

144. McDowell, I., et al., Many long intergenic non-coding RNAs distally regulate mRNA gene                         
expression levels. BioRxiv, 2016: p. 044719. 

145. Ponting, C.P., P.L. Oliver, and W. Reik, Evolution and functions of long noncoding RNAs. Cell,                             
2009. 136(4): p. 629-641. 

146. Mercer, T.R., M.E. Dinger, and J.S. Mattick, Long non-coding RNAs: insights into functions.                         
Nature reviews genetics, 2009. 10(3): p. 155-159. 

147. Vance, K.W. and C.P. Ponting, Transcriptional regulatory functions of nuclear long noncoding                       
RNAs. Trends in Genetics, 2014. 30(8): p. 348-355. 

148. Marques, A.C., et al., Chromatin signatures at transcriptional start sites separate two equally                         
populated yet distinct classes of intergenic long noncoding RNAs. Genome biology, 2013. 14(11): p.                           
R131. 

149. Schaub, M.A., et al., Linking disease associations with regulatory information in the human genome.                           
Genome research, 2012. 22(9): p. 1748-1759. 

150. Anders, S., P.T. Pyl, and W. Huber, HTSeq—a Python framework to work with high-throughput                           
sequencing data. Bioinformatics, 2015. 31(2): p. 166-169. 

151. Stegle, O., et al., Using probabilistic estimation of expression residuals (PEER) to obtain increased                           
power and interpretability of gene expression analyses. Nature protocols, 2012. 7(3): p. 500. 

152. Welter, D., et al., The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.                           
Nucleic acids research, 2014. 42(D1): p. D1001-D1006. 

153. Nica, A.C., et al., Candidate causal regulatory effects by integration of expression QTLs with complex                             
trait genetic associations. PLoS Genet, 2010. 6(4): p. e1000895. 

154. Boyle, E.A., Y.I. Li, and J.K. Pritchard, An expanded view of complex traits: from polygenic to                               
omnigenic. Cell, 2017. 169(7): p. 1177-1186. 

126 



 

155. Lewis, C.M. and E. Vassos, Prospects for using risk scores in polygenic medicine. Genome                           
medicine, 2017. 9(1): p. 96. 

156. Boyd, A., et al., Cohort profile: the ‘children of the 90s’—the index offspring of the Avon                               
Longitudinal Study of Parents and Children. International journal of epidemiology, 2013.                     
42(1): p. 111-127. 

157. Nica, A.C., et al., The architecture of gene regulatory variation across multiple human tissues: the                             
MuTHER study. PLoS genetics, 2011. 7(2). 

158. Deelen, P., et al., Genotype harmonizer: automatic strand alignment and format conversion for                         
genotype data integration. BMC research notes, 2014. 7(1): p. 901. 

159. Westra, H.-J., et al., MixupMapper: correcting sample mix-ups in genome-wide datasets increases                       
power to detect small genetic effects. Bioinformatics, 2011. 27(15): p. 2104-2111. 

160. Astle, W.J., et al., The allelic landscape of human blood cell trait variation and links to common                                 
complex disease. Cell, 2016. 167(5): p. 1415-1429. e19. 

161. Rueedi, R., et al., Genome-wide association study of metabolic traits reveals novel                       
gene-metabolite-disease links. PLoS genetics, 2014. 10(2): p. e1004132. 

162. Wishart, D.S., et al., HMDB 4.0: the human metabolome database for 2018. Nucleic acids                           
research, 2018. 46(D1): p. D608-D617. 

163. Ulrich, E.L., et al., BioMagResBank. Nucleic acids research, 2007. 36(suppl_1): p.                     
D402-D408. 

164. Khalili, B., et al., Automated analysis of large-scale NMR data generates metabolomic signatures and                           
links them to candidate metabolites. bioRxiv, 2019: p. 613935. 

165. Suhre, K., et al., A genome-wide association study of metabolic traits in human urine. Nature                             
Genetics, 2011. 43(6): p. 565-569. 

166. Ding, J., et al., Gene expression in skin and lymphoblastoid cells: Refined statistical method reveals                             
extensive overlap in cis-eQTL signals. The American Journal of Human Genetics, 2010. 87(6):                         
p. 779-789. 

167. Gao, X., J. Starmer, and E.R. Martin, A multiple testing correction method for genetic association                             
studies using correlated single nucleotide polymorphisms. Genetic Epidemiology: The Official                   
Publication of the International Genetic Epidemiology Society, 2008. 32(4): p. 361-369. 

168. MATLAB, 8.5.0.197613 (R2015a). 2015, The MathWorks Inc.: Natick, Massachusetts. 
169. Raffler, J., et al., Genome-wide association study with targeted and non-targeted NMR metabolomics                         

identifies 15 novel loci of urinary human metabolic individuality. PLoS genetics, 2015. 11(9): p.                           
e1005487. 

170. Rueedi, R., et al., Metabomatching: Using genetic association to identify metabolites in proton NMR                           
spectroscopy. PLoS computational biology, 2017. 13(12): p. e1005839. 

171. Engelke, U.F., et al., N-acetylated metabolites in urine: proton nuclear magnetic resonance                       
spectroscopic study on patients with inborn errors of metabolism. Clinical chemistry, 2004. 50(1): p.                           
58-66. 

172. Nicholson, G., et al., A genome-wide metabolic QTL analysis in Europeans implicates two loci                           
shaped by recent positive selection. PLoS genetics, 2011. 7(9): p. e1002270. 

173. Montoliu, I., et al., Current status on genome–metabolome-wide associations: an opportunity in                       
nutrition research. Genes & nutrition, 2013. 8(1): p. 19. 

174. Chambers, J.C., et al., Genetic loci influencing kidney function and chronic kidney disease. Nature                           
genetics, 2010. 42(5): p. 373-375. 

175. Simmons, M., C. Frondoza, and J. Coyle, Immunocytochemical localization of N-acetyl-aspartate                     
with monoclonal antibodies. Neuroscience, 1991. 45(1): p. 37-45. 

176. Masaharu, M., et al., N-acetyl-l-aspartic acid, N-acetyl-α-l-aspartyl-l-glutamic acid and                 
β-citryl-l-glutamic acid in human urine. Clinica Chimica Acta, 1982. 120(1): p. 119-126. 

127 



 

177. Barker, P.B., N-acetyl aspartate—a neuronal marker? Annals of neurology, 2001. 49(4): p.                       
423-424. 

178. Jung, R.E., et al., Biochemical markers of intelligence: a proton MR spectroscopy study of normal                             
human brain. Proceedings of the Royal Society of London. Series B: Biological Sciences,                         
1999. 266(1426): p. 1375-1379. 

179. Patel, T. and J.B. Talcott, Moderate relationships between NAA and cognitive ability in healthy                           
adults: implications for cognitive spectroscopy. Frontiers in human neuroscience, 2014. 8: p. 39. 

180. Davies, G., et al., Study of 300,486 individuals identifies 148 independent genetic loci influencing                           
general cognitive function. Nature communications, 2018. 9(1): p. 1-16. 

181. Lee, J.J., et al., Gene discovery and polygenic prediction from a genome-wide association study of                             
educational attainment in 1.1 million individuals. Nature genetics, 2018. 50(8): p. 1112-1121. 

182. Cloarec, O., et al., Statistical total correlation spectroscopy: an exploratory approach for latent                         
biomarker identification from metabolic 1H NMR data sets. Analytical chemistry, 2005. 77(5): p.                         
1282-1289. 

183. Hartung, J., G. Knapp, and B.K. Sinha, Statistical meta-analysis with applications. Vol. 738.                         
2011: John Wiley & Sons. 

184. Staley, O.Y.J., MendelianRandomization: Mendelian Randomization Package. 2019,             
<james.staley@bristol.ac.uk>. 

185.  Shin, S.-Y., et al., An atlas of genetic influences on human blood metabolites. Nature genetics,                             
2014. 46(6): p. 543. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

128 

mailto:james.staley@bristol.ac.uk


 

Appendices  

Appendix 1: cis-Acting Complex-Trait-Associated lincRNA Expression Correlates with               

Modulation of Chromosomal Architecture  

Appendix 2: Unraveling the polygenic architecture of complex traits using blood eQTL                       

meta-analysis   

Appendix 3: Untargeted metabolome- and transcriptome-wide association study identifies                 

causal genes modulating metabolite concentrations in urine  

Appendix 4: Automated Analysis of Large-Scale NMR Data Generates Metabolomic Signatures                     

and Links Them to Candidate Metabolites  

129 



Resource

cis-Acting Complex-Trait-Associated lincRNA
Expression Correlates with Modulation of
Chromosomal Architecture

Graphical Abstract

Highlights

d We identify 69 lincRNAs associated with human complex

traits (TR-lincRNAs)

d TR-lincRNAs are conserved in humans and interact with other

disease-relevant loci

d TR-lincRNAs often associate with cis-regulation of proximal

protein-coding gene expression

d TR-lincRNAs are enriched at TAD boundaries and may

modulate chromatin architecture

Authors

Jennifer Yihong Tan,

Adam Alexander Thil Smith,

Maria Ferreira da Silva, ..., Zoltán Kutalik,

Sven Bergmann, Ana Claudia Marques

Correspondence
jennifer.tan@unil.ch (J.Y.T.),
anaclaudia.marques@unil.ch (A.C.M.)

In Brief

Tan et al. identify and characterize 69

human complex trait/disease-associated

lincRNAs in LCLs. They show that these

loci are often associated with cis-

regulation of gene expression and tend to

be localized at TAD boundaries,

suggesting that these lincRNAs may

influence chromosomal architecture.

Tan et al., 2017, Cell Reports 18, 2280–2288
February 28, 2017 ª 2017 The Author(s).
http://dx.doi.org/10.1016/j.celrep.2017.02.009

mailto:jennifer.tan@unil.ch
mailto:anaclaudia.marques@unil.ch
http://dx.doi.org/10.1016/j.celrep.2017.02.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.02.009&domain=pdf


Cell Reports

Resource

cis-Acting Complex-Trait-Associated
lincRNA Expression Correlates
with Modulation of Chromosomal Architecture
Jennifer Yihong Tan,1,2,* Adam Alexander Thil Smith,1,2 Maria Ferreira da Silva,1,2 Cyril Matthey-Doret,1,2 Rico Rueedi,2,3

Reyhan Sönmez,2,3 David Ding,4 Zoltán Kutalik,3,5 Sven Bergmann,2,3 and Ana Claudia Marques1,2,6,*
1Department of Physiology, University of Lausanne, 1015 Lausanne, Switzerland
2Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
3Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
4Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
5Institute of Social and Preventive Medicine, University Hospital Lausanne (CHUV), 1011 Lausanne, Switzerland
6Lead Contact

*Correspondence: jennifer.tan@unil.ch (J.Y.T.), anaclaudia.marques@unil.ch (A.C.M.)
http://dx.doi.org/10.1016/j.celrep.2017.02.009

SUMMARY

Intergenic long noncoding RNAs (lincRNAs) are the
largest class of transcripts in the human genome.
Althoughmany have recently been linked to complex
human traits, the underlying mechanisms for most
of these transcripts remain undetermined. We inves-
tigated the regulatory roles of a high-confidence
and reproducible set of 69 trait-relevant lincRNAs
(TR-lincRNAs) in human lymphoblastoid cells whose
biological relevance is supported by their evolu-
tionary conservation during recent human history
and genetic interactions with other trait-associated
loci. Their enrichment in enhancer-like chromatin
signatures, interactions with nearby trait-relevant
protein-coding loci, and preferential location at
topologically associated domain (TAD) boundaries
provide evidence that TR-lincRNAs likely regulate
proximal trait-relevant gene expression in cis by
modulating local chromosomal architecture. This is
consistent with the positive and significant correla-
tion found between TR-lincRNA abundance and
intra-TADDNA-DNA contacts. Our results provide in-
sights into the molecular mode of action by which
TR-lincRNAs contribute to complex human traits.

INTRODUCTION

An increasing number of reports suggest that long intergenic

noncoding RNAs (lincRNAs), which were previously regarded

as ‘‘junk RNA’’ (H€uttenhofer et al., 2005), can contribute to

normal and disease phenotypes in humans (Esteller, 2011). For

example, candidate screens followed by detailed functional

characterization of a few individual trait-associated lincRNAs

illustrate how genetic variants affecting the lincRNA sequence

can underlie human complex traits (Ishii et al., 2006; Zheng

et al., 2016). Recently, RNA capture followed by sequencing in

multiple disease-associated protein-coding gene deserts led to

the identification of lowly and tissue-specifically expressed

lincRNA loci (Mercer et al., 2014). Detailed experimental analysis

of these lincRNA candidates is now required to establishwhether

and how these loci contribute to disease.

Although thousands of common genetic variants have been

associated with complex human traits through genome-wide as-

sociation studies (GWASs), only a small proportion fall within

exonic coding sequences (Hindorff et al., 2009; Maurano et al.,

2012). Instead, most GWAS variants map within noncoding reg-

ulatory regions that are enriched inpopulation and tissue-specific

expression quantitative trait loci (eQTLs) (Edwards et al., 2013).

eQTL analysis has previously led to the identification of protein-

coding genesandpathways that are disrupted in humancomplex

traits (for example, Emilsson et al., 2008; Fairfax et al., 2012;Gilad

et al., 2008). Recently, lincRNAswhose expression correlate with

GWAS variants were also identified using this approach (Kumar

et al., 2013; Lappalainen et al., 2013; McDowell et al., 2016; Po-

padin et al., 2013), suggesting that the transcription or the tran-

scripts arising from lincRNA loci in eQTLs with GWAS variants

may similarly contribute to phenotypes. Although a handful of

studies have investigated the relationship between individual

lincRNAs with risk-variant-associated expression and their

linked traits (for example, Ishii et al., 2006; Jendrzejewski et al.,

2012), the underlying mechanism of action for most remains

undetermined.

So far, functionally characterized lincRNAs have been impli-

cated in both transcriptional and post-transcriptional regulation

of local or distal genes (Vance and Ponting, 2014). We have

previously shown that chromatin signatures at lincRNA tran-

scriptional start sites allow the distinction between these

two regulatory classes (Marques et al., 2013). Specifically, the

expression of lincRNAs arising from regulatory elements that

carry enhancer-like chromatin signatures correlates with neigh-

boring protein-coding gene abundance, suggesting that tran-

scription at these loci contributes to local regulation of expres-

sion (Marques et al., 2013). Interestingly, eQTL GWAS variants

are enriched within enhancer regions (Ernst et al., 2011; Schaub
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et al., 2012), suggesting a link between enhancer-associated

lincRNAs and complex human traits.

Here, we used functional, evolutionary, and population geno-

mics to extensively characterize the regulatory interactions

between a high-confidence set of trait-associated lincRNAs
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Figure 1. Identification of GWAS cis-eQTLs for

lincRNAs and Protein-Coding Genes

(A) Manhattan plot showing absolute Pearson’s corre-

lation coefficient (r) calculated for all possible GWAS

cis-eQTL associations with LCL-expressed lincRNAs

(TR-lincRNAs) and protein-coding genes (TR-pcgenes)

across human autosomes. Significance cutoff is rep-

resented by a horizontal dashed line (absolute r of

0.145). Significant TR-lincRNA cis-eQTLs are high-

lighted in red.

(B) The GWAS human complex traits that are signifi-

cantly enriched (fold-enrichment, p < 0.05, hypergeo-

metric test) within genome-wide significant cis-eQTLs

(TR-lincRNAs + TR-pcgenes), relative to all possible

GWAS cis-eQTL associations. Traits are grouped into

immune/inflammatory responses (red), blood-related

traits (orange), and others (gray).

See also Figure S1 and Tables S1 and S2.

and protein-coding genes identified through

GWAS cis-eQTL analysis. Our results demon-

strate thatmost human complex-trait-associ-

ated lincRNAs arise from enhancer-like re-

gions and are frequently located at the

boundaries of topologically associated do-

mains (TADs), which have been previously

shown to contribute to chromosomal archi-

tecture and gene transcription regulation

(Rao et al., 2014). Together, these findings

support that the transcription of trait-relevant

lincRNAs contributes to chromosomal archi-

tecture and thereby the regulation of nearby

trait-associated protein-coding gene expres-

sion levels.

RESULTS

Identification of Trait-Relevant
lincRNAs and Protein-Coding Genes
We considered all lymphoblastoid cell line

(LCL)-expressed de novo (Experimental

Procedures) and GENCODE-annotated loci

with at least one genome-wide significant

(p < 5 3 10�8) GWAS SNP (7,451 GWAS

SNPs) (Welter et al., 2014) in their vicinity

(Experimental Procedures). We calculated

the Pearson’s correlation between the

expression of these coding and noncoding

loci and the corresponding genotype of their

neighboring GWAS SNPs in a panel of 373

LCLs derived from individuals of European

descent (Lappalainen et al., 2013). This led

to the identification of 111 and 1,479 GWAS

cis-eQTLs significantly correlated (false discovery rate [FDR] <

5%; Experimental Procedures) with the expression levels of 73

lincRNAsand756protein-coding genes, respectively (Figure 1A).

We asked whether differences in length and expression level

(Figure S1) between lincRNAs and mRNAs would account for
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the relatively lower number of eQTL-lincRNAs. After restricting

our analysis to length- and expression-matched mRNAs, we

found that the proportion of eQTL-lincRNAs (2.9%) is statis-

tically indistinguishable from that of eQTL-mRNAs (3.2% of

size- and expression level-matchedmRNAs; p = 0.68, two-tailed

c2 test), suggesting that lincRNA properties indeed limit the

power to identify lincRNA-eQTLs. Despite the restricted power

in lincRNA cis-eQTL detection, most of the identified GWAS

lincRNA cis-eQTLs (68%; Table S1) could be replicated using

data from an independent set of LCLs, derived from 555 individ-

uals of European descent from the Lausanne population (Co-

horte Lausannoise [CoLaus]; Firmann et al., 2008). The propor-

tion of replicated lincRNA associations is similar to what was

found for mRNA cis-eQTLs (71%, p = 0.69, two-tailed Fisher’s

exact test), corroborating the robustness of our cis-eQTL

findings.

Evidence that theseGWAS cis-eQTLs are enriched in immune/

inflammatory responseandblood-related traits, includingmetab-

olite levels (Figure 1B), suggests that despite known limitations

(Choyetal., 2008), lymphoblastoid cells aresuitable to investigate

the contributions of lincRNA loci to human complex traits.

Genetic variants do not segregate randomly in the human pop-

ulation and SNPs found within the same linkage disequilibrium

(LD) block are likely to correlate, to some extent, with the expres-

sion levels of all gene loci within the same LD block, leading

to false-positive cis-eQTL associations between GWAS SNPs

and gene expression (Stranger et al., 2007). To address this

issue, we used regulatory trait concordance (RTC), an empirical

method that accounts for local LD structure (Nica et al., 2010).

We estimated the rank of the identified GWAS cis-eQTL among

all nearby common SNPs based on decreasing absolute correla-

tion with gene expression, thus assessing the likelihood that the

identified cis-eQTL is most likely driven by the complex-trait-

associated genetic variant and not due to local LD with another

SNP. This approach does not exclude, however, that the expres-

sion of the coding or noncoding loci could be under the influence

of an unknown variant in linkage with the GWAS cis-eQTL. After

applying a previously tested RTC threshold (0.9) to identify high-

confidence eQTL associations (Nica et al., 2010), we obtained 69

lincRNAs that are likely true trait-relevant gene candidates (trait-

relevant lincRNAs [TR-lincRNAs]), as well as 723 protein-coding

genes (TR-pcgenes; Table S1). Importantly, 73% of the GWAS

cis-eQTLs associated with TR-lincRNAs and TR-pcgenes were

validated in CoLaus, a significant 11% increase in replication

rate from all identified cis-eQTLs (p < 0.05, two-tailed Fisher’s

exact test), reinforcing the reliability of this set.

TR-lincRNAs are likely involved in pathways relevant to their

associated traits. Specifically, we asked whether the expression

levels of trait-relevant loci are correlated with those of other

genes associated with the same trait, as would be expected if

they contribute to the same phenotype. For each trait-relevant

loci, we used the pathway scoring algorithm ‘‘Pascal’’ (Lampar-

ter et al., 2016) to identify all loci located within LD blocks con-

taining other significant GWAS (p < 5 3 10�8) variants for that

trait, and we tested for their co-expression with the cis-eQTL

loci candidates, a surrogate for genetic interaction. We found

that 83% of TR-lincRNAs (57/69) are significantly co-expressed

(p < 0.05, permutation test; Experimental Procedures) with

genes associated with the same trait, a proportion similar to

that found for TR-pcgenes (89% [642/723], p = 0.17, two-tailed

Fisher’s exact test; Table S2).

Trait-Relevant lincRNAs Are Conserved in Humans
The biological relevance of lincRNA transcription is generally

unclear, and there is ongoing debate as to whether it is the

transcript or the act of transcription that underlies the function

of most noncoding loci (Wilusz et al., 2009). Evolutionary ana-

lyses can provide initial insights into this question, as selective

constraint at exons would not be required if it is the act of tran-

scription and not the transcript sequence that underlies function.

We investigated the evolution of TR-lincRNAs’ exons in hu-

mans and found that they exhibit a significantly higher proportion

of low-frequency alleles (derived allele frequency [DAF] < 0.1)

compared to local neutrally evolving sequences (ancestral re-

peats [ARs]), TR-lincRNA intronic regions, and other LCL-ex-

pressed lincRNA exons (p < 0.05, two-tailed Fisher’s exact

test; Figure 2A). The proportion of SNPs with DAF < 0.1 found

within TR-lincRNA and protein-coding gene exons is statistically

indistinguishable (p = 0.56, two-tailed Fisher’s exact test;

Figure 2A). This is in contrast to exons of all LCL-expressed

lincRNAs, which have a similar proportion of low derived allele

frequency polymorphic sites as local ARs (p = 0.15, two-tailed

Fisher’s exact test; Figure S2A), consistent with previous

analyses (Haerty and Ponting, 2013). No statistically significant

difference in derived allele frequency was observed between in-

trons and exons of all LCL-expressed lincRNAs (p = 0.89, two-

tailed Fisher’s exact test; Figure S2A). Our results indicate that

purifying selection has acted to remove deleterious mutations

within TR-lincRNA exons during recent human evolution, which

reinforces the functional relevance of these noncoding tran-

scripts in humans. Surprisingly, analysis of putative promoters

of TR-lincRNAs suggests that these regions evolved neutrally

or nearly neutrally (Figure S2B). The difference in evolutionary

constraint between the promoter and exon sequences can likely

be explained by inaccurate prediction of proximal promoter re-

gions, which would result in reduced power to infer their

constraint. Despite limitations, our analysis of exonic sequence

evolution supports that TR-lincRNA transcripts were preserved

during recent human evolution.

