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Abstract 21 

Electrical resistivity tomography (ERT) has become a standard geophysical method in the 22 

field of hydrogeology, as it has the potential to provide important information regarding the 23 

spatial distribution of facies. However, inverted ERT images tend to be grossly smoothed 24 

versions of reality because of the regularization of the inverse problem. In this study, we use a 25 

probabilistic methodology based upon co-located measurements to assess the utility of ERT to 26 

identify hydrofacies in alluvial aquifers. With this methodology, ERT images are interpreted 27 

in terms of the probability of belonging to pre-defined hydrofacies. We first analyze through a 28 

synthetic study the ability of ERT to discriminate between different facies. As ERT data 29 

suffer from a loss of sensitivity with depth, we find that low sensitivity regions are more 30 

affected by misclassification. To counteract this effect, we adapt the probabilistic framework 31 

to include the spatially varying data sensitivity. We then apply our learning to a field case. For 32 

the latter, we consider two different regularization procedures. In contrast to the data 33 

sensitivity which affects the facies probability to a limited amount, the regularization can 34 

affect the probability maps more considerably because it has a strong influence on the spatial 35 

distribution of inverted resistivity. We find that a regularization strategy based on the most 36 

realistic prior information tends to offer the most reliable discrimination of facies. Our results 37 

confirm the ability of ERT surveys, when properly designed, to detect facies variations in 38 

alluvial aquifers. The method can be easily extended to other contexts. 39 

 40 

Keywords: electrical resistivity tomography, alluvial aquifers, probability distribution, 41 

sensitivity, regularization, inversion, facies discrimination. 42 
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INTRODUCTION 44 

Over the past two decades, electrical resistivity tomography (ERT) has become a standard 45 

geophysical technique in the field of hydrogeology (Binley et al., 2015). However, a relatively 46 

high level of uncertainty always accompanies the interpretation of the corresponding 47 

tomograms, which often renders the direct use of ERT images difficult. In particular, the 48 

interpretation of complex and heterogeneous geological systems such as alluvial aquifers and 49 

the quantitative integration of geophysical data into subsurface hydrological models require 50 

consideration of a number of important issues such as the petrophysical relationships linking 51 

geophysical and hydrological parameters (e.g., Doetsch et al., 2010), the spatially-dependent 52 

resolution of tomograms (e.g., Day-Lewis et al. 2005), and the effect of regularization on the 53 

resulting images (e.g., Caterina et al., 2014). To address these issues, several approaches have 54 

been developed including using synthetic simulations to explore petrophysical relationships 55 

(Moysey et al., 2005; Singha and Moysey, 2006), performing coupled hydrogeophysical 56 

inversion (Hinnel et al., 2011; Irving and Singha, 2010), using image appraisal tools to 57 

identify zones of the tomogram that can be reliably interpreted (Caterina et al. 2013, Beaujean 58 

et al. 2014), the use of novel regularization approaches (e.g., Blaschek et al., 2008; Hermans 59 

et al., 2012, Oware et al., 2013), and the incorporation of structural information into the 60 

inversion (e.g., Caterina et al., 2014; Doetsch et al., 2012a). 61 

The above-mentioned studies have enhanced the imaging capabilities of ERT and broadened 62 

its range of applications, but they are generally not sufficient to answer the question of 63 

reliability of the results for a specific purpose. Indeed, in many cases, one wishes to perform a 64 

geological interpretation of the tomogram in terms of facies or hydrofacies. Given the limited 65 

resolution of the ERT experiment, the typically restricted number of ground-truth data, and 66 

the non-uniqueness of inverted geophysical models, carrying out such an interpretation is not 67 

straightforward. It is therefore critical that we develop methodologies to quantify the ability of 68 
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ERT to detect facies; that is, to indicate what facies is present at each subsurface location 69 

along with a corresponding uncertainty estimate.  70 

To identify facies based on geophysical data, a number of studies have utilized multi-71 

parameter analysis and clustering to perform subsurface zonation. Relating the clusters to 72 

facies through their geophysical parameters enables a straightforward classification. Fuzzy 73 

clustering, through partial memberships, also allows for uncertainty assessment. Paasche et al. 74 

(2006) proposed such a clustering approach to perform subsurface zonation based on georadar 75 

and seismic data. Paasche and Tronicke (2007) even included the clustering approach in the 76 

inversion procedure to obtain a common model of georadar and P-wave velocities with 77 

zonation. Doetsch et al. (2010) performed joint inversion of GPR, seismic and ERT data to 78 

obtain a three-facies zonation (gravel, sand, clay) in an alluvial aquifer. Although such 79 

clustering approaches are highly useful, a significant drawback is that they require having 80 

multi-method geophysical data, the latter of which are not always available. 81 

In this paper, we focus on the ability of a single geophysical method (ERT) to provide a facies 82 

classification. To this end, we rely on a Bayesian framework for post-processing the outcomes 83 

of classical regularized inversion. The Bayesian framework offers an easy and straightforward 84 

way to express geophysical parameters in terms of categories, deriving a probability 85 

distribution for the sought parameters (here the facies or hydrofacies) instead of a single 86 

“best” estimate (Ezzedine et al., 1999; Rubin and Hubbard, 2005). The corresponding 87 

likelihood function can be estimated using co-located measurements of the inverted 88 

geophysical parameter and the textural description. Such a relationship enables accounting for 89 

the uncertainty resulting from the inversion process (regularization and noise) as well as data 90 

sensitivity. It is also straightforward to integrate such a Bayesian relationship into stochastic 91 

simulations involving Gaussian or multiple-point statistics. As an example, Ruggeri et al. 92 

