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ABSTRACT 

 
 

Circadian clocks, present in organisms leaving in a rhythmic environment, constitute the 

mechanisms allowing anticipation and adaptation of behavior and physiology in response to 

these environmental variations. As a consequence, most aspects of metabolism and behavior 

are under the control of this circadian clock. At a molecular level, in all the studied species, 

the rhythmic expression of the genes involved are generated by interconnected transcriptional 

and translational feedback loops.  In mammals, the heterodimer composed of BMAL1 and its 

partners CLOCK or NPAS2 constitutes a transcriptional activator regulating transcription of 

Per and Cry genes. These genes encode for repressors of the activity of BMAL1:CLOCK or 

BMAL1: NPAS2 heterodimers, thus closing a negative feedback loop that generates rhythms 

of approximately 24 hours.  

 

The aim of my doctoral work consisted in the investigation of the role of circadian clock in 

the regulation of different aspects of mouse metabolism through the rhythmic activation of 

signaling pathways.   

 

First, we showed that one way how the circadian clock exerts its function as an oscillator is 

through the regulation of mRNA translation. Indeed, we present evidence showing that 

circadian clock influences the temporal translation of a subset of mRNAs involved in 

ribosome biogenesis by controlling the transcription of translation initiation factors as well as 

the clock-dependent rhythmic activation of signaling pathways involved in their regulation. 

Moreover, the circadian oscillator regulates the transcription of ribosomal protein mRNAs 
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and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating 

transcription and translation steps underlying ribosome biogenesis. 

 

In the second part, we showed the involvement of the circadian clock in lipid metabolism. 

Indeed, the three PAR bZip transcription factors DBP, TEF and HLF, are regulated by the 

molecular clock and play key roles in the control of lipid metabolism. Here we present 

evidence concerning the circadian expression and activity of PPARα via the circadian 

transcription of genes involved in the release of fatty acids, natural ligands of PPARα. It leads 

to the rhythmic activation of PPARα itself which could then play its role in the transcription 

of genes encoding proteins involved in lipid, cholesterol and glucose metabolism. In addition, 

we considered the possible role of lipid transporters, here SCP2, in the modulation of 

circadian activation of signaling pathways such as TORC1, PPARα and SREBP, linked to 

metabolism, and its feedback on the circadian clock.    

 

In the last part of this work, we studied the effects of these circadian clock-orchestrated 

pathways in physiology, as clock disruptions have been shown to be linked to metabolic 

disorders. We performed in vivo experiments on genetically and high-fat induced obese mice 

devoid of functional circadian clock. The results obtained showed that clock disruption leads 

to impaired triglycerides and glucose homeostasis in addition to insulin secretion and 

sensitivity.  
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RESUME 

 

Les rythmes circadiens, présents chez tout organisme vivant dans un environnement 

rythmique, constituent l’ensemble de mécanismes permettant des réponses comportementales 

et physiologiques anticipées et adaptées aux variations environnementales. De ce fait, la 

plupart des aspects liés au métabolisme et au comportement de ces organismes apparaissent 

être sous le contrôle de l’horloge circadienne contrôlant ces rythmes. Au niveau moléculaire, 

dans toutes les espèces étudiées, l’expression rythmique de gènes impliqués sont générés par 

l’interconnexion de boucles de contrôle transcriptionnelles et traductionnelles. Chez les 

mammifères, l’hétérodimère composé de BMAL1 et de ses partenaires CLOCK ou NPAS2 

constitue un activateur transcriptionnel régulant la transcription des gènes Per et Cry. Ces 

gènes codent pour des répresseurs de l’activité des hétérodimères BMAL1:CLOCK ou 

BMAL1:NPAS2. Cela a pour effet de fermer la boucle négative, générant ainsi des rythmes 

d’environ 24 heures.  

 

Le but de mon travail de thèse a consisté en l’investigation du rôle de l’horloge circadienne 

dans la régulation de certains aspects du métabolisme chez la souris via  la régulation de 

l’activation rythmique des voies de signalisation.  

 

Nous avons tout d’abord montré que l’horloge circadienne exerce sa fonction d’oscillateur 

notamment au niveau de la régulation de la traduction des ARNm. En effet, nous présentons 

des preuves montrant que l’horloge circadienne influence la traduction temporelle d’un 

groupe d’ARNm impliqués dans la biogénèse des ribosomes en contrôlant la transcription de 

facteurs d’initiation de la traduction ainsi que l’activation rythmique des voies de signalisation 

qui sont impliquées dans leur régulation. De plus, l’oscillateur circadien régule la 
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transcription d’ARNm codant pour les protéines ribosomales et d’ARN ribosomaux. De cette 

façon, l’horloge circadienne exerce un rôle majeur dans la coordination des étapes de 

transcription et traduction permettant la biogénèse des ribosomes.  

 

Dans la deuxième partie, nous montrons les implications de l’horloge circadienne dans le 

métabolisme des lipides.  En effet, DBP, TEF et HLF, trois  facteurs de transcription de la 

famille des PAR bZip qui sont régulés par l’horloge circadienne, jouent un rôle clé dans le 

contrôle du métabolisme des lipides par l’horloge circadienne. Nous apportons ici des preuves 

concernant l’expression et l’activité rythmiques de PPARα via la transcription circadienne de 

gènes impliqués dans le relargage d’acides gras, ligands naturels de PPARα, conduisant à 

l’activation circadienne de PPARα lui-même, pouvant ainsi jouer son rôle de facteur de 

transcription de gènes codant pour des protéines impliquées dans le métabolisme des lipides, 

du cholestérol et du glucose. De plus, nous nous sommes penchés sur le rôle possible de 

transporteurs de lipides, ici SCP2, dans la modulation de l’activation circadienne de voies de 

signalisation, telles que TORC1, PPARα et SREBP, qui sont liées au métabolisme, ainsi que 

son impact sur l’horloge elle-même.  

 

Dans la dernière partie de ce travail, nous avons étudié les effets de l’activation de ces voies 

de signalisation régulées par l’horloge circadienne dans le contexte physiologique puisqu’il a 

été montré que la perturbation de l’horloge pouvait être associée à des désordres 

métaboliques. Pour ce faire, nous avons fait des expériences in vivo sur des souris déficientes 

pour l’horloge moléculaire pour lesquelles l’obésité est induite génétiquement ou induite par 

la nourriture riche en lipides. Les résultats que nous obtenons montrent des dérèglements au 

niveau de l’homéostasie des triglycérides et du glucose ainsi que sur l’expression et la réponse 

à l’insuline.  
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RESUME  POUR  TOUT  PUBLIC 

 

Chaque être vivant soumis aux rythmes jour-nuit possède une horloge biologique appelé 

horloge circadienne. Cette horloge permet aux organismes d’adapter et d’anticiper leur 

métabolisme aux variations environnementales quotidiennes. Chez les mammifères, cette 

horloge est présente à la fois dans le cerveau, mais également dans d’autres organes comme le 

foie, les reins, le pancréas. Au niveau physiologique, en plus de contrôler l’alternance veille-

sommeil, cette horloge est impliquée dans la régulation d’autres mécanismes tels que la 

température corporelle, la pression sanguine, la concentration des certaines hormones dans le 

sang, ou encore l’activité digestive.   

Au niveau moléculaire, des boucles de régulations interconnectées génèrent ces rythmes de 24 

heures environ. Ces oscillations permettent ainsi la régulation du métabolisme en agissant sur 

certaines protéines ou enzymes impliquées dans des voies de signalisations particulières.  

Dans le cadre de ce travail, nous nous sommes intéressés aux implications de l’horloge 

circadienne dans différents aspects du métabolisme. Nous montrons ainsi que l’horloge 

moléculaire est responsable de l’orchestration de la biogénèse des ribosomes, structure 

indispensable au mécanisme qui permet la production de protéines. Ce phénomène implique 

ainsi l’activation coordonnée de plusieurs voies de signalisation au sein de la cellule. D’autre 

part, nous présentons des résultats montrant le rôle de l’horloge circadienne dans la régulation 

du métabolisme des lipides et son impact sur les voies de signalisation. Enfin, l’étude de 

souris obèses nous a permis d’étudier le lien entre l’obésité et l’horloge circadienne.  
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CONTEXT  OF  THE  DOCTORAL  WORK 

 

Circadian rhythms, present in organisms exposed to daily light-dark cycles, constitute the 

mechanisms allowing anticipated and adapted behavior and physiology responses to 

environmental variations. Indeed, it has been shown that the accumulation of the PAR bZip 

transcription factors DBP, TEF, and HLF in peripheral organs such as the kidney and liver is 

circadian clock-dependent. Moreover, these factors control the expression of many enzymes 

involved in detoxification and drug metabolism
3
. In a previous study recently realized in our 

laboratory, it has been shown that reticulum endoplasmic IRE1α pathway is rhythmically 

activated with a 12 hour-period. The loss of this rhythmic activation leads to impairment in 

lipid metabolism resulting in aberrant activation of sterol-regulated SREBP transcription 

factors
4
. These two studies are good examples of circadian clock-dependent orchestration of 

metabolism at the transcriptional and post-translational levels. In this doctoral work we 

investigated the influence of the circadian clock in the activation of signaling pathways 

regulating metabolism. We also looked at the consequences of the circadian clock-dependent 

activations in the context of metabolic disorders. 
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INTRODUCTION 

 

I. General introduction 
 

For centuries, it has been observed that organisms can and must adapt to environmental 

changes like temperature or light/dark cycles. In the 18
th

 century, Jean-Jacques d’Ortous de 

Mairan described for the first time in living organisms the existence of an endogenous clock. 

He observed that mimosa leaves opened during the day and closed during the night. 

Moreover, the movements of these leaves occurred even without access to the light (figure 1). 

In 1832, Augustin de Candolle described for the first time evidence of the free running period 

and the non-requirement for light to synchronize leaves’ movements. Indeed, the leaves’ 

movements, which still occur in constant light, exhibit an advanced phase of 2 hours. Similar 

biological rhythms have been later described in most of the species: in primates and birds
5
, in 

rodents, in insects, in drosophila
6
 and finally in humans

7
.   

 

Figure 1: The leaves’ movements still 

occurred even in constant darkness. 

 
Representation of de Mairan’s experiment 

showing that while mimosa was placed in 

constant darkness, the leaves still opened 

during the subjective day. 
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These biological rhythms, qualified as “circadian rhythms” in 1959 by Franz Halberg, coming 

from the Latin Circa and Diem, literally meaning “around the day”, were defined by 

Pittendrigh in 1960
8
 according to their specific characteristics. Circadian rhythms present a 

period length of about 24 hours, corresponding to one of Earth’s rotations. They are 

endogenous and self-sustained phenomena. They are almost independent on temperature and 

light intensity, and can be entrained by environmental cues, such as light, called “Zeitgeber”.   

Thanks to a 1935 study on beans driven by Bunning, it is known that circadian rhythms are 

hereditary. Later, some specific mutations in Drosophila melanogaster resulted in shortened, 

lengthened or abolished free period, have been described in 1971
9
.  These mutations have 

been shown to be localized in the Per (Period) gene
10

. Since the identification of the first 

clock gene in Drosophila melanogaster, decades of studies allowed the identification and 

characterization of other components of the core clock in most species.  

In recent years, the number of studies concerning the regulation and involvement of the 

circadian rhythms has increased significantly, reflecting how important the circadian rhythms 

are in different metabolic phenomenon. In fact, disrupted circadian rhythms have been shown 

to be associated with metabolic disorders such as diabetes, obesity
11

, vascular diseases
12

, and 

psychiatric disorders
13

. 
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Figure 2: Coordination of behavioral and metabolic processes by the circadian clock 

according to time of day 

 
Circadian clock coordinates appropriate metabolic response in peripheral tissues at the appropriate 

time. This coordination, depending on sleep/ wake, fasting/feeding, and dark/light cycles, is essential 

for maintaining the health of the organism
14

.     

 

 

II. The circadian clock is hierarchically organized 
 

While most tissues, organs
15

 and individual cells contain a circadian clock
16

, at the level of the 

whole organism, mammals require a hierarchical organization of the clock with a central 

pacemaker synchronizing the peripheral clocks (figure 3). 
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 The central pacemaker A.

 

In mammals, there is a central pacemaker localized in the SCN (SupraChiasmatic Nucleus) 

(figure 3). In mice, it is composed of two groups of about 10,000 neurons each and is 

localized in the anterior hypothalamus above the optic chiasm and lateral to the third 

ventricle
17

. The first experiments showing the importance of this structure in circadian 

rhythms have been realized in rodents. SCN have been ablated, resulting in a loss of the daily 

rhythms like locomotor activity and drinking behavior
18

. When SCN coming from donor with 

a different period have been transplanted, the circadian rhythms are restored with a period 

similar to the donor’s rhythms
19

. The SCN has been shown to be involved in the regulation of 

many phenomena such as body temperature, locomotor activity, drinking and feeding 

rhythms, glucose metabolism, neuronal electrical firing, gene expression, and hormone 

secretion.  

As a central pacemaker, this structure also plays a role in the synchronization of the peripheral 

clocks, such as the one in the liver, when environmental information such as light is detected 

by photoreceptors located in the eyes via the retino-hypothalamus tract into the SCN
20

. 

Melanopsin, a photopigment present in specific retinal ganglion cells of the retino-

hypothalamus tract
21

, is essential for the synchronization of the circadian rhythms by light
22

. 

The transmission of light information is done via the activation of melanopsin, followed by a 

release of glutamate and PACAP (Pituary Adenylate Cyclase-Activating Polypeptide) leading 

to molecular mechanisms that use the CREB (Cyclic AMP Response Binding protein) 

pathway to finally activate the Per genes’ transcription in the SCN
23, 24

.   
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Figure 3: Schematic hierarchical organization of the circadian clock 

 
The SCN synchronized by light signals is able to directly synchronise peripheral clocks through the 

sympathetic nervous system and humoral signals. In addition, rest-activity cycles driving body 

temperature variations and feeding-fasting cycles leading to the release of hormones and metabolites 

constitute indirect SCN-generated information participating in the synchronization of peripheral 

clocks
25

.  
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 Synchronization of peripheral clocks B.

 

Peripheral clocks located in peripheral organs, e.g. the liver or kidneys, have been shown to 

be rapidly desynchronized
26

. Indeed experiments on tissue explants showed a persistence of 

rhythms which became dampened due to progressive cellular desynchrony because of period 

variation among cells.  Peripheral tissues need thus to be synchronized every day to maintain 

their daily rhythms
27, 28

. While synchronization of SCN occurred through light as external cue 

or Zeitgeber in peripheral organs it has been suggested that clock synchronization occurred 

differently with zeitgebers other than light. Indeed, a study showed that circulating 

metabolites and hormones in the blood could play the role of a zeitgeber for liver and kidney 

clocks
29

. Actually, daily fasting-feeding cycles appeared to be important zeitgebers for 

peripheral clock synchronization, as it has been shown that inverted fasted-feeding cycles lead 

to the uncoupling of synchronization of peripheral clocks from SCN
30, 31

. These fasting-

feeding cycles lead to rhythmic circulating hormones, metabolites and elevations of 

temperature, all of which are involved in the synchronization of peripheral clocks
25

. In 

addition, the SCN directly synchronizes the peripheral clocks via neuronal and humoral 

outputs. For example, it has been shown that glucocorticoid hormone, which is secreted under 

the control of SCN via the hypothalamic-pituary-adrenal axis
32

, exhibits strong oscillations 

that serve as strong zeitgeber. Moreover, the autonomic nervous system is involved in direct 

synchronization as shown in surgical liver-denervated animals
33, which exhibit an impaired 

resetting after light exposure during the night compared to the control animals.   

.   
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III. The molecular circadian clock 
 

The molecular mechanism that generates a 24-hour oscillation even in absence of external 

cues
34, 35

 is composed of interconnected transcriptional and translational feedback loops
36

. The 

molecular core clock in mammals is schematically described in the figure 4. 

 

 The principal loop A.

 

(1) The activator complex 

 

The first component of the activator complex has been identified in 1994 by Vitaterna and 

colleagues
37

. They identified a mutation in a specific gene named Clock (Circadian 

Locomotor Output Cycles Kaput) encoding for a transcription factor belonging to the basic 

helix-loop-helix family
38

. This mutation, identified in a splicing site, leads Clock mRNA to be 

deleted from the exon 19
38, and due to the alterations generated on circadian rhythms, this 

mutation has been qualified as dominant negative. Indeed, mice harboring the mutation at the 

heterozygous state exhibited a longer free running period than wild-type mice, and moreover 

the mutation at the homozygous state confers on Clock Δ
19 

mice an arrhythmia after some 

days in constant darkness
37

. Later, Clock knockout mice were generated and the analysis of 

their locomotor activity revealed that they still exhibit behavioral rhythmicity in constant 

darkness but with a shorter free running period compared to heterozygote or wild-type mice
39

.  

The second component of the activator complex was identified by two groups of researchers 

in 1998 using the two-hybrid technology in yeast
40, 41

. BMAL1 (Brain and Muscle ARNT-

Like Protein 1), whose RNA expression has been described to be similar to Clock RNA 

expression pattern
41

, also belongs to the basic helix-loop-helix family of transcription factors 
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and has been shown to interact directly with CLOCK to form the activator complex. 

Behavioral rhythmicity studies showed that Bmal1 knockout mice placed in a constant 

darkness condition immediately exhibit a completely arrhythmic activity
42

.  

The activator complex composed of the heterodimerization of CLOCK and BMAL1 proteins 

activates the transcription of the repressor complex factors by binding on specific sequences 

(CACGTG) named E-BOX
41, 43

.  

Later, Garcia et al. identified the interaction of BMAL1 and NPAS2 (Neural PAS domain 

protein 2), another basic helix-loop-helix transcription factor, in the mammalian forebrain
44

. 

This heterodimer has also been shown to be able to activate the transcription of the 

components of the repressor complex. However, the rhythmic activity of Npas2 knockout 

mice study revealed the same phenotype as that of Clock knockout mice, and they still exhibit 

rhythmic locomotor activity in constant darkness
45

. It thus seems that CLOCK and NPAS2 

play a compensatory role for each other in circadian clock mechanisms. This suggestion was 

later validated by a study of the rhythmicity of Clock/Npas2 double knockout mice. Indeed, 

the authors showed that preserving one wild-type allele of Clock or Npas2 while the other 

gene is completely deleted is sufficient to conserve the rhythmic activity, and complete 

double knockout mice exhibit the same arrhythmic phenotype in constant darkness found in 

Bmal1 knockout mice
46

. BMAL2, identified as a basic helix-loop-helix transcription factor, 

was cloned in mice in 2001, and while its expression pattern does not exhibit any oscillation
47

, 

BMAL2 is able to compensate for the absence of BMAL1 in restoring a rhythm in cell 

culture
48

.  
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Figure 4: The mammalian molecular clock 

 
BMAL1:CLOCK heterodimers activate clock-controlled gene transcription by direct binding to E-box. 

PER and CRY protein translation occurs during the night and causes repression of the activator dimer. 

Degradation of PER and CRY through post-translational modifications provides a new circadian 

cycle. In addition, REV-ERB and ROR proteins modulate the cycles by their respective inhibition and 

activation of Bmal1 transcription through their binding to RRE (ROR Response Element) present in 

Bmal1 promoter
49

. 

 

(2) The repressor complex 

 

The repressor complex results in the heterodimerization of PER1 and PER2 (PERiod) 

proteins
50

 and CRY1 and CRY2 (CRYptochrome) proteins
51

. Per is the first clock gene 

identified
10

 in Drosophila melanogaster. In 1997, the three mammalian Per homologs were 

cloned
24, 52-56

. Different studies have shown that in the SCN, the three Per RNAs are 

expressed with a rhythmic pattern. In addition, light pulses promote an increase of Per1 and 

Per2 expression during the subjective night
24, 52, 53, 56

. Mutation in both Per1 and Per2 genes 

leads to complete arrhythmia
50

. The role of the protein CRY1 in the clock core has been 

demonstrated for the first time in plants
57

. In this study, the authors showed that CRY1 was 

required to maintain the circadian rhythms in extended darkness. CRY1 and CRY2 proteins 

were then described in mammals
58, where they explored the role of CRY2 protein in the 
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regulation of the circadian rhythms. In their study, van der Horst et al. disrupted Cry1, Cry2 

or both in mice, and the running wheel activity appeared to be arrhythmic in constant 

darkness only for mice lacking both Cry genes, showing the importance of these genes in the 

generation of the circadian rhythms
51

. 

The PER:CRY heterodimers act by negative feedback on their own expression by repressing 

the transcriptional activity of CLOCK:BMAL1
59-61

. This feedback loop suggests rhythmic per 

and cry mRNAs and proteins expression
62-64

. Molecular mechanisms involved in repressed 

CLOCK:BMAL1 activity by PER and CRY requires post-translational modifications. 

However, recent evidences showed that CRY:PER repression is dependent on their entry into 

nucleus. It appeared thus that PER facilitates the entry of CRY into nucleus where it acts as 

repressor of CLOCK:BMAL1 activity
65

.  