Unexpectedly, the higher selective constraint observed for TR-

lincRNAs relative to other LCL-expressed lincRNAs appears to be

an evolutionary signature specific to recent human evolution, as

we foundnosignificantdifferences in their sequenceconservation

during either mammalian or primate evolution, estimated using

phastCons scores, a measure of nucleotide conservation (Siepel

et al., 2005) (Figures 2B and S3). Specifically, relative to other

LCL-expressed lincRNAs, TR-lincRNA exons, introns, and pro-

moters exhibit statistically indistinguishable median phastCons

scores (Figure S3). This observation could be the result of rapidly

evolving repetitive elements within TR-lincRNAs (Kapusta et al.,

2013; Kelley and Rinn, 2012). Indeed, we found that TR-lincRNA

exons and promoters are enriched in long terminal repeat (LTR)-

derived transposable elements relative to other LCL-expressed

lincRNAs (3.8- to 7.9-fold enrichment, p < 0.05). In particular,

TR-lincRNAs exons andpromoters are enriched in human endog-

enous retrovirus K (ERVK) LTRs (1.6- to 2.2-fold enrichment,

2282 Cell Reports 18, 2280–2288, February 28, 2017



p < 0.05; Table S3; Experimental Procedures), whose transcrip-

tion was previously shown to be elevated upon immune system

stimulation (Manghera and Douville, 2013).

Trait-Relevant lincRNA Transcription Is Associated with
cis Regulation
lincRNAs can regulate the expression levels of local and distal

targets (Vance and Ponting, 2014). To gain insights into the mo-

lecular mode of action of TR-lincRNAs, we examined their rela-

tionship with TR-pcgenes. For each protein-coding gene, we

defined its territory as the genomic region containing all nucleo-

tides that are closer to the gene than they are to itsmost proximal

up- and downstream protein-coding genes. We found that TR-

lincRNAs are significantly more likely than expected to reside

within TR-protein-coding gene territories (fold enrichment =

2.4, p < 1 3 10�3; Experimental Procedures).

Next, we estimated the median co-expression (Pearson’s cor-

relation) in LCLs between pairs of TR-lincRNAs and protein-cod-

ing genes in their vicinity (within <20 kb, 20–100 kb, 100–500 kb,

and >500 kb of each other). Consistent with their proposed regu-

latory interactions,we foundTR-lincRNAs tobesignificantlymore

highly correlated in expression with nearby protein-coding genes
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Figure 2. TR-lincRNAs Evolved under Pur-

ifying Selection during Recent Human His-

tory

(A) Distribution of derived allele frequency (DAF)

for variants within exons (red) and introns (yellow)

of TR-lincRNA, LCL-expressed lincRNA exons

(gray), protein-coding gene exons (green), and

ancestral repeats (ARs; black). Low-frequency

polymorphic sites (DAF < 0.1) for all classes of

genes are depicted in the insert. Asterisks indicate

levels of significance in the comparison (*p < 0.05;

NS, not significant [p > 0.05]; two-tailed Fisher’s

exact test).

(B) Distribution of sequence conservation, as esti-

mated using phastCons scores across placental

mammals (y axis), within the exonic sequence of

TR-lincRNAs (red), other LCL-expressed lincRNAs

(light gray), protein-coding genes (green), and

ancestral repeats (dark gray). Differences between

groups were tested using a two-tailed Mann-

Whitney U test, and p values are indicated.

See also Figures S2 and S3 and Table S3.

than other LCL-expressed lincRNAs (Fig-

ure 3A). Furthermore, TR-lincRNAs are

over 2.5 times more likely to share an

eQTL with at least one nearby protein-

coding gene (43/69 [62.3%]) compared

to other LCL-expressed lincRNAs (592/

2441 [24.3%]), a significantly higher pro-

portion (p < 1 3 10�3, two-tailed Fisher’s

exact test; Experimental Procedures),

suggesting that TR-lincRNAs are more

likely than other transcripts to affect the

expression of nearby loci.

To dissect the regulatory interaction

between TR-lincRNAs and their nearby

co-expressed TR-pcgenes, we focused on the 30 trait-relevant

lincRNAs with nearby TR-pcgenes that share the same GWAS

cis-eQTL (Table S4; Experimental Procedures), hereafter

referred to as cisTR-lincRNAs. We tested, using hierarchical

linear regression, whether adding the expression levels of the

cisTR-lincRNA strengthens the cis-eQTL association of its

linked TR-pcgene (Experimental Procedures). 87% (26/30) of

cisTR-lincRNAs significantly improves the association between

the expression levels of the nearby TR-pcgenes and their trait-

associated variants (Table S5). Furthermore, cisTR-lincRNA

associations with GWAS cis-eQTLs relative to common SNPs

in the region (median RTC = 0.97) are significantly higher

than those for TR-pcgene associations (median RTC = 0.95,

p < 0.05, two-tailed Mann-Whitney paired U-test; Table S6).

To assess how changes in cisTR-lincRNA or TR-pcgene

copies impact the expression levels of their nearby associated

loci, we identified copy-number variants (CNVs; 1000 Genomes

Project Consortium et al., 2012) that uniquely encompass either

cisTR-lincRNAs or TR-pcgenes (Table S7). CNVs that overlap

the shared GWAS cis-eQTL or those that contain both the linked

cisTR-lincRNA and TR-pcgene were excluded. We estimated

the absolute fold difference in cisTR-lincRNA or TR-pcgene
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expression between individuals with or without CNVs and found

that variations in cisTR-lincRNA copy number are associated

with significant changes in the levels of TR-pcgenes (p < 0.05,

two-tailed Mann-Whitney U test; Figure 3B). In contrast, no sig-

nificant difference in the levels of cisTR-lincRNAs was observed

when CNVs encompassed TR-pcgenes (p = 0.14, two-tailed

Mann-Whitney U test; Figure 3C). Together, these observations

provide preliminary evidence that cisTR-lincRNAs contribute to

the regulation of the levels of TR-pcgenes in their vicinities.

Trait-Relevant lincRNAs Are Associated with Local
Chromosomal Architecture
TADs are genomic regions where DNA-DNA interactions are

frequent (Dixon et al., 2012). These genomic structures

have been proposed to modulate gene transcription through

increased accessibility to shared local regulatory elements

(Nora et al., 2013). This hypothesis is supported by evidence of

frequent co-expression between genes within the same TAD

(Le Dily et al., 2014; Neems et al., 2016).We investigatedwhether

frequent localization within the same TAD would explain the co-

expression between pairs of trait-relevant coding and noncoding
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Figure 3. TR-lincRNAs Are Enriched at TAD

Boundaries and Regulate Proximal TR-

pcgenes in cis, Likely by Modulating Chro-

matin Architecture

(A) Distribution of median absolute correlation

coefficient between expression levels in LCLs

of TR-lincRNAs (red) or other LCL-expressed

lincRNAs (gray) and nearby protein-coding genes.

Pairs are split into bins based on their genomic

distance (<20 kb, 20–100 kb, 100–500 kb, and

500 kb to 2 Mb).

(B and C) Absolute fold difference in expression

levels across individuals that carry copy-number

variants (CNVs) (1000 Genomes Project Con-

sortium et al., 2012) that encompass (B) cisTR-

lincRNAs (red) or (C) TR-pcgenes (green) and that

of the nearby trait-relevant protein-coding genes

or lincRNAs, respectively, relative to the expres-

sion of the loci in individuals without CNVs (gray).

Differences between groups were tested using a

two-tailed Mann-Whitney U test, and p values are

indicated.

See also Tables S3, S4, S5, S6, and S7.

loci. First, we found that cisTR-lincRNAs

are enriched within LCL TADs that also

contain TR-pcgenes (fold enrichment =

3.2, p < 1 3 10�3; Experimental Proced-

ures). Interestingly, when we analyzed

the location of cisTR-lincRNAs within

sub-compartments of TADs, we found

them to be significantly enriched at the

boundaries and depleted at the center of

these genomic units (Figure 4A). Such

enrichment at TAD boundaries is specific

to cisTR-lincRNAs, as no preferential

location was found when we analyzed

the distribution of other LCL-expressed

lincRNAs. To assess the relevance of cisTR-lincRNAs to local

chromosomal architecture, we investigated the correlation be-

tween their expression levels and intra-TAD DNA-DNA contact

density (Experimental Procedures). We found that the density

of chromosomal contacts is significantly higher for TADs contain-

ing cisTR-lincRNAs (9.1 times, p < 5 3 10-3, two-tailed Mann-

Whitney U test; Figure 4B) relative to those containing other

LCL-expressed lincRNAs. Interestingly, this difference appears

to be specific to LCLs, supporting cell-type-specific functions

of cisTR-lincRNAs (p > 0.05, two-tailed Mann-Whitney U test;

Figure S4A). Strikingly, we found a significant positive correlation

between the levels of cisTR-lincRNAs and DNA-DNA contacts

within their associated TADs relative to other LCL-expressed

lincRNAs (r = 0.163, Spearman’s correlation, p < 0.05; Figure 4C).

Importantly, this association is also cell-type-specific and

restricted to TR-lincRNAs (Figures S4B–S4D), strongly support-

ing the role of these loci in the modulation of chromosomal

architecture.

Previous studies have demonstrated that active enhancer-

like regulatory elements are enriched at the boundaries of

TADs (Huang et al., 2015). Interestingly, transcription at these

2284 Cell Reports 18, 2280–2288, February 28, 2017



enhancers is widespread in humans (Andersson et al., 2014), and

a large fraction of lincRNA transcription has been previously

shown to originate at enhancers (Marques et al., 2013). We

investigated whether TR-lincRNAs were enhancer associated.

We found that relative to other LCL-expressed lincRNAs, the

promoters of cisTR-lincRNAs are enriched in mono- versus tri-

methylation of histone H3K4, a well-established signature of

enhancer elements (p < 0.05, two-tailed Mann-Whitney U test;

Figures 5, S5A, and S5B), indicating their likely enhancer origin.

Interestingly, we found that the syntenic regions in mouse of our

cisTR-lincRNA putative promoters are also significantly enriched

in enhancer-associated chromatin marks (murine LCLs [CH12

cells]; Mouse ENCODE Consortium et al., 2012) relative to other

LCL-expressed lincRNAs (p < 0.05, two-tailed Mann-Whitney

U test; Figure S5C), suggesting their associated enhancer

activity is conserved between species at some of these loci.

These cisTR-lincRNAs are also more enriched in the nucleus

versus the cytoplasm relative to other LCL-expressed lincRNAs

(p < 0.05, two-tailed Mann-Whitney U test; Figure S5D), which is

as expected and consistent with their role in transcriptional

regulation.

The cohesin protein complex, known to be enriched at active

enhancer elements and TAD boundaries, has been previously

shown to be important for intra-TAD gene regulation in a cell-

type-specific manner (Merkenschlager and Odom, 2013). For

example, cohesin depletion is associated with disrupted pro-

moter-enhancer interactions within TADs (Kagey et al., 2010;

Seitan et al., 2011). Another central player in the regulation of

chromatin architecture and gene expression is the CTCF tran-

scription factor (reviewed in Merkenschlager and Odom, 2013).

Unlike cohesin, which is involved in cell-specific intra-TAD inter-

actions, CTCF is important for the spatial segregation of topolog-

ical domains (Zuin et al., 2014) with binding sites that are

often conserved and shared across different species and cell

types (Kim et al., 2007). We observed that cohesin binding sites

are significantly enriched at cisTR-lincRNAs loci (fold enrich-

ment = 1.43, p < 0.05). In contrast, CTCF binding sites are

depleted at these noncoding RNA loci (fold depletion = �0.86,

p < 0.05; Experimental Procedures) relative to intergenic regions

of the human genome. These observations suggest that rather

than acting to establish TAD architecture, TR-lincRNAs are

more likely to be involved in cell-type-specific regulation of

enhancer-promoter interactions within TADs.

Taken together, (1) the positive co-expression of a large

proportion of trait-relevant lincRNAs with their proximal TR-

pcgenes, (2) the contribution to their nearby TR-pcgene GWAS

cis-eQTL, (3) enrichment at TAD boundaries and cohesin binding

sites, and (4) enrichment in enhancer-like RNA properties are all

compatible with enhancer origins and local regulatory roles of

TR-lincRNAs.

DISCUSSION

Since the discovery of pervasive lincRNA transcription in hu-

mans (Carninci et al., 2005), extensive research efforts have

strived to establish what might be their contribution, if any, to

organismal phenotypes (Marx, 2014). Previous studies (Kumar

et al., 2013; Lappalainen et al., 2013; McDowell et al., 2016; Po-

padin et al., 2013) have led to the identification of lincRNAs asso-

ciated with complex human traits and diseases, often through

cis-eQTL analysis. This wealth of information comes with a

new and challenging question: what might be the functions of
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Figure 4. TR-lincRNAs Are Enriched at TAD

Boundaries and Regulate Proximal TR-

pcgenes in cis, Likely by Modulating Chro-

matin Architecture

(A) Fold enrichment or depletion of cisTR-lincRNA

(red) and other LCL-expressed lincRNAs (gray) at

fractional positions within LCL TADs (GM12878,

black bar; Rao et al., 2014) and at TAD boundaries

(light blue bar, area shaded in light blue). Signifi-

cant fold differences are denoted with an asterisk,

and SD is shown with error bars (p < 0.05, per-

mutation test).

(B) Average chromosomal contacts within TAD

that contain cisTR-lincRNAs (red), other LCL-ex-

pressed lincRNAs (gray), and pcgenes (green) in

LCLs (GM12878; ENCODE Project Consortium,

2012). Differences between groups were tested

using a two-tailed Mann-Whitney U test, and

p values are indicated.

(C) Correlation (Spearman’s) between expression

levels of cisTR-lincRNAs (r = 0.163, p = 7.33 10�4,

red) and other LCL-expressed lincRNAs (r = 0.105,

p = 0.53, gray) with the average chromosomal

contacts within their residing TADs in LCLs

(GM12878; ENCODE Project Consortium, 2012).

See also Figure S4 and Tables S3, S4, S5, and S6.
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these candidates, and how might they contribute to phenotype?

Given the heterogeneity of the known molecular mechanisms

underlying lincRNA functions and the current lack of approaches

to predict them, genetic dissection of these trait-associated can-

didates is challenging and has only been achieved for a handful

of transcripts thus far (for example, Ishii et al., 2006; Jendrzejew-

ski et al., 2012).

Our genome-wide analysis of a stringent set of TR-lincRNAs

suggests that these loci often associate with cis regulation of

nearby trait-associated protein-coding genes and provides a

working hypothesis for how lincRNAs can contribute to human

complex traits. While co-expression between loci in close

genomic proximity is common (McDowell et al., 2016), we

show this phenomenon is stronger between TR-lincRNAs and

protein-coding genes in their vicinity than between pairs of

non-trait-associated loci. Furthermore, we provide evidence

that changes in TR-lincRNA copy number are specifically asso-

ciated with changes in the levels of nearby TR-pcgenes, consis-

tent with the roles of these lincRNAs in the regulation of proximal

TR-pcgene expression levels. Recent studies have shown that

boundary elements are key to maintaining TAD organization

and that mutations in these boundary elements disrupt regula-

tory interactions and influence phenotypes, specifically during

development (Guo et al., 2015; Lupiáñez et al., 2015). The pref-

erential location of TR-lincRNAs at TAD boundaries and their

frequent and evolutionarily conserved enhancer origin suggest

that TR-lincRNA transcription affects the levels of trait-relevant

genes in their vicinity, likely bymodulating local chromosomal or-

ganization, thus impacting complex normal and disease pheno-

types in humans. The correlation observed between TR-lincRNA

expression and intra-TAD DNA-DNA interactions in LCLs pro-

vides genome-wide support for this hypothesis.

Our results suggest that lincRNAs are generally lowly ex-

pressed (Cabili et al., 2011), which is likely to limit their ability

to regulate the expression of mRNAs in trans. In contrast, regu-

lation of gene expression in cis through the modulation of chro-

mosomal architecture is likely to require fewer transcript copies

or merely the act of transcription. Therefore, we propose that

this mechanism of enhancer-associated lincRNA transcription

is likely not restricted to trait-relevant lincRNAs.

While further work is still required to dissect the biological role

of individual TR-lincRNAs, our genome-wide results provide the

much neededmechanistic insights into their functions, furthering

the understanding of the intricate genetic networks underlying

complex human traits and diseases.

EXPERIMENTAL PROCEDURES

cis-eQTL Analysis

Mapped RNA-sequencing reads of Epstein-Barr virus (EBV)-transformed

LCLs derived from 373 individuals of European descent (Utah Residents

with Northern and Western Ancestry [CEU], British in England and Scotland

[GBR], Finnish in Finland [FIN], and Toscani in Italy [TSI]) and the correspond-

ing processed genotypes were downloaded from EBI ArrayExpress (EBI:

E-GEUV-1) (Lappalainen et al., 2013).

eQTL analysis was performed for genome-wide significant (p < 5 3 10�8;

Welter et al., 2014) trait-associated autosomal SNPs located within a 2-Mb

window centered on the predicted transcription start site (TSS) of each ex-

pressed lincRNA and protein-coding gene. We estimated Pearson’s correla-

tion (robs) between corrected and transformed gene expression levels and

trait-associated SNP genotypes. A detailed description of the cis-eQTL iden-

tification process is provided in Supplemental Experimental Procedures.

Enhancer-Associated TR-lincRNAs

Coordinates of ENCODE-predicted enhancer elements and H3K4me1 and

H3K4me3 chromatin immunoprecipitation (ChIP) sequencing reads in human
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Figure 5. TR-lincRNA Promoter Regions Are Enriched in Enhancer-Associated Chromatin Marks

(A) Ratio of the number of H3K4me1 to H3K4me3 sequencing readsmapped to the putative promoter regions (1 kb upstream and downstream of the TSS) in LCLs

(GM12878; ENCODE Project Consortium, 2012) for cisTR-lincRNAs (red), other LCL-expressed lincRNAs (gray), and protein-coding genes (green). Differences

between groups were tested using a two-tailed Mann-Whitney U test, and p values are indicated.

(B) UCSC genome browser view of one cisTR-lincRNA, CTD-2196E14.9 (ENSG00000260482, chr16: 23,681,332–23,684,448, red), and a neighboring TR-

pcgene, DCTN5 (ENSG00000166847, green), which is associated with the same GWAS cis-eQTL (rs420259, blue). Non-trait-associated protein-coding genes

between CTD-2196E14.9 and COG7 are colored in gray. Arrows within introns indicate direction of transcription. CTD-2196E14.9 overlaps predicted enhancer

elements in a lymphoblastoid cell line (GM12878, vertical black bars; ENCODE Project Consortium, 2012) at the boundary of a TAD (GM12878, horizontal dark

gray bar; Rao et al., 2014), and its transcription start site has a high H3K4me1 (red track) over H3K4me3 (yellow track) ratio.

See also Figure S5 and Tables S3, S4, S5, and S6.
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GM12878 andmouse CH12 LCLs (ENCODEProject Consortium, 2012; Mouse

ENCODE Consortium et al., 2012) were downloaded from the UCSC database

(Rosenbloom et al., 2015). We estimated the ratio of H3K4me1 to H3K4me3

reads mapping to putative promoter regions of lincRNAs (using HTseq version

0.6.1; Anders et al., 2015). Details on defining putative promoter regions of

TR-lincRNAs in human and mouse LCLs are provided in Supplemental Exper-

imental Procedures.

Spatial Chromosomal Architecture Analysis

Intra-chromosomal interactions were calculated using Hi-C contact matrices

for four ENCODE cell lines (GM12878, K562, HUVEC, and NHEK; Rao et al.,

2014). All computations were performed on 5-kb-resolution matrices with a

Mapping Quality (MAPQ) score above 30. Spearman’s correlation was esti-

mated between gene expression levels and the average density of contacts

within the TAD where the gene resides. Comparisons between Spearman’s

correlations was performed using the two-sided Fisher’s z test (1925) based

on independent groups implemented in the ‘‘cocor’’ R package (Diedenho-

fen and Musch, 2015). Details on data normalization and estimation of

average intra-TAD contacts are described in Supplemental Experimental

Procedures.

Additional materials and methods are described in Supplemental Experi-

mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and seven tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2017.02.009.
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Summary 

While many disease-associated variants have been identified through genome-wide association 

studies, their downstream molecular consequences remain unclear. 

To identify these effects, we performed cis- and trans-expression quantitative trait locus (eQTL) 

analysis in blood from 31,684 individuals through the eQTLGen Consortium. 

We observed that cis-eQTLs can be detected for 88% of the studied genes, but that they have a 

different genetic architecture compared to disease-associated variants, limiting our ability to use 

cis-eQTLs to pinpoint causal genes within susceptibility loci. 

In contrast, trans-eQTLs (detected for 37% of 10,317 studied trait-associated variants) were more 

informative. Multiple unlinked variants, associated to the same complex trait, often converged on 

trans-genes that are known to play central roles in disease etiology. 