(2013, 2014) developed a methodology to integrate geophysical data into hydraulic 93 
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conductivity sequential simulations through a Bayesian relationship. They took into account 94 

the variable resolution of the tomograms by adapting the likelihood function to the level of 95 

uncertainty of their resistivity estimates. Hermans et al. (2015a) used a Bayesian framework 96 

to transpose ERT inversions into soft probability maps used to constrain multiple-point 97 

geostatistical simulations of an alluvial aquifer within the context of facies-based 98 

hydrogeological inversion. However, they did not integrate sensitivity dependence nor did 99 

they analyze the effect of regularization on the proposed probability maps. 100 

Here, we assess the ability of ERT to identify facies in an alluvial aquifer. Alluvial aquifers 101 

are generally composed of several facies and lithologies (clay, loam, sand, gravel) with 102 

complex architectures and interconnections depending on the fluvial system (channels, bars, 103 

point bars, crevasse splays, floodplains, levees, etc.). In this context, borehole logs and 104 

classical hydrogeological tests (pumping, slug or tracer tests) may not be sufficient to capture 105 

the complexity of the deposits and determine their influence on groundwater flow and solute 106 

transport (e.g. Wildemeersch et al., 2014).  ERT is a well-suited tool to study alluvial deposits 107 

as it is sensitive to the texture of the deposits (porosity, tortuosity, clay content) and to the 108 

pore-fluid. ERT has already been widely used to image deposits in alluvial aquifers and to 109 

improve the understanding of the depositional model (Baines et al., 2002; Bowling et al., 110 

2005, 2007; Bersezio et al., 2007; Mastrocicco et al., 2010; Doetsch et al., 2010, 2012a). The 111 

use of ERT is also common in time-lapse mode to monitor changes taking place in alluvial 112 

deposits due to, for example, contaminant degradation (e.g., Chambers et al., 2010; Masy et 113 

al., 2016), salt tracer experiments (e.g., Doetsch et al., 2012b), or thermal tracer experiments 114 

(e.g., Hermans et al., 2015b).  115 

The paper is organized as follows. First, the methods used in this study are described. Then, 116 

we analyze through a synthetic study the ability of ERT to discriminate between different 117 

facies. As ERT suffers from a loss of sensitivity with depth, low sensitivity regions are more 118 
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affected by misclassification. We therefore propose to adapt our Bayesian framework to 119 

include the spatially varying sensitivity and counterbalance this effect. Next, we apply this 120 

learning to a field case, where we consider two different regularization procedures to 121 

investigate the role of the inversion method and its underlying assumptions on the different 122 

facies probability maps. 123 

METHODS 124 

ERT inversion 125 

The ERT forward problem is non-linear and non-unique, typically characterized by a large 126 

number of subsurface model parameters and relatively few data (e.g., Aster et al., 2005). To 127 

address the issue of non-uniqueness in the corresponding inverse problem, regularization is 128 

normally used (e.g., Tikhonov and Arsenin, 1977) whereby prior information regarding the 129 

model parameters is considered in order to obtain a single solution. The basic idea of 130 

deterministic inversion is to minimize an objective function of the form 131 

   (1) 132 

where the first term on the right-hand side of equation (1) expresses the data misfit and the 133 

second term quantifies some undesired characteristic of the model, for example its 134 

“roughness” as measured by a first or second derivative operator.  The regularization 135 

parameter λ then controls the balance between minimizing these two terms in the inversion 136 

procedure. In this paper, we consider two regularization operators. The “smoothness 137 

constraint” regularization operator, used in the vast majority of geophysical inversions, is 138 

used for both the synthetic and field cases. For the field case only, we also consider 139 

geostatistical regularization (Hermans et al., 2012), which is based on a prior definition of the 140 

model parameter covariance matrix. 141 

d m( ) ( ) ( )y y ly= +m m m
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To invert ERT data in this study, we used the finite-element inversion code CRTomo (Kemna, 142 

2000) which seeks to iteratively minimize equation (1) until the root-mean-square of the 143 

weighted data misfit,  with N representing the number of data, reaches a 144 

value of 1. The overall aim is to fit the data to its assumed level of error under the condition 145 

that the model functional is minimized. Parameter λ is optimized during each iteration through 146 

a line search to minimize the data misfit. 147 

Data sensitivity 148 

Data sensitivity is commonly used as an image appraisal tool for ERT inversions (e.g., 149 

Caterina et al., 2013). As with resolution, the sensitivity of a tomogram varies spatially, 150 

generally showing a decreasing trend with depth for surface arrays. In this study, we use the 151 

error-weighted cumulative sensitivity as an indicator of the quality of an inversion result, 152 

which is defined as (Kemna, 2000) 153 

 ,   (2) 154 

where Wd is the data weighting matrix, J is the Jacobian matrix and T denotes the transpose  155 

operator. Values of S depend on the distribution of resistivity in the subsurface and data 156 

errors. We normalize S by its maximum value so that its values are lower or equal to one and 157 

we express it on a logarithmic scale. A high value means a strong influence of the 158 

corresponding model parameter on the predicted data and is therefore a favoring factor for a 159 

good resolution. Hereafter, we will use the term “sensitivity” to denote this normalized 160 

cumulative sensitivity. 161 

Bayesian facies probability 162 

( )d
RMS N

ye =
m

{ }diag= T T
d dS J W W J
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To discriminate hydrofacies based on inverted ERT images, we use co-located ERT and 163 

facies description data to first determine the distribution of inverted resistivity f(ρ|Ai) 164 

corresponding to each facies Ai as well as the facies proportion P(Ai). We also consider 165 

sensitivity-dependent resistivity distributions f(ρ|Ai,Sj), where Sj denotes model cells having a 166 

given sensitivity class. The latter is defined on a logarithmic scale by decade (i.e., from 1 to 167 