 

 The stabilisation loop B.

 

It appears that the core loop is not the only one involved in the generation of circadian 

rhythms. Indeed, other genes are also involved in the molecular clock oscillation. This is the 

case of the nuclear receptors REV-ERB α and β belonging to the REV-ERB family. Their 

expression has been shown to follow a circadian pattern
16, 66

. In addition, while deletion of 

Rev-erbα or Rev-erbβ causes only subtle defect in circadian behavior, deletion of both genes 

in mice resulted in complete disruption of locomotor activity
66

. ROR (Receptor-related 

Orphan Receptor) α, β, and γ belong to the ROR family. Both families of receptors have been 

shown to be involved in the regulation of transcription via their binding on specific sequences 

in gene promoters: the RRE (ROR Response Element) activate in an opposite way to RORs, 

and REV-ERBs inhibit the transcription. In context of the regulation of the core oscillator, 
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RORs and REV-ERBs (expression of REV-ERBs is regulated by the heterodimer 

CLOCK:BMAL1) activate and inhibit the transcription of  Bmal1
67-70

,  Npas2
71

, Clock
72

 and 

Cry1
73

, respectively. 

 

 Post-transcriptional modifications  C.

 

Once they are transcribed, mRNA can undergo several regulatory processes to adapt to the 

needs of protein with respect to time-related functions. It has been suggested in Drosophila 

melanogaster that Per mRNA stability could be regulated in a circadian manner as its half-life 

changes around the clock
74

. Several studies on mice demonstrated that Per1, Per2, Per3 and 

Cry1 mRNAs are more stable during their rising phase
74-76

. One aspect of this phenomenon 

was described in a study where the authors showed the presence of an element involved in the 

repression of its own expression in the 3’UTR of Per1 
77

. The interaction of LARK1 

(RBM4a), an RBP (RNA Binding Protein) acting as trans-factor and rhythmically expressed 

in the SCN, together with the 3’UTR of Per1 has been shown to be involved in the activation 

of Per1 mRNA expression
78

. Other RBPs have also been showed to be involved in the 

regulation of the core oscillator at the post transcriptional level: the hnRBP (heterogenous 

nuclear RBP) I, D and Q. These particular hnRBP have been shown to interact with some 

clock gene mRNA to promote instability. For example, hnRBP I promotes the degradation of 

Per2 mRNA when it interacts with Per2 3’UTR
75

. The same phenomenon occurs with the 

interaction of hnRBP D and Cry1 3’UTR
76

.  

The stability of the mRNA can be conferred by the 3’ polyA tail stability. It has been shown, 

first in Xenopus
79

 and then in mice
80

, that one deadenylase named ‘NOCTURNIN’ promotes 

the destabilization of the mRNA in a rhythmic manner by removing the 3’ adenosine residues 
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from the transcripts
81

. Moreover it was recently shown that polyA tail length dynamic present 

a rhythmic pattern, leading to rhythmic protein expression
82

. 

The alternative splicing is an important level of post-transcriptional regulation of gene 

expression. It has mainly been demonstrated to be involved in the regulation of the core clock 

in Drosphila melanogaster, induced by cold temperature and producing two different 

isoforms of Per
83

. The same phenomenon has been described in Neurospora Crassa for the 

alternative splicing of frq
84

. Recently, evidences demonstrated in mice the circadian control of 

alternative splicing depending on tissue and that feeding/fasting cycles constitutes an 

important zeitgeber in the regulation of alternative splicing
85

. In addition, a recent study on 

mouse brain and liver showed evidence of a light-inducible alternative splicing of U2AF26 

involved in the regulation of Per1
86

. 

More recently, some evidence has shown that miRNA (microRNA), post-transcriptional 

regulators, play a role in the regulation of circadian rhythms. For example, the two brain-

specific miRNAs miR-219 and miR-132 have been described to be a CLOCK:BMAL 

heterodimer target and a modulator of clock genes expression in mice SCN
87, respectively. In 

mice liver, miR-122
88

 has been shown to be regulated by REV-ERBα, and involved in the 

regulation of clock gene output. In addition, it has been reported that the free-running period 

in Dicer-deficient MEF (Mouse Embryonic Fibroblasts) was shorter due to lack of three 

miRNAs (miR-24, miR-29a, miR-30a) involved in PER1 and PER2 translation regulation
89

. 

Recently, a study on Dicer knockout mice showed only a low impact on the liver core clock 

as the free-running period was delayed by only 40 minutes. But miRNAs have an impact on 

general rhythmic gene expression
90

. 
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 Post-translational modifications D.

 

Post-translational modifications on the core clock proteins play a very important role in 

providing 24 hour-oscillation. These post-translational modifications vary in their nature as 

the list includes phosphorylations, ubiquitinations, sumoylations, and acetylations. 

 

(1) Phosphrylations and dephoshorylations  

 

CK (Casein Kinase) 1 phosphorylates PER2 on the serine 659 leading to its nuclear retention 

and stabilization
91

, while other phosphorylations on PER proteins have been shown to be 

involved in their degradation by the proteasome
92, 93

. CK1 also phosphorylates BMAL1, 

increasing its transcriptional activity
94

. Another kinase, GSK (Glycogen Synthetase Kinase) 

3β, acts on PERs and CRY2 proteins to favor their nuclear localization
95, 96

. This kinase is 

also known to stabilize REV-ERBα. As a consequence, it strengthens Bmal1 transcriptional 

repression
97

. AMPK (Adenoside MonoPhosphate-activated protein Kinase) has been shown to 

phosphorylate CRY1 leading to its instability
98

. In addition, phosphatases are also involved in 

molecular circadian clock regulation. Indeed, Phosphatase Protein 1 (PP1) acts directly on 

PER2 leading to the increase of its stability
99, while PP5 regulates the inhibitory self-

phosphorylation of CK1 such that it is indirectly involved in the phosphorylation state of 

PER2
100

. 
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(2) Ubiquitinations 

 

As mentioned above, some post-translational modifications are linked to degradation by the 

proteasome. This mechanism requires poly-ubiquitinations on lysine residues of the proteins 

to be addressed to proteasome 
101

.  SFC, a complex composed of several proteins, is involved 

in the recognition and ubiquitination of phosphorylated proteins to be degraded by the 

proteasome. PER and CRY proteins undergo degradation to prevent the inhibition of 

BMAL:CLOCK transcription activity. FBXL (F-Box and Leucine-rich repeat protein) 3, a 

component of SFC ubiquitin ligase complex, have been shown to be involved in AMPK- and 

GSK3β-phosphorylated CRY proteins degradation
102

. Two groups of researchers described 

mutations in Fbxl3 gene, Overtime 103
 and After-Hours 

104
, leading to very long free-running 

period in constant darkness. In a recent study, FBXL21 has also been shown to be involved in 

CRY ubiquitination
105

. Fbxl21 knockout mice exhibit a normal running-wheel activity while 

the free running period of Fbxl3 knockout mice is extremely long in constant darkness. In 

addition, mice deleted for both Fbxl genes exhibit arrhythmia after few days of constant 

darkness conditions reflecting their impact on circadian clock. Actually, FBXL21 stabilizes 

CRYs in the cytoplasm while FBXL3 ubiquitination on CRYs in the nucleus leads to their 

destabilization. In the same way, CK1-phosphorylated PER proteins undergo degradation via 

polyubiquitination by βTrCP (β Transducing repeat-Containing Protein) 1 and 2
92, 93

.  

 

(3) Sumoylations 

 

Few examples of sumoylation have been reported, but recent evidence shows that 

sumoylation is involved in the robustness of circadian rhythms. Indeed, sumoylation in 

BMAL1 occurs on lysine 259 and is induced by CLOCK
106

. This post-translational 
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modification is required for clock oscillation, as sumoylation of BMAL1 in the nuclear bodies 

leads to its transactivation and its proteasomal degradation
107

. 

 

(4) Chromatin remodeling 

 

Epigenetic factors also influence the circadian clock by modulating gene transcription via 

chromatin remodeling factors. Indeed the regulation of the core clock mechanism in mice 

liver is accompanied by rhythms in H3 histone acetylation on Per1, Per2 and Cry1 

promoters
108

. Moreover, CLOCK proteins have been described as Histone AcetylTransferase 

(HAT) enzymes
109

. This HAT activity is enhanced by the heterodimerisation with BMAL1. 

More precisely, CLOCK acetylates BMAL1 leading to a facilitated interaction of BMAL1 

with CRY proteins. This leads finally to an increase of the negative feedback by CRY 

proteins
110

. In addition, some circadian clock repressors are associated with Histone 

DeACetylase (HDAC). For example, HDAC can bind Per1 promotor
111

, and REV-ERBα can 

associate with HDAC3 on Bmal1 promoter
112

.  

The methylation state of circadian gene promoters has also been reported to play an important 

role in their expression regulation. Indeed, rhythmic methylation events of E-boxes present in 

the circadian genes correlate with the cyclic binding of CLOCK:BMAL1
113

. WDR5, a subunit 

of histone methyl transferase complexes, has been identified as increasing PER-mediated 

repression
114

. In addition, it has been shown that JARID (JumonjiC and ARID domain-

containing histone lysine demethylase) 1a can associate with CLOCK:BMAL1 and bind Per2 

promoter. It then results in an increased transcription by CLOCK:BMAL1
115

.  

More recently, SIRTs (SIRTuins), and more particularly SIRT1
116, 117

 and SIRT6
118

, have 

been reported to play a role in the control of circadian clock gene thanks to their function of 
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histone deacetylase. SIRTs, NAD
+
 (Nicotinamide Adenine Dinucleotide) -dependent enzymes 

in which deacetylase activity is circadian, bind the BMAL1:CLOCK activator complex and 

contribute to the regulation of PER2 stability
116

. SIRT proteins are involved in metabolism, 

and they thus provide a real link between the circadian clock and the coordination of the 

metabolism by the circadian rhythms. Indeed, NAMPT (NicotinAMide Phosphorybosyl 

Transferase), a rate-limiting enzyme involved in NAD
+
 biosynthesis, as consequence of  

metabolic processes through SIRT1, has been reported to influence Per2 expression, as its 

inhibition promotes BMAL1:CLOCK released from suppression by SIRT1. In turn, Nampt 

mRNA expression is upregulated by CLOCK
119

. More recently, Masri et al. reported SIRT6 

as being involved in the coordination of SREBP1-dependent circadian transcription
118

.   

.  

 

IV. The translational mechanisms in mammals 
 

 

In eukaryote organisms, about 30% of the mass of cellular proteins produced is subject to 

translational control
120

. Thus, protein synthesis is accurately regulated at the post-

transcriptional level. Indeed, mRNAs harbor cis-acting elements involved in the recruitment 

of trans-acting factors and the subsequent attachment of ribosomes that can scan and translate 

the mRNA into protein. Essentially, translation is a four step initiation, elongation, 

termination and recycling of ribosomes for a new translation initiation. 
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 Pre-initiation of the translation A.

 

 

(1) Formation of pre-initiation translation complex 

 

Translation initiation constitutes the limiting step of protein synthesis. During this step, the 

small ribosome subunit is recruited to the 5’- end of mRNA and scans towards the start codon, 

where the complete ribosome is subsequently assembled, and then the polypeptide can 

begin
121

. The eIF (eukaryotic translation Initiation Factor) 4F complex, composed of eIF4E, 

eIF4G and eIF4A, is assembled on the 5’- cap structure of mRNA. This leads to the 

recruitment of the small ribosomal subunit to mRNA. To assemble the eIF4F complex, eIF4E 

binds to the 5’- cap and recruits eIF4G and eIF4A. 4E-binding protein 1 (4E-BP1; also known 

as eIF4EBP1) inhibits eIF4G binding to eIF4E. mTORC1-mediated phosphorylation of 4E-

BP1 leads to its release from eIF4E, allowing the recruitment of eIF4G and eIF4A 
122

. 

 

(2) Regulation of TORC1 signaling pathway 

 

Target Of Rapamycin (TOR) was first identified in 1991
123

 in yeast. TOR can associate with 

different partners to compose two different TOR Complexes, TORC1 and TORC2. TORC1, 

identified as a central sensor in the nutriment detection
124

, is involved in the regulation of cell 

growth and size by promoting protein synthesis
125, 126

. TORC1 is regulated by extracellular 

signals
124, 126

 (figure 5).  Indeed, amino-acid, especially Branched Chain Amino Acids 

(BCAA), availability is an important signal as they positively and directly regulate TORC1 

signaling
127-129

. It has also been shown that hormones or growth factors are involved in 

TORC1 activation. Indeed, the binding of insulin or insulin-like growth factors to the 

receptors leads to TORC1 activation via the PhosphoInositide 3 Kinase (PI3K) – AKT 
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pathway. Tuberous Sclerosis Complex (TSC) 1/2, whose activity inhibits TORC1 activity, is 

inhibited by phosphorylation by AKT
130

. More precisely, TSC1/2 has a GTPase-Activating 

Protein (GAP) activity with respect to the small GTPases Rheb
131

. This activity occurs by 

stimulating the hydrolysis of GTP-bound Rheb leading to TORC1 inhibition
132

. TORC1 also 

responds to cellular energy variations. A low cellular energy activates AMPK pathway. In 

these conditions, AMPK directly phosphorylates TSC2
133

 and one component of TORC1, 

Raptor
134

, leading to TORC1 inhibition. Finally, Extracellular signal-Regulated protein 

Kinase (ERK)
135

 and Mitogen-Activated Protein Kinase (MAPK)-interacting Kinase (MNK) 

RSK1
136

 pathways are involved in TORC1 regulation as, when activated by stress, they are 

able to phosphorylate TSC2, leading to TORC1 activation. 

 

(3)   Translation initiation regulated by TORC1 

 

mRNAs belonging to the 5’ Terminal OligoPyrimidine (5’TOP) mRNA family are 

characterized by an identifiable pyrimidine-rich motif in the 5’ terminal sequence
137

. This 

motif corresponds to the core of the translational cis-regulatory element. Most of the products 

of these mRNAs are components of the translation machinery, and their expression responds 

to growth and nutritional stimuli
137

. Indeed, TORC1 regulates the protein synthesis from 

5’TOP mRNAs and more particularly the translation initiation complex formation via 

Ribosomal Protein S6 Kinase (RPS6K) and EIF4E-Binding Protein (4E-BP) 

phosphorylations
126

. In its inactive state, this translation initiation complex is composed of the 

mRNA cap-binding protein EIF4E bound to the hypophosphorylated form of 4E-BP that acts 

as a translational repressor. After TORC1 phosphorylation of 4E-BP
122

, it releases EIF4E, 

which can then interact with the scaffold protein eIF4G and the rest of the EIF4F complex 

(EIF4A, EIF4B, and EIF4H) to initiate the translation
138

. In parallel, TORC1 phosphorylates 
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RPS6K, which then phosphorylates other substrates involved in EIF4F complex formation. 

Indeed, this leads to the phosphorylation of EIF4B, inducing its own recruitment to EIF4A
139

. 

 

 

Figure 5: The translation initiation mediated by TORC1 is modulated by metabolism 

linked signaling pathways. 

 
Activated AKT and REK pathways lead to the activation of mTORC1, which phosphorylates its 

targets 4E-BP1 and RPS6K, thus allowing the formation of the pre-initiation complex of the 

translation. In contrast, the activated AMPK signaling pathway represses this formation through its 

mTORC1 inhibition.   
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 The different steps of translation initiation B.

 

mRNA scanning and the corresponding polypeptide synthesis is performed by 80S ribosome, 

which contains a P-site where the initiation codon is base-paired with the anticodon loop of 

the initiator tRNA (Met- tRNAi
Met

)
140

. Its recruitment requires several steps (figure 6) once 

activated translation pre-initiation eIF4F complex binds 5’ end mRNA.  

 

(1) Formation of 43S pre-initiation complex.  

 

Translation is a cyclical process. Ribosomes undergo recycling at the end of translation 

process. Indeed, the action of different factors (eIF1, eIF1A and eIF3) leads to the dissociation 

of the different subunit composing 80S ribosome (60S and 40S subunits) and the release of 

eRF (eukaryotic Releasing Factor) 1 and 3, mRNA and tRNA. During this recycling step, the 

40S subunit is associated to eIF3, eIF1 and eIF1A preventing the 60S subunit from 

associating again. Thus, eIF3, eIF1 and eIF1A are recruited to 40S subunits during recycling 

and interact with eIF2–GTP–Met- tRNAi
Met

 to form 43S complexes. The position of eIF2–

GTP–Met- tRNAi
Met

 on 40S subunits has not been determined. However, in 43S complexes, 

the Met- tRNAi
Met

 anticodon loop is probably not inserted as deeply into the P-site as in 

ribosomal complexes with established codon–anticodon base pairing, and its acceptor end, to 

which Met is linked, might be rotated towards the E-site 
141-143

. 

 

(2) Attachment of 43S complex to mRNA. 

 

It has been shown that 43S complexes are intrinsically capable of 5′ end-dependent 

attachment to model mRNAs with completely unstructured 5′ UTRs
144

.  
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Figure 6: Molecular mechanisms of eukaryotic translation initiation 

 
Translation initiation is constituted of several stages: recycling of ribosomal subunits, formation of 

43S pre-initiation complex, attachment of 43S complexes to mRNA, ribosome scanning of mRNA 5′ 

UTRs, initiation of codon recognition, commitment of ribosomes to a start codon, ribosomal subunits 

joining 138
.  
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However, natural 5′ UTRs possess a sufficiently secondary structure for the loading of 43S 

complexes onto them to require the cooperative action of eIF4F and eIF4B or eIF4H, which 

unwind the 5′ cap-proximal region of mRNA to prepare it for ribosomal attachment. The 

recruitment of the 43S complex is achieved by the interaction of cap-eIF4E-eIF4G with eIF3-

40S
145

. 

 

(3) Ribosome scanning of mRNA 5′ UTRs.  

 

After attachment on capped mRNA, the 43S complex scans mRNA downstream of the cap to 

the initiation codon. Scanning consists of two linked processes:  unwinding of secondary 

structures in the 5′ UTR and ribosomal movement along it. 43S complexes can scan 

unstructured 5′ UTRs without factors associated with RNA unwinding and are thus capable of 

movement along mRNA
144

. This movement of 43S complexes requires the scanning-

competent conformation induced by eIF1 and eIF1A
146

.  

Concerning scanning directionality, it has been shown that initiation frequency at the 5′ 

proximal AUG is reduced by the presence of a nearby downstream AUG
147.  This suggests that 

scanning may consist of forward (5′ to 3′) thrusts alternating with limited relaxation over 

distances of a few nucleotides in the reverse direction. 

 

 

(4) Initiation of codon recognition.  

 

To ensure the fidelity of initiation, scanning complexes must have a mechanism that prevents 

partial base pairing of triplets in the 5′ UTR with the Met- tRNAi
Met

 anticodon and promotes 
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recognition of the correct initiation codon: usually the first AUG triplet in an optimum 

‘Kozak’ context (GCC(A/G)CCAUGG)
148, 149

. This role in maintaining the fidelity of 

initiation is done by eIF1. Indeed, this factor enables 43S complex to discriminate against 

non-AUG triplets or AUG triplets in non-favorable. In addition, it is involved in cooperation 

with eIF1A in the dissociation of the ribosomal complexes that aberrantly assemble with such 

triplets
144, 149, 150

. 

. 

(5) Commitment of ribosomes to a start codon. 

 

Initiation codon recognition is followed by a step during which the arrested ribosome 

becomes committed to initiation. The commitment step is mediated by eIF5, an eIF2-

specific GTPase-activating protein (GAP)
140

. The molecular mechanism remains unclear, but 

two hypothesis have been suggested. The first hypothesis proposes a binding of eIF5 to eIF2's 

β-subunit but induces the GTPase activity of eIF2's γ-subunit only in eIF2–GTP–Met-

tRNA
Met

 complexes that are bound to 40S subunits
151

. The second hypothesis suggests that 

eIF5 derepresses eIF2γ's GTPase activity
152

.  

 

(6) Ribosomal subunit joining. 

 

The joining of 60S subunits and dissociation of eIF1, eIF1A, eIF3 and residual eIF2–GDP are 

mediated by eIF5B
153, 154

. Moreover, hydrolysis of eIF5B-bound GTP is required for eIF5B 

release from assembled 80S ribosomes
140

. Interaction of eIF5B with eIF1A
155, 156

 is required 

for efficient subunit joining and GTP hydrolysis by eIF5B. 
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Although those eIFs that bind to the interface of the 40S subunit must be released before or at 

subunit joining, dissociation of eIF3 and eIF4G may be delayed to allow reinitiation following 

short upstream ORFs
157

. 

 

 Translation elongation C.