We observed the same when ascertaining the effect of polygenic scores calculated for 1,263 

genome-wide association study (GWAS) traits. Expression levels of 13% of the studied genes 

correlated with polygenic scores, and many resulting genes are known to drive these traits. 
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Main text 

Expression quantitative trait loci (eQTLs) have become a common tool to interpret the regulatory 

mechanisms of the variants associated with complex traits through genome-wide association 

studies (GWAS). Cis-eQTLs, where gene expression levels are affected by a nearby single 

nucleotide polymorphism (SNP) (<1 megabases; Mb), in particular, have been widely used for this 

purpose. However, cis-eQTLs from the genome tissue expression project (GTEx) explain only a 

modest proportion of disease heritability1.  

In contrast, trans-eQTLs, where the SNP is located distal to the gene (>5Mb) or on other 

chromosomes, can provide insight into the effects of a single variant on many genes. Trans-eQTLs 

identified before1–7 have already been used to identify putative key driver genes that contribute to 

disease8. However, trans-eQTL effects are generally much weaker than those of cis-eQTLs, 

requiring a larger sample size for detection.  

While trans-eQTLs are useful for the identification of the downstream effects of a single variant, a 

different approach is required to determine the combined consequences of trait-associated 

variants. Polygenic scores (PGS) have been recently applied to sum genome-wide risk for several 

diseases and likely will improve clinical care9,10. However, the exact consequences of different PGS 

at the molecular level, and thus the contexts in which a polygenic effects manifest themselves, are 

largely unknown. Here, we systematically investigate trans-eQTLs as well as associations between 

PGS and gene expression (expression quantitative trait score, eQTS) to determine how genetic 

effects influence and converge on genes and pathways that are important for complex traits. 

To maximize the statistical power to detect eQTL and eQTS effects, we performed a large-scale 

meta-analysis in 31,684 blood samples from 37 cohorts (assayed using three gene expression 
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platforms) in the context of the eQTLGen Consortium. This allowed us to identify significant cis-

eQTLs for 16,989 genes, trans-eQTLs for 6,298 genes and eQTS effects for 2,568 genes (Figure 

1A), revealing complex regulatory effects of trait-associated variants. We combine these results 

with additional data layers and highlight a number of examples where we leverage this resource to 

infer novel biological insights into mechanisms of complex traits. We hypothesize that analyses 

identifying genes further downstream are more cell-type specific and more relevant for 

understanding disease (Figure 1B). 
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Figure 1. Overview of the study. (A) Overview of main analyses and their results. (B) Model of genetic 

effects on gene expression. Cis-eQTL are common and widely replicable in different tissues and cell types, 

whereas trans-eQTLs and eQTS are more cell type specific. The biological insight derived from our cis-

eQTL results are usually not well interpretable in the context of complex traits, suggesting that weaker distal 

effects give additional insight about biological mechanisms leading to complex traits.    
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Local genetic effects on gene expression in blood are widespread and 

replicable in other tissues 

Using eQTLGen consortium data from 31,684 individuals, we performed cis-eQTL, trans-eQTL and 

eQTS meta-analyses (Figure 1A, Supplementary Table 1). Different expression profiling 

platforms were integrated using a data-driven method (Online Methods). To ensure the 

robustness of the identified eQTLs, we performed eQTL discovery per platform and replicated 

resulting eQTLs in the other platforms, observing excellent replication rates and consistency of 

allelic directions (Online Methods, Supplementary Note, Extended Data Figure 1A-C). We 

identified significant cis-eQTLs (SNP-gene distance <1Mb, gene-level False Discovery Rate 

(FDR)<0.05; Online Methods) for 16,989 unique genes (88.3% of autosomal genes expressed in 

blood and tested in cis-eQTL analysis; Figure 1A). Out of 10,317 trait-associated SNPs tested, 

1,568 (15.2%) were in high linkage disequilibrium (LD) with the lead eQTL SNP showing the 

strongest association for a cis-eQTL gene, (R2>0.8; 1kG p1v3 EUR; Supplementary Table 2; 

Online Methods). Genes highly expressed in blood but not under any detectable cis-eQTL effect 

were more likely (P=2×10-6; Wilcoxon two-sided test; Figure 2A) to be intolerant to loss-of-function 

mutations in their coding region11, suggesting that eQTLs on such gene would interfere with the 

normal functioning of the organism.  

We observed that 92% of the lead cis-eQTL SNPs map within 100kb of the gene (Figure 2D), and 

this increased to 97.2% when only looking at the 20% of the genes with the strongest lead cis-

eQTL effects. Of these strong cis-eQTLs, 84.1% of the lead eQTL SNPs map within 20kb of the 

gene. GWAS simulations12 indicate that lead GWAS signals map within 33.5kb from the causal 

variant in 80% of cases, which suggests that our top SNPs usually tag causal variants that map 
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directly into either the promoter region, the transcription start site (TSS), the gene body, or the 

transcription end site (TES). For strong cis-eQTLs we observed that lead cis-eQTL SNPs located 

>100kb from the TSS or TES overlap capture Hi-C contacts (37%; Figure 2E) more often than 

short-range cis-eQTL effects (16%; Chi2 test P = 2×10-5), indicating that, for long-range cis-eQTLs 

the SNP and gene often physically interact to cause the cis-eQTL effect. For instance, a capture 

Hi-C contact for IRS1 overlapped the lead eQTL SNP, mapping 630kb downstream from IRS1 

(Figure 2F). 

We observed that our sample-size improved fine-mapping: for 5,440 protein-coding cis-eQTL 

genes that we had previously identified in 5,311 samples1 we now observe that the lead SNP 

typically map closer to the cis-eQTL gene (Extended Data Figure 4).  

Cis-eQTLs showed directional consistency across tissues: in 47 postmortem tissues (GTEx v713) 

we observed an average of 14.8% replication rate (replication FDR<0.05 in GTEx; median 15.1%; 

range 3.6-29.7%; whole blood tissue excluded) and on average a 95.0% concordance in allelic 

directions (median 95.3%, range 86.7-99.3%; whole blood tissue excluded) among the cis-eQTLs 

that significantly replicated in GTEx (Extended Data Figure 5, Supplementary Note and 

Supplementary Table 3).  

However, our lead cis-eQTL SNPs show significantly different epigenetic histone mark 

characteristics, as compared to 3,668 SNPs identified in GWAS (and associated to blood related 

traits or immune-mediated diseases to minimize potential confounding). We observed significant 

differences for 20 out of 32 tested histone marks with H3K36me3, H3K27me3, H3K79me1 and 

H2BK20ac showing the strongest difference (Wilcoxon P = 10-39, 10-21, 10-19 and 10-18, 
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respectively), suggesting that cis-eQTLs have a different genetic architecture, as compared to 

complex traits and diseases. 

We tested this for 16 well-powered complex traits (Supplementary Table 20) and observed that 

genes prioritized by combining cis-eQTL and GWAS data using summary statistics based 

Mendelian randomization (SMR14; Online Methods) did not overlap significantly more with genes 

prioritized through an alternative method (DEPICT) that does not use any cis-eQTL information15. 

While the genes prioritized with SMR were informative, and enriched for relevant pathways for 

several immune traits (Supplementary Table 20), non-blood-trait-prioritized genes were difficult 

to interpret in the context of disease. Moreover, the lack of enriched overlap between DEPICT and 

SMR indicates that employing cis-eQTL information does not necessarily clarify which genes are 

causal for a given susceptibility locus. As such, some caution is warranted when using a single cis-

eQTL repository for interpretation of GWAS. 

One third of trait-associated variants have trans-eQTL effects  

An alternative strategy for gaining insight into the molecular functional consequences of disease-

associated genetic variants is to ascertain trans-eQTL effects. We tested 10,317 trait-associated 

SNPs (P ≤ 5×10-8; Online Methods, Supplementary Table 2) for trans-eQTL effects (SNP-gene 

distance >5Mb, FDR < 0.05) to better understand their downstream consequences. We identified 

a total of 59,786 significant trans-eQTLs (FDR<0.05; Supplementary Table 4, Extended Data 

Figure 6), representing 3,853 unique SNPs (37% of tested GWAS SNPs) and 6,298 unique genes 

(32% of tested genes; Figure 1A). When compared to the previous largest trans-eQTL meta-

analysis1 (N=5,311; 8% of trait-associated SNPs with a significant trans-eQTL), these results 
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indicate that a large sample size is critical for identifying downstream effects. Colocalization 

analyses in a subset of samples (n=4,339; Supplementary Note) using COLOC16 estimated that 

52% of trans-eQTL signals colocalize with at least one cis-eQTL signal (posterior probability > 0.8; 

Extended Data Figure 7A-B). Corresponding colocalizing cis-eQTL genes were enriched for 

transcription factor activity (“regulation of transcription from RNA polymerase II promoter”; P < 

1.3×10-9; Extended Data Figure 7C). Finally, highly expressed genes without a detectable trans-

eQTL effect were more likely to be intolerant to loss-of-function variants (P=6.4×10-7; Wilcoxon 

test, Figure 2B), similar to what we observed for cis-eQTLs.  
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Figure 2. Results of the cis- and trans-eQTL analysis. All genes tested in (A) cis-eQTL analysis, (B) 

trans-eQTL analysis, and (C) eQTS analysis were divided into 10 bins based on average expression levels 

of the genes in blood. Highly expressed genes without any eQTL effect (grey bars) were less tolerant to 

loss-of-function variants (Wilcoxon test on pLI scores). Indicated are medians per bin. (D) Genes with strong 

effect sizes are more likely to have a lead SNP within (top panel) or close to the gene (bottom panel)  (E) 

Top cis-eQTL SNPs positioning further from transcription start site (TSS) and transcription end site (TES) 

are more likely to overlap capture Hi-C contacts with TSS. (F) Enrichment analyses on epigenetic marks of 

cis-eQTL lead SNPs, compared to SNPs identified through GWAS and associated to blood-related or 

immune-mediated diseases, reveal significant differences in epigenetic characteristics. 

 

In order to study the biological nature of the trans-eQTLs we identified, we conducted several 

enrichment analyses (Supplementary Note, Extended Data Figure 8, Figure 3). We observed 

2.2 fold enrichment for known transcription factor (TF) - target gene pairs17 (Fisher’s exact test P = 

10-62; Supplementary Note), with the fold enrichment increasing to 3.2 (Fisher’s exact test P < 10-

300) when co-expressed genes were included to TF targets. Those genes are potentially further 

downstream of respective TF targets in the molecular network. Similarly, we observed 1.19 fold 

enrichment of protein-protein interactions18 among trans-eQTL gene-gene pairs (Fisher’s exact test 

P=0.05). Some of these cis-trans gene pairs encode subunits of the same protein complex (e.g. 

POLR3H and POLR1C). While significant cis-trans gene pairs were enriched for gene pairs 

showing co-expression (Pearson R > 0.4; Fisher’s exact test P=10-35), we did not observe any 

enrichment of chromatin-chromatin contacts19 (0.99 fold enrichment; Fisher’s exact test P=0.3). 

Using the subset of 3,831 samples from BIOS, we also ascertained whether the trans-eQTL effect 

was mediated through a gene that mapped within 100kb from the trans-eSNP (i.e. using the cis-

gene as G × E term). We observed significant interaction effects for 523 SNP-cis-trans-gene 
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combinations (FDR < 0.05; Supplementary Table 5), reflecting a 5.3 fold enrichment compared 

to what is expected by chance (Fisher's exact P = 7 × 10-67). For instance, for rs7045087 

(associated to red blood cell counts) we observed that the expression of interferon gene DDX58 

(mapping 38bp downstream from rs7045087) significantly interacted with trans-eQTL effects on 

interferon genes HERC5, OAS1, OAS3, MX1, IFIT1, IFIT2, IFIT5, IFI44, IFI44L, RSAD2 and 

SAMD9 (Extended Data Figure 9).  
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Figure 3. Mechanisms leading to trans-eQTLs. Shown are the results of enrichment analyses for known 

TF associations, HiC contacts, protein-protein interactions, gene co-expression and mediation analyses. 

We estimate that 17.4% of the identified trans-eQTLs are explainable by (indirect) TF binding or 

mediation by cis-genes (Supplementary Note). This leaves 82.6% of the observed trans-eQTL 

effects unexplained. While it is likely that many of these trans-eQTLs reflect unknown (indirect) 

effects of TFs, we speculate that novel and unknown regulatory mechanisms could also play a role. 

By making all trans-eQTL results (irrespective of their statistical significance) publicly available, we 

envision this dataset will help to yield such insight in the future. 
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To estimate the proportion of loci where the trait-associated SNP explained the trans-eQTL signal 

in the locus, we performed locus-wide conditional trans-eQTL analysis in a subset of 4,339 samples 

for 12,991 trans-eQTL loci (Online Methods; Extended Data Figure 10; Supplementary Table 

6). In 43% of these loci, we observed that the trait-associated SNP was in high LD with the trans-

eQTL SNP having the strongest association in the locus (R2 > 0.8, 1kG p1v3 EUR; Supplementary 

Table 7). For 95 cases, the strongest cis- and trans-eQTL SNPs were both in high LD with GWAS 

SNP (R2 > 0.8 between top SNPs, 1kG p1v3 EUR; Supplementary Table 7). 

The majority (64%) of trans-eQTL SNPs have previously been associated with blood composition 

phenotypes, such as platelet count, white blood cell count and mean corpuscular volume20. In 

comparison, blood cell composition SNPs from the same study comprised only 20.7% od all the 

tested trait-associated SNPs. This was expected, since SNPs that regulate the abundance of a 

specific blood cell type would result in trans-eQTL effects on genes, specifically expressed in that 

cell type. 

Therefore, we aimed to distinguish trans-eQTLs caused by intracellular molecular mechanisms 

from blood cell type QTLs using eQTL data from lymphoblastoid cell line (LCL), induced pluripotent 

cells (iPSCs), several purified blood cell types (CD4+, CD8+, CD14+, CD15+, CD19+, monocytes 

and platelets) and blood DNA methylation QTL data. In total, 3,853 (6.4%) of trans-eQTLs showed 

significant replication in at least one cell type or in the methylation data (Extended Data Figure 

11, Supplementary Table 11A). While this set of trans-eQTLs (denoted as the “intracellular 

eQTLs”) is less likely to be driven by cell type composition, we acknowledge that the limited sample 

size of the available trans-eQTL replication datasets make our replication effort very conservative. 

Furthermore, trans-eQTLs caused by variants associated with cell type proportions may be 
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informative for understanding the biology of a trait. Therefore, we did not remove these kinds of 

trans-eQTLs from our interpretative analyses. 

Next, we aimed to replicate the identified trans-eQTLs in the tissues from GTEx13. Although the 

replication rate was very low (0-0.03% of trans-eQTLs replicated in non-blood tissues, FDR < 0.05, 

same allelic direction; Supplementary Table 11B), we did observe an inflation of signal (median 

chi-squared statistic) for identified trans-eQTLs in several GTEx tissues (Extended Data Figure 

12). Non-blood tissues showing the strongest inflation were liver, heart atrial appendage and non-

sun-exposed skin. 

Trans-eQTLs are effective for discerning the genetic basis of complex traits  

As described above, trans-eQTLs can arise due to cis-eQTL effects on TFs, whose target genes 

show trans-eQTL effects. We describe below such examples, but also highlight trans-eQTLs where 

the eQTL SNP works through a different mechanism. 

Combining cis- and trans-eQTL effects can pinpoint the genes acting as drivers of trans-

eQTL effects. For example, the age-of-menarche-associated SNP rs153233121 is in high LD with 

the top cis-eQTL effect for transcription factor ZNF131 (R2 > 0.8, 1kG p1v3 EUR). Cis-eQTL and 

trans-eQTL effects for this locus co-localized for 25 out of the 75 downstream genes (Figure 4A). 

In a recent short hairpin RNA knockdown experiment of ZNF13122, three separate cell isolates 

showed downregulation of four genes that we identified as trans-eQTL genes: HAUS5, TMEM237, 

MIF4GD and AASDH (Figure 4A). ZNF131 has been hypothesized to inhibit estrogen signaling23, 

which may explain how the SNP in this locus contributes to altering the age of menarche. 
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Figure 4. Examples of cis- and trans-eQTLs. (A) Cis-eQTL on ZNF131 is prioritized because 

several trans-eQTL genes are down-regulated by ZNF131 in functional study. (B) Phospholipid-

associated SNP shows cis-and trans-eQTLs on lipid metabolism genes. (C) Type I diabetes 

associated SNP has no cis-eQTLs, but trans-eQTL genes point to interferon signaling pathway. 

(D) Circadian rhythm genes CLOCK (in cis) and NR1D1, NR1D2, TEF (in trans) identified for height 

associated SNP. (E) eQTLs for asthma SNP tag cell type abundance of B and NK cells. (F) Trans-

eQTL genes for REST locus are highly enriched for REST transcription factor targets and for 

neuronal expression. 

Trans-eQTLs extend insight for loci with multiple cis-eQTL effects. In the FADS1/FADS2 

locus, rs174574 is associated with lipid levels24 and affects 17 genes in trans (Figure 4B). The 

strongest cis-eQTLs modulate the expression of FADS1, FADS2 and TMEM258, with latter being 

in high LD with GWAS SNP (R2>0.8, 1kG p1v3 EUR). FADS1 and FADS2 have been implicated24 

since they regulate fatty acid synthesis, and consistent with their function, trans-eQTL genes from 

this locus are highly enriched for triglyceride metabolism (P < 4.1×10-9, GeneNetwork25 

REACTOME pathway enrichment). Since this locus has extensive LD, variant and gene 

prioritization is difficult: conditional analyses in 4,339 sample subset showed that each of cis-eQTL 

gene is influenced by more than one SNP, but none of these are in high LD with rs174574 (R2 < 

0.8, 1kG p1v3, EUR). As such, our trans-eQTL analysis results are informative for implicating 

FADS1 and FADS2, whereas cis-eQTLs are not.  

Trans-eQTLs can shed light on loci with no detectable cis-eQTLs. rs1990760 is associated 

with multiple immune-related traits (Type 1 Diabetes (T1D), Inflammatory bowel disease (IBD), 

Systemic Lupus Erythematosis (SLE) and psoriasis26–29). For this SNP we identified 17 trans-eQTL 

effects, but no detectable gene-level cis-eQTLs in blood (Figure 4C) and GTEx. However, the risk 
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allele for this SNP causes an Ala946Thr amino acid change in the RIG-1 regulatory domain of 

MDA5 (encoded by IFIH1 - Interferon Induced With Helicase C Domain 1), outlining one possible 

mechanism leading to the observed trans-eQTLs. MDA5 acts as a sensor for viral double-stranded 

RNA, activating interferon I signalling among other antiviral responses. All the trans-eQTL genes 

were up-regulated relative to risk allele to T1D, and 9 (52%) are known to be involved in interferon 

signaling (Supplementary Table 12). 

Trans-eQTLs can reveal cell type composition effects of the trait-associated SNP. Trans-

eQTL effects can also show up as a consequence of a SNP that alters cell-type composition. For 

example, the asthma-associated SNP rs721638930 has 14 cis-eQTL effects, most notably on 

IKZF3, GSDMB, and ORMDL3 (Figure 4E). SMR prioritized all three cis-genes equally (Extended 

Data Figure 13), making it difficult to draw biological conclusions (similar as we observed for the 

FADS locus). However, 94 out of the 104 trans-eQTL genes were up-regulated by the risk allele 

for rs7216389 and were mostly expressed in B cells and natural killer cells31 (Figure 4E). IKZF3 is 

part of the Ikaros transcription factor family that regulates B-cell proliferation31,32, suggesting that a 

decrease of IKZF3 leads to an increased number of B cells and concurrent trans-eQTL effects 

caused by cell-type composition differences. 

Some trans-eQTLs influence genes strongly expressed in tissues other than blood. We 

observed trans-eQTL effects on genes that are hardly expressed in blood, indicating that our trans-

eQTL effects are informative for non-blood related traits as well: rs17087335, which is associated 

with coronary artery disease33, affects the expression of 88 genes in trans (Figure 4F), that are 

highly expressed in brain (hypergeometric test, ARCHS4 database, q-value = 2.58×10-17; Figure 

4F, Supplementary Table 13), but show very low expression in blood. SNPs linked with 

rs17087335 (R2 > 0.8, 1kG p1v3 EUR) are associated with height (rs2227901, rs3733309 and 
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rs17081935)34,35, and platelet count (rs7665147)20. The minor alleles of these SNPs downregulate 

the nearby gene REST (RE-1 silencing transcription factor), although none of these variants is in 

LD (R2<0.2, 1kG p1v3 EUR) with the lead cis-eQTL SNP for REST. REST is a TF that 

downregulates the expression of neuronal genes in non-neuronal tissues36,37. It also regulates the 

differentiation of vascular smooth muscles, and is thereby associated with coronary phenotypes38. 

85 out of 88 (96.6%) of the trans-eQTL genes were upregulated relative to the minor allele and 

were strongly enriched by transcription factor targets of REST (hypergeometric test for ENCODE 

REST ChIP-seq, q-value = 1.36×10-42 , Figure 4F).  As such, trans-eQTL effects on neuronal genes 

implicate REST as the causal gene in this locus. 

Trans-eQTLs identify pathways not previously associated with a phenotype. Some trans-

eQTLs suggest the involvement of pathways which are not previously thought to play a role for 

certain complex traits: SMR analysis prioritized CLOCK as a potential causal gene in the height-

associated locus on chr 4q12 (PSMR=3×10-25; PHEIDI=0.02; Figure 4D). In line with that, height-

associated SNP rs1311351834 is also in high LD (R2>0.8, 1kG p1v3 EUR) with the top cis-eQTL 

SNP for CLOCK. The upregulated TF CLOCK forms a heterodimer with TF BMAL1, and the 

resulting protein complex regulates circadian rhythm39. Three known circadian rhythm trans-eQTL 

genes (TEF, NR1D1 and NR1D2) showed increased expression for the trait-increasing allele, 

suggesting a possible mechanism for the observed trans-eQTLs through binding of 

CLOCK:BMAL1. TEF is a D-box binding TF whose gene expression in liver and kidney is 

dependent on the core circadian oscillator and it regulates amino acid metabolism, fatty acid 

metabolism and xenobiotic detoxification (Gachon et al., 2006). NR1D1 and NR1D2 encode the 

transcriptional repressors Rev-ErbA alpha and beta, respectively, and form a negative feedback 

loop to suppress BMAL1 expression40. NR1D1 and NR1D2 have been reported to be associated 
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with osteoblast and osteoclast functions41, revealing a possible link between circadian clock genes 

and height. 