10-1, 10-1 to 10-2, etc.). For the field case, co-located data correspond to borehole locations, 168 

where observations of facies can be compared with the ERT-derived resistivities. For the 169 

synthetic case, we have access to the facies distribution at all locations throughout the model 170 

space. Using Bayes’ rule, we can then compute the conditional probability of observing a 171 

facies given the resistivity and sensitivity values as follows: 172 

.   (3) 173 

Performance indicators 174 

Equation (3) can be applied to an inverted resistivity profile and the resulting facies 175 

probabilities can be used to assess the ability of ERT to identify those facies. In this regard, 176 

we define two indicators of performance in this paper: 177 

1) The classification performance (expressed in %). Each cell of the tomogram is 178 

assigned the facies having the highest probability and the number of correctly 179 

classified cells is counted. 180 

2) The probability performance (expressed in %), which is calculated using 181 

   (4) 182 

where n is the number of cells in the tomogram and ωk is a weight equal to 1 if the cell 183 

is correctly classified according to the classification performance indicator, i.e. when 184 
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the correct facies has the highest probability, and -1 otherwise. The philosophy of this 185 

indicator is to reward when a facies is correctly identified as the most probable and to 186 

penalize otherwise. In contrast with the classification performance indicator, it takes 187 

into account, through the maximum conditional probability P(Ai|ρ,S), the uncertainty 188 

of the estimate. The final score is between -100 and +100%, the latter of which is 189 

obtained if all cells have a probability of 100% for the correct facies. A negative value 190 

indicates that the method is not appropriate to detect facies since it would provide in 191 

average more bad than correct information. 192 

STUDY SITE 193 

The study site for our field case is located in the alluvial aquifer of the Meuse River, in 194 

Hermalle-sous-Argenteau (Belgium) near the Dutch-Belgian border (Figure 1A and B), 195 

between the Meuse River and the Albert Canal. This is an experimental site of the University 196 

of Liege used for hydrogeophysical field experiments (e.g., Wildemeersch et al., 2014; 197 

Hermans et al., 2015b). A detailed description can be found in Hermans et al. (2015a, 2015b).  198 

Alluvial deposits at the site are 10-m thick and mostly composed of sandy gravel with large 199 

zones of clean gravel (and pebbles) having a higher hydraulic conductivity and zones 200 

composed of loam, clay and clayey gravel of lower hydraulic conductivity. A total of 23 201 

boreholes are available at the site with a corresponding textural description (Figure 1C and 2). 202 

Based on the observed heterogeneity, we chose to describe the deposits using three 203 

hydrofacies. The first facies is composed of low hydraulic conductivity deposits (clay and 204 

loam). The second facies is composed of clean gravel with high hydraulic conductivity. 205 

Finally, the third facies is made up of sand/sandy gravel and has an intermediate hydraulic 206 

conductivity. The respective facies proportions from borehole logs are 18%, 42% and 40%. 207 
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Clay deposits are mostly limited to the surface, and gravel is generally found below sand in 208 

the bottom part of the aquifer. The thickness of the sand is variable (Figure 2). 209 

We conducted 12 parallel ERT profiles at the site (Figure 1C) using 64 electrodes spaced 210 

every 2 m (total length of 126 m) except for the northern profile which is only 102 m long. 211 

We used a dipole-dipole configuration to collect the data with dipole lengths from 2 to 18 m 212 

and dipole separations from 1 to 6 dipole lengths. We used reciprocal measurements to assess 213 

the quality of the data. A linear error model was deduced to weight the data during the 214 

inversion (Wd in equation 2) having the form (Slater et al., 2000) 215 

     (5) 216 

where |e| is the absolute reciprocal error (in Ohm), a is the absolute error equal to 0.002 Ohm, 217 

b is the relative error equal to 0.26%, and R is the mean resistance (in Ohm). 218 

SYNTHETIC VALIDATION 219 

In this section, we use synthetic simulations to assess the ability of ERT to discriminate facies 220 

and we examine the effect of the varying data sensitivity on the classification and probability 221 

performance metrics. In the next section, a similar approach is applied to the Meuse River 222 

field data. 223 

Description of the set-up  224 

The synthetic benchmark is based on 96 synthetic models simulating alluvial deposits as they 225 

could be expected at the study site described in Section 3. The considered model domain is 226 

126 m wide by 10 m deep, which was discretized into 1 m x 0.5 m cells to yield a total of 227 

2540 model parameters. Below 10 m, we simulated the presence of resistive (300 Ohm.m) 228 

bedrock, which is not considered in our interpretations. 229 

e Ra b= +
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The alluvial deposits are composed of three hydrofacies corresponding to those observed at 230 

the field site. The sand facies is considered as the background and was prescribed a resistivity 231 

of 250 Ohm.m. The clay (100 Ohm.m) and gravel (140 Ohm.m) facies were simulated 232 

respectively as lenses and channels of various sizes using 3D Boolean simulations (Maharaja, 233 