 

After translation initiation, 80S ribosome is poised on an mRNA with the anticodon of Met-

tRNAi in the P-site base-paired with the start codon. The second codon of the ORF is present 

in the A-site (Acceptor-site) of the ribosome awaiting binding of the cognate aminoacyl-

tRNA. The eEF (eukaryotic Elongation Factor) 1A binds aminoacyl-tRNA in a GTP-

dependent manner and then directs the tRNA to the A-site of the ribosome
158, 159

. Codon 

recognition by the tRNA triggers GTP hydrolysis by eEF1A, releasing the factor and enabling 

the aminoacyl-tRNA to be accommodated into the A-site
160

.  Next, peptide bond formation 

with the P-site peptidyl-tRNA occurs rapidly with the help of the peptidyl transferase 

center
161

. Then the ribosomal subunits triggers movement of the tRNAs with the acceptor 

ends of the tRNAs in the E- and P-sites and the anticodon loops remaining in the P- and A-

sites. 

This translocation of the tRNAs to the canonical E- and P-sites requires eEF2
162, whose 

regulation involves the mTOR pathway through S6K phosphorylation
163

.  

 

 Termination of the translation D.

 

It occurs when the end of the coding sequence is reached by the ribosome and a stop codon 

(UAA, UGA or UAG) enters the A-site. In eukaryotes, it is catalyzed by two protein factors, 
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eRF1 and eRF3. eRF1 is responsible for high fidelity stop codon recognition and peptidyl-

tRNA hydrolysis, while eRF3 is involved in acceleration of peptide release and  termination 

efficiency at stop codons
164, 165

. In the post-translocation state of the ribosome, a deacylated 

tRNA occupies the E-site and the peptidyl-tRNA is in the P-site. The A-site is vacant and 

available for binding of the next aminoacyl-tRNA in complex with eEF1A 166
. 

 

 Ribosome biogenesis E.

 

 

Deep investigations of ribosome biogenesis have been performed on the yeast Saccharomyces 

Cerevisiae. However, mammalian ribosome biogenesis remains unclear, and the following 

descriptions refer to described mechanisms in yeast.  

In eukaryotes, each ribosome is composed of a small 40S and large 60S subunit. Each subunit 

itself contains different molecules: ribosomal RNA (rRNA) and ribosomal proteins (40S [18S 

rRNA, 33 RPs]; 60S [25S, 5.8S, 5S rRNA, 46 RPs]). Ribosome biogenesis requires the 

activity of all three RNA polymerases (figure 7): RNA polymerase II transcribes the pre-

mRNAs of ribosomal proteins and accessory factors involved in ribosome biogenesis
167

, RNA 

polymerase III produces the precursor to 5S rRNA
168

, and RNA polymerase I, in part through 

UBF (Upstream Binding Factor) 1 activation
169, is involved in the transcription of the 

common precursor to mature 5.8S, 18S and 25S rRNAs
170

. Interestingly, mTOR has been 

shown to regulate all three RNA polymerases
2
. 
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In yeast, the biogenesis of both subunits starts with the transcription of the common precursor, 

the 35S pre-rRNA, by RNA polymerase I (Fig. 8). A large number of non-ribosomal factors 

and snoRNAs modify nascent rRNA
171, 172

, leading to pseudourydines formation. Upon 

cleavage, which can occur co-transcriptionally, the early 40S pre-ribosome (figure 8, left side) 

is separated from the remaining pre-rRNA, which assembles with large subunit ribosomal 

proteins and non-ribosomal factors to form the earliest pre-60S ribosomal particles (figure 8, 

right side)
172

. 

 

(1) 40S subunit assembly 

 

The assembly of the first 40S precursor, the 90S particle, occurs co-transcriptionally and starts 

with the incorporation of UTP-A, UTP-B, and UTP-C
173

. Following cleavage at the U3 

snoRNP-dependent sites A0, A1, and A2, which yield the 20S pre-rRNA, the composition of 

the pre-40S particle changes dramatically. Indeed, most non-ribosomal factors dissociate and 

a small set of novel biogenesis factors and further Rps proteins are recruited
174

. This pre-40S 

Figure 7: Influence of mTOR in 

ribosome biogenesis  

 
mTOR regulates the three RNA 

polymerase I, II and III involved in 

ribosome component transcription
2
, 

the pre-rRNA, ribosomal proteins 

mRNA and 5S rRNA respectively. 
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subunit is rapidly transported out of the nucleolus into the cytoplasm where the cleavage of 

the 20S pre-rRNA at site D occurs, yielding the mature 18S rRNA 
175, 176

. 

 

 

  

 

(2) 60S subunit assembly 

 

Ssf1, the earliest distinct pre-60S particle, contains a mixture of 27SA and 27SB pre-rRNA, 

ribosomal proteins, and about 30 non-ribosomal proteins, including early diagnostic factors 

like Noc1 and Rrp5 
177, 178

. The next distinct intermediate is defined by the nucleolar Nsa1 

particle 
178

, since this particle almost exclusively contains the 27SB rRNA part of the 5S 

subunit. The transition from the nucleolus (Nsa1 particle) to the nucleoplasm (Rix1 particle) 

is accompanied by major compositional changes of partners 
178

. At this step, the 27SB pre-

rRNA has been processed almost completely into 25S and 7S/5.8S rRNAs
179, and its partners 

prime the pre-60S particle for nuclear export
180

. The final 5.8S processing occurs in the 

Figure 8: Representation of the 

major steps in pre-rRNA 

processing involved in the 

ribosome subunit formation. 

  
After its transcription, the common pre-

rRNA undergo specific sequential 

cleavages. This maturation leads to the 

generation of rRNAs constituting the 

small (green) and the large (blue) 

subunits of the ribosome 
1
. 
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cytoplasm
181, and the release of processing factors allows 60S subunits to be associated with 

40S ribosomal subunits
182

. 

 

(3) Nuclear export 

 

The nuclear export of both subunits depends on the general export factor Xpo1/Crm1, the 

regulatory GTPase Ran
183, 184

 and NES (nuclear export sequence) adaptors. Indeed, for the 

pre-60S subunits, Xpo1 binds to an NES of Nmd3 which interacts with the ribosomal 

subunits
185

. The heterodimer Mex67-Mtr2 also mediates the export of the pre-60S subunits, 

since it binds 5S rRNA and Mex67, and Mtr2 mutants show impaired pre-60S export
186

. 

Finally, Arx1 also facilitates pre-60 subunit’s translocation through its interaction with 

nucleoporins
187

. 

The export mechanism of the small subunit is still unclear. Despite the role of Xpo1 in the 

export of pre-40S ribosomes, no NES-adaptor has been identified to date. However, depletion 

of a few ribosomal proteins, namely, Rps15, Rps10, Rps26, Rps2, Rps0, and Rps3, were 

found to cause strong export defects
188

, suggesting a direct or indirect involvement in pre-40S 

export. 
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V. Energy balance 
 

Organisms must adapt to the fluctuation of nutrient availability. In mammals, surplus of 

nutrients are mainly stored in adipose tissue as triglyceride. Carbohydrate ingestion 

stimulates, in the liver, conversion of carbohydrate into triglyceride. Then, triglycerides are 

mobilized from the liver to adipose tissue for long-term storage. High glucose levels in the 

circulation after a high-carbohydrate meal leads to the activation of hepatic lipogenesis 

through various mechanisms. Glucose and lipid metabolisms are thus interconnected, and 

their fine regulation requires the action of the pancreatic hormones glucagon and insulin. 

Essentially, glucose activates insulin secretion from pancreatic β-cells leading to the 

stimulation of glucose uptake and its utilization, and promotion of the synthesis of glycogen 

and lipogenesis in the liver. In addition, insulin inhibits hepatic glucose production, fat 

oxidation and ketogenesis, thus shifting the balance to fat storage. Finally, glucose constitutes 

an important signaling molecule in the regulation of genes encoding for enzymes involved in 

glycolysis and lipogenesis
189

.     

Glucose, insulin and glucagon are involved in lipogenesis and glycolysis through the 

regulation of transcription factors. SREBP (Sterol Regulatory Element Binding Protein) 1c, in 

the liver, is one important transcriptional regulator of fatty acid and triglyceride synthesis in 

response to insulin
190-192

. Indeed, SREBP1c expression is low in fasted animals, but increases 

greatly upon feeding, under insulin mediation
193, 194

. In addition, evidence shows that insulin 

activates SREBP1c at the post-translational level
195, 196

 leading to the expression of enzymes 

playing a role in fatty acid and triglyceride synthesis as ATP-citrate lyase (ACL), acetyl-CoA 

synthetase (ACS), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA 

desaturase-1 (SCD1), and glycerol-3-phosphate acyltransferase (GPAT). In contrast to insulin 
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stimulation, glucagon inhibits the transcription of SREBP-1c mRNA through the cyclic 

adenosine 3′,5′-monophosphate/protein kinase A signaling pathway 197, 198
. 

 

 SREBP signaling pathway A.

 

(1) Activation of SREBPs 

 

SREBPs are proteins belonging to the basic helix-loop-helix leucine zipper family of 

transcription factors. In mammals, three isoforms, SREBP1a, SREBP1c and SREBP2, have 

been described depending on their tissue localization and their regulatory functions in lipid 

metabolism. In liver, SREBP1c is especially involved in fatty acids and triglycerides 

metabolism, whereas SREBP2 plays an important role in the regulation of de novo cholesterol 

biosynthesis as, among other regulating events, it participates in the regulation of the 

transcription of Hmgcr (3-Hydroxy-3-MethylGlutaryl-CoAReductase)
199

, which encodes for a 

rate-limiting enzyme of the cholesterol biosynthesis.  

As shown in the figure 9, SREBPs are basically membrane-bound proteins localized in the 

endoplasmic reticulum. In the presence of sterols or oxysterols, SREBPs remain in the 

endoplasmic reticulum with the SCAP (SREBP Cleavage-Activating Protein) and INSIG 

(INSulin Induced Gene) proteins, with this situation corresponding to SREBPs inactive 

state
200, 201

. However, in the absence of sterols or oxysterols, SREBPs migrate to the Golgi 

apparatus to undergo some proteolysis cleavages by Site-1 and Site-2 Proteases (S-1P and S-

2P)
202, 203

, leading to the release of the N-terminal part of SREBPs
204, which can play their 

role of transcription factors in the nucleus on their respective target genes, of which Fasn 

(Fatty Acid Synthase) for SREBP1c
205

 and Hmgcr for SREBP2 are two representative 

examples.   
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Figure 9: Activation of SREBP as transcription factors 

 
In its inactive state, SREBP remains associated at the membrane of the endoplasmic reticulum. 

Activation of SREBP, in sterol deprivation conditions, leads to migration to Golgi apparatus where it 

undergoes several proteolytic processes, thus releasing SREBP transcriptional part
206

. 

 

 

(2) Transcriptional regulation of SREBP1c in liver 

 

Insulin interaction with its receptor at the cell surface induces the phosphorylation of IRS 

(Insulin-Receptor Substrates protein). This initiates a signaling cascade (figure 10) leading to 

the transcriptional suppression of gluconeogenesis and the activation of lipogenesis
207, 208

. 

Tyrosine phosphorylation of IRS by the insulin receptor recruits PI3K, which then 

phosphorylates phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P2) to produce 

Ptd(3,4,5)P3 (PIP3). PI3P acts as second messenger and recruits AKT to the plasma 
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membrane. AKT is then activated by PDK (3-Phosphoinositide-Dependent protein Kinase)1 

phosphorylation. As a consequence, AKT activates mTORC1 signaling pathway. Recently, 

mTORC1 has been reported as an important regulator of SREBP-1c that activates both 

SREBP-1c transcription
209-211

 and proteolytic processing in response to insulin stimulation
210, 

212-214
. The inhibition of p70S6K (p70 ribosomal S6 Kinase), one of the major downstream 

targets of mTORC1, does not present any effect on insulin-induced SREBP1c mRNA 

expression
211

. However, it inhibits SREBP1c proteolytic processes
210

, demonstrating 

SREBP1c  regulation by mTORC1 through distinct mechanisms. 

 

Figure 10: Regulation of SREBP by the insulin signaling pathway.  

 
Insulin activates SREBP-1 through multiple mechanisms. Insulin stimulates SREBP-1c transcription, 

promotes proteolytic processing, facilitates the nuclear import of the processed protein, and suppresses 

the proteasomal degradation of SREBP-1
215

. 
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 LXR signaling pathway B.

 

LXRs belong to a nuclear receptor family of transcription factors. Both LXR isoforms, LXRα 

mainly expressed in the liver and LXRβ, whose expression is ubiquitous
216, 217

, play the role 

of transcription factor when activated by the heterodimerization with RXR nuclear receptor
217

 

and the binding of specific ligands belonging to the oxysterols family 
216, 217

 as shown in 

figure 11.  

 

Figure 11: Activation of LXR transcription factor  

 
LXR associated to RXR binds LXRE on target gene promoter. At the basal state, the heterodimer is 

bound by the repressor, preventing LXR from inducing transcription. In the presence of oxysterols and 

co-activators, the heterodimer is activated, leading it to play its role of transcription factor
218

.   

 

As transcription factor, the LXR-RXR heterodimers bind to a specific DNA sequence named 

‘LXRE’ (Liver X Responsive Element)
219

 present in the promoter of the LXR target genes as 

Abcg5 or Abcg8 (ATP-binding cassette subfamily g member 5 and 8). LXR target genes 

encode for proteins, especially transporters, involved in the regulation of a mechanism called 

reverse cholesterol transport
220

. This process allows the excess of cholesterol to return to the 

liver as HDL (High Density Lipoproteins) to be eliminated in the bile
219, 221, 222

.  
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LXR transcription factors also play an important role in fatty acid and triglyceride synthesis. 

Indeed, LXRα is able to induce SREBP-1c expression via LXRE-bound transcription
223-225

. 

Thus, LXRα lipogenic activity is abrogated in SREBP-1c deficient mice
195

, showing the role 

of LXR in lipogenesis through SREBP-1c. In addition, LXRα deficient mice exhibit reduced 

expression of SREBP1c in the liver and as a consequence, SREBP1c target genes encoding 

for lipogenic factors such as SCD1 and FAS also present a decreased expression
217, 224, 226, 227

. 

In contrast, SREBP1c expression and lipogenesis increase under high-cholesterol diet
217, 224, 

226, 227
. Importantly, disruption of LXR-binding sites on the SREBP-1c promoter abolished the 

induction of promoter activity by insulin. This evidence suggests that SREBP-1c induction in 

response to insulin is dependent on LXRα
223

. However, no other LXR target genes have been 

shown to be induced by insulin
228, 229

.  This process appears to be SREBP1c specific, and the 

mechanism of this LXRα-activated SREBP1c by insulin remains unknown. 

. 

 

 ChREB signaling pathway C.

 

ChREBP (Carbohydrate Response Element Binding Protein) was first identified as a glucose 

responsive transcription factor involved in the regulation of glycolytic, gluconeogenic, and 

lipogenic gene expression
230, 231

. ChREBP activates the transcription of genes encoding for 

important enzymes belonging to pathways such as L-PK (L-Pyruvate Kinase) for glycolysis, 

G6PC (Glucose 6 Phosphatase Catalytic subunit) for gluconeogenesis, FAS (Fatty Acid 

Synthase), ACC (Acetyl CoA Carboxylase) 1, and SCD (Stearyl CoA Desaturase) for 

lipogenesis
230

. 
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(1) Activation of ChREBP 

 

ChREBP, a transcription factor belonging to the basic helix-loop-helix leucine zipper 

family
230-232

 activated by glucose, is highly expressed in liver, pancreatic β-cells, brown and 

white adipose tissues, and muscle. ChREBP and MLX (Max-like protein X) form 

heterodimers
233, 234

 to activate transcription via the binding of ChoREs (Carbohydrate-

Response Elements). These response elements are composed of two E-box sequences and 

have been identified in promoters of ChREBP target genes (figure 12).  

Two isoforms of ChREBP, ChREBPα and ChREBPβ, have recently been identified
235

. 

ChREBPα is mainly located in the cytosol while ChREBPβ is located in the nucleus. Under 

glucose stimulation, ChREBPα isoform is translocated into the nucleus where it binds to 

ChoRE after its dephosphorylation by protein phosphorylase 2A, which is regulated by X5P 

(Xylulose 5-Phosphate) in the pentose phosphate pathway 
236

. Under starvation conditions, 

glucagon increases cAMP levels leading to ChREBP  phosphorylations by PKA (cAMP-

dependent Protein Kinase) and AMPK. It thus results it ChREBP inactivation 
237

. In addition, 

ChREBP activation can be modulated via acetylation by HAT (Histone Acetyl-Transferase)
238

 

and O-GlcNAcylation, which is a nutrition-dependent post-translational modification
239-241, 

thus promoting ChREBP transactivation.  
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Figure 12: Regulation of ChREBP activity 

 
The phosphorylation/dephosphorylation of ChREBPα by PKA/protein phosphatase 2A (PP2A) is 

involved in ChREBPα nuclear translocation and activation. Acetylation by coactivator CBP/P300 and 

O-GlcNAcylation by O-GlcNAc transferase (OGT) also contribute to ChREBPα transcriptional 

activities. ChREBPα forms a heterodimer with Max-like protein X (MLX) and binds to the 

carbohydrate-response elements (ChoREs) in the nucleus to induce its target genes involved in 

glycolytic and lipogenic pathways
215

.  

 

 

(2) Alternative transactivation of ChREBP in 

adipose tissue 

 

An alternative transactivation of ChREBP has been proposed (figure 13). ChREBP contains a 

glucose-sensing module consisting of a low-glucose inhibitory domain (LID) and a glucose 

response activation conserved element (GRACE). Inhibition of the LID domain on GRACE, 
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leads ChREBP to remain in an unfavorable conformation for DNA binding and activation. 

This can be reversed by high glucose
242-245

. According to this model, deletion of the LID 

domain produced a constitutively active ChREBP even under low-glucose conditions
244

. The 

involvement of the glucose-sensing module and conformational modulation has been 

implicated in the regulation of ChREBP activity by glucose metabolites, such as glucose 6 

phosphate (G6P)
246, 247

. The mechanism of carbohydrate-mediated ChREBP activation may 

involve feed-forward regulation, because changes of ChREBP activity can also be reflected 

on ChREBP mRNA levels
248, 249

.Recently, ChREBP was shown to be capable of self-

regulation in adipose tissue
235

. ChREBPβ is transcribed from an alternative promoter, 

differing from ChREBPα. ChREBPβ protein, which does not contain LID or nucleus export 

signals, exhibits constitutively higher transactivation ability than ChREBPα
244

. ChREBPβ 

expression increases by cotransfection of ChREBPα and LMX in a glucose dose-dependent 

manner. The ChoREs are also identified in the promoter region of ChREBPβ, and the deletion 

of these elements completely abolishes the responsiveness of the ChREBPβ promoter to 

ChREBPα/MLX
235

. ChREBPα may thus be activated by high-glucose concentrations and 

induce ChREBPβ expression as a feedforward regulation in adipose tissue. 

As ChREBP directly regulates genes involved in both glucose and lipid metabolisms some 

interconnections between ChREBP and PPAR pathways have been established in liver and 

adipose tissues
250

. 
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Figure 13: Schematic representation of the mechanisms regulating ChREBP 

transactivities in adipose tissue 

 
Glucose activates ChREBP-α through (1) posttranslational modification of ChREBP, and (2) an 

intramolecular glucose sensing module. In turn, ChREBP-α induces ChREBP-β (3. feedforward 

control). Some ChREBP target genes inhibit both ChREBP-α and β transactivities (4. feedback 

control)
251

. 

 

 

 PPAR signaling pathway D.

 

PPAR proteins are nuclear receptors playing the role of transcription factors activated by 

different ligands, mostly fatty acids. The nature of the ligands depends on the metabolic 

pathways the PPARs are involved in. Once PPARs interact with the specific ligands, they 

translocate into the nucleus where they bind to the specific DNA sequence named PPRE 

(Peroxisome-Proliferator hormone Responsive Element)
252

 to activate or repress target gene 

transcription
253, 254

. In the nucleus, PPAR proteins heterodimerize with RXR (Retinoic X 
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Receptor), another nuclear receptor. Other proteins, co-activators or co-repressors, interact 

with this heterodimer, and depending on their nature, the effect of PPARs has been shown to 

be the activation or the repression of the transcription, respectively.   

Three isoforms of PPAR proteins, encoded by three different genes Nr1c1, Nr1c2, Nr1c3 
255-

258
, have been described: PPARα, PPARγ and PPARβ/δ

259
. Even though all PPARs are 

involved in the regulation of lipid metabolism and energy balance, each isoform has its own 

specificity depending on the tissue where it is expressed and its own function on metabolism 

regulation events
260

. 

 

(1) PPARα signaling pathway 

 

PPARα (figure 14) is mainly expressed in liver, heart and skeletal muscle, tissues exhibiting a 

high capacity for fatty acid oxidation. PPARα is also involved in glucose homeostasis and 

insulin resistance development
261

. The natural ligands of PPARα, fatty acids, control the 

expression of genes involved in lipid metabolism. An increase in fatty acid concentration 

leads to the activation of PPARα, which uptakes them under their oxidized form. Liver is the 

main place where fatty acid oxidation occurs, as this process also has the property of 

preventing steatosis. During fatty acid influx, transcription of PPARα target genes is activated 

leading to the activation of omega- and beta- oxidations in microsomes, mitochondria and 

peroxisomes 
262, 263

.  In liver, an increased PPARα activity sensing results in increased energy 

burning and lower fat storage while ineffective PPARα sensing or fatty acid oxidation leads to 

low energy burning. This results in a liver steatosis as observed in PPARα deficient mice
264

. 