Unlinked trait-associated SNPs converge on the same downstream genes in trans. We 

subsequently ascertained, per trait, whether unlinked trait-associated variants showed trans-eQTL 

effects on the same downstream gene. Here we observed 47 different traits where at least four 

independent variants affected the same gene in trans, 3.4× higher than expected by chance (P = 

0.001; two-tailed two-sample test of equal proportions; Supplementary Table 8). For SLE, for 

example, we observed that the gene expression levels of IFI44L, HERC5, IFI6, IFI44, RSAD2, 

MX1, ISG15, ANKRD55, OAS3, OAS2, OASL and EPSTI1 (nearly all interferon genes) were 

affected by at least three SLE-associated genetic variants, clearly showing the involvement of 

interferon signaling in SLE (Figure 5). 
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Figure 5. SNPs associated with SLE converge to the shared cluster of interferon response genes. 

Shown are genes which are affected by at least three independent GWAS SNPs. SNPs in partial LD are 

grouped together. Heat map indicates the direction and strength of individual trans-eQTL effects (Z-scores). 

This convergence of multiple SNPs on the same genes lends credence to recent hypotheses with 

regards to the ‘omnigenic’ architecture of complex traits8: indeed multiple unlinked variants do 

affect the same ‘core’ genes. The recent omnigenic model42 proposes a strategy to partition 

between core genes, which have direct effects on a disease, and peripheral genes, which can only 

affect disease risk indirectly through regulation of core genes. In Supplementary Equations, we 
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show that this model also implies a correlation between polygenic risk scores and expression of 

core genes. We therefore studied this systematically by aggregating multiple associated variants 

into polygenic scores and ascertaining how they correlate with gene expression levels.  

eQTSs identify key driver genes for polygenic traits 

To ascertain the coordinated effects of trait-associated variants on gene expression, we used 

available GWAS summary statistics to calculate PGSs for 1,263 traits in 28,158 samples (Online 

Methods, Supplementary Table 14). We reasoned that when a gene shows expression levels 

that significantly correlate with the PGS for a specific trait (an expression quantitative trait score; 

eQTS), the downstream trans-eQTL effects of the individual risk variants converge on that gene, 

and hence, that the gene may be a driver of the disease. 

Our meta-analysis identified 18,210 eQTS effects (FDR < 0.05), representing 689 unique traits 

(54%) and 2,568 unique genes (13%; Supplementary Table 15, Figure 1A). As expected, most 

eQTS associations represent blood cell traits (Extended Data Figure 14, Supplementary Table 

16): for instance the PGS for mean corpuscular volume correlated positively with the expression 

levels of genes specifically expressed in erythrocytes, such as genes coding for hemoglobin 

subunits. However, we also identified eQTS associations for genes that are known drivers of other 

traits. 

For example, 11 out of 26 genes associating with the PGS for high density lipoprotein levels 

(HDL43,44; FDR<0.05; Figure 6A) have previously been associated with lipid or cholesterol 

metabolism (Supplementary Table 18). ABCA1 and ABCG1, which positively correlated with the 

PGS for high HDL, mediate the efflux of cholesterol from macrophage foam cells and participate in 
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HDL formation. In macrophages, the downregulation of both ABCA1 and ABCG1 reduced reverse 

cholesterol transport into the liver by HDL45 (Figure 6B). The genetic risk for high HDL was also 

negatively correlated with the expression of the low density lipoprotein receptor LDLR (strongest 

eQTS P=3.35×10-20) known to cause hypercholesterolemia46. Similarly, the gene encoding the TF 

SREBP-2, which is known to increase the expression of LDLR, was downregulated (strongest 

eQTS P=3.08×10-7). The negative correlation between SREBF2 expression and measured HDL 

levels has been described before47, indicating that the eQTS reflects an association with the actual 

phenotype. Zhernakova et al.  proposed a model where down-regulation of SREBF2 results in the 

effect on its target gene FADS2. We did not observe a significant HDL eQTS effect on FADS2 (all 

eQTS P>0.07), possibly because the indirect effect is too small to detect. We hypothesize that HDL 

levels in blood can result in a stronger reverse cholesterol transport into the liver, which may result 

in downregulation of LDLR48 
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Figure 6. Examples of eQTS. (A) Polygenic risk score (PRS) for high density lipoprotein associates to lipid 

metabolism genes. (B) The role of ABCA1, ABCG1, and SREBF2 in cholesterol transport. (C) Polygenic 

scores for serine, glycine, n-acetylglycine and creatine levels negatively associate with gene expression of 

PHGDH, PSAT1, and AARS. (D) Serine biosynthesis pathway. (E) PRS for educational attainment identifies 

genes with neuronal functions. (F) Polygenic score for smoking status upregulates GPR15, which plays a 

role in lymphocyte differentiation. (G) eQTS genes for immune-related diseases are enriched for genes 

specifically expressed in certain blood cell types. 

eQTS analysis also identified genes relevant for non-blood traits, such as the association of GPR15 

(P=3.7×10-8, FDR<0.05; Figure 6F) with the trait ‘ever versus never smoking’49. GPR15 is a 

biomarker for smoking50 that is overexpressed and hypomethylated in smokers51. We observe 

strong GPR15 expression in lymphocytes (Figure 6F), suggesting that the association with 

smoking could originate from a change in the proportion of T cells in blood52. As GPR15 is involved 

in T cell homing and has been linked to colitis and inflammatory phenotypes, it is hypothesized to 

play a key role in smoking-related health risks53.  

The PGS for another non-blood trait, educational attainment54, correlated significantly with the 

expression of 21 genes (FDR<0.05; Figure 6E, Supplementary Table 15). Several of the strongly 

associated genes are known to be involved in neuronal processes (Supplementary Table 19) and 

show expression in neuronal tissues (GTEx v7, Extended Data Figure 15). STX1B (strongest 

eQTS P=1.3×10-20) is specifically expressed in brain, and its encoded protein, syntaxin 1B, 

participates in the exocytosis of synaptic vesicles and synaptic transmission55. Another gene highly 

expressed in brain, LRRN3 (Leucine-rich repeat neuronal protein 3; strongest eQTS P=1.7×10-11) 

was negatively associated with the PGS for educational attainment, and has been associated with 

autism susceptibility56. The downregulated NRG1 (neuregulin 1; strongest eQTS P=4.5×10-7), 
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encodes a well-established growth factor involved in neuronal development and has been 

associated to synaptic plasticity57. NRG1 was also positively associated with the PGS for monocyte 

levels20 (strongest eQTS P=1.5×10-7), several LDL cholesterol traits (e.g. medium LDL particles44; 

strongest eQTS P=6.2×10-8), coronary artery disease33 (strongest eQTS P=1.5×10-6) and body 

mass index in females58 (strongest eQTS P=9.2×10-12). 

eQTS can also identify pathways known to be associated with monogenic diseases. For example, 

the PGSs for serine, glycine, the glycine derivative n-acetylglycine and creatine59,60 (Figure 6C) 

were all negatively associated with the gene expression levels of PHGDH, PSAT1 and AARS (P < 

5.3×10-7). PHGDH and PSAT1 encode crucial enzymes that regulate the synthesis of serine and, 

in turn, glycine61 (Figure 6D), while n-acetylglycine and creatine form downstream of glycine62. 

Mutations in PSAT1 and PHGDH can result in serine biosynthesis defects including phosphoserine 

aminotransferase deficiency63, phosphoglycerate dehydrogenase deficiency64, and Neu-Laxova 

syndrome65, all diseases characterized by low concentrations of serine and glycine in blood and 

severe neuronal manifestations. AARS encodes alanyl-tRNA synthetase, which links alanine to 

tRNA molecules. A mutation in AARS has been linked to Charcot Marie Tooth disease66, while the 

phenotypically similar hereditary sensory neuropathy type 1 (HSN167) can be caused by a mutation 

in the gene encoding serine palmitoyltransferase. The gene facilitates serine’s role in sphingolipid 

metabolism68. Disturbances in this pathway are hypothesized to be central in the development the 

neuronal symptoms69, suggesting a link between AARS expression and the serine pathway. 

Unexpectedly, the genetic risk for higher levels of these amino acids was associated with lower 

expression of PHGDH, PSAT1, and AARS, implying the presence of a negative feedback loop that 

controls serine synthesis. 
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We next evaluated 6 immune diseases for which sharing of loci has been reported previously, and 

also observed sharing of downstream eQTS effects for these diseases (Supplementary Table 

20). For example, the interferon gene STAT1 was significantly associated with T1D, celiac disease 

(CeD), IBD and primary biliary cirrhosis (PBC). However, some of these genes are also marker 

genes for specific blood-cell types, such as CD79A, which showed a significant correlation with 

T1D and PBC. To test whether disease-specific eQTS gene signatures are reflected by blood cell 

proportions, we investigated single-cell RNA-seq data31 (Online Methods; Figure 6G). For 

ulcerative colitis (a subtype of IBD), we observed significant depletion of expression in 

megakaryocytes. SLE eQTS genes were enriched for antigen presentation (GeneNetwork 

P=1.3×10-5) and interferon signaling (GeneNetwork P=1.4×10-4), consistent with the well-described 

interferon signature in SLE patients70,71. Moreover, the SLE genes were significantly enriched for 

expression in mature dendritic cells, whose maturation depends on interferon signaling72. For CeD, 

we observed strong depletion of eQTS genes in monocytes and dendritic cells, and a slight 

enrichment in CD4+ and CD8+ T cells. The enrichment of cytokine (GeneNetwork P=1.6×10-15) 

and interferon (GeneNetwork P=7.8×10-13) signaling among the CeD eQTS genes is expected as 

a result of increased T cell populations. 

Cell-type-specificity of eQTS associations 

We next ascertained to what extent these eQTS associations can be replicated in non-blood 

tissues. We therefore aimed to replicate the significant eQTS effects in 1,460 LCL samples and 

762 iPSC samples. Due to the fact these cohorts have a comparatively low sample sizes and study 

different cell types, we observed limited replication: 10 eQTS showed significant replication effect 

(FDR<0.05) in the LCL dataset, with 9 out of those (90%) showing the same effect direction as in 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. . https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

29 

the discovery set (Extended Data Figure 16A, Supplementary Table 17). For iPSCs, only 5 

eQTS showed a significant effect (Extended Data Figure 16B, Supplementary Table 17). Since 

only a few eQTS associations are significant in non-blood tissues and the majority of identified 

eQTS associations are for blood-related traits, we speculate these effects are likely to be highly 

cell-type specific. This indicates that large-scale eQTL meta-analyses in other tissues could 

uncover more genes on which trait-associated SNPs converge. 

Discussion 

We here performed cis-eQTL, trans-eQTL and eQTS analyses in 31,684 blood samples, reflecting 

a six-fold increase over earlier large-scale studies1,5. We identified cis-eQTL effects for 88.3% and 

trans-eQTL effects for 32% of all genes that are expressed in blood.  

We observed that cis-eQTL SNPs map close to the TSS or TES of the cis-gene: for the top 20% 

strongest cis-eQTL genes, 84.1% of the lead eQTL SNPs map within 20kb of the gene, indicating 

that these are variants immediately adjacent to the start or end of transcripts that primarily drive 

cis-eQTL effects. The trait-associated variants that we studied showed a different pattern: 77.4% 

map within 20kb of the closest protein-coding gene, suggesting that the genetic architecture of cis-

eQTLs is different from disease-associated variants. This is supported by the epigenetic 

differences that we observed between these two groups and can also partly explain, why we did 

not observe significantly increased overlap between genes prioritized using pathway enrichment 

analysis15 and genes prioritized using our cis-eQTLs. 
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In contrast, for numerous traits we observed that multiple unlinked trans-eQTL variants often 

converge on genes with a known role in the biology for these traits (e.g. the involvement of 

interferon genes in SLE). 

We therefore focused on trans-eQTL and eQTS results to gain insight into trait-relevant genes and 

pathways (Figures 4, 6). We estimate that 17.4% of our trans-eQTLs are driven by transcriptional 

regulation, whereas the remaining fraction is driven by not-yet-identified mechanisms. Our results 

support a model which postulates that, compared to cis-eQTLs, weaker distal and polygenic effects 

converge on core (key driver) genes that are more relevant to the traits and more specific for trait-

relevant cell types (Figure 1B). The examples we have highlighted demonstrate how insights can 

be gained from our resource, and we envision similar interpretation strategies can be applied to 

the other identified trans-eQTL and eQTS effects. The catalog of genetic effects on gene 

expression we present here (available at www.eqtlgen.org) is a unique compendium for the 

development and application of novel methods that prioritize causal genes for complex traits14,73, 

as well as for interpreting the results of genome-wide association studies. 
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Methods 

Cohorts 

eQTLGen Consortium data consists of 31,684 blood and PBMC samples from 37 datasets, pre-

processed in a standardized way and analyzed by each cohort analyst using the same settings 

(Online Methods). 26,886 (85%) of the samples added to discovery analysis were whole blood 

samples and 4,798 (15%) were PBMCs, and the majority of samples were of European ancestry 

(Supplementary Table 1). The gene expression levels of the samples were profiled by Illumina 

(N=17,421; 55%), Affymetrix U291 (N=2,767; 8.7%), Affymetrix HuEx v1.0 ST (N=5,075; 16%) 

expression arrays and by RNA-seq (N=6,422; 20.3%). A summary of each dataset is outlined in 

Supplementary Table 1. Detailed cohort descriptions can be found in the Supplementary Note. 

Each of the cohorts completed genotype and expression data pre-processing, PGS calculation, 

cis-eQTL-, trans-eQTL- and eQTS-mapping, following the steps outlined in the online analysis 

plans, specific for each platform (see URLs) or with slight alterations as described in 

Supplementary Table 1 and the Supplementary Note. All but one cohort (Framingham Heart 

Study), included non-related individuals into the analysis.  

Genotype data preprocessing 

The primary pre-processing and quality control of genotype data was conducted by each cohort, 

as specified in the original publications and in the Supplementary Note. The majority of cohorts 

used genotypes imputed to 1kG p1v3 or a newer reference panel. GenotypeHarmonizer74 was 

used to harmonize all genotype datasets to match the GIANT 1kG p1v3 ALL reference panel and 
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to fix potential strand issues for A/T and C/G SNPs. Each cohort tested SNPs with minor allele 

frequency (MAF) > 0.01, Hardy-Weinberg P-value > 0.0001, call rate > 0.95, and MACH r2 > 0.5.  

Expression data preprocessing 

Illumina arrays 

Illumina array datasets expression were profiled by HT-12v3, HT-12v4 and HT-12v4 WGDASL 

arrays. Before analysis, all the probe sequences from the manifest files of those platforms were re-

mapped to GRCh37.p10 human genome and transcriptome, using SHRiMP v2.2.3 aligner75 and 

allowing 2 mismatches. Probes mapping to multiple locations in the genome were removed from 

further analyses. 

For Illumina arrays, the raw unprocessed expression matrix was exported from GenomeStudio. 

Before any pre-processing, the first two principal components (PCs) were calculated on the 

expression data and plotted to identify and exclude outlier samples. The data was normalized in 

several steps: quantile normalization, log2 normalization, probe centering and scaling by the 

equation ExpressionProbe,Sample = (ExpressionProbe,Sample - MeanProbe) / Std.Dev.Probe. Genes showing no 

variance were removed. Next, the first four multidimensional scaling (MDS) components, 

calculated based on non-imputed and pruned genotypes using plink v1.0776, were regressed out 

of the expression matrix to account for population stratification. We further removed up to 20 first 

expression-based PCs that were not associated to any SNPs, as these capture non-genetic 

variation in expression. Each cohort also ran MixupMapper77 software to identify incorrectly labeled 

genotype-expression combinations, and to remove identified sample mix-ups. 
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Affymetrix arrays 

Affymetrix array-based datasets used the expression data previously pre-processed and quality 

controlled as indicated in the Supplementary Note. 

RNA-seq 

Alignment, initial quality control and quantification differed slightly across datasets, as described in 

the Supplementary Note. Each cohort removed outliers as described above, and then used 

Trimmed Mean of M-values (TMM) normalization and a counts per million (CPM) filter to include 

genes with >0.5 CPM in at least 1% of the samples. Other steps were identical to Illumina 

processing, with some exceptions for the BIOS Consortium datasets (Supplementary Note).  

 

Cis-eQTL mapping 

Cis-eQTL mapping was performed in each cohort using a pipeline described previously1. In brief, 

the pipeline takes a window of 1Mb upstream and 1Mb downstream around each SNP to select 

genes or expression probes to test, based on the center position of the gene or probe. The 

associations between these SNP-gene combinations was calculated using a Spearman 

correlation. Next, 10 permutation rounds were performed by shuffling the links between genotype 

and expression identifiers and re-calculating associations. The false discovery rate (FDR) was 

determined using 10 meta-analyzed permutations: for each gene in the real analysis, the most 

significant association was recorded, and the same was done for each of the permutations, 
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resulting in a gene-level FDR. Cis-eQTLs with a gene-level FDR < 0.05 (corresponding to P < 

1.829×10-5) and tested in at least two cohorts were deemed significant. 

Trans-eQTL mapping 

Trans-eQTL mapping was performed using a previously described pipeline1 while testing a subset 

of 10,317 SNPs previously associated with complex traits. We required the distance between the 

SNP and the center of the gene or probe to be >5Mb. To maximize the power to identify trans-

eQTL effects, the results of the summary statistics based or iterative conditional cis-eQTL mapping 

analyses (Supplementary Note) were used to correct the expression matrices before trans-eQTL 

mapping. For that, top SNPs for significant conditional cis-eQTLs were regressed out from the 

expression matrix. Finally, we removed potential false positive trans-eQTLs caused by reads cross-

mapping with cis regions (Supplementary Note). 

Genetic risk factor selection 

Genetic risk factors were downloaded from three public repositories: the EBI GWAS Catalogue78 

(downloaded 21.11.2016), the NIH GWAS Catalogue and Immunobase  (www.immunobase.org; 

accessed 26.04.2016), applying a significance threshold of P ≤ 5×10-8. Additionally, we added 

2,706 genome-wide significant GWAS SNPs from a recent blood trait GWAS20. SNP coordinates 

were lifted to hg19 using the liftOver command from R package rtracklayer v1.34.179 and 

subsequently standardized to match the GIANT 1kG p1v3 ALL reference panel. This yielded 

10,562 SNPs (Supplementary Table 2). We tested associations between all risk factors and 
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genes that were at least 5Mb away to ensure that that they did not tag a cis-eQTL effect. All 

together, 10,317 trait-associated SNPs were tested in trans-eQTL analyses. 

eQTS mapping 

PGS trait inclusion 

Full association summary statistics were downloaded from several publicly available resources 

(Supplementary Table 13). GWAS performed exclusively in non-European cohorts were omitted. 

Filters applied to the separate data sources are indicated in the Supplementary Note. All the 

dbSNP rs numbers were standardized to match GIANT 1kG p1v3, and the directions of effects 

were standardized to correspond to the GIANT 1kG p1v3 minor allele. SNPs with opposite alleles 

compared to GIANT alleles were flipped. SNPs with A/T and C/G alleles, tri-allelic SNPs, indels, 

SNPs with different alleles in GIANT 1kG p1v3 and SNPs with unknown alleles were removed from 

the analysis. Genomic control was applied to all the P-values for the datasets not genotyped by 

Immunochip or Metabochip. Additionally, genomic control was skipped for one dataset that did not 

have full associations available80 and for all the datasets from the GIANT consortium, as for these 

genomic control had already been applied. All together, 1,263 summary statistic files were added 

to the analysis. Information about the summary statistics files can be found in the Supplementary 

Note and Supplementary Table 14. 

PGS calculation 

A custom Java program, GeneticRiskScoreCalculator-v0.1.0c, was used for calculating several 

PGS in parallel. Independent effect SNPs for each summary statistics file were identified by double-
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clumping by first using a 250kb window and subsequently a 10Mb window with LD threshold 

R2=0.1. Subsequently, weighted PGS were calculated by summing the risk alleles for each 

independent SNP, weighted by its GWAS effect size (beta or log(OR) from the GWAS study). Four 

GWAS P-value thresholds (P<5×10-8, 1×10-5, 1×10-4 and 1×10-3) were used for constructing PGS 

for each summary statistics file.  

Pruning the SNPs and PGS 

To identify a set of independent genetic risk factors, we conducted LD-based pruning as 

implemented in PLINK 1.981 with the setting --indep-pairwise 50 5 0.1. This yielded in 4,586 

uncorrelated SNPs (R2<0.1, GIANT 1kG p1v3 ALL). 

To identify the set of uncorrelated PGS, ten permuted trans-eQTL Z-score matrices from the 

combined trans-eQTL analysis were first confined to the pruned set of SNPs. Those matrices were 

then used to identify 3,042 uncorrelated genes, based on Z-score correlations (absolute Pearson 

R < 0.05). Next, permuted eQTS Z-score matrices were confined to uncorrelated genes and used 

to calculate pairwise correlations between all genetic risk scores to define a set of 1,873 

uncorrelated genetic risk scores (Pearson R2 < 0.1). 

Empirical probe matching 

To integrate different expression platforms (four different Illumina array models, RNA-seq, 

Affymetrix U291 and Affymetrix Hu-Ex v1.0 ST) for the purpose of meta-analysis, we developed an 

empirical probe-matching approach. We used the pruned set of SNPs to conduct per-platform 

meta-analyses for all Illumina arrays, for all RNA-seq datasets, and for each Affymetrix dataset 

separately, using summary statistics from analyses without any gene expression correction for 
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principal components. For each platform, this yielded an empirical trans-eQTL Z-score matrix, as 

well as ten permuted Z-score matrices, where links between genotype and expression files were 

permuted. Those permuted Z-score matrices reflect the gene-gene or probe-probe correlation 

structure. 