2008) with proportions similar to the ones observed at the field site. The resistivity values 234 

chosen for each facies were based on values observed in the field. A number of 2D sections 235 

were randomly selected from the 3D models (Figure 3A and D).  236 

A dipole-dipole ERT data set was then simulated for each model and contaminated by noise 237 

having a similar level to that observed in the field. The data sets were subsequently inverted 238 

using the standard smoothness constraint. Facies probabilities were estimated after inversion 239 

in order to determine the classification and performance indicators for each model, both with 240 

and without taking the data sensitivity into account. 241 

Inversion of synthetic models and sensitivity dependence 242 

Figure 3 shows two examples of synthetic facies models along with their respective inverted 243 

resistivity tomograms and sensitivity distributions. It can be seen from the resistivity 244 

tomograms (Figure 3A-B and 3D-E) that ERT is able to qualitatively locate overall the clay 245 

and gravel facies, which correspond to low resistivity values inside the sand facies. However, 246 

smaller clay lenses are not detected and facies discrimination in the bottom part of the images 247 

is more challenging. Both of these effects are expected; the first is related to the resolution 248 

capabilities of ERT, whereas the second is related to the decrease of sensitivity with depth, as 249 

clearly illustrated by Figure 3C and F. 250 

The presence of three different facies is also challenging in this case. Clay lenses and gravel 251 

channels both represent low resistivity anomalies compared to the background sand facies. 252 

Therefore, their juxtaposition among the deposits is difficult to resolve. More precisely, clay 253 
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lenses in the bottom part of the deposits tend to display resistivity values close to those of the 254 

gravel facies. 255 

The synthetic benchmark allows the comparison of the inverted resistivity value and facies 256 

identity for about 250,000 cells, thus providing a good test of the ability of ERT to detect 257 

facies as well as allowing us to analyze the dependency of the results upon data sensitivity. 258 

Figure 4A shows the mean and 95% interval of inverted resistivity for each facies as a 259 

function of the value of relative cumulative sensitivity, as well as the global values for the 260 

case where sensitivity is not taken into account (Total). We see that for high sensitivity values 261 

above 10-3, which correspond to a maximum depth of about 5 m (Figure 3), the facies 262 

resistivities are well separated. In particular, sand and gravel show no overlap, meaning that 263 

ERT is able to almost unequivocally identify the presence of sand in high sensitivity regions 264 

(Figure 4B). It is more difficult to discriminate between clay and gravel due to their close 265 

resistivity values. For sensitivities between 10-3 and 10-5, the sensitivity-dependent 266 

distributions are relatively close to the global distributions, although with smaller ranges of 267 

variation because they are not affected by the shallow cells like the total distribution. As a 268 

result, the corresponding conditional probability distributions computed from equation 3 269 

(Figure 4B) are flatter and thus less discriminating. For sensitivity values below 10-5, the 270 

sensitivity-dependent resistivity distributions are superimposed upon one another, which 271 

means that the resolving power of ERT for facies discrimination is weak or non-existent. 272 

Those sensitivity values are limited to the bottom corners of the grid or to the deep cells 273 

(bedrock) not considered here.  274 

Overall, we see that the means of the sensitivity-dependent inverted resistivity distributions 275 

follow a clear trend towards a similar value when sensitivity decreases, which results from the 276 

decreasing resolution of ERT with depth. This value is related to the starting or reference 277 

model used for the inversion, which in this case is the mean apparent resistivity of the data. 278 
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Conversely, the 95% bounds do not follow a clear trend, but they are smaller than the ones 279 

from the global distributions. 280 

The conditional probabilities (Figure 4B) can be used to transform each resistivity distribution 281 

into three probability maps, one for each considered facies. For a given cell, the three 282 

probabilities sum to 1. We illustrate the process in Figure 5 for the second model presented in 283 

Figure 3D, where we show the probability maps for gravel, sand, and clay that were obtained 284 

using the global probability distributions (Figures 5A to 5C) as well as the sensitivity-285 

dependent distributions (Figures 5D to F). Gravel is the most challenging facies in our 286 

example since it corresponds to intermediate resistivity values, and will therefore never reach 287 

a probability equal to 1. We see in Figure 5 that high resistivities correspond to high 288 

probability values for sand whereas low resistivities correspond to high probability values for 289 

clay. In contrast, intermediate resistivities (around 160 Ohm.m) signify a higher probability 290 

for the gravel facies. Using sensitivity-dependent distributions, the values of the probability 291 

maps are more discriminant near the surface (first 5 m). Indeed, low values tend to be closer 292 

to zero and high values tend to be slightly closer to 1. This trend can be observed for all 293 

facies. Below 5 m, fewer changes are visible. We can detect a few locations where the 294 

probability of gravel, although relatively high, decreases when the sensitivity-dependent 295 

distributions are considered. The reason for this is that in low sensitivity regions, the 296 

sensitivity-dependent distributions are less discriminant than the global ones (e.g. Figure 5D, 297 