Thus, PPARα plays a major role in lipid sensing and energy combustion in the liver where its 

disruption or impairment can cause fatty liver pathogenesis. 
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Figure 14: Schematic PPARα signaling pathway. 

 
Once activated by different signaling pathways including PKA, PI3K, ERK, PPARα recruits the RXR 

nuclear receptor and along with some co-activator to activate the transcription of its target genes by 

binding PPRE. 

 

(2) PPARβ/δ signaling pathway 

 

This isoform of PPAR is ubiquitously expressed in all tissues, but its abundance has been 

shown to be higher in liver, intestine, adipose tissue, kidney and skeletal muscle. PPARβ/δ is 

involved in fatty acid oxidation, reducing adiposity, thus preventing obesity development 
265, 

266
. PPARβ/δ deficient mice challenged with a high fat regimen exhibit obesity and reduced 

energy uncoupling
265, and in an opposite way, overexpression of this receptor leads to lower 

lipid accumulation in cardiac cells. These results thus demonstrate the role of PPARβ/δ in fat 

consumption regulation
267

.  
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(3) PPARγ signaling pathway 

 

PPARγ has been thoroughly investigated due to its role in macronutrient metabolism. This 

receptor is abundantly expressed in adipose (white and brown) tissue where it is a central 

factor in adipogenesis and lipid metabolism regulation. Three PPARγ isoforms have been 

identified, and all of them play an important role in adipocyte differentiation and glucose 

metabolism. However, it has been shown that PPARγ2 is regulated in response to nutrient 

intake and obesity 
268, 269

. Evidence  found in in vivo experiments demonstrates that PPARγ2 

deficiency decreases fat accumulation in obese mice. PPARγ2 isoform thus prevents 

lipotoxicity in different mechanisms: promotion of adipose tissue expansion, augmentation of 

lipid-buffering capacity in peripheral organs (liver, muscle, and pancreatic beta cells), and 

proliferative response of ß-cells to insulin resistance
270

. Activated PPARγ in adipocytes 

guarantees a balanced and adequate secretion of adipocytokines (adiponectin and leptin), 

mediators of insulin action in peripheral tissues. Insulin sensitivity of the whole body is thus 

maintained
271

.    

PPARγ also plays an important role in lipid metabolism. Indeed, it is involved in release, 

transport, and storage of fatty acids as a regulator of genes such as Lpl (Lipoprotein lipase) or 

Cd36 268, 270, 272
. 
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Figure 15: Activated PPARγ is involved in adipogenesis, lipid metabolism and 

homeostasis.  

 
Once activated PPARγ recruits RXR nuclear receptor and some co-activator to activate the 

transcription of its target genes by binding PPRE
273

. 

 

 

 Involvement of the circadian clock  E.

 

It is established that PPARs are connected to the molecular clock by several links. Indeed, 

PPAR proteins have been shown to be expressed rhythmically in several tissues
274-276

. Pparα 

has been described as a direct target of BMAL1:CLOCK heterodimer via the binding of E-

box present in its gene promoter
277

. In a reciprocal way, the deficient PPARα and deficient 

PPARγ mice exhibit alterations in core clock gene expression. Indeed, deficient PPARα mice 

showed alterations in rhythmic Bmal1 and Per3 expressions in peripheral tissues
277

 without 

affecting the rhythms in the SCN
278

. At the molecular level, PPRE have been found in the 

promoters of Bmal1 and Rev-erbα
278, 279

 and PPARα has been shown to be involved in the 
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regulation of Bmal1 expression by direct interaction with PER2
280

. In addition, Rev-erbα has 

been described as a target gene of PPARγ 
281

. PPARβ/δ protein isoform have been less 

studied in this context. However, Pparβ/δ mRNA have been described as a target of miR122 

in the liver
88

 expression of which is regulated by REV-ERBα.  

Recent evidence demonstrates that circadian rhythms are connected to lipid metabolism. 

Indeed, REV-ERBα has been shown to be involved in the control of the accumulation of bile 

acid, suggesting an impact on LXR target genes regulation
282

. Moreover, Rev-erbα knockout 

mice exhibit disrupted circadian accumulation of lipid in both plasma and liver. This 

observation appears to be due to the impairment of the SREBP pathway and especially of 

SREBP-1c in the liver
282

. In the laboratory, it was previously shown that the circadian clock is 

involved in the maturation of SREBPs, as it is impaired in Clock
Δ19

 dominant negative mutant 

mice
4
. In addition, SIRT6 was recently shown to be involved in the circadian transcription of 

SREBP-1c target genes by regulating the chromatin conformation via its deacetylase activity, 

leading to the rhythmic recruitment of SREBP-1c on its target genes promoter.  
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RESULTS 

 

During this doctoral work, we investigated how the circadian clock influence the different 

metabolic aspects previously presented in the introduction. We thus present evidence of 

impacts of the circadian clock on translational events and energy balance.  

I. The circadian clock coordinates the ribosome biogenesis 
 

Due to its oscillatory function, the circadian clock has been shown to orchestrate physiology 

by the rhythmic activation of many key metabolic pathways. In the last decade, many efforts 

have been made in the characterization of rhythmically expressed genes to determine the role 

of clock controlled genes on rhythmic physiology
14, 283

. Indeed, depending on the species and 

organs, 5 to 10% of the genes have been shown to be rhythmically expressed
68, 284-286

. 

However, recent evidences suggest that transcriptional mechanisms are not sufficient to 

completely explain rhythmic physiology. Indeed, some oscillating proteins have been shown 

to be encoded by constantly expressed mRNA in mouse liver
287-289

. In addition, among the 

rhythmically expressed genes, we noticed the presence of several genes encoding proteins 

involved in mRNA translation, including components of the translation initiation complex
285, 

290
, suggesting a potential role of translation mechanisms in circadian coordination of 

physiology. 

In this study, we investigated the impact of the circadian clock on the translational events in 

mouse liver. In the liver of wild-type mice, we first described the rhythmic transcription of 

mRNAs of the components of the translation initiation complex such as Eif4a, Eif4b, Eif4g1 

and Eif4bp1. While no rhythms were observed at the protein level, the phosphorylation of 
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these components, corresponding to their activation, was observed to be rhythmic throughout 

the day. We also demonstrated coordinated rhythmic activation of several key pathways, 

ERK/MAPK, AMPK via TSC2 phosphorylation, and PI3K/AKT, involved in regulating the 

activation of the formation of the translation initiation complex, which occurs during the dark 

phase. A microarray analysis on polysome-bound mRNAs and total RNAs in mouse liver led 

us to identify mRNA that are associated with ribosomes in a diurnal manner. These mRNA, 

targets of TORC1, belong to the 5’-TOP mRNA family and mostly encode for proteins 

involved in translation such as the ribosomal proteins. This result demonstrates a dynamic 

translation initiation of 5'-TOP mRNAs starting before the onset of the feeding period, with a 

maximum in the beginning of the dark period. Western blot performed on cytosolic fractions 

showed that newly synthesized ribosomal proteins exhibit a rhythmic accumulation during the 

dark phase. In addition, we showed here that ribosomal proteins mRNA and rRNA exhibit a 

rhythmic expression before the day-night transition. Moreover, UBF (Upstream Binding 

Factor) 1, a 45S rRNA transcription regulator, presented rhythmic expression at both mRNA 

and protein levels.  

In Bmal1 and Cry1/2 knockout mice, both lacking a functional circadian clock, it appeared 

that mRNA and protein UBF1 expression is impaired. We also showed that the transcriptional 

state of the components of the ribosome and of the initiation translation complex is dependent 

on the molecular clock, because their rhythmic transcription is impaired in deficient circadian 

clock mice models. Concerning the phosphorylation state of the different factors  of initiation 

translation complex and the signaling pathways involved in their activation, the results 

obtained revealed disruption in their coordinated activation when the molecular clock is not 

functional.  
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Together, these results show the coordination of ribosome biogenesis by the circadian clock 

via the modulation of rhythmic activation of key pathways regulating translation through the 

TORC1 pathway, ribosomal proteins translation and finally ribosome biogenesis.   

A coordinated rhythmic regulation of transcriptional and translational events for the 

biogenesis of ribosomes has also been suggested for the filamentous fungus Neurospora 

crassa
291

 and for plants
292, 293

. Considering the fact that ribosome biogenesis is one of the 

major energy consuming process in cells
294

, it must be tightly controlled in order to reduce 

interferences with other biological processes. It is thus clear that this energy-consuming 

process must be confined to a time period when energy and nutriments are available in 

sufficient amounts. In the case of rodents, this is during the night period when the animals are 

active and consume food. All the elements required for this process must be ready to start 

ribosome biogenesis during that time. This is achieved by increasing levels of rRNA and 

ribosomal protein mRNA just before the onset of the night, synchronized with the 

phosphorylation of EIF4E, which increases 5’-TOP mRNA translation
295

. Activation of the 

TORC1 pathway during this period promotes ribosomal protein synthesis, rRNA maturation 

and ribosome assembly. Accordingly, orchestration of ribosome biogenesis by the circadian 

clock represents a nice example of anticipation of an obligatory gated process through a 

complex organization of transcriptional, translational and post-translational events. 

. 
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Introduction

Circadian rhythms in behavior and physiology reflect the adaptation

of organisms exposed to daily light-dark cycles. As a consequence, most

aspects of metabolism and behaviour are under the control of these

rhythms [1]. At a molecular level, in all the studied species, the

rhythmic expression of the genes involved originates in the network of

interconnected transcriptional and translational feedback loops [2]. In

mammals, the heterodimer composed of BMAL1 and its partners

CLOCK or NPAS2 is a transcriptional activator that regulates

transcription of the Period (Per) and Cryptochrome (Cry) genes that code for

repressors of BMAL1 heterodimer activity, thus closing a negative

feedback loop that generates rhythms of approximately 24 h [1,2].

Many efforts during the last decade have characterized rhythmically

expressed genes and delimit the impact of the circadian clock on

physiology. Numerous circadian transcriptome studies in different

species and organs show that approximately 10% of the genes are

rhythmically expressed. The functions of these genes established the

role of the circadian clock in temporally gating rhythmic physiology

[1,3]. However, increasing evidence suggests that transcriptional

mechanisms are not sufficient to explain numerous observations. For

example, it has been shown that many oscillating proteins in mouse

liver are encoded by constantly expressed mRNAs [4].

Interestingly, among the rhythmically expressed genes in the

liver, we noticed the presence of several genes encoding proteins

involved in mRNA translation, including the components of the

translation pre-initiation complex [5,6]. In its inactive state, this

complex is composed of the mRNA cap-binding protein eukary-

otic translation initiation factor 4E (EIF4E) bound to the

hypophosphorylated form of EIF4E-binding protein (4E-BP) that

acts as a translational repressor. Upon stimulation, phosphoryla-

tion of 4E-BP releases EIF4E, which can then interact with the

scaffold protein eIF4G and the rest of the EIF4F complex (EIF4A,

EIF4B, and EIF4H) to initiate translation [7]. We therefore

investigated whether the circadian clock might coordinate

translation in mouse liver. Here we indeed show that the circadian

clock controls the transcription of translation initiation factors as

well as the rhythmic activation of signaling pathways involved in

their regulation. As a consequence, the circadian clock influences

the temporal translation of a subset of mRNAs mainly involved in

ribosome biogenesis. In addition, the circadian oscillator regulates

the transcription of ribosomal protein mRNAs and ribosomal

RNAs. These results demonstrate for the first time the major role

of the circadian clock in ribosome biogenesis.

Results

Rhythmic Expression and Activation of Components of
the Translation Pre-initiation Complex

We investigated whether the circadian clock might coordinate

translation in mouse liver. Indeed, quantitative reverse transcrip-
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tion (RT)-PCR analyses confirmed that mRNAs of most of the

factors involved in translation initiation are rhythmically expressed

with a period of 24 h (Figure 1A; statistical analyses are given in

Table S1). Interestingly, while we did not observe any significant

variations in protein abundance, rhythmic phosphorylations were

strongly manifested during two consecutive days, emphasizing the

robustness of these rhythms (Figure 1B; quantification and

statistical analyses of the data are given on Figure S1 and Table

S2). EIF4E is mostly phosphorylated during the day, with a peak at

the end of the light period (ZT6-12), whereas EIF4G, EIF4B, 4E-

BP1, and ribosomal protein (RP) S6 (RPS6) are mainly

phosphorylated during the night, which is, in the case of nocturnal

animals like rodents, the period when the animals are active and

consume food.

Phosphorylation of these factors is well characterized and

involves different signaling pathways [8] whose reported activity

perfectly correlates with the observed phosphorylation rhythm.

EIF4E is phosphorylated by the extracellular signal-regulated

protein kinase (ERK)/mitogen-activated protein kinase

(MAPK)-interacting kinase (MNK) pathway [9], which is most

active during the day, at the time when EIF4E reaches its

maximum phosphorylation (Figure 2A; quantification and

statistical analyses of the data are given on Figure S2 and

Table S2). On the other hand, EIF4G, EIF4B, 4E-BP1, and

RPS6 are mainly phosphorylated by the target of rapamycin

(TOR) complex 1 (TORC1) [10], which is activated during the

night, at the time when the phosphorylation of these proteins

reaches its maximum level. TORC1, in turn, is negatively

regulated by the tuberous sclerosis protein complex (TSC),

whose activity is under the control of the phosphoinositide 3-

kinase (PI3K)/AKT, ERK, and the energy sensing 59 adenosine

monophosphate-activated protein kinase (AMPK) pathways

[10,11]. As reported [12], AMPK is active during the day and

mediates the activation of TSC2, contributing to the repression

of TORC1 in the period of energy and nutrient restriction.

Conversely, during the night, TORC1 is activated probably

through TSC2 inhibition by PI3K via TORC2 [13].

Interestingly, we found that mTor, its partner Raptor, as well as its

regulating kinase Map3k4, are also rhythmically expressed, thus

potentially further contributing to the rhythmic activation of

TORC1 (Figure S3; Table S1). ERK is activated during the day in

synchrony with the rhythmic expression of Mnk2 (Figure S3),

contributing to EIF4E phosphorylation during this period.

However, its downstream target RPS6 Kinase (RSK) seems to

contribute only marginally to the phosphorylation of RPS6 in

mouse liver (Figures 1B and 2A). The rhythmic phosphorylation of

4E-BP1 resulted in its release from the mRNA cap-mimicking

molecule 7-methyl-GTP from ZT14 to ZT22 (Figure 2B; Table

S2), allowing the rhythmic assembly of the EIF4F and potentially

mRNA translation.

The rhythmic expression of mRNA encoding translation

initiation factors, TORC1 complex component, and a kinase

activating these factors is independent of light as it is maintained

under constant darkness, even if the phase seems to be advanced

(Figure S4A). Interestingly, activation of the TORC1 pathway is

also maintained under constant darkness but with an advanced

phase (Figure S5A). Since nutrient availability is a potent activator

of the TORC1 pathway [13], we asked whether these parameters

are also rhythmic under conditions of starvation. We found that

expression of mRNA encoding translation initiation factors,

TORC1 complex component, and a kinase activating these

factors is still rhythmic under starvation (Figure S4B), even when

this starvation occurs under constant darkness (Figure S4C). This

result unambiguously demonstrates the role of the circadian clock

in the expression of these genes. In addition, phosphorylations of

RPS6 and 4E-BP1 are still rhythmic under starvation, whether or

not the mice are under a light-dark regimen or in constant

darkness (Figure S5B and S5C), confirming previously published

observations [14]. Interestingly, TORC1 activation is in opposite

phase with the clock-dependent rhythmic activation of autophagy

in mouse liver [15], a process inhibited by TORC1 but able to

generate amino acids that can in turn activate TORC1 [16]. This

might suggest that the circadian clock can regulate the two

processes in a coordinated fashion. Importantly, rhythmic

activation of TORC1 is not restricted to the liver as the same

phosphorylation rhythm is found in kidney and heart, albeit with

reduced amplitude (Figure S6). Meanwhile, TORC1 activation is

constant in brain, lung, and small intestine, suggesting that the

rhythmic nutrient availability due to the circadian clock-regulated

feeding behavior is not sufficient by itself to explain the rhythmic

activation of TORC1.

Characterization of Rhythmically Translated mRNAs
Diurnal binding of 4E-BP to EIF4E suggested that translation

might be rhythmic in the liver. To test this hypothesis and to

identify potential rhythmically translated genes, we purified

polysomal RNAs, a RNA sub-fraction composed mainly of

actively translated mRNA, every 2 h during a period of 48 h.

We found that relative amount of this polysomal fraction follows a

diurnal cycle, showing that a rhythmic translation does occur in

mouse liver (Figure S7). This result confirms original observations

based on electron microscopy and biochemical studies [17,18]. We

therefore decided to characterize these rhythmically translated

mRNAs through comparative microarray analysis of polysomal

and total RNAs. While the obtained profiles in polysomal and total

RNAs fractions are highly similar for most mRNAs (examples of

rhythmic mRNAs are given on Figure S8), 249 probes showed a

non-uniform ratio in diurnal polysomal over total mRNAs

(Figure 3A). This means that approximately 2% of the expressed

genes are translated with a rhythm that is not explained by

rhythmic mRNA abundance as in most cases, the total mRNA

Author Summary

Most living organisms on earth present biological rhythms
that play a fundamental role in the coordination of their
physiology and behavior. The discovery of the molecular
circadian clock gives important insight into the mecha-
nisms involved in the generation of these rhythms. Indeed,
this molecular clock orchestrates the rhythmic transcrip-
tion of clock-controlled genes involved in different aspects
of metabolism, for example lipid, carbohydrate, and
xenobiotic metabolisms in the liver. However, we show
here that the circadian clock could also exert its function
through the coordination of mRNA translation. Namely,
the circadian clock influences the temporal translation of a
subset of mRNAs by controlling the expression and
activation of translation initiation factors, as well as the
clock-dependent rhythmic activation of signaling path-
ways involved in their regulation. These rhythmically
translated mRNAs are mainly involved in ribosome
biogenesis, an energy consuming process, which has to
be gated to a period when the cell resources are less
limited. Moreover, the role of the circadian oscillator in this
process is highlighted by its direct regulation of the
transcription of ribosomal protein mRNAs and ribosomal
RNAs. Thus our findings suggest that the circadian clock
exerts a major role in coordinating transcription and
translation steps underlying ribosome biogenesis.

Circadian Clock-Coordinated Ribosome Biogenesis
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Figure 1. Temporal expression and phosphorylation of translation initiation factors. (A) Temporal mRNA expression profile of translation
initiation factors in mouse liver. For each time point, data are mean 6 standard error of the mean (SEM) obtained from four independent animals. (B)
Temporal protein expression and phosphorylation of translation initiation factors in mouse liver during two consecutive days. Western blots were
realized on total or nuclear (PER2 and BMAL1) liver extracts. PER2 and BMAL1 accumulations are shown as controls for diurnal synchronization of the
animals. Naphtol blue black staining of the membranes was used as a loading control. The lines through gels indicate where the images have been
cropped. The zeitgeber times (ZT), with ZT0, lights on; ZT12, lights off, at which the animals were sacrificed, are indicated on each panel.
doi:10.1371/journal.pbio.1001455.g001
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levels were constant while the polysomes-bound mRNA levels

fluctuated during the 24-h cycle (Figures 3B and S9). Among

translationally regulated genes, 70% were found in the polysomal

fraction during the same time interval, starting at ZT8 before the

onset of the feeding period and finishing at the end of the dark

period (Tables S3 and S4). Most of these genes belonged to the 59-

terminal oligopyrimidine tract (59-TOP) family, known to be

regulated by TORC1 [19], but also by the level and phosphor-

ylation state of EIF4E [20,21]. 59-TOP genes are themselves

involved in translation via ribosome biogenesis and translation

elongation (Table S4).

After confirmations of these results by quantitative RT-PCR

(Figure S10), we wished to validate the periodicity in the amount

of mRNAs purified in the different fractions obtain during

polysomes purification over a 24-h period. Whereas a constitu-

tively translated mRNA such as Gapdh is found all the time in the

polysomal fraction (with a small decrease in the middle of the light

period when overall translation decreases), mRNAs coding for RPs

are associated with the polysomal fraction only starting towards

the end of the light period (ZT8) and during the dark period

(Figure 3C). This result demonstrates a dynamic translation

initiation of 59-TOP mRNA starting before the onset of the

feeding period, with a maximum at the beginning of the dark

period.