We used RNA-seq permuted Z-score matrices as a gold standard reference and calculated for 

each gene the Pearson correlation coefficients with all the other genes, yielding a correlation profile 

for each gene. We then repeated the same analysis for the Illumina meta-analysis, and the two 

different Affymetrix platforms. Finally, we correlated the correlation profiles from each array 

platform with the correlation profiles from RNA-seq. For each array platform, we selected the probe 

showing the highest Pearson correlation with the corresponding gene in the RNA-seq data and 

treated those as matching expression features in the combined meta-analyses. This yielded 19,960 

genes that were detected in RNA-seq datasets and tested in the combined meta-analyses. Genes 

and probes were matched to Ensembl v7182 (see URLs) stable gene IDs and HGNC symbols in 

all the analyses. 

Cross-platform replications 

To test the performance of the empirical probe-matching approach, we conducted discovery cis-, 

trans- and eQTS meta-analyses for each expression platform (RNA-seq, Illumina, Affymetrix U291 

and Affymetrix Hu-Ex v1.0 ST arrays; array probes matched to 19,960 genes by empirical probe 

matching). For each discovery analysis, we conducted replication analyses in the three remaining 

platforms, observing strong replication of both cis-eQTLs, trans-eQTLs and eQTS in different 

platforms, with very good concordance in allelic direction. 
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Meta-analyses 

We meta-analyzed the results using a weighted Z-score method1, where the Z-scores are weighted 

by the square root of the sample size of the cohort. For cis-eQTL and trans-eQTL meta-analyses, 

this resulted in a final sample size of N=31,684. The combined eQTS meta-analysis included the 

subset of unrelated individuals from the Framingham Heart Study, resulting in a combined sample 

size of 28,158. 

Quality control of the meta-analyses 

For quality control of the overall meta-analysis results, MAFs for all tested SNPs were compared 

between eQTLGen and 1kG p1v3 EUR (Extended Data Figure 3), and the effect direction of each 

dataset was compared against the meta-analyzed effect (Extended Data Figure 2A-C). 

FDR calculation for trans-eQTL and eQTS mapping 

To determine nominal P-value thresholds corresponding to FDR=0.05, we used the pruned set of 

SNPs for trans-eQTL mapping and permutation-based FDR calculation, as described previously1. 

We leveraged those results to determine the P-value threshold corresponding to FDR=0.05 and 

used this as a significance level in trans-eQTL mapping in which all 10,317 genetic trait-associated 

SNPs were tested. In the eQTS analysis, an analogous FDR calculation was performed using a 

pruned set of PGSs. We analyzed only SNP/PGS-gene pairs tested in at least two cohorts. 
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Positive and negative set of trans-eQTLs 

Based on the results of integrative trans-eQTL mapping, we defined true positive (TP) and true 

negative (TN) sets of trans-eQTLs. TP set was considered as all significant (FDR<0.05) trans-

eQTLs. TN set of trans-eQTLs was selected as non-significant (max absolute meta-analysis Z-

score 3; all FDR>0.05) SNP-gene combinations, adhering to following conditions: 

1. The size of TN set was set equal to the size of TP set (59,786 trans-eQTLs). 

2. Each SNP giving trans-eQTL effects on X genes in the TP set, is also giving trans-eQTL 

effects on X genes in the TN set. 

3. Each gene that is affected in trans by Y SNPs in the TP set, is also affected in trans by Y 

SNPs in the TN set. 

4. Adhere to the correlation structure of the SNPs: if two SNPs are in perfect LD, they affect 

the same set of genes, both in the TP set and in the TN set.  

5. Adhere to the correlation structure of the genes: if two genes are perfectly co-expressed, 

they are affected by the same SNPs, both in the TP set and in the TN set. 

This set of TN trans-eQTLs was used in subsequent enrichment analyses as the matching set for 

comparison. 

Conditional trans-eQTL analyses 

We aimed to estimate how many trans-eQTL SNPs were likely to drive both the trans-eQTL effect 

and the GWAS phenotype. The workflow of this analysis is shown in Extended Data Figure 6. We 
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used the integrative trans-eQTL analysis results as an input, confined ourselves to those effects 

which were present in the datasets we had direct access to (BBMRI-BIOS+EGCUT; N=4,339), and 

showed nominal P < 8.3115× 10-06 in the meta-analysis of those datasets. This P-value threshold 

was the same as in the full combined trans-eQTL meta-analysis and was based on the FDR=0.05 

significance threshold identified from the analysis run on the pruned set of GWAS SNPs after 

removal of cross-mapping effects. We used the same methods and SNP filters as in the full 

combined trans-eQTL meta-analysis, aside from the FDR calculation, which was based on the full 

set of SNPs, instead of the pruned set of SNPs.  

For each significant trans-eQTL SNP, we defined the locus by adding a ±1Mb window around it. 

Next, for each trans-eQTL gene we ran iterative conditional trans-eQTL analysis using all loci for 

given trans-eQTL gene. We then evaluated the LD between all conditional top trans-eQTL SNPs 

and GWAS SNPs using a 1 Mb window and R2>0.8 (1kG p1v3 EUR) as a threshold for LD overlap. 

Trans-eQTL mediation analysis 

To identify potential mediators of trans-eQTL effects we used  a G x E interaction model:  

t = 𝛽0 + 𝛽1 × s + 𝛽2 × m + 𝛽3 × s × m 

Where t is the expression of the trans-eQTL gene, s is the trans-eQTL SNP, and m is the 

expression of a potential mediator gene within 100kb of the trans-eQTL SNP. On top of the gene 

expression normalization that we used for the rest of our analysis, we used a rank-based inverse 

normal transformation to enforce a normal distribution before fitting the linear model, identical to 

the normalization used by Zhernakova et al.47 in their G × E interaction eQTL analyses. We fitted 

this model separately on each of the cohorts that are part of the BIOS consortium. We transformed 

the interaction P-values to Z-scores and used the weighted Z-score method83 to perform a meta-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. . https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

41 

analysis on the in total 3,831 samples. The Benjamini & Hochberg procedure84 was used to limit 

the FDR to 0.05. The plots in Extended Data Figure 9 are created with the default normalization, 

the regression lines are the best-fitting lines between the mediator gene and the trans eQTL gene, 

stratified by genotype. We used a Fisher’s exact test to calculate the enrichment of significant (FDR 

≤ 0.05) interactions between our TP trans-eQTLs and the interactions identified in the TN trans-

eQTL set.  

TF and tissue enrichment analyses 

We downloaded the curated sets of known TF targets and tissue-expressed genes from the Enrichr 

web site85,86. TF target gene sets included TF targets as assayed by ChIP-X experiments from 

ChEA87 and ENCODE88,89 projects, and tissue-expressed genes were based on the ARCHS4 

database90. Those gene sets were used to conduct hypergeometric over-representation analyses 

as implemented into the R package ClusterProfiler91.  

SMR analyses 

To gain further insight into genes that are important in the biology of the trait, we used the combined 

cis-eQTL results to perform SMR14 for 16 large GWAS studies (Supplementary Table 20). We 

derived cis-eQTL beta and standard error of the beta (SE(beta)) from the Z-score and the MAF 

reported in 1kG v1p3 ALL, using the following formulae14 

beta = z / (√(2p(1-p)(n+z2)) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. . https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

42 

SE(beta) = 1 / (√(2p(1-p)(n+z2)) 

Where p is the MAF and n is the sample size. 

The cis-eQTLs were converted to the dense BESD format. The 1kG p1v3 ALL reference panel was 

also used to calculate LD, and SMR analysis was run using the SMR software v0.706 without any 

P-value cut-offs on either GWAS or eQTL input. 

DEPICT 

We applied DEPICT v19415 to the same 16 recent GWAS traits as above (Supplementary Table 

20), using all variants that attain a genome-wide significant P-value threshold. Specifically, we 

looked at the gene prioritization and gene set enrichment analyses to compare the results with the 

output of other prioritization methods (SMR 14). 

Comparison of gene prioritization with DEPICT and SMR 

To investigate the consistency between results from two gene prioritization methods, we compared 

the enrichment of overlapping genes for 16 GWAS traits (Supplementary Table 20). We confined 

ourselves to genes that were tested in SMR and that fell within the DEPICT loci, and tested whether 

genes significant in SMR (P-value < 0.05 / number of tested genes) and DEPICT (FDR < 0.05) 

were enriched (one-sided Fisher’s Exact Test). 
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Epigenetic marks enrichment 

We ascertained epigenetic properties of the lead cis-eQTL SNPs, and contrasted these to a set of 

3,688 trait-associated SNPs that were associated with either blood-related traits (such as mean 

corpuscular volume or platelet counts) or immune-mediated diseases. The SNPs were annotated 

with histone and chromatin marks information from the Epigenomics Roadmap Project. We 

summarized the information by calculating the overlap ratio across 127 human cell types between 

the epigenetic marks and the SNP within a window size of +/- 25bp: if a SNP co-localizes with a 

mark for all 127 cell-types, the score for that SNP will be 1; if a SNP co-localizes with a mark for 

none of the cell-types, the score will be 0. 

The reason we chose only SNPs associated to blood-related traits and immune-mediated diseases 

was to minimize potential confounding due to a subtle bias in the Epigenomics Roadmap Project 

towards blood cell-types: 29 of the 127 cell-types that we studied were blood cell types. However, 

when redoing the epigenetic enrichment analysis, while excluding these blood cell types, we did 

not see substantial differences in the enriched and depleted histone marks. 

Chromosomal contact analyses 

Capture Hi-C overlap for cis-eQTLs 

To assess whether cis-eQTL lead SNPs overlapped with chromosomal contact as measured using 

Hi-C data, we used promoter capture Hi-C data92, downloaded from CHiCP93 (see URLs). We took 

the lead eQTL SNPs and overlapped these with the capture Hi-C data and studied the 10,428 cis-

eQTL genes for which this data is available. We then checked whether the Capture Hi-C target 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 19, 2018. . https://doi.org/10.1101/447367doi: bioRxiv preprint 

https://doi.org/10.1101/447367


 

44 

maps within 5kb of the lead SNP. Of 508 cis-eQTL genes that mapped over 100 kb from the TSS 

or TES, 223 overlapped capture Hi-C data (27.8%). Of 7,984 cis-eQTL genes that mapped within 

100kb from the TSS or TES, 1,641 overlapped capture Hi-C data (17.0%, Chi2 test P = 10-14). To 

ensure this was not an artefact, we performed the same analysis, while flipping the location of the 

capture Hi-C target with respect to the location of the bait, and did not observe any significant 

difference (Chi2 test P = 0.59). 

Hi-C overlap enrichment analysis for trans-eQTLs 

To assess whether trans-eQTLs were enriched for chromosomal contacts as measured using Hi-

C data, we downloaded the contact matrices for the human lymphoblastoid GM12878 cell line19 

(GEO accession GSE63525). We used the intrachromosomal data at a resolution of 10kb with 

mapping quality of 30 or more (MAPQGE30), and normalized using the KRnorm vectors. For each 

of the 59,786 trans-eQTLs, we evaluated whether any contact was reported in this dataset. We 

divided each trans-eQTL SNP and any of their proxies (R2>0.8, 1kG p1v3, EUR, acquired from 

SNiPA94; URLs) in 10kb blocks. The trans-eQTL genes were also assigned to 10kb blocks, and to 

multiple blocks if the gene was more than 10kb in length (length between TSS and TES, Ensembl 

v71). For each individual trans-eQTL SNP-gene pair, we then determined if there was any overlap 

with the Hi-C contact matrices. We repeated this analysis using the true negative set of trans-

eQTLs described before to generate a background distribution of expected contact. 

Data availability 

Full summary statistics from eQTLGen meta-analyses are available on the eQTLGen website: 

www.eqtlgen.org which was built using the MOLGENIS framework95.  
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Code availability 

Individual cohorts participating in the study followed the analysis plans as specified in the URLs or 

with slight alterations as described in the Methods and Supplementary Note. All tools and source 

code, used for genotype harmonization, identification of sample mixups, eQTL mapping, meta-

analyses and for calculating polygenic scores are freely available at 

https://github.com/molgenis/systemsgenetics/.  
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URLs 

Full summary statistics from this study, www.eqtlgen.org 

ExAC pLI scores, http://exac.broadinstitute.org/downloads; 

Ensembl v71 annotation file, 

ftp://ftp.ensembl.org/pub/release-71/gtf/homo_sapiens; 

Reference for genotype harmonizing, 

ftp://share.sph.umich.edu/1000genomes/fullProject/2012.03.14/GIANT.phase1_release_v3.2010

1123.snps_indels_svs.genotypes.refpanel.ALL.vcf.gz.tgz 

eQTLGen analysis plan for Illumina array datasets, 

https://github.com/molgenis/systemsgenetics/wiki/eQTL-mapping-analysis-cookbook; 

eQTLGen analysis plan for RNA-seq datasets, 

https://github.com/molgenis/systemsgenetics/wiki/eQTL-mapping-analysis-cookbook-for-RNA-

seq-data; 

eQTLGen analysis plan for Affymetrix array datasets, 

https://github.com/molgenis/systemsgenetics/wiki/QTL-mapping-analysis-cookbook-for-

Affymetrix-expression-arrays; 

GenotypeHarmonizer, https://github.com/molgenis/systemsgenetics/wiki/Genotype-Harmonizer; 

Protocol to resolve sample mixups, https://github.com/molgenis/systemsgenetics/wiki/Resolving-

mixups; 

Enrichr gene set enrichment libraries, 

http://amp.pharm.mssm.edu/Enrichr/; 

GeneOverlap package for enrichment analyses, 

https://www.bioconductor.org/packages/release/bioc/html/GeneOverlap.html; 
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SHRiMP aligner used for re-mapping Illumina probes, 

http://compbio.cs.toronto.edu/shrimp/; 

EBI GWAS Catalogue, 

https://www.ebi.ac.uk/gwas/; 

Immunobase, 

http://www.immunobase.org/; 

ClusterProfiler package used for tissue enrichment analyses, 

http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html; 

Capture Hi-C data, 

https://www.chicp.org/ 

SNiPA, used to acquire proxy SNPs, 

http://snipa.helmholtz-muenchen.de/snipa3/ 

Regulatory Circuits, used to acquire TF data, 

www.RegulatoryCircuits.org 
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Summary 

In this study we investigate the results of a metabolome- and transcriptome-wide association             
study to identify genes influencing the human metabolome. We used RNAseq data from             
lymphoblastoid cell lines (LCLs) derived from 555 Caucasian individuals to characterize their            
transcriptome. As for the metabolome we took an untargeted approach using binned features             
from 1H nuclear magnetic resonance spectroscopy (NMR) of urine samples from the same             
subjects allowing for data-driven discovery of associated compounds (rather than working with            
a limited set of quantified metabolites). 

Using pairwise linear regression we identified 21 study-wide significant associations between           
metabolome features and gene expression levels. We observed the most significant association            
between the gene ALMS1 and two adjacent metabolome features at 2.0325 and 2.0375 ppm. By               
using our previously developed metabomatching methodology, we found N-Acetylaspartate         
(NAA) as the potential underlying metabolite whose urine concentration is correlated with            
ALMS1 expression. Indeed, a number of metabolome- and genome-wide association studies           
(mGWAS) had already suggested the locus of this gene to be involved in regulation of               
N-acetylated compounds, yet were not able to identify unambiguously the exact metabolite, nor             
to disambiguate between ALMS1 and NAT8, another gene found in the same locus as the               
mediator gene. The second highest significant association was observed between HPS1 and two             
metabolome features at 2.8575 and 2.8725 ppm. Metabomatching of the association profile of             
HPS1 with all metabolite features pointed at trimethylamine (TMA) as the most likely             
underlying metabolite. mGWAS had previously implicated a locus containing HPS1 to be            
associated with TMA concentrations in urine but could not disambiguate this association signal             
from PYROXD2, a gene in the same locus. We used Mendelian randomization to show for both                
ALMS1 and HPS1 that their expression is causally linked to the respective metabolite             
concentrations.  

Our study provides evidence that the integration of metabolomics with gene expression data             
can support mQTL analysis, helping to identify the most likely gene involved in the modulation               
of the metabolite concentration. 

 

Key words: transcriptomics, untargeted metabolomics, genome wide association studies,         
ALMS1, NAT8, HPS1, PYROXD2, N-acetylated compounds, N-Acetylaspartate, trimethylamine 
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Introduction 

Genome-wide association studies (GWAS) have identified thousands of common variants that           
are associated with complex traits [1], but the regulatory mechanisms behind these associations             
mostly remain poorly understood. Pinpointing causal variants is difficult, since the lead variants             
associated with a trait are often in high linkage disequilibrium (LD) with other variants in the                
same region with only a slightly lower association signal. Such associated LD blocks typically              
contain several genes or functional elements, preventing the accurate identification of causal            
genes. Furthermore, some trait associated variants fall into intergenic regions of the genome             
with no obvious functional role at all.  

A number of studies reported that trait associated genetic variants are significantly enriched in              
expression quantitative trait loci (eQTLs), suggesting that many trait associated variants affect            
the phenotype by altering gene expression [2-5]. There is also a growing body of literature               
highlighting the more pronounced effects of genetic variants on molecular traits compared to             
phenotypic traits [6-9]. This is not surprising, since molecular traits representing fundamental            
biological processes such as gene expression and metabolism are intermediates in the genotype             
to trait causality chain.  

With high-throughput measurements becoming more accessible and widespread, integration of          
molecular traits into association studies has become a central challenge in the field. Such              
synthesis allows investigating the interplay between different organisational layers of a           
biological system. Despite metabolism and gene expression regulation both being fundamental           
biological processes that are commonly studied as molecular phenotypes, there are very few             
studies in humans that focus on the interplay between them. Several studies investigated the              
relationship between untargeted serum metabolites and whole blood gene expression in           
humans [10-12], but, to the best of our knowledge no transcriptome- and metabolome-wide             
association study has been performed using urine metabolome data of healthy human subjects. 

Most metabolome- and genome-wide association studies (mGWAS) reporting metabolite         
quantitative trait loci (mQTL) use targeted approaches where the concentrations of a limited             
number of metabolites are estimated from the metabolome data generated by mass            
spectrometry or NMR spectroscopy. This targeted approach is limited to the number of known              
quantifiable metabolites in the biofluid under study. In the current study we adopted an              
untargeted approach, making use of the entire metabolomic data captured by binned 1H NMR              
spectra as our molecular traits. So here we present an untargeted metabolome- and             
transcriptome-wide association study using the entire NMR spectral information to characterize           
the urine metabolomes of 555 subjects and RNAseq data of lymphoblastoid cell lines (LCLs)              
derived from the same set of individuals. LCL have been widely used in genomic studies and                
proven their worth as faithful surrogates of primary tissues for studying both gene expression              
variation among individuals and the genetic architecture underlying regulatory variation of           
gene expression [13-16]. LCLs thus present an interesting system whose genetic variance in             
expression resembles that of the cell types affecting the urine metabolome, with the added              
advantage of not being influenced by immediate environmental factors such as recent changes             
in the diet or exposure to a drug. Despite having limited statistical power and using surrogate                
tissue, we identified two strong associations between gene expression levels and urine            
metabolome features, which allowed us to refine previous links between the corresponding            
genes and metabolites.  
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Materials and Methods 

Study samples 

Our 555 transcriptomics and metabolome profiles were measured in a randomly selected            
subset of individuals from CoLaus (Cohorte Lausannoise), a population-based cross-sectional          
study of 6,188 participants residing in Lausanne, Switzerland [17]. Recruitment to the cohort             
was done on the basis of a simple, non-stratified random selection of the entire Lausanne               
population aged 35 to 75 in 2003. The 555 samples selected for this study had a mean age of 55                    
(min=35, max=75) and 53% of them were women. 

Metabolomics data  

We used two metabolomics data sets; the first dataset was acquired at baseline for 555 subjects                
and the second dataset was acquired five years later for a subset of 301 subjects. Baseline                
urinary metabolic profiles were generated using one-dimensional proton nuclear magnetic          
resonance (NMR) spectroscopy. NMR spectra were acquired at 300 K on a Bruker 16.4 T Avance                
II 700 MHz NMR spectrometer (Bruker Biospin, Rheinstetten, Germany) using a standard 1H             
detection pulse sequence with water suppression. The spectra were referenced to the TSP signal              
and phase and baseline corrected. We binned the spectra into chemical shift increments of 0.005               
ppm, obtaining metabolome profiles of 2,200 metabolome features, of which 1,276 remain after             
filtering for missing values [18]. Lastly, the dataset was log10-transformed and standardised            
first across features and then samples, to make samples and feature intensities comparable.  

The follow-up data was acquired with an Avance III HD 600 NMR spectrometer. These spectra               
were referenced to the TSP signal and phase and baseline corrected. We binned the chemical               
shifts into 0.005 ppm bins. After removing water and urea spectral regions (4.55-5.00 ppm and               
5.5-6.1 ppm), the dataset was log10-transformed and standardised first across features then            
samples, to make samples and feature intensities comparable. Lastly, we performed principal            
component analysis (PCA) to detect outliers and 33 spectra with components scores            
below/above 3.5 standard deviations from the average of all components scores were removed.             
Our final metabolic dataset includes 1,289 features. 

Gene expression data 

Total RNA was extracted from Epstein–Barr-virus-transformed lymphoblastoid cell lines (LCLs)          
by following the Illumina TruSeq v2 RNA Sample Preparation protocol (Illumina, Inc., San Diego,              
CA) by the Department of Genetic Medicine and Development at the University of Geneva. Next               
mRNA sequencing was performed on the Illumina HiSeq2000 platform producing 49bp           
paired-end reads. Paired-end reads were mapped to human genome assembly GRCh37 (hg19)            
with GEMTools using GENCODE v15 as gene annotation [19]. The reads were then filtered for               
correct orientation of the two ends and a minimum quality score of 150 while allowing 5                
mismatches at both ends. Gene level read counts were quantified with an in-house script. This               
resulted in expression profiles of 45,470 genes for 555 individuals, which were quantified as              
RPKM values. Later, we transformed RPKM values by applying log-transformation          
[log 2(1+RPKM)] and then standardisation across samples to make genes comparable. For our            
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analysis we removed all genes on the sex chromosomes, as well as mitochondrial DNA genes               
from the gene expression data, resulting in 43,614 genes to use in the association analysis.  