X = 30m and Y = 9m), which means that even if the inverted resistivity seems to correspond 298 

to gravel, we are less confident in this estimation and therefore attribute a lower probability to 299 

it. In turn, the probability of sand or clay increases.  300 

Note that we do not a see strong differences in the probability maps when taking into account 301 

the sensitivity-dependent distributions.. The reason for this is that the design of the survey is 302 

such that the sensitivity values at 10 m depth are still reasonable (around 10-4, see Figures 3C 303 
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and F). For those sensitivity values, the sensitivity-dependent distributions are still at least as 304 

discriminant as the global ones (Figure 4). If we tried to interpret models below 10 m depth, 305 

we would observe a clear decrease in the probability. This illustrates the crucial importance of 306 

survey design if the sensitivity is not taken into account during interpretation.  The 307 

comparison of global and sensitivity-dependent results with the probabilistic methodology for 308 

synthetic models can be used to assess the validity of survey design choices and estimate the 309 

depth of investigation; as long as the probability maps from the sensitivity-dependent 310 

relationships are more discriminant than the global distributions, the sensitivity can be 311 

considered as sufficient for interpretation. Global distributions will lead to conservative 312 

interpretations. For lower sensitivities, ignoring the sensitivity-dependence bears the risk of 313 

over-interpretation of the ERT images. 314 

Facies discrimination performance 315 

The more discriminant behavior of the sensitivity-dependent probabilistic relationship near 316 

the surface indicates that it will provide sharper probability estimates and better facies 317 

discrimination.  We now quantify the benefit of using the sensitivity-dependent relationships 318 

with the performance indicators of Section 2.4. 319 

For facies classification, the facies with the highest probability is assigned to each cell. An 320 

example is shown in Figure 6 for the model corresponding to Figure 3D. We use transparency 321 

to indicate the probability corresponding to the most probable facies. That is a fully 322 

transparent (white) cell corresponds to a maximum probability of 33%, i.e. for which all of 323 

the facies have the same probability and the classification is impossible. A completely opaque 324 

cell, on the other hand, corresponds to a facies probability of 100%.  In comparison with the 325 

true facies (Figure 6A), we see that the classification of the sand facies is relatively accurate 326 

(Figure 6C), especially in the upper part of the model. Figure 6D is an indicator map of 327 
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misclassification. Most misclassifications occur  between the gravel and clay facies. This is 328 

expected given their respective resistivity. In the case of only two facies, ERT would 329 

therefore be more discriminating (Table 1).  330 

Note in Figures 6E and 6F that there are few differences in the classification when sensitivity 331 

is taken into account. Globally, the same structures are observed. Even though sensitivity 332 

plays a role in the discrimination of facies, it remains the inverted resistivity value which 333 

orientates the classification. Indeed, with sensitivity dependence, a facies may have a higher 334 

or lower probability, but it may not always be sufficient to modify the order between facies 335 

and thus the classification.  336 

The overall performance of the classification procedure is summarized in Table 1. On average 337 

for all of the models, 65% of the cells are correctly classified whatever method is used. The 338 

average risk of misclassification is therefore 35%. Within the 96 synthetic models, the 339 

minimum classification performance is about 50% and the maximum is 79%. As observed in 340 

Figure 6, misclassified cells are mainly between clay and gravel. If such misclassifications are 341 

disregarded, the average performance increases up to 79%. This means that increasing the 342 

number of facies to detect will inevitably degrade the performance. In our case, this is 343 

however mandatory because clay and gravel have opposite hydrogeological behaviors. Other 344 

misclassifications occur at the transition between facies. 345 

Table 2 examines in greater detail the ability to classify cells according to sensitivity. Below 346 

values of 10-5, less than 50% of the cells are correctly classified. Those cells generally 347 

correspond to low Bayesian probabilities, close to the prior probability, meaning that 348 

classification should be avoided because uncertainty is high. Interestingly, the sensitivity-349 

dependent approach performs better at each sensitivity level, but the greatest improvement is 350 

observed for very low sensitivity values. At those levels, the sensitivity-dependent approach is 351 
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more conservative and avoids cell misclassification. Misclassification above the bedrock also 352 

occurs because the resistivity at this depth is influenced by the more resistive bedrock, 353 

favoring classification into the more resistive sand facies. This aspect is discussed later in our 354 

field application. 355 

The use of the transparency scale in Figure 6 indicates how the probability can be used to gain 356 

important information regarding the uncertainty of the classification. We see that, globally, 357 

classification into the sand facies is linked to a low uncertainty (opaque value), whereas 358 

classification into the gravel facies is less certain. Therefore, a misclassification within the 359 

gravel facies is less prejudicial because it is informed by a lower probability.  360 

The transparency as an uncertainty estimate is directly linked to the probability performance 361 

indicator. Using the sensitivity-dependent approach, the probability performance indicator 362 

(Table 1) increases more significantly than the classification performance indicator. With 363 

sensitivity dependency, high-sensitivity correctly classified cells will contribute to higher 364 

rewards, and low-sensitivity poorly classified cells to less penalization. In contrast, high-365 

sensitivity poorly classified cells will contribute to higher penalization, and low-sensitivity 366 

correctly classified cells to less reward. In the upper 5 m of the subsurface in Figure 6F, many 367 

correctly classified cells have a higher probability for the most probable facies compared to 368 