Next, we wanted to confirm that this rhythmic translation had

an impact on the protein levels. With respect to RPs, while the

half-life of mature ribosomes is approximately 5 d in rodent liver

[22], newly synthesized RPs have a half-life of only a few hours, as

most of them are rapidly degraded after translation during the

ribosome assembly process in the nucleolus [23]. We thus expected

a rhythmic expression of this subpopulation of newly synthesized

RPs in the soluble cytosolic fraction depleted of ribosomes after

sedimentation. Indeed, under these conditions, RPs show a

rhythmic abundance with highest expression during the night

(Figure 3D; quantification and statistical analyses of the data are

given on Figure S11 and Table S2). In some cases, we noticed a

shallow decrease at ZT16-18, potentially reflecting transport of

RPs into the nucleolus for ribosome assembly. In addition to

translational regulation, we also observed a diurnal expression of

RP mRNAs, albeit with a small average peak to trough amplitude

of approximately 1.2. Taking into account their relatively long half-

life (11 h) [24], we hypothesized that this minor fluctuation might

reflect more pronounced rhythmic amplitudes in transcription as

amplitude decreases with half-life [25]. In addition, it has recently

been shown that the transcription of several RP mRNAs is directly

controlled by the molecular oscillator in Drosophila head [26].

Indeed, pre-mRNA accumulation of several RP exhibited a

rhythmic transcription, with an average amplitude of 3.5-fold with

a maximum at ZT8, just before the activation of their translation

(Figure 4A; statistical analyses are given in Table S1). In addition,

we found that the synthesis of the ribosome constituent precursor

45S rRNA is also rhythmic and synchronized with RP mRNAs

transcription, indicating that all elements involved in ribosome

biogenesis are transcribed in concert, then translated or matured.

In yeast [27] and Drosophila [28], transcription of RP mRNAs

appears to be coordinated with rRNA transcription, which is a rate

limiting step in ribosome biogenesis. On the other hand, in

mammals, rRNA transcription is highly regulated by the upstream

binding factor (UBF), which establishes and maintains an active

chromatin state [29]. Remarkably, we found that UBF1 is

rhythmically expressed in mouse liver at both mRNA and protein

levels (Figure 4B; quantification and statistical analyses of the data

are given in Figure S12A and Tables S1 and S2), in phase with RP

mRNAs and rRNAs transcription. In addition, rhythmic transcrip-

tion of Ubf1 and Rpl23 genes is also independent of light and food

(Figure S4).

To test whether Ubf1 transcription is regulated by the circadian

clock, we characterized its expression in arrhythmic Cry1/Cry2

knockout (KO) [30] and Bmal1 KO [31] mice, which are devoid of

a functional circadian clock. Indeed, these mice do exhibit an

Figure 2. Temporal activation of signaling pathways controlling translation initiation. (A) Temporal expression and phosphorylation of
representative proteins of key signaling pathways regulating translation initiation in mouse liver during two consecutive days. Western blots were
performed on total liver extracts. Naphtol blue black staining of the membranes was used as a loading control. (B) Temporal binding of EIF4E and 4E-
BP1 to 7-methyl-GTP-sepharose during two consecutive days. Total liver extracts were incubated with 7-methyl-GTP beads mimicking the mRNA cap
structure. After washing of the beads, bound proteins were analyzed by Western blotting. The zeitgeber times (ZT), with ZT0, lights on; ZT12, lights
off, at which the animals were sacrificed, are indicated on each panel. The lines through gels indicate where the images have been cropped.
doi:10.1371/journal.pbio.1001455.g002
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Figure 3. Rhythmic translation of ribosomal proteins in mouse liver. (A) Temporal expression profiles of microarray probes showing a
rhythmic ratio of polysomal to total RNAs, ordered by phase. For visualization, data were mean centered and standardized. Log-ratios are color-coded
so that red indicates high and green low relative levels of polysomal mRNAs compared to the total fraction. (B) Examples of temporal expression
profiles of a subset of rhythmically translated 59-TOP genes identified in our microarray experiment. Traces represent the levels of mRNA expression
measured by microarray in the total RNA (blue line) and polysomal fraction (red line). Data are represented in log scale following standard
normalization. (C) Temporal location of Gapdh and selected genes showing translational regulation mRNA on the different gradients obtained after
polysomes purification. Pools of RNA obtained from four animals were used for each fraction at each time point. The color intensity represents for
each time point the relative abundance of the mRNA in each fraction. Fractions 1–2 represent heavy polysomes, 2–3, light polysomes, and 9–10, free
mRNAs. Note that even for Gapdh mRNA, translation slightly decreases at the end of the light period. (D) Temporal expression of selected
rhythmically translated ribosomal proteins in liver cytoplasmic extracts during two consecutive days. Naphtol blue black staining of the membranes
was used as a loading control. The lines through gels indicate where the images have been cropped. The zeitgeber times (ZT) at which the animals
were sacrificed are indicated on each panel.
doi:10.1371/journal.pbio.1001455.g003
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Figure 4. Rhythmic transcription of RP mRNA and rRNA through circadian clock regulated expression of UBF1. (A) Temporal real-time
RT-PCR profile of RP pre-mRNA and 45S rRNA precursor expression in mouse liver. For each time point, data are mean 6 standard error of the mean

Circadian Clock-Coordinated Ribosome Biogenesis
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arrhythmic pattern of activity under constant darkness, which is in

general correlated with an arrhythmic feeding behaviour. As

TORC1, as well as other signaling pathways, are in part regulated

by feeding through nutrient availability, we expect a temporally

discontinuous and erratic activation of these pathways in the KO

mice under unrestricted feeding. To verify this hypothesis, we

measured activation of the TORC1, AKT, and ERK pathways in

Cry1/Cry2 and Bmal1 KO kept in constant darkness. As shown in

Figure S13A, the rhythmic activation of these signaling pathways

is indeed lost under this condition, confirming their arrhythmic

activation. To highlight the role of the feeding regimen on this

activation, we kept Cry1/Cry2 KO mice in constant darkness and

sacrificed them at CT12. We found a strong inter-individual

variability in the activation of the TORC1, AKT, and ERK

pathways, reflecting the arrhythmic feeding rhythm of these

animals (Figure S13B). To circumvent this caveat and study the

rhythmic translation in mice devoid of a functional molecular

oscillator, we decided to place Cry1/Cry2 and Bmal1 KO under a

light-dark regimen to keep a normal diurnal feeding behaviour due

to masking. In addition, mice had access to food only during the

dark phase to eliminate the effect of a potential disturbed feeding

behaviour. Under these conditions, KO mice had a rhythmic

feeding behaviour and thus potential differences in protein levels

or pathway activity cannot be attributed to the arrhythmic feeding

behaviour of these animals. We indeed found that UBF1 rhythmic

expression is dependent on a functional circadian clock as it is

impaired in both animal models (Figure 4C and 4D; quantification

and statistical analyses of the data are given in Figure S12B and

Tables S5, S6, S7, S8). However, if UBF1 expression is persistently

low in Cry1/Cry2 KO mice, this expression is constantly high in

Bmal1 KO mice, suggesting the control of Ubf1 by a circadian

clock-regulated transcription repressor. In addition, we observed

that these animals lose also the synchrony and coordination of 45S

rRNA and RP pre-mRNAs transcription (Figures 5, S14, and S15;

statistical analyses of the data are given in Table S5 and S6).

Indeed, decreased UBF1 expression in Cry1/Cry2 KO mice is

correlated with lower 45S rRNA transcription, but higher and

delayed RP pre-mRNAs transcription. Interestingly, Bmal1 KO

mice present a complete arrhythmic transcription of RP pre-

mRNAs, highlighting the crucial role of the circadian clock in the

coordination of rRNA and RP mRNAs transcription.

The Circadian Clock Controls Expression and Activation
of Components of the Translation Initiation Complex

Rhythmic expression of genes coding for components of the

translation initiation complex is strongly dampened or phase-

shifted in both KO models, in addition to an altered level of

expression (Figures 5, S14, and S15; statistical analyses of the data

are given in Tables S5 and S6). However, we did not observe in

general any significant variations in protein abundance, excepting

a slight increase in EIF4E expression in Cry1/Cry2 KO mice,

reflecting increased mRNA expression (Figure 6A and 6C;

quantification and statistical analyses of the data are given in

Figures S16, S17; Tables S7 and S8). The variations in EIF4G

levels reflect more the changes in its phosphorylation state, which

regulates its stability [32]. While most of the signaling pathways

are still rhythmic in Cry1/Cry2 KO mice, except for the ERK

pathway and the downstream phosphorylation of EIF4E, which

loses its rhythmic activation, the phase of the activation of the

TORC1 and AKT pathways are advanced in comparison to wild-

type (WT) mice (Figures 6A and S16; quantification and statistical

analyses of the data are given in Table S7). As a consequence, the

rhythmic expression of RPs is altered in Cry1/Cry2 KO mice

(Figure 6B; quantification and statistical analyses of the data are

given in Table S7), with an increased level of expression, likely

because of the increased RP pre-mRNAs and EIF4E levels [20],

and a delayed phase of expression. Most of the rhythmic activation

of the three pathways is also strongly altered in Bmal1 KO mice

(Figures 6C and S17; quantification and statistical analyses of the

data are given in Table S8). As shown in Figure 6D, the phase of

RPs rhythmic expression is severely advanced with a maximum of

expression in the middle of the day instead of the night (Figure 6D;

quantification and statistical analyses of the data are given in

Table S8).

Discussion

Regulation of Ribosome Biogenesis by the Circadian
Clock

The results presented here show that the molecular circadian

clock controls ribosome biogenesis through the coordination of

transcriptional, translational, and post-translational regulations.

Moreover, the data strongly suggest that a functional molecular

oscillator is required for a timely coordinated transcription of

translation initiation factors, RP mRNAs, and rRNAs. The clock

modulates the rhythmic activation of signaling pathways control-

ling translation through the TORC1 pathway, translation of RPs,

and ribosome biogenesis (Figure 7). Interestingly, it has been

reported that the size of the nucleolus, the site of rRNA

transcription and ribosome assembly, follows a diurnal pattern

with a maximum in the middle of the dark period [33], which thus

occurs in synchrony with the observed accumulation of RPs in the

liver. The observed rhythmic ribosome biogenesis is substantiated

by the previous observation showing that both size and

organization of the nucleolus are directly related to ribosome

production [34].

Remarkably, a coordinated rhythmic regulation of tran-

scriptional and translational events for the biogenesis of

ribosomes has also been suggested for the filamentous fungus

Neurospora crassa [35] and for plants [36,37]. Since ribosome

biogenesis is one of the major energy consuming process in

cells [38], its tight control is primordial to reduce interferences

with other biological processes. In the case of mouse liver, we

estimate that the decrease of translation during the light period

is equivalent to 20% of the total translation (Figure S7), in

agreement with previously published results [17]. Although

moderate, this decrease affects translation of housekeeping

genes like Gapdh (Figure 3C) and probably the translation of

other genes. It means that the increase in ribosome biogenesis

(SEM) obtained from four independent animals. (B) Temporal Ubf1 mRNA (upper panel) and protein (lower panel) expression in mouse liver. mRNA
were measured by real-time RT-PCR and, for each time point, data are mean 6 SEM obtained from four independent animals. UBF1 protein
expression was measured by Western blot on nuclear extracts during two consecutive days. The lines through gels indicate where the images have
been cropped. (C–D) Temporal Ubf1 expression in mice devoid of a functional circadian clock. Ubf1 expression was measured by real-time RT-PCR
with liver RNAs obtained from arrhythmic Cry1/Cry2 (C) and Bmal1 (D) KO mice and their control littermates (upper panel). Data are mean 6 SEM
obtained from three and two animals, respectively. Black line corresponds to the WT animals and red line to the KO. Protein levels (lower panel) were
measured by Western blot on nuclear extracts. The zeitgeber times (ZT) at which the animals were sacrificed are indicated on each panel. Naphtol
blue black staining of the membranes was used as a loading control.
doi:10.1371/journal.pbio.1001455.g004
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Figure 5. Rhythmic RNA expression of factors involved in ribosomes biogenesis is disrupted in arrhythmic Cry1/Cry2 and Bmal1 KO
mice. Temporal expression of factors involved in ribosomes biogenesis in Cry1/Cry2 (A) and Bmal1 (B) KO mice and their control littermates. Temporal
real-time RT-PCR expression profile of 45S rRNA precursor, Rpl23 pre-mRNA, and translation initiation factors expression in mouse liver. Black line
corresponds to the WT animals and red line to the KO. For each time point, data are mean 6 SEM obtained from three (A) and two (B) independent
animals. The zeitgeber times (ZT) at which the animals were sacrificed are indicated on each panel.
doi:10.1371/journal.pbio.1001455.g005
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Figure 6. Rhythmic expression and phosphorylation of actors of ribosomes biogenesis is disrupted in arrhythmic Cry1/Cry2 and Bmal1
KO mice. (A–C) Temporal expression and phosphorylation of translation initiation factors and representative indicators of signaling pathways
controlling their activation in Cry1/Cry2 (A) and Bmal1 (C) KO mice and their control littermates. Western blots were realized on total or nuclear (PER2 and
BMAL1) liver extracts from WT (left panel) and KO (right panel) animals. (B–D) Temporal expression of selected rhythmically translated ribosomal proteins
in liver from Cry1/Cry2 (B) and Bmal1 (D) KO mice and their control littermates. Western blots were realized on cytoplasmic extracts from WT (left panel)
and KO (right panel) animals. The zeitgeber times (ZT) at which the animals were sacrificed are indicated on each panel. PER2 and BMAL1 accumulations
are shown as controls for diurnal synchronization of the animals. Naphtol blue black staining of the membranes was used as a loading control.
doi:10.1371/journal.pbio.1001455.g006
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during the night could potentially influence the translation of

many other mRNAs, however with a magnitude sufficiently

low to not allow its detection by our method.

Nevertheless, it is clear that this energy-consuming process has

to be confined to a time when energy and nutrients are available in

sufficient amount, which, in the case of rodents, is during the night

Figure 7. Model describing the coordination of ribosome biogenesis by the circadian clock. The molecular oscillator in the master
circadian pacemaker localized in the SCN of the hypothalamus synchronizes peripheral clocks, including liver clock, and, in parallel, regulates feeding
behavior, which itself influences peripheral oscillator. The liver circadian clock controls expression of translation initiation factors, and rRNA, and
conceivably RP mRNA, through regulation of UBF1. In addition, in association with signals from nutrients, the molecular clock, via the TORC1
pathway, coordinates the rhythmic activation of signaling pathways controlling translation of RP and, in turn, ribosome biogenesis. This succession of
events coordinated by the circadian clock finally leads to a subtle rhythmic change of general translation in mouse liver.
doi:10.1371/journal.pbio.1001455.g007
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period when the animals are active and consume food. Hence, all

the elements required for translation have to be ready to start

ribosome biogenesis during that time. This is achieved by

increasing levels of rRNAs and RP pre-mRNAs just before the

onset of the night, synchronized with the phosphorylation of

EIF4E that increases 59-TOP mRNAs translation [21]. Activation

of the TORC1 pathway during this period promotes RPs

synthesis, rRNAs maturation, and ribosome assembly. In addition

activation of the ERK pathway correlates also with ribosome

biogenesis [39], strengthening the rhythmic nature of this process.

Accordingly, orchestration of ribosome biogenesis by the circadian

clock represents a nice example of anticipation of an obligatory

gated process through a complex organization of transcriptional,

translational, and post-translational events.

Coordination of Rhythmic Activation of Cellular Signaling
Pathways by the Circadian Clock

As described in the introduction, the mammalian molecular

circadian oscillator consists in interlocked feedback loops of

transcription factors that generate a complex network of rhyth-

mically expressed genes [3]. Within the core molecular clock,

increasing evidence shows that post-translational modifications

play a crucial role in the generation of circadian rhythms [40].

However, the circadian clock is also able to coordinate rhythmic

post-translational activation of signaling pathways not directly

involved in the molecular oscillator but rather in the sensing of the

environment. The first described example consisted in the

rhythmic activation of ERK in the suprachiasmatic nucleus

(SCN) of the hypothalamus where the master circadian pacemaker

is localized: if light stimulates ERK phosphorylation in the SCN in

a time-dependent fashion, circadian ERK phosphorylation con-

tinues also in constant darkness, suggesting a crucial role of the

circadian clock in this process [41]. Interestingly, the same

observations have been made for the TORC1 pathway in the

SCN [42,43], and for the PI3K/AKT pathway in the retina [44].

Considering the fact that these two pathways have been recently

identified as a potent regulators of circadian activity in Drosophila

[45], we expect that the role of the circadian clock-coordinated

signaling pathways on circadian physiology will probably be

emphasized in other organisms in the near future.

With respect to rhythmic activation of signaling pathways in the

liver, there are only few examples of such regulations. One

example is the rhythmic activation of the PI3K/AKT pathway

that is associated with food metabolism and rhythmic feeding

behavior [46]. Recently, we also described a circadian clock-

dependent rhythmic activation of the unfolded protein response

regulating liver lipid metabolism [47]. In addition, it has been

shown that the circadian clock is also able to regulate autophagy in

mouse liver [15]. In this context, our discovery of the rhythmic

ribosome biogenesis through coordination of the rhythmic

activation of signaling pathways constitutes an important new

element in this area of research.

Translation, Circadian Clock, and Longevity
It has long been known that caloric restriction or intermittent

fasting increases lifespan in a wide variety of models [48].

Increased lifespan has also been linked to the reduced activation

of the TORC1 pathway, which, in turn, provokes a reduced

mRNA translation [49,50]. The role of the TORC1 pathway in

this translation-dependent extension of lifespan has been geneti-

cally confirmed in Caenorhabditis elegans [51] and Drosophila [52,53].

A similar scenario is also considered in mice since treatment with

the TOR inhibitor rapamycin [54] or deletion of the TORC1

downstream protein kinase S6K1 [55] lead to increased lifespan.

In addition, downregulation of various components of the EIF4F

complex extends lifespan in C. elegans [56–59], whereas inhibition

of RPs genes expression extends lifespan in both Saccharomyces

cerevisiae [60] and C. elegans [56]. Hence, keeping ribosome

biogenesis, and translation in general, to their minimum levels

plays a major role in the regulation of longevity [61]. Interestingly,

all the genetically modified animal models presenting a disrupted

circadian clock [62–64] or mice subjected to chronic jet lag [65]

are subjected to premature aging and reduced lifespan. The

deregulation of many other circadian-clock regulated processes

can reduce life expectancy, like reduced xenobiotic detoxification

[66]. We thus believe that the potential role of disorganized

ribosome biogenesis on life expectancy, observed in animals

devoid of a circadian clock, will be an exciting subject for further

studies.

Material and Methods

Animal Experiments
All animal studies were conducted in accordance with our

regional committee for ethics in animal experimentation and the

regulations of the veterinary office of the Canton of Vaud.

C57Bl/6J mice were purchased from Janvier (Le Genest) or

Charles River Laboratory (L’Arbresle). Bmal1 floxed mice have

been previously described [67]. These mice were crossed with

mice expressing the CRE recombinase under the control of the

CMV promoter [68] to obtain Bmal1 KO mice. Cry1/Cry2 double

KO mice [30] in the C57Bl/6J genetic background have been

previously described [69]. In all experiments, male mice between

10 and 12 wk of age are used. Unless noted otherwise, mice were

maintained under standard animal housing conditions, with free

access to food and water and in 12-h light/12-h dark cycles.

However, for all experiments, animals were fed only at night

during 4 d before the experiment to reduce effects of feeding

rhythm. For experiments in constant darkness, mice were shifted

into complete darkness after the last dark period and then

sacrificed every 2 or 4 h during the next 48 h. For starvation

experiments, mice were deprived from food during one complete

night and then during the following 24 h, mice were sacrificed

every 2 or 4 h.

Polysome Purification
Livers were homogenized in lysis buffer containing 20 mM

HEPES (pH 7.6), 250 mM NaCl, 10 mM MgCl2, 10 mM DTT,

20 mg/ml cycloheximid, 10 U/ml RNase inhibitor, and a protease

inhibitor cocktail containing 0.5 mM PMSF, 10 mg/ml Aprotinin,

0.7 mg/ml Pepstatin A, and 0.7 mg/ml Leupeptin. The homoge-

nates were centrifuged 10 min at 9,500 g and 1 mg/ml heparin,

0.5% Na deoxycholate, and 0.5% Triton 6100 were added to the

supernatant. 50 mg of lysate were deposited on a 36 ml 7% to

47% sucrose gradient in a buffer containing 20 mM HEPES

(pH 7.6), 100 mM KCl, 5 mM MgCl2, and 1 mM DTT. After

4 h 30 min of centrifugation at 130,000 g and 4uC, the gradient

was divided in fractions of approximately 1 ml with a peristaltic

pump. Optic density of the fractions at 260 nm was measured to

establish the polysomal profile in the gradient. Fractions were

finally pooled in ten fractions. An example of polysome profile is

given on Figure S18. RNAs were then extracted according to the

protocol described by Clancy et al. [70] that we slightly modified.