Genotypic data 

Genotyping was performed by using the Affymetrix GeneChip Human Mapping 500 K array set              
and the imputation was carried out for HapMap II SNPs. Further details of genotype calling and                
the imputation can be found in [18]. 

Association analysis 

All statistical analyses were performed using Matlab [20]. Urine metabolome features were rank             
normalized in order to have comparable intensities before they were used as response variables              
in regression.  

We used a linear regression model for each pair of metabolome feature (as the response               
variable) and gene expression level (as the explanatory variable). The model also included the              
following common confounding factors: age, sex, the first four principal components of the             
genotypic data (correcting for population stratification) and the first 10 principal components of             
the gene expression data (correcting for potential batch effects). We tested 1,276 metabolome             
features for association with the expression of 19,123 protein coding and 24,491 non-coding             
genes. For the completeness of the analysis we did not apply any a-priori exclusion criteria to                
remove genes from the analysis. As a consequence, the distribution of genes RPKM values with               
significant associations were evaluated to ensure close to normality distribution for accurate            
regression estimations. We applied a nominal Bonferroni threshold for multiple testing p max =             
0.05/(125×1,109) = 3.6 -7 by taking into account the effective number of tests which we  10×             

estimated to be 125 for metabolome features and 1,109 for genes (i.e. the number of principal                
components explaining more than 95% of the data [21]). Only associations with p-value below              
p max  were considered significant.  

Metabomatching 

Metabomatching is a method to identify metabolites underlying associations of SNPs with            
metabolome features [18, 22]. It compares the association profile of a given variable with all               
metabolome features across the full ppm range, so-called pseudospectrum, with NMR spectra of             
pure metabolites available in public databases such as HMDB [23]. For each metabolite m,              
metabomatching defines a set of features that contains all the features f that fall within a      (m)F δ            

δ ppm vicinity of any NMR spectrum peak of m listed in the database. Metabomatching then                
computes the sum 
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Assuming a -distribution for the sum with degrees of freedom, metabomatching  χ2      F (m)|
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defines a score for each m as the negative logarithm of the nominal p-value corresponding to the                 
observed sum. These scores are calculated for all the metabolites with 1H NMR spectrum in the                
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database, allowing to rank them based on their likelihood to underlie the association of the               
variable with the metabolome features. 

Although metabomatching was originally developed to use SNP-metabolome associations,         
recently it has been shown that it can also use co-varying features of metabolome data itself to                 
identify metabolites [24]. In the present study we use metabomatching to identify metabolites             
that are associated with gene expression. 

Mendelian randomization  

We performed Mendelian randomization (MR) analysis [25, 26] to assess the causal relationship             
between gene expression and metabolite concentration. While we used SNPs as instrumental            
variables (IVs), gene expression and metabolome features were interchangeably used as           
exposure and outcome to determine the direction of causality. For the MR analysis, we used               
summary statistics from mQTL/eQTL studies with higher statistical power [27, 28]. Causal            
effects were estimated by using the Wald method where the effect of a genetic variant on the                 
outcome is divided by the effect of the same genetic variant on the exposure [29]. Next, ratio                 
estimates from different instruments (SNPs) were combined by the inverse variance weighted            
method (IVW) to calculate the causal estimate [30].  

We selected significant SNPs from relevant eQTL/mQTL studies as our IVs. To detect the              
independent SNPs, we used a stepwise pruning approach where we first selected the strongest              
lead eQTL/mQTL and then pruned the rest of the SNPs in a stepwise manner if they were                 
correlated with the lead SNP (r 2 > 0.2). We repeated the pruning process with the next available                 
SNP until there were no SNPs left to prune. We used Cochran’s Q test to determine                
heterogeneity among the candidate instruments [31]. The SNPs were pruned in a stepwise             
manner from the model until the model did not show any more signs of heterogeneity               
(Cochran’s Q statistic p-value > 0.05/#of original instruments). We also applied more robust MR              
analysis methods than IVW, such as the median estimator and MR-Egger regression to evaluate              
the significance of the causal estimates [32]. These methods are known to have more relaxed               
MR assumptions and they can tolerate the violation of the exclusion-restriction assumption for             
some instruments. For all MR analysis we used the Mendelian Randomization package            
implemented in R [33]. 

 

Analysis & Results 

Association analysis 

We performed an untargeted metabolome- and transcriptome-wide association study by          
pairwise linear regression of log-transformed expression levels of each of the 43,614 genes (as              
response variable) onto each of the 1,276 metabolome features (as explanatory variable). The             
metabolome features resulted from binning the raw urinary NMR spectra with a bin-size of              
0.005 ppm, and rank normalizing each bin passing QC (see Methods). The gene expression              
levels, quantified as RPKM, were measured using RNAseq on lymphoblastoid cell lines derived             
from the same set of 555 subjects.  
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Figure 1 shows the qq-plot of all pairwise associations. It is well calibrated, and only two                
association p-values (both involving the ALMS1 gene, see below) are highly significant            
(FDR<0.05). Yet, applying an adjusted Bonferroni threshold of 3.6 -7 to account for the        10×      

effective number of independent variables (see Methods) we identified 25 additional marginally            
significant feature-gene associations. The 27 association pairs involved 22 unique genes and 25             
unique features. We did not apply any a-priori exclusion criteria to remove genes from the               
analysis. Instead, we inspected the expression value distributions of these 22 significant genes             
in order to identify cases in which the small p-value may be due to a problematic distribution of                  
the expression values. Indeed, we observed that some of the genes had zero expression values               
for a sizable fraction of the samples and very low expression values otherwise. Based on the                
distributions we filtered out all genes that had more than 95% RPKM values equal to 0 and a                  
maximum RPKM value over all samples lower than 1. Applying this rather mild filtering              
removed 11,547 out of the 43,614 autosomal genes (26%) and 1,994 out of 19,123              
protein-coding genes (10%). Amongst the 22 marginally significant associations five (23%)           
were removed. Expression distributions of the discarded as well as remaining genes are             
presented in Supplementary Figure 1 and 2, respectively. We report the remaining 21             
significant associations corresponding to 17 unique genes and 19 unique features in Table 1. 

 

   

Figure1: QQ-plot showing -log10(p)-values of metabolome- and transcriptome-wide association analysis.          
The features that significantly associate with ALMS1 expression are ranking as 1st, 2nd and 8th; the                
features associated with HPS1 expression are ranking as 3rd and 5th and the features associated with                

ALMS1P expression are ranking as 6th and 7th. 
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Table 1: 21 study-wide significant associations from metabolome- and transcriptome-wide association           
analysis, corresponding to 17 unique genes and 19 unique features. Abbreviations: GeneID - Ensembl              
Gene ID (NCBI build 37), Chr - chromosome, X  - effect size, P  - P-value. 
 

Metabolite discovery 
To find the metabolites underlying these significant associations between gene expression           
levels and metabolome features we used metabomatching. Metabomatching has been previously           
established as an effective tool for prioritizing candidate metabolites underlying          
SNP-metabolome features association profiles, so-called pseudospectra [18, 27]. In this study           
we used association profiles of genes which had at least one significantly associated metabolite              
feature as input to metabomatching and found that the pseudospectra of ALMS1 and ALMS1P              
matched well with the N-Acetylaspartate (NAA) NMR spectrum and that the pseudospectrum of             
HPS1 matched well with the trimethylamine (TMA) NMR spectrum (Figure 2). 

As shown in Table 1, the expression of ALMS1 significantly associates with three neighboring              
features at 2.0375 ppm (p-value= -16), 2.0325 ppm (p-value=7 -16) and 2.0275 ppm    ×102    10×     

(p-value=3 -7). There are few metabolites with resonances in this region and usually a singlet10×               

signal in this area is interpreted as the N-acetylated resonance detected in the 1H NMR spectrum                
of N-acetylated compounds [37]. As illustrated in Figure 2A, among the top three metabolites              
suggested by metabomatching that have a peak at 2.03 ppm, the only one with the highest                
intensity peak at this position is NAA. Also the presence of a secondary peak in the                
pseudospectrum at 7.9225 ppm matches well with one of the lower intensity peaks of the NMR                
spectrum of NAA reported at 7.92 ppm in HMDB, even though the association p-value of this                
feature is below the Bonferroni threshold (p-value=2 -4). Similarly, metabomatching the      10×     

pseudospectrum of ALMS1P (ALMS1 pseudogene) points to NAA as the most likely matching             
N-acetylated compound (Supplementary Figure 3). The metabolome features pointing to NAA           
are the same features as in ALMS1 but with lower association p-values (2.0375 ppm with               
p-value=1 -7, 2.0325 ppm with p-value=  8 -8 , 7.9225 ppm with  p-value= 2 -4).10× 10× 10×  
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The reference spectrum of NAA in the Urinary Metabolome Database (UMDB) that we used for               
metabomatching was recorded in water. In order to verify that the peaks of this spectrum are                
comparable to those of NAA in urine, we spiked NAA into pooled urine samples from our                
collection at a concentration of 10 mM and recorded its 1H NMR spectrum. Inspecting the 5                
multiplet regions of NAA, we concluded that the NAA peak positions are very similar in both                
solvents (Supplementary Figure 4). To further investigate if a better match exists among all the               
N-acetylated family of compounds, we built a library consisting of all N-acetylated compounds             
proton NMR spectra available in HMDB and the Biological Magnetic Resonance Data Bank             
(BMRB). NAA remained the best metabomatching hit for the ALMS1 pseudospectrum           
(Supplementary Figure 5). Figure 3 illustrates the relationship between ALMS1 gene expression            
level and the NAA metabolite concentration where every point in the plot represents a study               
sample and each of the samples are color coded according to the genotype at rs7566315 SNP,                
that is an eQTL of ALMS1 and mQTL of NAA. 

The third and fifth strongest associations in Table 1 are between HPS1 gene expression and two                
neighboring metabolome features at 2.8725 ppm (p-value=2 -8) and 2.8575 ppm (p-value=      10×      

8 -8), respectively. Figure 2B shows the metabomatching result of the HPS1 pseudospectrum.10×             

Among the top three metabolites suggested by metabomatching, trimethylamine (TMA) is the            
most plausible metabolite driving the association pattern, as it is the only metabolite with its               
highest intensity NMR peak at 2.86 ppm region and no missing peaks. Schematic representation              
of the match between pseudospectra and the NMR spectra for both ALMS1 and HPS1 can be seen                 
in Supplementary Figure 6. 
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Figure 2: Metabomatching figures showing the pseudospectra derived from gene expression -           
metabolome features associations [22]. The features in each pseudospectrum are color-coded by the sign              
of the effect size and the four highest ranking candidate metabolites are listed on the lower left with their                   
reference NMR spectra shown on the right (color coding indicating their relative peak intensities). A)               
CoLaus urine metabolome-ALMS1 gene expression association profile metabomatching figure. Leading          
features allowing metabolite identification are at 2.03 ppm and 7.92 ppm regions which match well with                
the highest intensity peak of NAA and one of the lower intensity peaks of the NAA NMR spectrum,                  
respectively. B) CoLaus urine metabolome - HPS1 gene expression association profile metabomatching            
figure. Leading features allowing metabolite identification are at 2.87 and 2.86 ppm which match well               
with TMA singlet. 
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Figure 3: SNP rs7566315, showing a mQTL effect on NAA and an eQTL effect on ALMS1 gene expression.                  
Each point represents a study sample. NAA concentration is approximated by the feature at 2.0375 ppm                
that is log10 transformed after feature- and sample-wise z-scoring (y-axis). ALMS1 expression is             
quantified as log2 transformed RPKM+1 values (x-axis). Color code represents the genotype of rs7566315              
(legend). 

 

Validation of ALMS1 and HPS1 associations 

To the best of our knowledge, there is no other study with urine NMR spectra and expression                 
data of LCLs derived from the same subjects that is of comparable or larger sample size,                
precluding proper out-of-sample replication of our results. We have, however, access to            
additional urine NMR spectra from samples collected for a subset of 301 CoLaus subjects in a                
follow-up study conducted five years after the baseline data collection. We note that the              
follow-up NMR data are not independent from the baseline data, yet they were obtained from               
physically different samples collected at a significantly later time and processed in a different              
NMR spectrometer and facility. As for the expression data, we only have those from LCLs               
derived from blood taken at baseline, so we could only test whether the associations we               
observed between baseline metabolomics and baseline transcriptomics measurements would         
persist as associations between follow-up metabolomics and baseline transcriptomics data. 

We thus asked whether our significant and marginally significant results can be confirmed also              
using the follow up metabolomics data. We focused on the ALMS1 and ALMS1P gene expression               
association with NAA and the HPS1 gene expression association with TMA. As baseline and              
follow-up urine NMR data were each processed and binned individually, the features did not              
correspond one-to-one between the studies. To test the association of these three genes with              
relevant features, we selected all features within +/- 0.03 ppm neighborhood of top features              
associated with these genes from baseline dataset; i.e. 2.0375 ppm for ALMS1 and ALMS1P, and               
2.8575 ppm for HPS1. This resulted in 12 features to test for each of the genes. We used a                   
Bonferroni multiple testing corrected p-value threshold of 0.05/(12 features x 3 genes) = 1.4             

-3.10×  
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In the follow-up, ALMS1 gene expression level significantly associated with three neighboring            
features at 2.042 ppm (p-value=5.1 -7), 2.037 ppm (p-value=3.7 -6) and 2.032 ppm    10×    10×     

(p-value=3.9 -4), likely corresponding to the features at 2.0375 and 2.0325 ppm in the10×              

baseline association study. HPS1 gene expression level significantly associated with 2 features at             
2.869 ppm (p-value=2.2 -5) and 2.859 ppm (p-value=1.3 -3) that likely correspond to the  10×     10×       

features at 2.8725 and 2.8575 ppm in the baseline dataset. ALMS1P however did not show any                
significant association with candidate features in the follow-up study. Supplementary Table 1            
summarises our validation results. 

Comparison with mGWAS results  

We performed an association study with metabolome features in the NAA and TMA NMR peak               
regions using data from 826 individuals of the CoLaus cohort for whom the urinary NMR               
spectra are available (similar to [18]). Figure 4A shows the locuszoom figure of SNPs in loci                
surrounding ALMS1/ NAT8 locus with significant association p-values with metabolome feature          
at 2.0375 ppm. The SNPs most strongly associated with this metabolome feature are correlated              
with each other and lie within a locus containing ALMS1, ALMS1-IT1, NAT8 and ALMS1P genes               
(r 2>0.8). In Figure 4B, we show the p-values for association of expression values from nine               
genes with five different metabolome features that represent all multiplet regions of NAA (see              
Supplementary Figure 4 for a wider range of genes in the locus). ALMS1 and ALMS1P have the                 
most significant association results with the 2.0375 ppm feature, compared to the rest of the               
genes. Concordantly, ALMS1 and ALMS1P gene expression levels are associated more           
significantly to the feature at 7.9225 ppm, the secondary feature in our NAA identification,              
compared to the other genes at the locus. Figure 5A shows the significant association pattern of                
SNPs in the loci surrounding HPS1/ PYROXD2 locus with metabolome feature at 2.8725 ppm and              
Figure 5B shows the significance level for association of expression values from seven genes              
with the same metabolome feature. Even though the SNPs with the most significant association              
with feature 2.8725 are physically located closer to PYROXD2 gene rather than HPS1 gene, the               
expression level of PYROXD2 does not show significant association with this feature. Inspecting             
the list of published mGWAS in humans [38], we found that the SNPs in both ALMS1 and HPS1                  
loci have been previously reported to associate with a number of metabolic traits (Tables 2).               
The ALMS1 locus has previously been associated with a number of N-acetylated compounds,             
while HPS1 locus has been associated with various metabolites including trimethylamine and            
dimethylamine [18, 27, 36]. In mGWAS studies determining the mediator genes is not a              
straightforward procedure, as mQTL SNPs are indistinguishable from neighboring SNPs in LD,            
and mediator genes of the mQTLs are often inferred based on their physical proximity to the                
SNPs or functional relevance. Consequently, published mGWAS studies were not able to            
distinguish between NAT8 and ALMS1 or HPS1 and PYROXD2 as mediator genes of NAA and               
TMA, respectively. In contrast, in the current association study we use gene expression data              
allowing us to pinpoint ALMS1 and HPS1 as mediator genes. 
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Table 2: List of published mGWAS results in humans concerning ALMS1/ NAT8 and HPS1/ PYROXD2 loci.              

MS:Mass Spectrometry, numbers in reported mGWAS results section refer to NMR spectral shift positions              
in ppm. 

 

To further evaluate the possible regulation of NAA and TMA by other genes suggested by               
published mGWAS studies, we investigated the metabomatching plots of these genes in order to              
see if they pointed to any N-acetylated compounds/TMA. The investigated genes either (a) were              
the target of an eQTL SNP that is mQTL of NAA/TMA, or (b) were within 500kb of ALMS1/ HPS1.                  
However none of these candidate genes produced a pseudospectrum containing even a single             
nominally significant  signal pointing to NAA/TMA. 
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Figure 4: A) LocusZoom plot for ALMS1/NAT8 locus, where the SNPs are associated with metabolome               
feature at 2.0375 ppm, LD colored with respect to lead mQTL. B) Bar plot shows -log 10 transformed                 
p-values from associating expression values of nine genes in the locus with the five NAA features. 
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Figure 5: A) LocusZoom plot for HPS1/PYROXD2 locus, where the SNPs are associated with metabolome               
feature at 2.8725 ppm, LD colored with respect to lead metaboliteQTL. B) Bar plot shows -log 10                

transformed p-values from associating expression values of seven genes in the locus with the TMA feature                
at 2.87 ppm. 
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Causality analysis  

We performed MR analysis using summary statistics from the eQTLGen Consortium [28] and             
Raffler et al. [27] for eQTL and untargeted mQTL results, respectively. We investigated both the               
causal effect of the gene expression on the metabolite concentration and vice versa for the               
ALMS1-NAA and HPS1-TMA gene-metabolite pairs. 

In the MR analysis where we investigated the causal effect of ALMS1 gene on NAA concentration,                
instrumental variables (IVs) were selected among the SNPs that were reported as significant             
eQTLs (FDR<0.05) in eQTLGen and that were also measured in Raffler et al., resulting in 86                
SNPs. By applying the stepwise pruning approach (see Methods) we found 14 independent SNPs              
as candidate IVs. Next, we performed Cochran’s Q test to detect heterogeneity among these 14               
SNPs and removed a further three of those, resulting in 11 SNPs as potentially valid IVs to use                  
in the MR analysis (see Methods). As for the outcome, we used NMR peak intensities as proxies                 
for the concentration of NAA as there were no targeted studies reporting summary statistics              
explicitly for NAA concentration. To this end we used the peak at 2.0308 ppm reported in Raffler                 
et al., as this peak is the highest peak in the NAA spectrum and often used to estimate the                   
concentration of N-acetylated compounds (NAC) [36, 39]. NAA has other NMR peaks in its              
spectrum, yet the observed intensities at these peaks are much lower and therefore difficult to               
detect robustly by NMR spectroscopy. Indeed these peaks were only weakly correlated amongst             
themselves and with the main peak at 2.03 ppm region (pearson rho<0.5), so they were too                
noisy to define a more robust estimate of the NAA concentration than the main peak on its own.                  
For these reasons we decided to perform our MR analysis using only the intensity measure at                
2.03 ppm as outcome, which implies therefore that we studied the causality of any NAC rather                
than NAA specifically. Causal effect estimates given by different meta-analysis methods are            
reported in Table 3. All methods agreed on ALMS1 expression level being causal for NAC               
concentrations. 

For the completeness of the analysis, we also tested the causal effect of NAC on ALMS1 gene                 
expression level. IVs were selected among the SNPs that were reported as significant mQTLs              
(p-value < 1 -6) in Raffler et al. [27]. Amongst the cis-eQTLs of ALMS1 from eQTLGen, most  10×               

candidate IVs seemed to have direct pleiotropic effect on ALMS1 expression in cis, reflected by               
the strong heterogeneity between their expected and observed effects. To overcome this            
problem we sought to use also trans-eQTLs of ALMS1, however none of the candidate IVs were                
measured in the trans-eQTL study of eQTLGen. As an alternative, we performed an association              
study between the candidate IVs and ALMS1 gene expression level as measured in CoLaus and               
used these eQTL results in the MR analysis. Overall, we identified 26 significant mQTLs for the                
2.03 ppm feature in Raffler et al. (p-value < 1 -6) which corresponded to six independent         10×       

SNPs. Two of the six candidate IVs exhibited pleiotropic effects and they were removed from               
the analysis. Finally, we had four SNPs as potentially valid IVs to use in the MR analysis (see                  
Methods). Causal effect estimates given by different meta-analysis methods are reported in            
Table 3. None of the methods found NAC concentration to be causal for ALMS1 gene expression                
level. However, it should be noted that due to low sample size of trans-eQTL study, this                
particular MR analysis was underpowered. 
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Table 3: MR results for testing causal effect of ALMS1 gene expression levels on N-acetylated compounds                
(ALMS1 -> NAC) and MR results for testing causal effect of N-acetylated compounds on ALMS1 gene              
expression levels (NAC -> ALMS1 ) using summary statistics data. 

 

For the MR analysis of the HPS1 gene, IVs were selected among the SNPs that were reported as                  
significant eQTLs (FDR<0.05) in eQTLGen and that were also measured in Raffler et al. [27]. As                
for the outcome, similarly to NAA, there were no studies reporting targeted summary statistics              
for TMA concentration, therefore we used the NMR peak intensities to estimate the             
concentration of TMA. According to HMDB, TMA has one singlet at 2.89 ppm where the peak                
position ranges from 2.79 to 2.99 ppm. In the Raffler et al. dataset we used the intensity of                  
feature at 2.8541 ppm as a proxy of TMA concentration. For the MR analysis we had 77                 
candidate SNPs six of which were selected as valid IVs as they were independent and did not                 
exhibit heterogeneity (see Methods). Causal effects estimated by using different meta-analysis           
methods are reported in Table 4. All of the methods agreed on HPS1 gene expression having a                 
causal effect on TMA concentration.  