Figure 6D. This explains the increase of the probability indicator for the sensitivity-dependent 369 

case. 370 

The probability performance metrics show that an increase in performance is observed when 371 

sensitivity-dependent distributions are used. The average performance increases from 24.5% 372 

to 27%, which corresponds well with the mean relative performance increase of 10%. The 373 

increase in performance is observed for 92 of the 96 tested models. In this specific case, few 374 
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cells are located in very low sensitivity regions. For less favorable cases, the increase in 375 

performance could be more significant due to less penalization.  376 

Our results show that the probabilistic approach, without sensitivity-dependence, is already 377 

relatively efficient when an ERT survey and corresponding goals are well-designed; that is, if 378 

we do not attempt to classify cells that have too low sensitivities or are located too deep. If 379 

only limited depths are considered, the global probabilistic framework can be considered as 380 

conservative. 381 

FIELD RESULTS 382 

We now apply the proposed methodology to field measurements. To this end, we consider 383 

one of the 12 ERT profiles acquired at the Meuse River site. We also demonstrate the effect 384 

of regularization on the resulting facies probability maps, as prior assumptions made during 385 

the ERT inversion have a large effect on the inverted resistivity distribution and, therefore, are 386 

expected to influence the facies probabilities.  387 

Effect of sensitivity 388 

Working with a field case is more difficult than our synthetic benchmark because we do not 389 

have access to many co-located measurements. Indeed, deriving directly sensitivity-dependent 390 

distributions from co-located measurements would require an unrealistically high number of 391 

boreholes in order to have reliable distributions. To overcome this limitation, we tried to 392 

reproduce the behavior observed for the synthetic cases in order to build a sensitivity-393 

dependent relationship (Figure 7). To this end, we assumed linear trends for the mean of the 394 

distribution towards a common value at low sensitivity and 95% bounds equal to 80% of the 395 

ones observed for the global distribution. We acknowledge that this assumption is debatable, 396 

but it is made to propose a relatively straightforward way to apply the method in field 397 

conditions. 398 
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The large range observed for clay in the field is related to the geometry of the deposits at the 399 

Meuse River site. A layer of clayey loam is seen in almost all the boreholes; however, its 400 

thickness is small at some locations (0.5 to 1 m) compared to the electrode spacing (2 m), 401 

which makes it rather difficult to image. Inversion tends to show higher resistivity at these 402 

locations due to the presence of sand below the clay. In this section, we focus on the 403 

interpretation of the gravel facies, which is the most challenging to image given its 404 

intermediate resistivity. 405 

The application of the methodology to the field case shows a behavior similar to the one 406 

observed for synthetic cases (Figure 8). Since the sensitivity values observed for the alluvial 407 

deposits are greater than 10-5 (Figure 8B), there is everywhere a tendency towards a more 408 

discriminant behavior of ERT when the sensitivity-dependency is used (Figure 8C and D). 409 

Zones of intermediate resistivity values see their probability of gravel increasing from 70% to 410 

approximately 80%, and a number of cells near the surface and near the bedrock have their 411 

probability decreasing to almost zero. This signifies that, if used as conditioning data for a 412 

hydrogeological model, ERT would give a stronger constraint on the geometry of the 413 

deposits. However, the global distributions already identify most trends in the deposits. Given 414 

the uncertainty in the chosen sensitivity-dependent relationship, we may conclude that, as was 415 

the case for our synthetic study, ignoring the sensitivity-dependence is a conservative 416 

approach because the choice of electrode spacing is sufficient to image the deposits down to a 417 

depth of about 10 m.  418 

Effect of regularization 419 

The probability maps obtained in Figure 8C and 8D are direct transforms of the resistivity 420 

values that were obtained through deterministic inversion of the ERT data. The solution of 421 

this inverse problem is non-unique and depends on the assumptions made about the 422 
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subsurface resistivity distribution, which are expressed through the second term of the right 423 

hand side of equation 1. Here, we test the effect of changing the regularization operator for 424 

ERT inversion on the probability maps. To this end, we consider geostatistical regularization 425 

which uses the model parameter covariance matrix instead of a roughness matrix as the model 426 

constraint (Hermans et al., 2012; Caterina et al., 2014). To estimate the covariance matrix, we 427 

computed the variogram from borehole electromagnetic logs and found that a Gaussian model 428 

having vertical and horizontal correlation lengths of 4.4 m and 11 m, respectively, offered an 429 

acceptable fit (Hermans et al., 2015a). In addition, the known position (10 m depth) of the 430 

bedrock was imposed during the inversion. For the smoothness constraint regularization, a 431 

ratio of 2.5 between horizontal and vertical smoothing was used, which represents the same 432 

amount of anisotropy as the geostatistical constraint. Our objective is not to demonstrate that 433 

one inversion method is better than the other, which is clearly site or case specific, but rather 434 

to illustrate how regularization can modify our interpretation of the results. Therefore, the use 435 

of field data is more appropriate for this purpose. 436 

The inverted resistivity distributions obtained using the two regularization methods are quite 437 

different, except near the surface (Figure 9A and B) where the inversion is mainly influenced 438 

by the data and not by the regularization operator. With the geostatistical regularization, the 439 

thickness of more resistive zones is limited and the decrease in resistivity corresponding to the 440 

presence of gravel above the bedrock is more pronounced. Globally, geostatistical 441 

regularization reproduces more satisfactorily the resistivity distribution measured with the 442 

electromagnetic log (Figure 10) in this specific case. This confirms how the incorporation of 443 

appropriate prior information into the inversion can improve the reconstruction of the 444 

resistivity distribution. 445 

The different inverted resistivity values yield different resistivity distributions for each facies 446 

as well. The histograms obtained (based on the 12 ERT profiles) exhibit clear differences 447 
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(Figure 9C and D). For the smoothness constraint, the distributions of sand and gravel are 448 

close to each other, which makes the discrimination between these facies more difficult. With 449 

the geostatistical regularization, the mean value of the gravel facies is smaller. In both cases, 450 

the distribution for the clay facies is rather similar, because clay is mainly limited to the 451 

surface where both inversions yield similar results.  452 

Using the corresponding histograms, the probability maps of gravel were computed (Figure 453 