Briefly, fractions were precipitated by the addition of three

volumes of ethanol and kept overnight at 280uC. After 30 min of

centrifugation at 5,200 g, RNAs were extracted from the non-

soluble fraction by classical protocol [71].
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RNA Extraction and Analysis
Liver RNAs were extracted and analysed by real-time

quantitative RT-PCR, mostly as previously described [25]. Briefly,

0.5 mg of liver RNA was reverse transcribed using random

hexamers and SuperScript II reverse transcriptase (Life Technol-

ogies). The cDNAs equivalent to 20 ng of RNA were PCR

amplified in triplicate in an ABI PRISM 7700 Sequence Detection

System (Applied Biosystem) using the TaqMan or the SYBR

Green technologies. References and sequences of the probes are

given in Tables S9 and S10, respectively. Gapdh mRNA (total

RNA) or 28S rRNA (polysomal RNA) were used as controls.

Microarray Experiments
Liver polysomal and total RNAs were extracted independently

from two mice sacrificed every 2 h during 48 h. For polysomal

RNAs, we pooled fractions 1 and 2 from the ten fractions obtained

during the extraction and containing heavy polysomes. 3 mg of

polysomal and total RNAs from each animal from each time point

were pooled. These 6 mg of polysomal and total RNAs were used

for the synthesis of biotinylated cRNAs according to Affymetrix

protocol, and hybridized to mouse Affymetrix Mouse Genome 430

2.0 arrays. The chips were washed and scanned, and the

fluorescence signal analysed with Affymetrix software. Data are

deposited on the Gene Expression Omnibus database under the

reference GSE33726 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?token = rpwvtoqogkamwrm&acc = GSE33726).

The raw data of all 48 arrays were normalized together using

the robust multiarray average (RMA) method [72]. For the

analysis, we filtered out all probesets corresponding to introns

using the Ensembl annotation and then only kept genes with a

sufficient expression level (we kept genes whose probe signal in the

total fraction was above 5 in log2 scale). For the identification of

circadian probesets, the 24-h Fourier component (F24) and the

phase were computed using established methods [73]. The

associated p-value (p) was calculated using the Fisher test

(p = (12s)10) [73]. For the identification of rhythmically translated

genes, the difference between polysomal and total RNAs was

subjected to Fourier analysis and we selected probesets giving a p-

value inferior to 0.001. In addition, we requested that the peak to

trough amplitude in the polysomal signal be above 1.2-fold.

Nuclear and Cytoplasmic Protein Extractions and Analysis
Nuclear and cytoplasmic proteins were extracted mostly as

described [25]. Briefly, liver were homogenized in sucrose

homogenization buffer containing 2.2 M sucrose, 15 mM KCl,

2 mM EDTA, 10 mM HEPES (pH 7.6), 0.15 mM spermin,

0.5 mM spermidin, 1 mM DTT, and the same protease inhibitor

cocktail as for polysomes extraction. Lysates were deposited on a

sucrose cushion containing 2.05 M sucrose, 10% glycerol, 15 mM

KCl, 2 mM EDTA, 10 mM HEPES (pH 7.6), 0.15 mM spermin,

0.5 mM spermidin, 1 mM DTT, and a protease inhibitor cocktail.

Tubes were centrifuged during 45 min at 105,000 g at 4uC. After

ultra-centrifugation, supernatants containing soluble cytoplasmic

proteins were harvested, homogenised, and centrifuged for 2 h at

200,000 g to remove ribosomes. These supernatants constitute

cytoplasmic extracts. The nucleus pellets were suspended in a

nucleus lysis buffer composed of 10 mM HEPES (pH 7.6),

100 mM KCl, 0.1 mM EDTA, 10% Glycerol, 0.15 mM sperm-

ine, 0.5 mM spermidine, 0.1 mM NaF, 0.1 mM sodium orthova-

nadate, 0.1 mM ZnSO4, 1 mM DTT, and the previously

described protease inhibitor cocktail. Nuclear extracts were

obtained by the addition of an equal volume of NUN buffer

composed of 2 M urea, 2% nonidet P-40, 600 mM NaCl, 50 mM

HEPES (pH 7.6), 1 mM DTT, and a cocktail of protease

inhibitor, and incubation 20 min on ice. After centrifugation

during 10 min at 21,000 g, the supernatants were harvested and

constitute nuclear extracts.

25 mg of nuclear or 12.5 mg cytoplasmic extracts were used for

western blotting. After migration, proteins were transferred to

PVDF membranes and Western blotting was realized according to

standard procedures. References for the antibodies are given in

Table S11.

Total Protein Extraction and Analysis
Organs were homogenized in lysis buffer containing 20 mM

HEPES (pH 7.6), 100 mM KCl, 0.1 mM EDTA, 1 mM NaF,

1 mM sodium orthovanadate, 1% Triton X-100, 0.5% Nonidet P-

40, 0.15 mM spermin, 0.5 mM spermidin, 1 mM DTT, and a

protease inhibitor cocktail. After incubation 30 min on ice,

extracts were centrifuged 10 min at 21,000 g and the supernatants

were harvested to obtain total extracts.

65 mg of extract was used for Western blotting. After migration,

proteins were transferred to PVDF membranes and Western

blotting was realized according to standard procedures. Referenc-

es for the antibodies are given in Table S11.

7-methyl GTP Sepharose Affinity Protein Purification
7-methyl GTP sepharose 4B beads (GE Healthcare) were

washed twice in the previously described liver lysis buffer. 250 mg

of liver protein extracts were diluted in 500 ml of lysis buffer

containing 1 mM DTT and a cocktail of protease inhibitor and

incubated for 2 h on a rotating wheel at 4uC with 20 ml of beads.

After incubation, cap-binding-proteins coated beads were washed

five times in 500 ml of liver lysis buffer containing 0.5 mM PMSF

and 1 mM DTT. 7-methyl GTP bound proteins were eluted by

SDS-PAGE loading buffer, separated by SDS-PAGE, transferred

to PVDF membranes, and analysed by Western blotting as

described.

Statistical Analysis of Genes and Proteins Expression
Mean and standard error of the mean were computed for each

time point. The rhythmic characteristics of the expression of each

gene or protein were assessed by a Cosinor analysis [74]. This

method characterizes a rhythm by the parameters of the fitted

cosine function best approximating the data. A period of 24 h was

a priori considered. The rhythm characteristics estimated by this

linear least squares method include the mesor (rhythm-adjusted

mean), the double amplitude (difference between minimum and

maximum of fitted cosine function), and the acrophase (time of

maximum in fitted cosine function). A rhythm was detected if the

null hypothesis was rejected with p,0.05. In such a case, the 95%

confidence limits of each parameter were computed. The Cosinor

2.3 software used in this study has been elaborated by the

Circadian Rhythm Laboratory at University of South Carolina

and is freely available at this address: http://www.circadian.org/

softwar.html. The statistical significance of differences in the mesor

was evaluated by a Student’s t-test.

Supporting Information

Figure S1 Temporal expression and phosphorylation of
translation initiation factors in WT mice. Mean 6

standard error of the mean (SEM) (n = 3) densitometric values of

the Western blot data depicted in Figure 1B were represented

according to the zeitgeber time. Statistical analysis of these data is

given in Table S2.

(TIF)
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Figure S2 Temporal expression and phosphorylation of
proteins involved in signaling pathways activation and
translational initiation in WT mice. (A) Mean 6 standard

error of the mean (SEM) (n = 3) densitometric values of the

Western blot data depicted in Figure 2A were represented

according to the zeitgeber time. (B) Mean 6 SEM (n = 2)

densitometric values of the Western blot data depicted in

Figure 2B were represented according to the zeitgeber time.

Statistical analysis of these data is given in Table S2.

(TIF)

Figure S3 Temporal expression of TORC1 components
and of kinases regulating TORC1 and EIF4E activities in
WT mice. (A) Temporal expression of the TORC1 components

mTor and Raptor at the mRNA level (upper panel) and protein level

(lower panel) in mouse liver. mRNA expressions were measured by

real-time RT-PCR. For each time point, data are mean 6

standard error of the mean (SEM) obtained from four independent

animals. Expression of mTOR and RAPTOR and its phosphor-

ylation on Serine 792 were measured by Western blot on total

extracts. The phosphorylation of RAPTOR on Serine 792 by

AMPK has been shown to reduce TORC1 activity [75] and

contributes to the inhibition of TORC1 during the day. Naphtol

blue black staining of the membranes was used as a loading

control. (B) Temporal expression of Map4k3 (left panel) and Mnk2

mRNA (right panel) in mouse liver. mRNA expressions were

measured by real-time RT-PCR. For each time point, data are

mean 6 SEM obtained from four independent animals. MAP4K3

plays a role in the activation of TORC1 by amino acids [76],

whereas MNK2 is involved in the ERK signaling cascade leading

to the phosphorylation of EIF4E, which can play a role in 59-TOP

mRNA translation [9].

(TIF)

Figure S4 Rhythmic expression of mRNA encoding
translation initiation factors (Eif4b, Eif4ebp3), the
TORC1 complex component mTor, the kinase activating
these factors Mnk2, and proteins involved in rRNA
synthesis (Ubf1) and ribosome biogenesis (Rpl23) is
independent of food and light. (A) Temporal expression in

constant darkness. (B) Temporal expression during starvation. (C)

Temporal expression during starvation in constant darkness.

mRNA expressions were measured by real-time RT-PCR. For

each time point, data are mean 6 SEM obtained from three

independent animals. The circadian (CT) or zeitgeber (ZT) times

at which the animals were sacrificed are indicated on the bottom

of the figures.

(TIF)

Figure S5 Rhythmic activation of TORC1 still occurs in
constant conditions. (A) Temporal phosphorylation of

TORC1 substrates during 48 h in constant darkness. The lines

through gels indicate where the images have been cropped. (B)

Temporal phosphorylation of TORC1 substrates during starva-

tion. As reported [14], the period of activation seems to be shorter

in these conditions. Interestingly, this activation is antiphasic with

the rhythmic activation of autophagy in mouse liver [15], a process

inhibited by TORC1 but able to generate amino acids that can in

turn activate TORC1 [16]. (C) Temporal phosphorylation of the

TORC1 substrate RPS6 during starvation in constant darkness.

Temporal expression and phosphorylation of RPS6 and 4E-BP1

were measured by Western blot on total extracts. Naphtol blue

black staining of the membranes was used as a loading control.The

circadian (CT) or zeitgeber (ZT) times at which the animals were

sacrificed are indicated on the top of the figures.

(TIF)

Figure S6 Rhythmic activation of TORC1 in different
mouse organs. Temporal activation of the TORC1 pathway in

mouse organs, revealed by phosphorylation of RPS6. As in the

liver, this rhythmic activation is kept in kidney and heart,

nevertheless with reduced amplitude (indicated by the blot with

a shortest exposure). However, TORC1 activation is constant in

brain, lung, and small intestine, suggesting that nutriment

availability due to rhythmic feeding is not sufficient to explain

this phenomenon. The zeitgeber times (ZT) at which the animals

were sacrificed are indicated on each panel. Naphtol blue black

staining of the membranes was used as a loading control.

(TIF)

Figure S7 The polysomal fraction is rhythmic in mouse
liver. Temporal fraction of ribosomes in the polysomal fraction.

The percentage is obtained by dividing the optical density

obtained for the polysomal fraction by the total of optical density

obtained for polysomes and monosomes (n = 5). The rhythmic

nature of this fraction (and thus translation) is confirmed by

cosinor analysis (p#0.005, F[2,9] = 11.00, robustness = 61.3%,

Mesor = 76.24, amplitude = 5.50, and phase = 18.09 h). This

result confirms past biochemical [17] and morphometric [18]

studies describing a rhythmic polysomal fraction in rodent liver

with a nadir at ZT6. Interestingly, this time corresponds to the

maximum of activity of AMPK [12], which inhibits TORC1

activity through phosphorylation of TSC2 [77] and RAPTOR

[75]. The zeitgeber times (ZT) at which the animals were

sacrificed are indicated on the bottom of the figure.

(TIF)

Figure S8 The temporal profiles of polysomal mRNAs
closely follow that of total mRNAs for most circadian
genes, as exemplified by the Period genes. (A) Temporal

profiles ordered by phase in total (left panel) and polysomal RNA

(right panel) fractions of microarray probes presenting a rhythmic

profile in total mRNA fraction. Data were mean centered and

standardized. Log-ratios are color-coded so that red indicates high

and green low relative levels of mRNA. For most of the probes, the

profiles are strikingly similar in the two fractions, indicating

constant translational efficacy along the day. (B) Temporal

expression of Per1 (left panel) and Per2 (right panel) mRNAs in

polysomal (red line) and total (blue line) RNA fractions. Data are

represented in log scale without any additional normalization than

the one provided by the Affymetrix software. Although a

regulation of PER1 expression at the translational level has been

proposed [78,79], this hypothesis is not confirmed by our in vivo

data as the two profiles are extremely similar.

(TIF)

Figure S9 Comparative diurnal expression profile of
RNA in total and polysomal fractions. Temporal profiles of

total RNA (left panel) and polysomal RNA (right panel) fractions

of microarray probes presenting a rhythmic polysomal/total RNA

ratio. The profiles are ordered by the phase of the polysomal/total

ratio phase. Data were mean centered and standardized. Log-

ratios are color-coded so that red indicates high and green low

relative levels of mRNA.

(TIF)

Figure S10 Diurnal expression of selected 59-TOP
mRNAs in total and polysomal fractions. Temporal real-

time RT-PCR profile of selected 59-TOP mRNA expression in the

total RNA (black line) and polysomal RNA (red line) fractions

from mouse liver. For each time point, data are mean 6 standard

error of the mean (SEM) obtained from four independent animals.

In addition to three ribosomal protein mRNA, which are known to
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have a 59-TOP and be regulated by TORC1 [19], we selected also

Receptor of ACtivated protein Kinase C 1 (Rack1) or Guanine Nucleotide

Binding protein (G protein), Beta polypeptide 2-Like 1 (Gnb2l1), a

ribosome constituent [80] known to be regulated by TORC1 [81],

which also plays a role in circadian clock regulation [82].

However, a potential role of Rack1 rhythmic translation on the

circadian clock is not documented. The zeitgeber times (ZT) at

which the animals were sacrificed are indicated on each panel.

(TIF)

Figure S11 Temporal expression of ribosomal proteins
in mouse liver. Mean 6 standard error of the mean (SEM)

(n = 3) densitometric values of the Western blot data depicted in

Figure 3D were represented according to the zeitgeber time.

Statistical analysis of these data is given in Table S2.

(TIF)

Figure S12 Temporal expression of UBF1 in WT, and in
Cry1/Cry2 KO, and Bmal1 KO mouse liver. (A) Mean 6

standard error of the mean (SEM) (n = 3) densitometric values of

the Western blot data depicted in Figure 4B were represented

according to the zeitgeber time. Statistical analysis of these data is

given in Table S2. (B) Mean 6 SEM (n = 2) densitometric values of

the Western blot data depicted in Figure 4C (Cry1/Cry2 KO mice)

and 4D (Bmal1 KO mice) were represented according to the

zeitgeber time. Statistical analysis of these data is given in Tables

S7 and S8, respectively.

(TIF)

Figure S13 Activation of the TORC1, PI3K, and ERK
pathways in Cry1/Cry2 and Bmal1 KO mice kept in
constant darkness. (A) Temporal phosphorylation of RPS6,

AKT, and ERK in mouse mutant liver. Cry1/Cry2 and Bmal1 KO

mice were placed in constant darkness for 3 d and then sacrificed

every 4 h during a 24-h period. Total liver extracts were used for

Western blotting. The circadian (CT) times at which the animals

were sacrificed are indicated on the top of the figures. As expected,

rhythmic activation of the three pathways is lost under these

conditions. (B) Six Cry1/Cry2 KO mice were kept in constant

darkness for one week and then sacrificed at CT12. Phosphory-

lation of RPS6, AKT and ERK were evaluated by Western

blotting on total liver extracts. We observed as expected in these

conditions a high degree of variability in the activation of the three

pathways, probably due to the arrhythmic food consumption of

the animals. However, the ERK pathway seems to be less affected.

A quantification of these data is given on the right part of the

figure. Naphtol blue black staining of the membranes was used as

a loading control.

(TIF)

Figure S14 Diurnal expression of genes encoding pro-
teins involved in TORC1 complex, mRNA translation
initiation and RPs synthesis in WT and Cry1/Cry2 KO
mice. Temporal real-time RT-PCR expression of genes encoding

proteins involved in TORC1 complex (mTor and Raptor), mRNA

translation initiation (Eif4b and Eif4ebp3), and RP synthesis (Rpl32

and Rpl34 pre-mRNA) in total RNA from WT (black line) and

Cry1/Cry2 KO (red line) mouse liver. For each time point, data are

mean 6 standard error of the mean (SEM) obtained from four

(WT) and three (KO) independent animals. The zeitgeber times

(ZT) at which the animals were sacrificed are indicated on each

panel.

(TIF)

Figure S15 Diurnal expression of genes encoding pro-
teins involved in TORC1 complex, mRNA translation
initiation, and RP synthesis in WT and Bmal1 KO mice.

Temporal real-time RT-PCR expression of genes encoding

proteins involved in TORC1 complex (mTor and Raptor), mRNA

translation initiation (Eif4b and Eif4ebp3), and RP synthesis (Rpl32

and Rpl34 pre-mRNA) in total RNA from WT (black line) and

Bmal1 KO (red line) mouse liver. For each time point, data are

mean 6 standard error of the mean (SEM) obtained from two

independent animals. The zeitgeber times (ZT) at which the

animals were sacrificed are indicated on each panel.

(TIF)

Figure S16 Temporal expression and phosphorylation
of proteins involved in translational initiation, signaling
pathways activation, and ribosome biogenesis in Cry1/
Cry2 KO mice. (A) Mean 6 standard error of the mean (SEM)

(n = 2) densitometric values of the Western blot data depicted in

Figure 6A were represented according to the zeitgeber time. (B)

Mean 6 SEM (n = 2) densitometric values of the Western blot data

depicted in Figure 6B were represented according to the zeitgeber

time. Statistical analysis of these data is given in Table S7. It is

interesting to note that expression of EIF4E is slightly increased in

the KO (Student’s t-test p#0.05), in agreement with the increased

mRNA expression. It is also the case for RPS6 whose expression

increase like most of the other RP proteins (Student’s t-test

p#361026).

(TIF)

Figure S17 Temporal expression and phosphorylation
of proteins involved in translational initiation, signaling
pathways activation, and ribosome biogenesis in Bmal1
KO mice. (A) Mean 6 standard error of the mean (SEM) (n = 2)

densitometric values of the Western blot data depicted in

Figure 6C were represented according to the zeitgeber time. (B)

Mean 6 SEM (n = 2) densitometric values of the Western blot data

depicted in Figure 6D were represented according to the zeitgeber

time. Statistical analysis of these data is given in Table S8.

(TIF)

Figure S18 Example of polysomes purification profile.
Optic density at 260 nm of the 45 sub-fractions obtained after

ultracentrifugation of liver extract from mouse sacrificed at ZT8.

These fractions are then pooled in ten fractions and the fractions 1

and 2 are pooled to obtain the polysomal fraction used in

microarray and RT-PCR experiments.

(TIF)

Table S1 Cosinor statistical values related to rhythmic
mRNA expression of genes coding for proteins involved
in mRNA translation, TORC1 complex, and ribosome
biogenesis. A Cosinor statistical analysis was applied to the

rhythmic datasets corresponding to the respective expression of the

indicated mRNA measured by quantitative PCR in WT mice and

shown on Figures 1, 4, and S3.

(DOC)

Table S2 Cosinor statistical values related to rhythmic
expression and phosphorylations of proteins involved in
mRNA translation, TORC1 complex, and ribosome
biogenesis. A Cosinor statistical analysis was applied to the

rhythmic datasets corresponding to the respective expression of the

indicated proteins measured by Western blots quantification in

WT mice and shown on Figures S1, S2, S11, and S12.

(DOC)

Table S3 Affymetrix microarray probes presenting a
rhythmic polysomal/total RNA ratio and in phase with
TORC1 activation (complement to Figure 3A). Affymetrix

microarray probes presenting a rhythmic polysomal/total RNA
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ratio and in phase with TORC1 activation were classified

according to the phase of the maximum value (all include between

ZT14 and ZT18).

(XLS)

Table S4 Functions of the genes presenting a rhythmic
total/polysomal RNA ratio. Most of the genes found

regulated at the translational level are known 59-TOP containing

genes. They include almost all the RP coding genes: 28 of the 32

small RP genes and 42 of the 47 large RP genes expressed in

mouse [83] are found on the list. The list also includes known 59-

TOP mRNA encoding proteins involved in the regulation of

translation: translation initiation factors of the class 2, 3, and 4,

first class of translation elongation factors, and poly-A binding

proteins [19]. In addition, the list contains genes encoding proteins

involved at different steps of translational regulation and ribosome

biogenesis: NPM1, a chaperone protein involved in ribosome

assembly and rRNA maturation [84]; CCT4, a member of the

chaperonin complex that plays a role in ribosome biogenesis [85];

TPT1, a guanine nucleotide exchanger that controls TORC1

activity through regulation of the RHEB GTPase [86]; IGBP1, a

regulatory subunit of protein phosphatase 2A that modulates

TORC1 activity [87]; PFDN5, a chaperone protein that

modulates MYC activity [88]; a transcription factor involved in

rRNA and RP mRNA transcription [89]; AHCY, a S-adenosyl

homocysteine hydrolase that regulates translation also through

modulation of MYC activity [90]; GNB2L1 or RACK1, a scaffold

protein that interacts with and modulates ribosome activity [80];

UBA52, a protein constitutes by the fusion of a ribosomal protein

and ubiquitin [91]; The remaining genes encode proteins with

unknown function in translation regulation.