We also explored the causal effect in the other direction, testing the causal effect of TMA                
concentration on HPS1 gene expression. There were 87 significant mQTLs in Raffler et al. [27]               
that were also measured in eQTLGen. By applying the stepwise pruning approach and removing              
the SNPs showing heterogeneity (see Methods) we had 18 SNPs to use as IVs in the MR analysis.                  
Causal effects estimated by using different meta-analysis methods are reported in Table 4. All of               
the methods agreed on TMA concentration being causal on HPS1 expression. To sum up, the               
estimated causal effect size of HPS1 on TMA ranged from 0.27 to 0.37 depending on the method,                 
while the causal effect size of TMA on HPS1 was around -0.09, pointing to the existence of a                  
negative feedback loop.  

 

Table 4: MR results for testing causal effect of HPS1 gene expression level on TMA (HPS1 -> TMA) and                 
MR results for testing causal effect of TMA on HPS1 gene expression level (TMA -> HPS1 ) using summary                
statistics data. 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 25, 2020. . https://doi.org/10.1101/2020.05.22.110197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110197
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussions & Conclusion 

In this study, we present a metabolome- and transcriptome-wide association study using            
matching RNA-seq and NMR urine profiles from 555 subjects of the CoLaus cohort. This is the                
first time such a study is performed on untargeted urine metabolome of healthy individuals. In               
contrast to targeted approaches that are restricted to a limited set of urine metabolites, our               
association study uses the binned features of the entire 1H NMR spectra as metabolic traits. We                
identified one gene (ALMS1 ) whose association with two adjacent NMR features around 2.03             
ppm is highly significant, surviving even the most conservative correction for multiple            
hypotheses testing. 16 additional genes are associated with metabolic features with marginal            
significance with p-values below an adjusted threshold accounting for the estimated number of             
independent variables (see Table 1). Among the top 17 genes, 10 are in loci with SNPs that have                  
been previously reported as mQTLs. This shows the sensitivity of our study to extract likely               
candidates of metabolically relevant genes, despite its small sample size and low power. 

We used metabomatching to search for promising metabolite candidates underlying gene           
expression-metabolome features associations. This approach was particularly insightful for our          
top hit ALMS1, as well as the strongest marginally significant association involving HPS1: Both              
genes had previously been implicated by mGWAS linking their loci to compound families.             
However, in both cases the reported mQTL also harbored other genes, leaving the exact              
gene-metabolite association ambiguous.  

Specifically, the locus associated through mGWAS with N-acetylated compounds includes both           
ALMS1 and the NAT8 gene [18, 27, 36, 39], and the latter seemed to be the more likely candidate                   
due to its known N-acetyltransferase activity. Yet, our association study using transcriptomics            
data only implicates ALMS1 and not NAT8. Thus, while we cannot rule out a functional role of                 
NAT8, the mQTLs of this locus likely act, at least predominantly, as eQTLs through ALMS1,               
pointing to its regulatory role in modulating the compound concentration. This metabolic role of              
ALMS1 is also supported through its known role in Alström syndrome characterised by             
metabolic deficits (PMC6327082) and kidney health disorder phenotypes [40]. Interestingly, in           
the mGWAS reported by Montoliu et al. using data from a Brazilian cohort, the authors observed                
the association between N-acetylated compounds and the SNPs located in ALMS1/ NAT8 locus            
with stronger SNP associations in the ALMS1 gene rather than NAT8 [39] . They argued that the                 
high ethnic diversity of their study population might have been responsible for breaking down              
the linkage disequilibrium in the ALMS1/ NAT8 region of the genome, resulting in a stronger              
association for SNPs close or in the ALMS1  gene compared to other studies. 

Our study also sheds more light onto the involved compound: Applying metabomatching on the              
pseudospectrum from association of all NMR features with the ALMS1 expression level using a              
database composed of all N-acetylated compounds NMR spectra, suggested NAA as the best             
matching metabolite due to the presence of a secondary peak at 7.92 ppm and not missing any                 
high intensity peaks unlike other N-acetylated compounds (Supplementary Figure 5).          
Interestingly, NAA is the second most abundant metabolite in the brain and involved in neural               
signalling by serving as a source of acetate for lipid and myelin synthesis in oligodendrocytes               
[41]. NAA can be detected in urine of both healthy and unhealthy individuals in low               
concentrations [42] and it has a long history of being a surrogate marker of neural health and a                  
broad measure of cognitive performance [43, 44]. Recently it has been shown that NAA              
correlates with time measures of neuropsychological performance [45]. The signals of SNPs in             
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ALMS1 by GWAS with intellectual phenotypes such as self-reported ability in mathematics [46,             
47] might therefore be due to its role in modulating NAA. This conjecture of course assumes that                 
NAA levels in relevant brain tissues reflect those in urine and that the ALMS1 expression               
variation, and in particular its genetic component, in LCLs or blood, can serve as a proxy for                 
brain tissue. As for HPS1, our second strongest association of a gene expression level with urine                
NMR features, we note that mGWAS previously associated its locus with TMA levels [18, 27, 36].                
Yet, most of these studies, including the aforementioned GWAS using a Brazilian cohort [39]              
considered the PYROXD2 gene, which is in the same locus, as the most likely modulator of TMA                 
concentrations due to its known function as pyridine nucleotide-disulfide oxidoreductase. While           
we cannot rule out that this gene is indeed involved in TMA metabolism, in contrast to HPS1 we                  
have no evidence for association of PYROXD2 expression levels with TMA. Thus, our data              
indicates that the mQTLs of this locus act predominantly as eQTLs through HPS1, pointing to its                
regulatory role in modulating TMA. 

Our work illustrates the potential of metabolome- and transcriptome-wide association studies           
for deciphering gene-metabolite relationships. In particular, even with our modest sample size            
of 555 matched profiles we already had enough power to detect one significant and several               
marginally significant associations. Moreover, our two strongest associations pinpointed genes          
in loci implicated by mGWAS as the most likely candidates for transcriptional metabolite             
regulation. We also showed the possibility of extending correlative work and studying the             
causal relationship between gene expression levels and metabolite concentrations. Our          
Mendelian randomization study supported the causal role of ALMS1 gene expression levels on             
N-acetylated compound concentration, whereas for HPS1 we observed a negative feedback loop            
between its expression levels and TMA metabolite concentrations. Furthermore, this work           
demonstrated that our metabomatching tool, whose usefulness for elucidating candidate          
metabolites from mGWAS association profiles [18, 22] as well as auto-correlation signals in             
NMR data [24] was demonstrated previously, performs equally well on pseudospectra           
generated by association with gene expression levels.  

Our study has many limitations: First, we only had access to gene expression levels of LCLs.                
While blood and such blood-derived cells are the easiest samples one can obtain from healthy               
subjects, their expression levels in many cases may only reflect poorly those of the relevant cells                
and tissues. Furthermore, metabolic reactions are of course driven by enzymes whose protein             
concentration determines the metabolic rate, and variation in gene expression levels is only one              
source of variation in active enzyme concentration (next to post-transcriptional and           
post-translational modifications, as well as their decay rate). Second, metabolite concentrations           
in urine correspond to excess that is cleared from the body, which depends on food intake and                 
provide a poor proxy for many metabolite concentrations in their relevant location.            
Nevertheless, our study shows the promise of co-analyzing two or more distinct molecular traits              
observed in the same cohort. 
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ABSTRACT: Identification of metabolites in large-scale 1H NMR data from
human biofluids remains challenging due to the complexity of the spectra and their
sensitivity to pH and ionic concentrations. In this work, we tested the capacity of
three analysis tools to extract metabolite signatures from 968 NMR profiles of
human urine samples. Specifically, we studied sets of covarying features derived
from principal component analysis (PCA), the iterative signature algorithm (ISA),
and averaged correlation profiles (ACP), a new method we devised inspired by the
STOCSY approach. We used our previously developed metabomatching method to
match the sets generated by these algorithms to NMR spectra of individual
metabolites available in public databases. On the basis of the number and quality of
the matches, we concluded that ISA and ACP can robustly identify ten and nine
metabolites, respectively, half of which were shared, while PCA did not produce any signatures with robust matches.

KEYWORDS: 1D NMR automated analysis, metabolite identification, modular analysis, STOCSY, ISA, pseudoquantification,
NMR spectroscopy, untargeted metabolomics

■ INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is a powerful
technique for metabolomic profiling. NMR spectroscopy does
not consume the sample and has high accuracy and
reproducibility. Single proton NMR spectroscopy (1H NMR)
can be used to generate one-dimensional spectra of biofluids at
high throughput and low cost, facilitating the generation of large
sets of spectral data.
A first step in NMR spectral analysis is usually to identify the

mainmetabolites giving rise to a given spectrum or set of spectra.
This is nontrivial, since human biofluids typically contain a large
number of individual metabolites and their corresponding peak
positions may overlap and are often affected by the pH, ionic
strength, and overall protein content of the fluid.
For small sets of samples, expert analysis is therefore still the

most accurate means for metabolite identification, yet for large
sets this approach is costly, time-consuming, and potentially less
reproducible. As a result, various methods have been suggested
to assist or fully automate metabolite identification.
In their landmark paper on statistical total correlation

spectroscopy (STOCSY), Cloarec et al. showed that analyzing
the correlation patterns between features across a sizable
collection of 1H NMR spectra has great potential for metabolite
identification.1 This is because features corresponding to the
same molecule (or molecules whose concentrations covary)
tend to be significantly correlated in large data sets. Analyzing
data from 612 mouse urine samples, they observed that the

correlation matrix exhibited correlated peaks of features
characteristic of valeramide, glucose, hippurate, 2-oxoglutarate,
3-hydroxyphenylpropionate, citrate, as well as methylamine,
dimethylamine, and trimethylamine.
Subsequent variations of STOCSY attempted to make

clusters of NMR peaks to simplify the interpretation of the
information stored in the correlation matrix from STOCSY
analysis. Recoupled-STOCSY (R-STOCSY) employs a variable
size bucketing method to reduce the dimensionality of NMR
data and statistical recoupling of variables (SRV) to identify
correlations between distant clusters.2 Iterative-STOCSY (I-
STOCSY) aims at separating the intermetabolite connections
from intrametabolite connection by recursively applying
STOCSY analysis first from a selected driver peak and then for
all peaks correlating with the driver peak above a specific
threshold.3 Subset optimization by reference matching
(STORM) selects subsets of 1H NMR spectra that contain
specific spectroscopic signatures of biomarkers differentiating
between different human populations.4

Once metabolite identification has been achieved, the next
challenge is to quantify metabolite concentrations. This process
works robustly only for a relatively small set of metabolites, and
requires expert refinement when using publicly available
quantification tools such as BATMAN,5 FOCUS,6 BAYESIL,7
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ASICS,8 AQuA,9 or rDolphin.10 This is unsatisfactory in light of
the fact that a sizable number of metabolites have been identified
in human biofluids. For example, the latest version of theHuman
Metabolome Database (HMDB 4.0)11 includes more than 1500
metabolites with 1H NMR spectra, 179 of which have been
identified in urine12 and 67 in serum.13,14

There are several reasons why it remains difficult to perform
fully automated quantification from large-scale NMR data for
the vast majority of metabolites. First, human biofluids contain a
large number of individual metabolites whose concentrations
vary across several orders of magnitude. This makes it difficult to
disentangle the contributions of metabolites with low
concentrations, in particular when their NMR features are not
unique. Second, the exact feature positions depend on the
biofluid and may have been different when acquiring reference
spectra. Third, while the number of reference spectra continues
to grow, reference databases are certainly not yet exhaustive.
In two recent studies, we demonstrated that the limitations of

targeted NMR metabolomics can be addressed by linking
metabolites to external variables.15,16 Specifically, in the context
of genome-wide association studies (GWAS) applied to
metabolomics (known as mGWAS) the aim is to associate
metabolites with genotypic variants. We observed that the effect
of a genetic variant on the concentration of a metabolite often
translates into associations with all or many features of the
metabolite NMR spectrum. The set of association scores with all
measured features provides a pseudospectrum across the full
range of ppm covered by the 1H NMR spectra. The challenge is
then to identify the metabolite underlying the most significant
associations. To this end we developed the analysis tool
metabomatching, which takes as input a pseudospectrum and a
collection of reference spectra for individual metabolites found,
for example, in HMDB.11 Our previous work showed that
metabomatching works well to prioritize the most likely
metabolite candidates for pseudospectra derived from metab-
olome feature association with genotypes.15−17

In the present work, we tested the metabomatching
methodology for identifying metabolites that vary across large
collection of samples without the need for any external variables
associated with this variation. We investigated three methods to
identify covarying spectral features within large-scale NMRdata:
principal component analysis (PCA), the iterative signature
algorithm (ISA), and averaged correlation profiles (ACP)
inspired by the STOCSY approach. For each method, we
devised a principled way for processing their output into
pseudospectra. In addition, we extended metabomatching to
process the respective outputs of the methods, and implemented
a permutation-based robustness test to assess the quality of the
matches. This allowed us to compare the matches across
different methods, and assess the consistency or complemen-
tarity of the methods. We incorporated our analysis for
unsupervised generation of metabolomic signatures from
large-scale NMR data and integration with metabomatching
(including further documentation) into the metabomodules
software tool, which is publicly available at https://github.com/
BergmannLab/metabomodules-docker.

■ METHODS

Preprocessing

For this study, we used 968 1H NMR spectra acquired from
urine samples from the CoLaus cohort.15 The samples are

referenced to the TSP signal, phase-corrected, and baseline-
corrected.
We used the FOCUS6 tool to align and bin the spectra to a

resolution of about 0.02 ppm, and a correspondingly large
number of 687 peaks. To obtain this resolution, we set the
downsampling frequency parameter window.fs to 1 (no down-
sampling), the sliding window length for spectral segmentation
window.length to 0.03 ppm, the minimum peak width parameter
peak.DFL to 0.02 ppm, and the peak sample frequency
parameter peak.pS to 0.2, keeping the rest of the parameters at
their default values.
To normalize the data, we log-transformed, standardized

across features (thereby normalizing the concentration of each
sample), then standardized across samples (thereby making
intensities comparable).
Confounding

In order to allow for the identification of metabolites that may be
hidden by confounding, we additionally generated a data set of
residuals, created by regressing out the confounders from the
feature metabolome. The main confounding factors of the NMR
data that we investigated here are age, sex, serum creatinine, and
urine creatinine.15,16

Metabomatching

Our original metabomatching method was designed to match
the NMR spectra of individual metabolites recorded in a
database with pseudospectra from the association between
metabolome features and an external variable, typically a SNP
genotype. For a metabolite m, metabomatching computes the
sum

s F z( )m
f F

f
2

m

∑=
∈ (1)

where Fm is the set ofNf features that fall within a neighborhood
of any peak of m according to the database, and zf denotes the
significance value for feature f, and is given by zf = β̂f/SEf

̂ , where
β̂f and SEf

̂ refer to the point estimates of the effect size and its
standard error, respectively. Under the null hypothesis of
normally and independently distributed zf, the sum s follows a
χ2-distribution withNf degrees of freedom, andmetabomatching
defines the score for m as the negative logarithm of the nominal
p-value for the sum. This score is then used to rank all tested
metabolites as metabolites with more similar NMR spectra to a
given pseudospectrum achieve higher scores.
In addition to pseudospectra from regression analysis,

provided as columns headed by beta, se, and p, we extended
metabomatching to accept pseudospectra produced by PCA,
ACP, and ISA as columns headed by pca, cr, and isa respectively.
For ACP pseudospectra, metabomatching translates a correla-
tion c to a z-score with the Fisher transformation z = λ
arctanh(c). For independent features, N 3λ = − produces z-
scores with unit standard deviation, where N is the number of
samples across which the correlations are computed. However,
since proximal features are usually not independent, metab-
omatching allows for a user-provided estimate for λ (obtained
from the pairwise feature−feature correlation matrix), or re-
estimates λ from the given correlations. For ISA and PCA
pseudospectra, metabomatching standardizes the loadings or
module scores.
We used the plus/minus mode of metabomatching since

features are z-scored and have positive and negative signs. This
allows for detecting metabolites corresponding either to the
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negative or positive features (see metabomatching documenta-
tion at https://github.com/rrueedi/metabomatching for more
details).
We also introduced a measure of the quality of a match, which

allows to compare matches between different pseudospectra.
This adjusted score is obtained by reshuffling the pseudospec-
trum, and defining a heuristic p-value by the numberNp of allNr
reshuffled pseudospectra that produce a metabomatching score
(for any reference spectrum) higher than the metabomatching
score of the input pseudospectrum with the highest ranked
reference spectrum. This p-value is defined as (Np + 1)/(Nr + 1),
and the adjusted score as −log(p). We used Nr = 9999, which
sets the upper limit for the adjusted score to 4.
For the reshuffling to be consistent with the structure of NMR

spectra, metabomatching identifies cut points that separate the
pseudospectrum into peak-preserving clusters of features and
only reshuffles these clusters. The cut points are obtained as
follows. Let f i be the positions on the chemical shift axis of the
metabolome features, sorted such that f i < f i+1, and C the set of
cut points. First, metabomatching populates C with features
bordering a gap, that is a region absent from the spectrum and
larger than δgap (i.e., f i > f i−1 + δgap), with δgap = 0.3 ppm as
default value. Next it sorts the remaining features by their
corresponding absolute-valued z-scores. Starting from the
feature with the lowest absolute z-score it adds features to C
provided they have a distance greater than δmin to any features
already assigned to C and an absolute z-score below a threshold
zmin. Default values are 0.04 ppm for δmin and the standard
deviation of all absolute z-scores across the features of a given
pseudospectrum for zmin.

ACP: Averaged Correlation Profile

ACP is a greedy approach to generate a list L of feature pairs and
their corresponding correlation profiles c as input for
metabomatching: (1) We compute and sort all pairwise
correlations Cij between features f i and f j separated by at least
0.1 ppm. (2) Starting with the feature pair P = (i,j) with the
highest correlation, we successively add feature pairs to L unless
there is already a feature pair in L whose features are within 0.1
ppm of f i and f j, respectively. (3) For each feature pair in L, we
define an averaged correlation prof ile as the average of the
correlation profiles of f i and f j: ck = (Cik +Cjk)/2. The correlation
profiles of strongly correlated features are similar, consequently
their average is similar to both of them. Crucially, the average
does not contain an element equal to 1, as ci = cj = (1 +Cij)/2 < 1
given that Cij < 1 in real data. For our analysis, we limit L to 179
averaged correlation profiles, 179 being the number of spectra in
UMDB, the reference database on which metabomatching will
run.
As an alternative approach, we tried agglomerative clustering

of features, iteratively joining features (or sets of features) whose
correlation was above a threshold Cmin. At each step, we
averaged joined (sets of) features into a metafeature and
recomputed its correlation to all remaining (meta)features. We
then built a correlation profile for each feature cluster by
averaging the correlations profiles of the component features.

ISA: Iterative Signature Algorithm

ISA is a biclustering method first developed for modular analysis
of gene expression data.18,19 ISA uses a heuristic iterative
procedure starting with random features to refine modules,
consisting of self-consistent subsets of features and samples.
Each module is defined for a set of two thresholds, determining
how extreme the features and samples are allowed to be.

Importantly, scanning through an array of thresholds usually
identifies a set of modules (or module families) that is smaller
than the number of samples or features.
We first ran the ISA algorithm to generate modules from the

NMR data using the default values for the parameters except the
following: (1) we changed both row and column thresholds
from the default values {1, 2, 3} to {1, 2, 3, 4, 5, 6} to produce
modules containing fewer rows or columns that are more likely
to represent single metabolites, (2) we increased the number of
seeds from 100 to 250, and (3) we lowered the correlation
threshold below which ISA considers two modules equal to one
another from 0.95 to 0.50 to favor diversity in modules.
We allowed feature scores to be either positive or negative,

while sample scores were always positive. This means that
modules can include features which have on average higher or
lower intensities in the selected samples than for the remaining
samples. Modules which include such a mixture are likely to
represent (at least) two metabolites whose concentrations are
inversely related to each other (like a substrate and its product).
This procedure generated 216 modules. To select the 179

modules as an input for metabomatching, we sorted them by the
size of their basin of attraction. Tomeasure the basin size, we ran
ISA a second time with the same parameters, but on 10 000
seeds, turning off the sweeping option, and keeping all converged
modules (by setting the purge option to false). We then assigned
a run 2 module to the basin of the run 1 module with which it
had the highest correlation (provided that correlation be greater
than 0.5). We assumed that the run 1 modules attractor basin
size is approximately equal to the count of modules from run 2
which were assigned to them in the previous step. Finally, we
passed to metabomatching the 179 modules from run 1 with
largest basins.

PCA: Principal Component Analysis

We used the sklearn library for Python (2.7) to compute all
principal components of the preprocessed data. Specifically, we
used the decomposition.PCA object, with n_components set to
687 and svd_solver set to full.