9E and F). A side-effect of regularization when attempting to identify three facies is that the 454 

transition between the low and high resistivity facies will almost always create a zone where 455 

the probability of the intermediate facies is high. This appears for example between X=80 m 456 

and X=120 m at 1.5 m depth. The patterns of high and low probability of gravel are relatively 457 

similar. The differences in the resistivity tomograms are partly counterbalanced by the 458 

probabilistic approach because they are taken into account in the conditional probability 459 

relationship, through the use of the co-located measurements histograms. However, some 460 

differences remain visible in the shape, amplitude, and position of some low-probability 461 

zones. In particular, the low probability of gravel observed at X = 60 m for the smoothness 462 

constraint is not in accordance with borehole data (Pz3, Figure 2). This results from the 463 

smoothness constraint, which is not able to image the decrease in resistivity at this location 464 

due to the presence of the underlying resistive bedrock, is a side-effect of using only three 465 

facies. Since the bedrock is not considered in our probabilistic analysis, this zone has a high 466 

probability of sand and would be deterministically classified as sand, with some uncertainty. 467 

However, if the bedrock were considered, this zone of low gravel probability would have a 468 

high probability of belonging to the bedrock, thereby decreasing the probability of sand. In 469 

this case, the misclassification is related to the uncertainty of the bedrock depth. This 470 

inconvenience is avoided in the geostatistical regularization because the position of the 471 

bedrock, known from boreholes, has been fixed during the inversion. The inversion process 472 
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therefore identified that alluvial deposits could display a lower resistivity for which the most 473 

probable facies is gravel.  474 

It is thus preferable to use the inversion method which gives the best estimate of the 475 

resistivity. In this case, the incorporation of prior information is helpful to discriminate facies 476 

more reliably. However, the choice of the regularization method is not related to the decision 477 

of using a probabilistic framework to interpret ERT images. Although the geostatistical 478 

regularization identifies a zone where the highest probability is for the gravel facies, the 479 

probabilistic framework provides probabilities around 0.7. This shows that this zone is 480 

uncertain with resistivity values that could correspond to gravel, sand or even clay. 481 

The comparison of Figures 8 (C and D) and 9 (E and F) illustrates that the effect of 482 

regularization may dominate the effect of sensitivity-dependence on the derived probabilistic 483 

facies estimate, if very-low sensitivity zones are not considered. Indeed, the sensitivity-484 

dependence, in contrast to the regularization, impacts the probability values but not the spatial 485 

resistivity distribution.  486 

DISCUSSION AND CONCLUSIONS 487 

In this paper, we have assessed the ability of electrical resistivity tomography to discriminate 488 

facies in alluvial aquifers. We propose to use a probabilistic relationship based on co-located 489 

facies and resistivity measurements to derive the resistivity distribution for each facies. Then, 490 

Bayes’ rule is used to estimate the conditional probability of observing a facies given the 491 

resistivity. Our methodology has the advantage of integrating the uncertainty related to data 492 

noise and the inversion method into the estimate since it compares observed facies with post-493 

inversion results. 494 

We applied the methodology on a synthetic benchmark to verify the ability of ERT to 495 

correctly classify alluvial deposits into facies. The performance is quite good (on average, 496 
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65% correct classification) given the challenging task of determining three facies. Indeed, 497 

when only two facies are considered, the performance increases to 80%. Those results depend 498 

on the chosen synthetic models and resistivity values assigned to each facies. It is therefore 499 

necessary to be as close as possible to the actual field case to derive interesting guidelines. 500 

From our examples, it clearly appears that the classification ability decreases rapidly with 501 

depth. It is thus preferable to keep the Bayesian probabilities, which give additional 502 

information on the uncertainty of the estimates and can be further used in stochastic 503 

simulations, rather than classification for interpretation purposes. This can be done by either 504 

using probability maps for the interpretation, or by using a transparency scale related to the 505 

probability of the most probable facies for classification. The latter solution has the advantage 506 

of being able to express the results on a single figure. 507 

The decrease of resolution and sensitivity of surface-based ERT data with depth is a well-508 

known effect; the results of inversion become less certain with depth, whereas close to the 509 

surface ERT is more discriminant. We used the synthetic benchmark to analyze the influence 510 

of sensitivity on the performance of ERT to detect facies by adapting the probabilistic 511 

framework in order to account for the sensitivity-dependence. This did not appear to improve 512 

classification performance but it did allow us to increase confidence in the results by 513 

attributing, on average, higher probabilities to the correct facies. However, the approach using 514 

the global distributions already performs relatively well when the survey is properly designed 515 