(DOC)

Table S5 Cosinor statistical values related to rhythmic
mRNA expression of genes coding for proteins involved
in mRNA translation, TORC1 complex, and ribosome
biogenesis in WT and Cry1/Cry2 KO mice. A Cosinor

statistical analysis was applied to the rhythmic datasets corre-

sponding to the respective expression of the indicated mRNA

measured by quantitative PCR in WT and Cry1/Cry2 KO mice

and shown on Figures 4, 5, and S14.

(DOC)

Table S6 Cosinor statistical values related to rhythmic
mRNA expression of genes coding for proteins involved
in mRNA translation, TORC1 complex and ribosome
biogenesis in WT and Bmal1 KO mice. A Cosinor statistical

analysis was applied to the rhythmic datasets corresponding to the

respective expression of the indicated mRNA measured by

quantitative PCR in WT and Bmal1 KO mice and shown on

Figures 4, 5, and S15.

(DOC)

Table S7 Cosinor statistical values related to rhythmic
expression and phosphorylation of proteins involved in
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statistical analysis was applied to the rhythmic datasets corre-

sponding to the respective expression of the indicated proteins
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(DOC)

Table S8 Cosinor statistical values related to rhythmic
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analysis was applied to the rhythmic datasets corresponding to the

respective expression of the indicated proteins measured by

Western blots quantification in WT and Bmal1 KO mice and

shown on Figures S12 and S17.

(DOC)

Table S9 Taqman probes used for real-time PCR
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(DOC)
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Figure S18 



Table S1: Cosinor statistical values related to rhythmic mRNA expression of genes 

coding for proteins involved in mRNA translation, TORC1 complex and ribosome 

biogenesis 

 

          

 Gene p value F[2,9] Robustness (%) Mesor Amplitude  Acrophase (h) Fold change  

 Eif4e 0.01500 6.945 47.6 0.83 0.121 11.3 1.566  

 Eif4g1 0.00249 13.215 66.1 9.26 1.615 0.7 1.678  
 Eif4a2 0.00109 17.680 72.9 5.52 1.562 8.1 2.085  
 Eif4b 0.00043 24.953 79.6 8.85 2.263 5.7 1.835  
 Eif4ebp1 0.00051 23.339 78.4 1.88 0.860 9.1 3.126  
 Eif4ebp3 0.00022 32.418 83.7 5.82 4.998 15.8 7.647  
          
 mTor 0.00089 19.010 74.5 10.75 2.391 5.3 1.790  
 Raptor 0.00222 13.753 67.1 10.14 1.954 3.2 1.598  
 Map4k3 0.00022 32.061 83.6 1.09 0.258 6.1 1.628  
 Mnk2 0.00026 29.933 82.6 2.45 1.065 11.7 2.929  
          
 pre-45S rRNA 0.00025 30.395 82.8 13.90 3.630 9.0 1.913  
 Pre-Rpl23 0.00222 13.752 67.1 19.53 8.189 9.3 4.141  
 Pre-Rpl32 0.00011 43.290 87.4 15.17 5.865 8.8 2.480  
 Pre-Rpl34 0.00044 24.724 79.5 7.51 3.914 8.5 3.348  
          
 Ubf1 0.00025 30.734 83.0 1.81 0.577 6.1 2.211  

          

 

 

 



Table S2: Cosinor statistical values related to rhythmic phosphorylation and expression of 

protein involved in mRNA translation, cell signaling and ribosome biogenesis 

 

Protein p value F[2,9] Robustness (%) Mesor Amplitude  Acrophase (h) Fold change 

P-EIF4E 0.01231 7.478 49.9 3.40 2.04 7.51 5.89 

P-EIF4G1 0.00185 14.662 68.7 4.21 3.68 16.73 9.69 

P-EIF4B 0.01404 7.120 48.4 4.41 4.47 14.64 13.44 

P-4E-BP1 0.00488 10.439 59.8 25.06 22.43 13.68 64.81 

P-RPS6 0.00604 9.683 57.7 43.96 56.27 15.83 110.02 

        

P-TSC2 0.00212 13.996 67.6 4.76 3.43 7.85 10.57 

P-AKT 0.00212 13.993 67.6 3.51 2.63 14.69 8.37 

P-ERK 0.00151 15.746 70.4 5.60 4.45 7.33 11.04 

P-p90RSK 0.00044 24.711 79.5 2.34 1.51 6.39 4.28 

        

Me-GTP 4E-BP1 0.00299 12.404 64.5 2.97 1.76 4.74 5.49 

        

RPL5 0.01036 7.970 51.9 2.13 0.66 12.52 3.00 

RPL23 0.04426 4.471 33.1 2.45 1.02 15.84 4.15 

RPL32 0.00007 52.586 89.5 4.01 2.38 14.51 6.78 

RPLP0 0.01075 7.864 51.5 3.57 2.20 10.93 7.57 

        

UBF1 0.00328 12.009 63.7 2.57 1.01 6.49 3.71 

 

 



Affy probes Genes Phase Amplitude p_value

1434523_x_at Eif3e 14.18 2.14 3.31E-04

1415716_a_at Rps27 15.09 3.49 1.08E-04

1450840_a_at Rpl39 15.18 4.35 3.02E-04

1454778_x_at Rps28 15.43 2.43 4.61E-04

1423763_x_at Rps28 15.44 2.47 2.24E-04

1426162_a_at Rpl7 15.45 2.67 8.68E-04

1415979_x_at Rpl7 15.56 2.05 3.81E-04

1416603_at Rpl22 15.60 3.78 1.26E-05

1453118_s_at Rpl22 15.62 3.54 8.58E-06

1416807_at Rpl36a 15.64 2.56 4.20E-05

1438655_a_at Rpl34 15.65 3.66 5.82E-05

1460543_x_at Rpl37a 15.66 2.87 2.95E-05

1415701_x_at Rpl23 15.71 2.03 1.67E-05

1435593_x_at Rps7 15.80 4.04 3.08E-05

1456628_x_at Rps24 15.82 4.38 3.42E-05

1422475_a_at Rps3a 15.83 2.93 6.32E-05

1460201_a_at Rpl24 15.83 1.68 6.74E-05

1433549_x_at Rps21 15.84 4.76 6.50E-04

1454859_a_at Rpl23 15.85 2.11 4.33E-05

1437975_a_at Rpl23a 15.86 2.94 8.83E-06

1451101_a_at Rps28 15.87 2.10 3.04E-05

1460680_a_at Rpl23 15.87 2.35 1.86E-04

1428530_x_at Rps24 15.88 3.94 5.47E-05

1455767_x_at Rpl21 15.90 2.77 5.11E-04

1455662_x_at Rps17 15.90 2.64 2.24E-05

1416277_a_at Rplp1 15.92 2.20 5.58E-04

1434872_x_at Rpl37 15.93 2.79 1.83E-05

1438986_x_at Rps17 15.95 2.72 2.61E-05

1429077_x_at Rpl21 15.95 2.12 1.42E-04

1453362_x_at Rps24 15.95 3.63 2.39E-05

1419364_a_at Rps7 15.96 3.26 3.62E-05

1434358_x_at Rps21 15.98 3.56 1.82E-04

1455364_a_at Rps7 15.99 4.11 5.77E-05

1416217_a_at Rpl37a 16.01 2.79 1.20E-05

1423665_a_at Rpl5 16.04 1.81 5.25E-04

1449255_a_at Rpl15 16.07 2.17 9.26E-04

1435712_a_at Rps18 16.11 4.21 9.52E-06

1437510_x_at Rps17 16.12 2.97 1.38E-05

1425183_a_at Rpl4 16.12 2.17 6.27E-04

1437976_x_at Rpl23a 16.12 2.12 2.44E-05

1416026_a_at Rpl12 16.14 4.10 2.49E-05

1415867_at Cct4 16.18 1.65 1.03E-04

1416453_x_at Rps12 16.19 4.44 3.60E-05

1448344_at Rps12 16.19 4.91 1.67E-05

1435725_x_at Rpl12 16.19 3.10 2.05E-05

1436064_x_at Rps24 16.20 2.94 3.77E-06

1428152_a_at Rpl18a 16.20 2.43 5.25E-06

1436586_x_at Rps14 16.21 2.53 4.89E-06



1435151_a_at Rps3 16.21 2.48 1.11E-04

1449196_a_at Rps27a 16.21 2.63 2.67E-05

1426659_a_at Rpl23a 16.21 2.76 1.33E-05

1433432_x_at Rps12 16.22 4.21 1.46E-05

1436995_a_at Rpl26 16.23 2.97 1.01E-05

1424766_at Ercc6l 16.24 1.91 4.07E-04

1453729_a_at Rpl37 16.24 2.41 5.41E-06

1459986_a_at Rps17 16.28 2.63 7.19E-06

1433721_x_at Rps21 16.30 3.10 1.67E-05

1417317_s_at Rpl35a 16.30 2.13 1.06E-05

1454856_x_at Rpl35 16.30 2.88 1.34E-05

1426660_x_at Rpl23a 16.30 2.40 1.86E-05

1434624_x_at Rps9 16.31 2.52 8.13E-04

1451068_s_at Rps25 16.32 2.70 1.68E-05

1416243_a_at Rpl35 16.33 2.79 2.23E-05

1460175_at Rps23 16.36 3.02 6.18E-06

1436822_x_at Rpl17 16.37 3.33 9.70E-05

1417615_a_at Rpl11 16.38 2.50 5.96E-06

1415736_at Pfdn5 16.38 2.24 1.00E-05

1420000_s_at Igbp1 16.39 2.28 1.51E-04

1418273_a_at Rpl30 16.39 3.84 6.21E-06

1434231_x_at Rpl35 16.40 2.91 8.00E-06

1416276_a_at Rps4x 16.41 2.98 9.17E-06

1433510_x_at Rpl36 16.41 3.18 5.51E-05

1416088_a_at Rps15 16.41 2.80 6.80E-04

1456373_x_at Rps20 16.42 3.44 1.69E-05

1448739_x_at Rps18 16.42 4.45 8.20E-06

1416099_at Rpl27 16.43 1.53 8.85E-04

1456436_x_at Rps20 16.46 3.43 1.22E-05

1454620_x_at Rps6 16.46 2.03 2.59E-04

1460637_s_at Pfdn5 16.47 2.55 1.05E-04

1428212_x_at Rpl31 16.48 2.81 1.14E-05

1453467_s_at Rps15a 16.50 2.92 1.96E-05

1416519_at Rpl36 16.50 2.60 3.28E-05

1430288_x_at Rps21 16.50 3.18 9.15E-06

1416420_a_at Rpl9 16.53 2.79 9.48E-05

1449243_a_at Rps19 16.53 5.79 3.12E-06

1455485_x_at Rpl13a 16.59 2.21 6.35E-06

1448109_a_at Rpl26 16.59 3.70 9.13E-06

1448157_s_at Rpl10 16.59 2.05 4.79E-05

1460008_x_at Rpl31 16.60 2.51 1.85E-05

1416642_a_at Tpt1 16.60 2.09 8.83E-05

1448245_at Rpsa 16.61 2.71 2.40E-05

1416054_at Rps5 16.62 4.26 3.92E-06

1455950_x_at Rpl35 16.62 2.85 6.60E-06

1416520_x_at Rpl36 16.62 2.80 1.72E-05

1426661_at Rpl27a 16.62 2.51 7.04E-06

1435897_at Rpl32 16.63 5.73 5.97E-06

1434377_x_at Rps6 16.63 1.75 2.02E-04

1455572_x_at Rps18 16.63 4.80 2.70E-06



1436840_x_at Rpl35 16.64 2.79 3.66E-05

1435791_x_at Rpl17 16.65 3.01 1.58E-04

1423666_s_at Rpl5 16.67 3.22 8.23E-05

1436924_x_at Rpl31 16.67 2.71 3.60E-05

1438626_x_at Rpl14 16.67 3.34 1.11E-04

1436760_a_at Rps8 16.68 2.52 1.01E-04

1443843_x_at Rpl9 16.68 2.12 5.70E-05

1427875_a_at Rpl34 16.69 2.71 4.80E-06

1416089_at Rps15 16.72 2.81 2.96E-04

1432264_x_at Cox7a2l 16.74 2.17 8.04E-04

1423855_x_at Rpl17 16.77 3.44 5.11E-05

1421772_a_at Cox7a2l 16.78 1.93 9.32E-04

1437196_x_at Rps16 16.78 2.24 8.63E-06

1455319_x_at Rps8 16.80 3.16 1.55E-04

1416074_a_at Rpl28 16.80 3.98 3.12E-04

1415942_at Rpl10 16.81 2.28 1.94E-04

1450150_a_at Rpl13 16.81 3.22 4.97E-04

1426793_a_at Rpl14 16.81 4.69 3.17E-04

1431177_a_at Rpl10a 16.83 3.27 6.36E-06

1416404_s_at Rps16 16.84 3.71 9.10E-06

1416141_a_at Rps6 16.86 1.62 1.58E-04

1435873_a_at Rpl13a 16.87 2.10 1.29E-05

1417608_a_at Rpl13a 16.87 2.93 1.75E-05

1416719_a_at Rps10 16.88 3.17 6.23E-05

1415962_at Eif3h 16.88 2.47 7.50E-04

1415839_a_at Npm1 16.89 2.78 6.31E-04

1455693_x_at Rps6 16.89 1.70 1.18E-04

1434854_a_at Rps10 16.89 3.32 4.11E-05

1448252_a_at Eef1b2 16.89 3.59 1.80E-05

1438507_x_at Rpl14 16.91 3.67 8.91E-05

1436688_x_at Rpl14 16.91 3.36 4.76E-05

1422859_a_at Rpl23 16.93 4.08 7.90E-05

1418062_at Eef1a2 16.98 2.25 3.25E-04

1417762_a_at Rpl8 17.00 2.32 4.90E-04

1455001_x_at Rpl13a 17.00 2.62 2.11E-05

1416546_a_at Rpl6 17.00 2.40 1.95E-05

1422613_a_at Rpl7a 17.04 2.72 2.83E-04

1456497_x_at Rps10 17.07 2.94 7.45E-05

1433928_a_at Rpl13a 17.07 4.12 7.97E-06

1432263_a_at Cox7a2l 17.10 2.06 6.74E-04

1416142_at Rps6 17.10 3.62 1.42E-04

1460575_at Eif2a 17.11 2.41 5.78E-04

1449323_a_at Rpl3 17.12 3.01 2.47E-06

1438723_a_at Rps10 17.12 2.73 9.59E-05

1433688_x_at Rpl14 17.13 3.59 6.32E-05

1452285_a_at Eif3f 17.16 2.90 3.52E-04

1455168_a_at Gnb2l1 17.17 2.90 9.28E-05

1419441_at Rplp0 17.19 3.68 2.36E-04

1433689_s_at Rps9 17.21 3.65 7.01E-04

1448846_a_at Rpl29 17.21 2.39 2.18E-04



1415876_a_at Rps26 17.22 2.26 9.53E-05

1433472_x_at Rpl38 17.27 2.35 2.70E-04

1455245_x_at Rpl13 17.27 2.47 7.76E-05

1437610_x_at Rps8 17.30 2.62 2.71E-04

1455600_at Rps3 17.35 3.66 1.34E-04

1436046_x_at Rpl29 17.36 2.44 2.07E-05

1419553_a_at Rabggtb 17.41 2.73 4.55E-04

1449506_a_at Eef1d 17.46 2.41 7.50E-04

1451077_at Rpl5 17.47 3.42 7.82E-04

1460581_a_at Rpl13 17.50 2.41 2.82E-04

1424635_at Eef1a1 17.55 1.93 1.63E-06

1455348_x_at Rpl29 17.56 2.18 1.17E-04

1431766_x_at Rps2 17.67 2.04 5.50E-04

1451296_x_at pabpc4 17.70 1.89 6.08E-04

1454627_a_at Rpl29 17.70 2.29 2.43E-05

1425026_at Sft2d2 17.72 1.66 4.68E-04

1417125_at Ahcy 17.74 1.45 1.28E-04

1431765_a_at Rps2 17.75 2.52 9.82E-04

1426379_at Eif4b 17.82 2.07 2.16E-04

1450934_at Eif4a2 17.82 3.62 8.87E-04

1417364_at Eef1g 17.99 2.79 2.40E-05

1416624_a_at Uba52 18.39 1.47 9.64E-04



Table S4: Functions of the genes presenting a rhythmic total / polysomal RNA ratio 

 

Ribosomes     
small subunits 

Ribosomes 
large subunits 

Translation 
initiation factors 

Translation 
elongation factors 

Role in ribosome 
biogenesis 

Other 
functions 

Rpsa Rpl3 Eif2a Eef1a1 Npm1 Ercc6l 

Rps2 Rpl4 Eif3e Eef1a2 Cct4 Rabggtb 

Rps3 Rpl5 Eif3f Eef1b2 Tpt1 Sft2d2 

Rps3a Rpl6 Eif3h Eef1d Igbp1 Cox7a2l 

Rps4x Rpl7 Eif4a2 Eef1g Pfdn5  

Rps5 Rpl7a Eif4b pabpc4 Ahcy  

Rps6 Rpl8   Gnb2l1  

Rps7 Rpl9   Uba52  

Rps8 Rpl10     

Rps9 Rpl10a     

Rps10 Rpl11     

Rps12 Rpl12     

Rps14 Rpl13     

Rps15 Rpl13a     

Rps15a Rpl14     

Rps16 Rpl15     

Rps17 Rpl17     

Rps18 Rpl18a     

Rps19 Rpl21     

Rps20 Rpl22     

Rps21 Rpl23     

Rps23 Rpl23a     

Rps24 Rpl24     

Rps25 Rpl26     

Rps26 Rpl27     

Rps27 Rpl27a     

Rps27a Rpl28     

Rps28 Rpl29     

 Rpl30     

 Rpl31     

 Rpl32     

 Rpl34     

 Rpl35     

 Rpl35a     

 Rpl36     

 Rpl36a     

 Rpl37     

 Rpl37a     

 Rpl38     

 Rpl39     

 Rplp0     

 Rplp1     

 



Table S5: Cosinor statistical values related to rhythmic mRNA expression of genes coding 

for proteins involved in mRNA translation, TORC1 complex and ribosome biogenesis in 

wild-type and Cry1/Cry2 KO mice 

Gene Genotype p value F[2,9] Robustness (%) Mesor Mesor p value Amplitude  Acrophase (h) 

Eif4e 
WT 0.01500 6.945 47.6 8.28 0.00000 1.21 11.26 

KO n.s.   14.23    

Eif4g1 
WT 0.00249 13.215 66.1 9.26 0.00003 1.61 0.70 

KO n.s.   6.95    

Eif4a2 
WT 0.00109 17.680 72.9 5.52 0.00736 1.56 8.06 

KO n.s.   4.32    

Eif4b 
WT 0.00043 24.953 79.6 0.88 0.02120 0.23 5.75 

KO n.s.   0.74    

Eif4ebp1 
WT 0.00062 21.751 77.1 1.20 0.00000 0.55 9.20 

KO n.s.   3.51    

Eif4ebp3 
WT 0.00013 39.929 86.5 4.24 n.s. 3.75 15.82 

KO 0.00583 9.806 58.1 4.84  1.87 9.36 

mTor 
WT 0.00089 19.010 74.5 10.75 0.00024 2.39 5.25 

KO n.s.   7.87    

Raptor 
WT 0.00222 13.753 67.1 10.14 0.00328 1.95 3.23 

KO n.s.   8.31    

pre-45S rRNA 
WT 0.00019 33.888 84.4 4.36 0.00022 1.29 9.12 

KO 0.00525 10.172 59.1 2.91  0.60 9.42 

Pre-Rpl23 
WT 0.00571 9.877 58.3 2.46 0.00000 1.11 9.45 

KO 0.00463 10.632 60.3 5.40  1.30 11.55 

Pre-Rpl32 
WT 0.00011 42.969 87.4 7.01 0.00003 2.72 8.77 

KO 0.01468 7.002 47.8 12.83  3.34 12.97 

Pre-Rpl34 
WT 0.00068 20.978 76.5 8.41 0.00002 4.61 8.53 

KO n.s.   15.89    

Ubf1 
WT 0.00025 30.734 83.0 1.81 0.00002 0.58 6.14 

KO n.s.   1.08    

 