Identification of Metabolites

After running metabomatching on the pseudospectra generated
by ISA, ACP and PCA, we applied a filtering algorithm to select
only the most robust matches among all pseudospectra. The
filtering passes only those pseudospectra which achieve an
adjusted score above 2 with their top metabolite match
(ensuring the pseudospectra finds a reasonable match by
metabomatching) and have at least one peak with z-score above
4 (ensuring there is a strong signal). Note that multiple
pseudospectra can match with the same metabolite NMR
spectrum.
Out of the 179 pseudospectra from ACP, 10 pseudospectra

matching different metabolites passed the filtering. Among
these, only for one pseudospectrum, i.e., 3.87 and 3.75, the top
match to hydroxypropionate (Figure S24) did not look
convincing because of slightly worse matches to mannitol and
arabitol (Figure S24).
Out of the 179 pseudospectra from ISA, 19 pseudospectra

matching different metabolites passed the filtering. Among
these, we discarded 9 for one or more of the following three
reasons: (1) There are several metabolites which all achieve high
adjusted scores (Figures S25 and S26). (2) There is at least one
strong peak in the pseudospectrum that does not match with any
of the spectra of the best matching metabolites (see Figures
S27−S32). This may happen for pseudospectra with a large
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number of peaks. These pseudospectra are not necessarily
biologically irrelevant and might carry a signature for two or
more related metabolites. (3) The pseudospectrum passed the
filtering, yet did not appear to have sufficiently strong signals at
the peak positions of its putative matching metabolites (Figures
S33 and S34).
We analyzed all 687 pseudospectra from PCA and observed

an elevation in metabomatching scores for the last principal
components (all between components #505−687, which jointly
explain only 1% of variation; Figures S1A, S35−S39). However,
since these components explain almost no variation in the
metabolome and the last 9 principal components matched the
same metabolite, hippurate (Figure S1D), we investigated
whether these matches rely on numerical instability. Indeed,
when we removed one feature from all feature pairs that
correlated above 0.95 (i.e., 8 features from 34 feature pairs all
belonging to hippurate multiplets regions 7.54−7.56, 7.63−
7.65, 7.83−7.84, and 3.96 ppm), and ran metabomatching on all
pseudospectra generated from the principal components of the
remaining features, only five passed the filtering (Figure S1F).
However, none of these seemed convincing when applying the
same curation as for the ISA pseudospectra.
Pseudoquantification of Metabolite Concentrations

We use the term pseudoquantification as this approach should
not be confused with traditional quantification approach which
sometimes rely on experiments that target a specific metabolite
and often require the use of proprietary software operated by an
expert.
We perform our pseudoquantification by using discrete

integration to estimate relative metabolite concentrations,
according to

c
K H

I
1 1

i
k

K

k l s r
ij j

1 k j k

∑ ∑= Δ
= ≤ ≤ (2)

where K is the number of multiplets, Hk the number of protons
in multiplet k, [lk, rk] the range of multiplet k, sj the chemical shift
of feature j, Iij the intensity of this feature in individual i, and Δj
the width of the bin at sj. For example, for hippurate K = 4, H =
[2, 2, 1, 2], l = m − 0.025, r = m + 0.025, where m = [3.98, 7.54,
7.65, 7.84]. We then evaluated this relative concentration first
using the peak positions from the reference spectrum as listed in
UMDB, and second using the peak positions as suggested by the
pseudospectrum found by the modular approach.
To perform the pseudoquantification based on the

pseudospectra of the modules, we defined a set of multiplet
positions to use in eq 2 for eachmodule that robustly identified a
metabolite. This set is composed of all the chemical shifts from
the module of interest with z-scores above 3 and within 0.025
ppm of the multiplet positions of the matching metabolite in
reference database. It includes all relevant peaks from the
metabolite detected by the modular analysis.

■ ANALYSIS AND RESULTS
In this work, we show that metabomatching can be used with
pseudospectra capturing the internal structure of large-scale
NMR data rather than their correlation with external variables.
Specifically, our premise is that in sizable sample collections
there is sufficient power for methods identifying coherent
features that may point to the same metabolite.
We used three methods for identifying weighted sets of

covarying spectral features from large-scale NMR data that can

be used as input for metabomatching (see Methods for more
details and Figure 1 for an illustration of the workflow).

Correlation-Based Pseudospectra

Our first approach to select covarying features was to use the
correlations between features across all samples. We faced two
challenges: First, using the correlations of a given feature with all
features as a pseudospectrum would break the scoring algorithm
in metabomatching, due to self-correlation of features that result
in infinite z-scores. Second, as generating only a limited number
of pseudospectra was desired ranking the input sets was
necessary to select only the most relevant ones.
To address these challenges, we devised an algorithm that

ranks all pairs of sufficiently distant features and computes
averaged correlation profiles (ACP) for pairs of highly correlated
features. Strictly speaking, ACPs are not the correlations but
they are the average correlation profiles, with the premise that
for highly correlated feature pairs the correlations to other
features tend to be similar, while none of the averages equals to
one. Within metabomatching these ACPs are then translated
into z-scores using the Fisher z-transformation (seeMethods for
more details). We also tried hierarchical clustering to define
pseudospectra from multiple highly similar features (see
Methods), but this approach did not work as well.
Iterative Signature Algorithm

ISA has been designed for the unsupervised identification of
coherent subsets in large-scale data.18,19 Specifically, coherence

Figure 1.Workflow for unsupervised analysis of large-scale NMR data.
Raw 1H NMR data are normalized then aligned. These processed
profiles are used as input for the averaged correlation profile (ACP),
iterative signature algorithm (ISA), and principal component analysis
(PCA) methods, which output correlation profiles, module scores, and
PCA loadings, respectively. These outputs constitute possible
pseudospectra for metabomatching, which identifies the most plausible
candidate metabolites underlying the coherent feature variations.
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between features is not defined by total correlation across all
samples, but rather by a subset of samples for which a set of
features takes more extreme values than for the rest of the
samples. Such a joint set of features and samples is called a
module. In order to obtain a pseudospectrum for eachmodule we
averaged each feature’s score (whether part of the module or
not) across the samples assigned to the module. These averages
were then transformed into z-scores. By definition the features of
the module have the most extreme z-scores, yet other features
that were just below the threshold may also have a sizable
contribution. We then used these z-scores as input for
metabomatching.
Principal Component Analysis

We also used PCA to compute the loadings of all features onto
the eigenvectors of the sample−sample correlation matrix across
all features. These eigenvectors (or eigensamples) characterize
independent axes of variation in sample space. The correspond-
ing eigenvalues reflect the fraction of total variation explained by
each eigenvector. It was not clear a priori which principal
components might characterize variation due to single
metabolites. We therefore applied metabomatching to all of
them. Specifically, we generated pseudospectra by standardizing
the loadings corresponding to each eigensample (see Methods
for more details).
Many Pseudospectra Defined by the ACP Method and ISA
Match to Urine Metabolites

We observed a trend of elevated metabomatching scores for
pseudospectra corresponding to principal components with
small eigenvalues (starting from component #505), jointly
explaining only 1% of variation (Figure S1A). The last nine
principal components matched to hippurate, but disappeared
when running PCA on the metabolome stripped of features that
are highly correlated to other features (see Methods; Figures
S1D and S1F). Additionally, the adjusted scores of all potential
hits decreased significantly for the stripped metabolome (Figure
S1E). We therefore concluded that PCA is not well-suited for
generating robust metabolite signatures.
In contrast, our ACP method and ISA resulted in a sizable

number of pseudospectra for which metabomatching produced
robust matches to urine metabolites (see Figure 2 and Methods
for details). Specifically, both ACP and ISA identified feature
sets pointing to glucose, citrate, ethanol, hippurate, and P-

hydroxyphenylacetate (Figures S2−S11). Glucose and hippu-
rate were among the metabolites identified by Cloarec et al. with
the correlation matrix of mouse urine NMR data.1

P-hydroxyphenylacetate shares an aromatic ring with 3-
hydroxyphenylpropionate, another metabolite highlighted in
the original STOCSY paper.1 Both compounds are part of
phenylalanine metabolism and occur as products of bacterial
degradation of aromatic compounds. In human urine high
concentrations of these compounds may reflect an overgrown
Clostridium species in gut microbiota, which has been associated
with autism spectrum disorders.20

In healthy humans, urine glucose should be low, but
concentrations may be elevated due to diabetes or chronic
kidney disease (CKD), conditions which are prevalent in the
CoLaus population.
Citrate is an additive commonly used by the food industry and

it is also synthesized as an intermediate product in the
tricarboxylic acid cycle, a central pathway that releases stored
energy from fat, proteins, and carbohydrates. Low urinary citrate
is associated with CKD and kidney stone formation.
There are a number of metabolites that matched to

pseudospectra generated only by one of the two methods.
With ISA, we found modules matching 3-aminoisobutyrate, an
end product of nucleic acid metabolism that has been
considered a potential biochemical marker for cancer21 (Figure
S12); creatinine, a breakdown product of creatine, whose high
and stable concentration in urine is often used for normalization
(Figure S13); lactose (Figure S14); and lactate, the bacterial
breakdown product of lactose (Figure S15). Conversely, ACP
produced correlation profiles matching to taurine (Figure S16),
an organic compound widely distributed in animal tissues and a
major constituent of bile; creatine (Figure S14); oxoglutarate
(α-ketoglutarate), an important biological compound produced
by deamination of glutamate, and an intermediate in the Krebs
cycle (Figure S18); and 3-hydroxyisovalerate, a byproduct of
valine, leucine, and isoleucine degradation and a marker for
biotin deficiency22 (Figure S19). These compounds are all
common urine metabolites that can exist in high concentrations.
Correcting features for significant covariates, both methods

also found set of features matching carnitine, which owes its
name to its high concentration in meat (see Methods for more
details). While it is produced in both animal and plant cells, this
may explain why we could detect its signature in human urine
samples.

Metabolite Concentration Pseudoquantification with NMR
Features of Matched Pseudospectra

We next investigated whether the sets of weightedNMR features
generated by ISA or the ACP method can not only be used to
identify metabolites, but also facilitate their pseudoquantifica-
tion. This pseudoquantification approach aims to estimate the
relative concentration of the metabolites in untargeted 1HNMR
of urine samples. We performed our pseudoquantification by
computing the area under the peak of each multiplet in the
metabolite spectrum using discrete integration, dividing it by the
number of protons associated with the multiplet and then
averaging scaled areas over all multiplets in the metabolite
spectrum (see Methods for more details). We hypothesized that
the leading features selected by our algorithms for a certain
metabolite may be better suited for pseudoquantification than
the full reference spectra from public databases such as UMDB.
There are two possible reasons for this. First, the exact feature
positions extracted from the data by ISA or the ACP method

Figure 2. Urine metabolites that were robustly matched by
metabomatching to pseudospectra derived from average correlation
profiles (ACP, green), the iterative signature algorithm (ISA, blue), or
both methods (black).
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may be more accurate, even if, by design, they fall within the
margin of the matching window of reference spectrum features.
Second, for metabolites with several peaks, only a subset might
have been picked up by these algorithms. Indeed, both ISA and
the ACP method may leave out peaks that did not contribute
coherently to the peak set since their signal was too noisy (e.g.,
due to overlap with those from other metabolites).
We performed our pseudoquantification method (using eq 2

in Methods) to estimate concentrations of glucose and ethanol,
for which relevant phenotypes were available in the cohort. For
urine glucose, the phenotype was fasting blood glucose. For
urine ethanol, relevant biomarkers included serum asialotrans-
ferrin and disialotransferrin, which combined are known as
carbohydrate-deficient transferrin (CDT), a biomarker for
heavy alcohol use. Furthermore, self-reported alcohol con-
sumption was available. These biomarkers were measured in a
different biofluid (i.e., blood), which was collected on the same
day as the urine sample. We argue that detecting significant
correlations between our estimated metabolite concentrations
and these biomarkers provides a proof of concept that our
pseudoquantification is reliable, and comparing correlations
between different pseudoquantification approaches provides a
means to evaluate them.
The 1HNMR spectra of glucose has ninemultiplets. Including

all these multiplets chemical shifts from the UMDB database
(Table 1) to perform pseudoquantification, we obtain a
correlation of 0.46 (with a 95% confidence interval (CI) of
[0.41, 0.52]) between the estimated concentration of urine
glucose and fasting blood glucose. This correlation increases to
0.50 [0.44, 0.55] if the subset of seven multiplets from ISA
module #16 (Figure 3A) is used for pseudoquantification (see
Methods for details). From the 179 ACP pseudospectra, two
robustly matched glucose, one from averaging the correlation
profiles from feature pair 3.48 and 5.24 and another from
averaging correlation profiles from 3.89 and 5.24 (Figure 3B,C),
each capturing four out of nine multiplets of glucose (Table 1).
Using the subset of peaks from 3.48 and 5.24 ACP
pseudospectra we obtain a correlation of 0.48 [0.43, 0.54]
between glucose pseudoquantification and fasting blood glucose

while using the subset of peaks from 3.89 and 5.24 ACP
pseudosspectra a correlation of 0.44 [0.38, 0.49] is obtained.
Combining the peak subsets from both pseudospectra to a
subset of 6 peaks did not improve the correlation beyond 0.48
[0.43, 0.54] (see Table 1 and Methods for more details on peak
sets used for pseudoquantification).
The 1H NMR spectra of ethanol has only two multiplets (as

well as one singlet from the hydroxyl group, which can not be
discerned in water solutions like urine). Using the reference
spectrum from UMDB to perform pseudoquantification, we
obtained a relatively low correlation of 0.29 [0.23, 0.35] between
the estimated concentration of urine ethanol and CDT levels in
serum (Table 1, see Table S1 for other alcohol markers). The
ACP method produced one pseudospectra, 1.18 and 3.67, and
ISA produced two modules (#57 and #240) that metabomatch-
ing matched to ethanol (Figures S6, S7, and S22). The positions
of the ACP peak set (i.e., 1.18 and 3.67) were identical to those
of ISA module #57 and were more similar to the ethanol
spectrum (achieving a higher adjusted score in metabomatch-
ing) than those of ISA module #240 (Figure 3D−F).
Nevertheless, pseudoquantification for the ACP pseudospec-
trum and ISA module #57 yielded a lower correlation of 0.16
[0.10, 0.22] with CDT levels than the UMDB reference peaks
(0.29 [0.23, 0.35]) (Table 1). This is due to a high correlation of
CDT with the features at 1.145−1.155 ppm, which are within a
0.025 ppm neighborhood of the UMDB ethanol peak at 1.17
ppm but not within the same neighborhood of the 1.18 ethanol
peak from ACP and ISA module #57 (Figure S20). Yet, these
peaks at 1.145−1.155 ppm are unlikely to correspond to ethanol,
since their correlation with the other ethanol peak at 3.67 ppm is
much weaker than the correlation between the 1.18 and 3.67
ppm peaks. Instead, they may belong to a different metabolite
whose concentration is correlated with CDT (Figure S21). In
contrast, summing up the intensities over all the features of ISA
module #240 with a z-score above 3 as a pseudoquantification
measure (in the absence of any multiplet information), we
obtained a correlation of 0.51 [0.46, 0.57] with the CDT
measurements.

Table 1. Correlation between Pseudoquantification and Measured Biomarkers of Glucose and Ethanol

urine metabolite feature source multiplet positions (ppm) related biomarker correlation [95% CI]

glucose UMDB 3.23, 3.40, 3.46 serum 0.46
3.52, 3.73, 3.82 glucose [0.41, 0.52]
3.88, 4.63, 5.22

glucose ACP: 3.48 and 5.24 3.40, 3.48, 4.65 serum 0.48
5.24 glucose [0.43, 0.54]

glucose ACP: 3.89 and 5.24 3.82, 3.89, 4.65 serum 0.44
5.24 glucose [0.38, 0.49]

glucose ISA: module #16 3.25, 3.41, 3.48 serum 0.50
3.50, 3.89, 4.65 glucose [0.44, 0.55]
5.24

ethanol UMDB 1.17, 3.65 serum 0.29
CDT [0.23, 0.35]

ethanol ACP: 1.18 and 3.67 1.18, 3.67 serum 0.16
CDT [0.10, 0.22]

ethanol ISA: module #57 1.18, 3.67 serum 0.16
CDT [0.10, 0.22]

EtG Nicholas et al.23 1.24, 3.30, 3.52 serum 0.36
3.71, 3.99, 4.48 CDT [0.30, 0.42]

EtG ISA: module #240 1.24, 3.52, 4.47 serum 0.46
CDT [0.40, 051]
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To better understand why module #240 correlates more
strongly to the alcohol consumption biomarker while being a
worse match to ethanol than module #57 (Figure 3), we studied
whether any of its features point to other compounds related to
ethanol metabolism. Indeed, we found that this module contains
three features, at 1.26, 3.52, and 4.47 ppm, that individually
correlate more strongly to CDT (0.40 [0.34, 0.45], 0.29 [0.23,
0.35], 0.33 [0.27, 0.39], respectively) than the features mapping
to ethanol. Interestingly, these features appeared to be close to
those of ethyl glucuronide (EtG), a direct product of ethanol
nonoxidative metabolism by conjugation with uridine diphos-
phate (UDP)-glucuronic acid, which had previously been
detected in 1H NMR spectra of liver extracts23 and more
recently in human urine of alcohol drinkers.24 To confirm EtG as
a possible match for ISA module #240, we added its features as
extracted from Nicholas et al.23 to the metabomatching library
manually, since EtG had no entry in UMDB. We observed that
ethanol and EtG spectra together provided a better match to ISA
module #240 than ethanol alone (Figure S22). Interestingly, the
distance between the two peaks corresponding to the doublet at

4.48 ppm is about 0.0126 ppm, corresponding to a coupling of
8.8 Hz (for a 700 MHz spectrometer) consistent with the
coupling of 8 Hz reported in Nicholas et al.23 (see Figure S23
and Supporting Informationfor more details).
Performing the pseudoquantification of EtG using the peak

set of 6 reference positions extracted from Nicholas et al.23, we
obtained a correlation of 0.36 [0.30, 0.42] with CDT levels;
performing the pseudoquantification with the 3 feature subset
from module #240, we obtained a correlation of 0.46 [0.40,
0.51] (Table 1). This indicates that EtG pseudoquantification
correlates better with CDT than ethanol, which is in agreement
with the fact that EtG is detectable in urine for a longer time
window (2−5 days) than ethanol (12−24 h), and CDT is a
marker for heavy alcohol use (at least five drinks a day over a
period of 2 weeks before giving the sample25). Remarkably, the
pseudoquantification facilitated by the three features of module
#240 correlates evenmore strongly with CDT than the full set of
EtG reference features, presumably because these features have
the best signal-to-noise ratio and optimal position for our data.
They may therefore constitute a promising urine biomarker for

Figure 3. Pseudospectra from ACP and ISA algorithms matching glucose, ethanol, and EtG. Each plot shows the pseudospectrum in blue in the upper
half and the reference spectrum fromUMDB in black and in the lower half. Dark blue indicates chemical shifts and their±0.025 ppm vicinity that were
used for pseudoquantification.
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heavy alcohol consumption. Indeed, while the correlation
between EtG pseudoquantification and CDT measure increases
to 0.59 [0.46, 0.72] when focusing on subjects who have self-
reported heavy drinking, pseudoquantification of module #240
gives rise to a slightly higher correlation of 0.61 [0.48, 0.74].

■ CONCLUSIONS AND DISCUSSION
In this work, we implemented and tested newmethodologies for
analyzing large-scale 1H NMR spectroscopy data. Building on
previous ideas to use the correlation structure of such data to
generate metabolomic signatures, we investigated three
complementary methods for generating such signatures and
benchmarked the methods in terms of how many of their
signatures matched with reference spectra in public databases.
By design, these approaches will only identify metabolites with
at least two distinct peaks, and therefore complement peak-
picking identification approaches, which tend to focus on single
peak metabolites.
We found that average correlation profiles (ACP) of highly

correlated feature pairs, a method inspired by STOCSY, as well
as the iterative signature algorithm (ISA) identified ten and nine
metabolites, respectively, five of which overlapped. In contrast,
principal component analysis (PCA) did not generate any
pseudospectra with robust metabomatching, likely because
leading components explain variation driven by many
metabolites.
While ACP is designed to pick up individual metabolites with

at least two (nonproximal) features in their spectrum (or those
of metabolite pairs whose concentrations are coupled), ISA is
able to generate modules where many features exhibit coherent
variation, yet potentially only over a subset of samples. We
believe that this may be particularly useful when integrating data
from a heterogeneous set of samples (e.g., including those from
diseased or medicated subpopulations).
One interesting property of our modular approach is that the

feature sets identified by ACP or ISA do not need to match
perfectly with those of the reference spectrum of the
corresponding compound. Indeed, the two ACP signatures
matching glucose each only cover four and jointly six of the nine
glucose peaks, while the ISA module with the best match to
glucose includes seven of its peaks. Adding the “missing” peaks
in our pseudoquantification slightly reduced the correlation with
serum glucose, indicating there is a marginal improvement in the
pseudoquantification using ppm positions only from the
multiplets found by our algorithms rather than the database.
Further work will be needed to substantiate this observation.
Another interesting aspect of our approach is that modular

feature sets may match multiple compounds. Our current
implementation of metabomatching allows simultaneous
identification of up to two compounds. Indeed, our finding
that ISA picked up a module whose signature mapped well to
ethanol and its specific metabolic product ethyl glucuronide
demonstrated the potential power of ISA to identify metabolite
pairs within the same pathway. Moreover, the strong correlation
of this module with the alcohol abuse marker CDT was likely
driven by the fact that ISA can extract context specific
covariance, which in this case is strongest in samples with
particularly high alcohol consumption. This module also
highlighted that using the relevant chemical shifts found by
the module rather than all shifts from the reference database can
lead to more accurate pseudoquantification of the underlying
metabolites, due to different contribution of shifts specific to the
experimental conditions in the complex urine spectra.

Extending metabomatching beyond compound pairs is
challenging due to the large number of possible trios and higher
order combinations, but could be feasible in future work, for
example by using metabolic pathway information to limit the
number of relevant metabolite combinations to test.
A critical element of our analysis was to transform the

signatures generated by the different methods into a universal
format (i.e., z-scores) as input for our metabomatching tool that
we previously developed for the analysis of feature signatures
generated by regression on external variables. Indeed, being able
to query both internal and external signatures of large-scale
NMR data against a reference data set of known spectra from
individual metabolites is pivotal for exploring new methods
dissecting the auto- and cross-correlation structure for
integrative analyses.
In conclusion, we believe that our study using fewer than 1000

samples gives ample evidence for the potential of automated
analysis of large-scale NMR data, and that increased sample sizes
are likely to result in further identifications and more accurate
pseudoquantifications of individual metabolites. To this end, our
analysis software, metabomodules, is made publicly available on
GitHub https://github.com/BergmannLab/metabomodules-
docker.
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