(i.e., electrode spacing adapted to the desired depth of investigation). 516 

Although determining the sensitivity-dependence of the resistivity distribution based on 517 

limited measurements was a challenge in our field case, we modeled this dependence based 518 

on the synthetic benchmark. However, the probabilistic approach is not designed to 519 

counterbalance all errors related to the inversion method. In this particular example, an 520 

increase of resistivity due to the presence of the bedrock was observed in the bottom part of 521 
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the alluvial deposits, leading to the identification of a high probability of sand instead of 522 

gravel. This effect was avoided by using an appropriate inversion method integrating prior 523 

information regarding the position of the bedrock and a geostatistical constraint. The 524 

resistivity distribution obtained was closer to the true resistivity measured by a logging 525 

device. The probabilistic framework allows to associate an uncertainty estimate to the 526 

presence of a given facies.  527 

The proposed methodology, using a large number of synthetic models, could be used to assess 528 

the ability of ERT to image various features in different contexts and to analyze the influence 529 

of other effects known to modify the inverted resistivity distribution such as the electrode 530 

configuration (Dahlin and Zhou, 2004) or the regularization trade-off parameter (Audebert et 531 

al., 2014). It can also be directly applied in Bayesian framework where geophysical 532 

measurements are used to update the probability of a given properties, an obvious example 533 

being soft conditioning of facies-based multiple-point geostatistical simulations (Hermans et 534 

al., 2015a).  535 

The methodology can also be used as an alternative, probabilistic framework to identify if the 536 

survey is correctly designed regarding the objectives of the study and estimate the depth of 537 

investigation: as long as the sensitivity-dependent probabilities are similar to, or more 538 

discriminant than, the global ones, the survey will not systematically overestimates the ability 539 

of ERT to detect specific features in the subsurface.  540 
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 656 

TABLES 657 

 658 

Estimator Without 

sensitivity 

Sensitivity-

dependent 

Mean classification performance (%) 65.26 65.32 

Minimum classification performance (%) 49.29 50.31 

Maximum classification performance (%) 79.17 78.94 

Mean classification performance 2 facies (%) 78.92 78.87 

Minimum classification performance 2 facies (%) 63.82 63.90 

Maximum classification performance 2 facies (%) 90.43 90.55 

Mean probability performance (%) 24.52 27.01 

Minimum probability performance (%) 4.49 8.24 

Maximum probability performance (%) 47.78 51.17 

Mean relative performance increase (%)  10.15 

Table 1. Classification and probability performances. The term “2 facies” means that 659 

misclassification between clay and gravel was disregarded. 660 

661 
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 662 

Sensitivity 

classes 

Number of 

cells 

Without 

sensitivity (%) 

Sensitivity-

dependent (%) 

0 > S > 10-1 22825 84.21 84.61 

10-1 > S > 10-2 31066 84.18 84.48 

10-2 > S > 10-3 49633 71.19 71.33 

10-3 > S > 10-4 79928 59.28 59.40 

10-4 > S > 10-5 54329 52.33 52.50 

10-5 > S > 10-6 5696 43.43 45.05 

10-6 > S 363 37.74 51.79 

Table 2. Classification performance according to data sensitivity.  663 

664 
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FIGURES  665 

 666 

Figure 1. Location of the field site in the Meuse River alluvial aquifer (A and B) and of the 667 

boreholes used for facies description (C). The black lines show the position of 12 ERT 668 

profiles carried out on the site to study the resistivity distribution of the deposits. 669 

 670 

Figure 2. Interpretation of the borehole textural description data in terms of hydrofacies.  671 
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 672 

Figure 3. Two alluvial aquifer synthetic models (A and D) along with their respective 673 

inverted resistivity (B and E) and sensitivity distributions (C and F). The color of the 674 

resistivity of the facies is similar to the color scale used in Figure 2. The scale of the vertical 675 

axis is exaggerated. 676 

 677 

Figure 4. (A) Sensitivity-dependent resistivity distribution for the three considered facies 678 

(mean and 95% interval) for the synthetic benchmark, based on analysis of all 96 inverted 679 

models. The dotted lines correspond to the true value for each facies. (B) Conditional 680 

probability of the different facies given the inverted resistivity value for two different 681 

sensitivity classes, calculated using equation 3. 682 
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 683 

Figure 5. Probability of the three facies for the second model shown in Figure 3D, without 684 

(A, B and C) and with (D, E and F) the sensitivity-dependence taken into account. The scale 685 

of the vertical axis is exaggerated. 686 
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 687 

Figure 6. True model (A) from Figure 3D, inverted resistivity distribution (B), classifications 688 

based on the probability maps of Figure 5 without (C) and with (E) sensitivity dependence 689 

and corresponding misclassification indicator maps (D and F). Red is correct classification, 690 

blue corresponds to misclassification. The transparency scale in C-F is based on the 691 

probability of the most probable facies. Total opacity corresponds to a probability of 100%, 692 

total transparency to the minimum possible probability for the most probable facies: 33%. The 693 

color of the facies is similar to the color scale used in Figure 2. The scale of the vertical axis is 694 

exaggerated. 695 
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 696 

Figure 7. Assumed sensitivity-dependent resistivity distribution for the three considered 697 

facies (mean and 95% interval) for the field case. 698 

 699 

Figure 8. Smoothness constraint inversion of a field profile (A), the corresponding sensitivity 700 

distribution (B), and probability maps without (C) and with (D) taking sensitivity into 701 

account. 702 
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 703 

Figure 9. Effect of regularization on the gravel facies probability map. ERT inversions 704 

obtained using smoothness constraint inversion (A) and geostatistical inversion (B), 705 

respective histograms of resistivity for each facies (C and D) deduced from borehole logs, and 706 

corresponding probability map for gravel (E and F). 707 
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 708 

Figure 10. Comparison of inversion results with electromagnetic log in the middle of the 709 

profile of Figure 9 (GR = geostatistical regularization, SC = smoothness constraint). 710 

Geostatistical regularization is able to reproduce the decrease of resistivity above the bedrock. 711 