Table S6: Cosinor statistical values related to rhythmic mRNA expression of genes coding 

for proteins involved in mRNA translation, TORC1 complex and ribosome biogenesis in 

wild-type and Bmal1 KO mice 

 

Gene Genotype p value F[2,9] Robustness (%) Mesor Mesor p value Amplitude  Acrophase (h) 

Eif4e 
WT 0.01748 6.551 45.7 2.21 n.s. 0.49 12.39 

KO n.s.   2.40    

Eif4g1 
WT 0.02316 5.868 42.1 10.36 0.00225 1.11 3.80 

KO 0.04055 4.647 34.4 12.22  1.46 22.32 

Eif4a2 
WT 0.01083 7.842 51.4 13.82 0.00002 3.28 9.16 

KO 0.00469 10.585 60.2 21.12  4.13 11.54 

Eif4b 
WT 0.03973 4.689 34.7 2.11 0.00022 0.48 8.79 

KO 0.03240 5.116 37.6 3.08  0.57 12.29 

Eif4ebp1 
WT 0.04749 4.333 32.1 9.50 0.00768 3.28 11.84 

KO 0.00734 9.030 55.7 5.47  3.63 12.96 

Eif4ebp3 
WT 0.00099 18.321 73.7 15.74 n.s. 14.77 16.98 

KO 0.01965 6.260 44.2 19.17  12.18 15.47 

mTor 
WT 0.00317 12.153 64.0 4.04 0.01286 1.23 9.67 

KO 0.00078 19.924 75.4 5.05  0.92 10.38 

Raptor 
WT 0.00450 10.745 60.6 3.56 0.00007 0.62 6.86 

KO n.s.   4.56    

pre-45S rRNA 
WT 0.00031 28.143 81.6 13.30 0.00000 4.40 9.84 

KO 0.04012 4.669 34.6 20.43  1.98 1.73 

Pre-Rpl23 
WT 0.03388 5.020 37.0 6.43 n.s. 2.07 14.17 

KO 0.00338 11.879 63.4 7.38  1.84 17.48 

Pre-Rpl32 
WT 0.03375 5.029 37.0 0.61 n.s. 0.27 13.85 

KO 0.03433 4.993 36.8 0.76  0.14 17.97 

Pre-Rpl34 
WT 0.04662 4.369 32.3 0.79 n.s. 0.29 13.23 

KO n.s.   0.81    

Ubf1 
WT 0.00017 35.933 85.2 2.35 0.00002 0.62 7.49 

KO n.s.   3.23    

 



Table S7: Cosinor statistical values related to rhythmic phosphorylation and expression of 

protein involved in mRNA translation, cell signaling and ribosome biogenesis in wild-type 

and Cry1/Cry2 KO mice 

 

Gene Genotype p value F[2,9] Robustness (%) Mesor mesor p value Amplitude  Acrophase (h) 

P-EIF4E 
WT 0.00325 12.044 63.7 16.52 n.s. 13.57 8.30 

KO n.s.   19.62    

P-EIF4G1 
WT 0.00365 11.559 62.6 54.61 0.09835 51.70 18.33 

KO 0.00274 12.788 65.3 27.29  36.46 15.99 

P-RPS6 
WT 0.00909 8.360 53.3 125.80 n.s. 157.26 15.88 

KO 0.00603 9.686 57.7 181.56  176.00 12.99 

P-AKT 
WT 0.04074 4.638 34.3 23.67 n.s. 20.05 15.10 

KO 0.01304 7.320 49.2 19.89  18.77 13.51 

P-ERK 
WT 0.03083 5.223 38.3 1.79 0.00008 0.56 4.63 

KO n.s.   3.27    

RPL5 
WT 0.03941 5.215 38.2 3.02 n.s. 1.37 16.76 

KO 0.00054 22.830 78.0 3.46  2.28 9.38 

RPL23 
WT 0.04165 4.593 34.0 18.67 0.00123 13.70 17.15 

KO 0.04366 4.499 33.3 36.04  7.96 0.09 

RPL32 
WT 0.04843 4.294 31.8 5.71 0.00002 1.90 13.36 

KO 0.02661 5.549 40.3 9.95  1.76 1.60 

RPLP0 
WT 0.00112 17.533 72.8 2.68 0.00051 1.33 10.85 

KO 0.01775 6.512 45.5 4.92  1.62 19.77 

UBF1 
WT 0.00099 18.304 73.7 3.01 0.00005 0.97 8.63 

KO n.s.   1.68    

 



Table S8: Cosinor statistical values related to rhythmic phosphorylation and expression of 

protein involved in mRNA translation, cell signaling and ribosome biogenesis in wild-type 

and Bmal1 KO mice 

 

Gene Genotype p value F[2,9] Robustness (%) Mesor mesor p value Amplitude  Acrophase (h) 

P-EIF4E 
WT 0.03271 5.096 37.5 4.69 n.s. 1.28 6.45 

KO 0.02043 6.166 43.7 5.16  1.74 12.38 

P-EIF4G1 
WT 0.03883 4.736 35.0 2.33 n.s. 1.07 17.69 

KO n.s.   2.63    

P-RPS6 
WT 0.00813 8.703 54.6 90.65 0.01235 94.45 17.79 

KO n.s.   38.66    

P-AKT 
WT 0.04379 4.493 33.3 17.83 0.00018 5.94 13.44 

KO n.s.   6.88    

P-ERK 
WT 0.00057 22.417 77.7 1.81 n.s. 0.75 8.97 

KO n.s.   1.74    

RPL5 
WT 0.02301 5.883 42.2 2.05 n.s. 0.66 18.59 

KO 0.00010 45.027 87.9 3.06  1.47 5.66 

RPL23 
WT 0.04263 4.547 33.7 2.02 n.s. 0.49 18.84 

KO 0.00474 10.550 60.1 2.49  1.19 7.00 

RPL32 
WT 0.04760 4.328 32.0 2.32 0.00036 0.72 19.11 

KO 0.00056 22.488 77.8 3.93  1.34 7.83 

RPLP0 
WT 0.04692 4.356 32.3 2.76 n.s. 0.82 21.80 

KO 0.00520 10.211 59.2 2.77  0.99 6.63 

UBF1 
WT 0.02444 5.743 41.4 6.07 0.00013 3.33 7.03 

KO n.s.   10.92    

 



Table S9: Taqman probes used for real-time PCR (Applied Biosystems) 

 

 

 

Gene Probe reference 

Gapdh Mm 99999915_g1 

28S rRNA Mm 03682676_s1 

Eif4e Mm 00725633_s1 

Eif4g1 Mm 00524099_m1 

Eif4a2 Mm 00834357_g1 

Eif4b Mm 00778003_s1 

Eif4ebp1 Mm 01620026_g1 

Eif4ebp3 Mm 01406408_m1 

Rpl23 Mm 00787512_s1 

Rpl32 Mm 02528467_g1 

Rpl34 Mm 01318199_g1 

mTor Mm 00444968_m1 

Raptor Mm 00712676_m1 

Map4k3 Mm 01232993_m1 

Mknk2 Mm 00458026_m1 

Ubf1 Mm 00456972_m1 



Table S10: Sequences of the primers used for SYBR® Green real-time PCR 

 

Gene Forward primer Reverse primer 

Gapdh CATGGCCTTCCGTGTTCCTA CCTGCTCTTCCGTGTTCCTA 

45S rRNA GCTGCCTCACCAGTCTTTCT GCAAGACCCAAACACACACA 

Rpl23 intron 3 ATTGATGAACACGGCAAACA GAGTTCGAGACCGAGACCAG 

Rpl32 intron 3 TACAGCAGCAGTCCATGAGG CACCCCAGGACTCTTTACCA 

Rpl34 intron 3 CCTGCCCTGTTTGTGGTAGT TGGAAATCTTTTCCGTTTGC 

 

 



Table S11: References of the antibodies used for Western blotting 

 

Protein Reference Company 

P-EIF4E (Ser 209) 9741 Cell Signaling Technology 

EIF4E 2067 Cell Signaling Technology 

P-EIF4G (Ser 1108) 2441 Cell Signaling Technology 

EIF4G 2469 Cell Signaling Technology 

P-EIF4B (Ser 422) 3591 Cell Signaling Technology 

EIF4B 3592 Cell Signaling Technology 

P-4EBP1 (Thr 37/46) 2855 Cell Signaling Technology 

4EBP1  9644 Cell Signaling Technology 

P-RPS6 (Ser 235/236) 2211 Cell Signaling Technology 

RPS6 2217 Cell Signaling Technology 

P-TSC2 (Ser 1387) 5584 Cell Signaling Technology 

TSC2  4308 Cell Signaling Technology 

P-AKT (Ser 473) 4060 Cell Signaling Technology 

AKT 4691 Cell Signaling Technology 

P-p44/42 MAPK (ERK1/2) 

(Thr202 / Tyr 204) 
4376 Cell Signaling Technology 

P44/42 MAPK (ERK1/2)  9102 Cell Signaling Technology 

P-p90RSK (Thr 359/363) 9344 Cell Signaling Technology 

p90RSK 9355 Cell Signaling Technology 

P-RAPTOR (Ser 792) 2083 Cell Signaling Technology 

RAPTOR 2280 Cell Signaling Technology 

TOR 2983 Cell Signaling Technology 

LP0 Ribosomal Protein 51019-2-AP ProteinTech Group 

L5 Ribosomal Protein 15430-1-AP ProteinTech Group 

L23 Ribosomal Protein 16086-1-AP ProteinTech Group 

L32 Ribosomal Protein ARP-40219-T100 Aviva Systems Biology 

UBF1  sc-9131 Santa Cruz Biotechnology 

PER1  Brown et al., 2005 

BMAL1  Preitner et al., 2002 

  

 



62 
 

II. Involvement of circadian clock in lipid metabolism  
 

A. Modulation of PPARα signaling pathway in mouse liver 

 

DBP (D-box Binding Protein), TEF (Thyrotroph Embryonic Factor), and HLF (Hepatic 

Leukemia Factor) are three circadian clock-controlled PAR bZip (Proline- and Acidic amino 

acid-Rich domain basic leucine Zipper) transcription factors
113, 296

. These PAR bZip act by 

binding to D-boxes present on target gene promoters
297

. Studies in mice deficient for these 

three transcription factors, PAR bZip KO mice, showed the impact of the circadian clock on 

several metabolic pathways. Indeed, PAR bZip mice exhibit early aging phenotype, severe 

epilepsy attacks
298

, defect in liver xenobiotic detoxification
3
, cardiac hypertrophy and left 

ventricular dysfunction associated with a low blood pressure
299

. 

In the present study
300

, PAR bZip proteins as transcription factors are involved in the 

rhythmic accumulation and activity of PPARα. Indeed, in mice depleted of the three PAR 

bZip (PAR bZip 3KO mice) the expression of PPARα was damped, as well as Cyp4a10 and 

Cyp4a14 mRNA, two PPARα target genes. PPARα activity is stimulated by the binding to 

fatty acids. Fatty acids availability is driven by LPL (LipoProtein Lipase) and ACOTs (Acyl 

CoA Thioesterase) enzymes. Here it is proposed that Acot gene expressions were under the 

control of PAR bZip as their diurnal expression was impaired in PAR bZip 3KO mice. 

However, in mice kept under free-fat diet, PPARα activity was rescue due to de novo fatty 

acid synthesis as shown by the increased expression of Fasn (Fatty acid synthase) mRNA.  

It appears thus that under normal diet, circadian PAR bZip control free fatty acids release 

through the control of ACOTs expression. These free fatty acids then play their role of ligands 

by stimulating PPARα activation. PPARα then stimulates transcription of Acot and Lpl, and in 

a feed-forward loop reinforces its own expression and activity. 
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In mammals, many aspects of metabolism are under circadian
control. At least in part, this regulation is achieved by core-clock
or clock-controlled transcription factors whose abundance and/or
activity oscillate during the day. The clock-controlled proline-
and acidic amino acid-rich domain basic leucine zipper proteins
D-site-binding protein, thyrotroph embryonic factor, and hepatic
leukemia factor have previously been shown to participate in
the circadian control of xenobiotic detoxification in liver and other
peripheral organs. Here we present genetic and biochemical evi-
dence that the three proline- and acidic amino acid-rich basic
leucine zipper proteins also play a key role in circadian lipid meta-
bolism by influencing the rhythmic expression and activity of the
nuclear receptor peroxisome proliferator-activated receptor α
(PPARα). Our results suggest that, in liver, D-site-binding protein,
hepatic leukemia factor, and thyrotroph embryonic factor contri-
bute to the circadian transcription of genes specifying acyl-CoA
thioesterases, leading to a cyclic release of fatty acids from thioe-
sters. In turn, the fatty acids act as ligands for PPARα, and the
activated PPARα receptor then stimulates the transcription of
genes encoding proteins involved in the uptake and/or metabolism
of lipids, cholesterol, and glucose metabolism.

circadian clock ∣ liver lipid metabolism ∣ nuclear receptors

In mammals, energy homeostasis demands that anabolic and
catabolic processes are coordinated with alternating periods

of feeding and fasting. There is increasing evidence that inputs
from the circadian clock are required in addition to acute regu-
latory mechanisms to adapt metabolic functions to an animal’s
daily needs. For example, mice with disrupted hepatocyte clocks
display a hypoglycemia during the postabsorptive phase, suppo-
sedly because hepatic gluconeogenesis and glucose delivery into
the bloodstream are dysregulated in these animals (1).

The regulation of lipid metabolism is also governed by an
interaction between acute and circadian regulatory mechanisms,
and the three peroxisome proliferator-activated receptors
(PPARα, PPARβ/δ, and PPARγ) play particularly important roles
in these processes (2). Among them, PPARα acts as a molecular
sensor of endogenous fatty acids (FAs) and regulates the tran-
scription of genes involved in lipid uptake and catabolism. More-
over, it accumulates according to a daily rhythm and reaches
maximal levels around the beginning of feeding time (3, 4). For
liver and many other peripheral tissues, feeding–fasting rhythms
are the most dominant zeitgebers (timing cues) (5, 6). This ob-
servation underscores the importance of the cross-talk between
metabolic and circadian cycles.

Circadian oscillators in peripheral tissues can participate in the
control of rhythmic metabolism through circadian transcription
factors, which in turn regulate the cyclic transcription of metabo-
lically relevant downstream genes. The three PAR-domain basic

leucine zipper (PAR bZip) proteins, D-site-binding protein
(DBP), thyrotroph embryonic factor (TEF), and hepatic leuke-
mia factor (HLF), are examples of such output mediators (for
review, see ref. 7). Mice deficient of only one or two members
of the PAR bZip gene family display rather mild phenotypes,
suggesting that the three members execute partially redundant
functions. However, mice deficient of all three PAR bZip genes
(henceforth called PAR bZip 3KO mice) have a dramatically
reduced life span due to epileptic seizures (8) and impaired
xenobiotic detoxification (9).

Genome-wide transcriptome profiling of wild-type and PAR
bZip 3KO mice has revealed differentially expressed genes
involved in lipid metabolism, many of which are targets of the
nuclear receptor PPARα. Here we present evidence for a pathway
in which PAR bZip transcription factors connect the accumula-
tion and activity of PPARα to circadian oscillators in liver.

Results
Pparα Expression in PAR bZip 3KO Mice. Genome-wide microarray
transcriptome profiling studies with liver RNA from wild-type
and PAR bZip 3KO mice revealed differentially expressed genes
involved in xenobiotic detoxification (9) and lipid metabolism
(this paper). The latter included Pparα, a gene specifying a
nuclear receptor that is well known as a regulator of lipid
metabolism, and many PPARα target genes (10) (Fig. S1A). We
validated the reduced accumulation of Pparα mRNA and tran-
scripts issued by PPARα target genes by using quantitative
RT-PCR analysis (Fig. 1 A and B and Fig. S1B). The examined
PPARα target genes include Cyp4a10 and Cyp4a14, encoding
enzymes involved in FA ω-oxidation (whose expression is strongly
reduced in Pparα KO mice, see Fig. S2A), and genes specifying
enzymes involved in FA β-oxidation (Fig. S1B). PPARα has also
been shown to activate transcription from its own promoter, when
activated by PPARα agonists (11). To evaluate the relevance of
this feed-forward loop in circadian Pparα transcription, we com-
pared the temporal expression of Pparα pre-mRNA in the liver of
wild-type mice with that of nonproductive pre-mRNA transcripts
issued by the disrupted Pparα alleles in Pparα KO mice (12). As
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depicted in Fig. 1C, the circadian expression was indeed dam-
pened in these animals, suggesting that PPARα contributed to
the rhythmic transcription of its own gene. Therefore, PAR bZip
transcription factors may have activated Pparα transcription
through an indirect mechanism, for example, by promoting the
cyclic generation of PPARα ligands.

Unexpectedly, hepatic PPARα protein accumulation was
higher in PAR bZip 3KO mice as compared to wild-type mice,
in spite of the lower mRNA levels in the former (Fig. 1D). How-
ever, nuclear receptors can be destabilized in a ligand-dependent
manner (for review, see ref. 13). Hence, the higher protein to
mRNA level in hepatocytes of PAR bZip 3KO mice could indi-
cate that in these animals PPARα was less active and therefore
more stable than in the liver of wild-type mice. To examine this
conjecture, we measured hepatic PPARα protein and mRNA
accumulation, 4 h after an intraperitoneal injection of the syn-
thetic PPARα ligand WY14643 into PAR bZip 3KO mice. As
shown in Fig. 1E and Fig. S3, the injection of the PPARα ligand
led to a decrease of the protein to mRNA ratio, in keeping with
the model of Kamikaze activators postulated by Thomas and
Tyers (14). The lower PPARα protein to mRNA ratio in wild-
type as compared to PAR bZip 3KO mice may therefore indicate

that PPARα had a higher activity in the former animals than in
the latter.

PAR bZip Transcription Factors May Stimulate PPARα Activity Through
the Production of PPARα Ligands. FAs generated by the metabolism
of dietary lipids or de novo synthesis are the best known natural
ligands for PPARα (15–17). In liver, FAs can be produced through
the hydrolysis of acyl-CoA esters by acyl-CoA thioesterases
(ACOTs) (18) and through the hydrolysis of lipids in lipoproteins
by lipoprotein lipases (LPLs) (19). Interestingly, members of both
of these two enzyme families have been reported to accumulate
according to a daily rhythm in the liver (20–22), and our genome-
wide transcriptome profiling experiments suggested that the
mRNAs for these enzymes were expressed at reduced levels in
PAR bZip 3KO mice. As shown in Fig. 2B, the accumulation
of transcripts specifying ACOTs displayed temporal expression
patterns expected for direct PAR bZip target genes and was
indeed blunted in PAR bZip 3KO mice. The Acot genes are all
located on a 120 kb cluster on mouse chromosome 12, and a
perfect PAR bZip DNA binding sequence is located between
Acot1 and Acot4 (Fig. 2A). At least in vitro, this sequence binds
PAR bZip in a diurnal manner (Fig. 2A), which could explain the
rhythmic expression of these genes. However, the phase of Lpl
transcript accumulation was found to be delayed by 12 h when
compared to that of Acot expression, and we suspected that
PAR bZip proteins regulate Lpl transcription via an indirect
mechanism. Interestingly, Acot and Lpl reached maximal concen-
trations at ZT12 and ZT24, respectively, suggesting a bimodal
metabolism of FAs in mouse liver: hydrolysis of acyl-CoAs at
the day–night transition and hydrolysis of lipids in lipoproteins
at the night–day transition.

The transcription of Acots and Lpl has previously been re-
ported to be regulated by PPARα (21–23), and the expression
of these genes, in addition to that of Cyp4a10 and Cyp4a14, is
activated by injection of WY14643 (Fig. S4). We thus decided
to examine the role of PPARα on their diurnal expression by
comparing liver RNAs harvested around the clock from Pparα
KO and wild-type mice. As shown in Fig. S2B, the overall expres-
sion levels of Acots were only slightly decreased in Pparα KO
animals for Acot3 and Acot4, not changed for Acot2, but 2.5-fold
increased for Acot1. However, zenith levels were reached about
4–12 h later in Pparα KO as compared to wild-type mice. All in
all, the changes of Acot and Lpl expression in PPARα deficient
mice were complex and reflected perhaps a synergistic regulation
by PAR bZip transcription factors and PPARα or other transcrip-
tion factors.

In the absence of food-derived lipids, PPARα ligands can also
be generated de novo by synthesis of FAs by fatty acid synthase
(FASN) (24, 25). Interestingly, Fasn expression was enhanced in
PAR bZip 3KO animals, supposedly to compensate for the defi-
cient import and/or metabolism of lipids absorbed with the food.
Perhaps for the same reasons, the expression of Fabp1 and Cd36,
genes encoding proteins involved in FA transport and uptake, was
also increased in these mice (Fig. S1B). As described previously
(26), Fasn expression was decreased in the liver of Pparα KO
mice, probably reflecting a perturbed activation of the sterol-
response element binding protein in these animals (27).

Down-regulation of ACOT expression reduces the activity of PPARα
target genes. Our results insinuated that PAR bZip proteins
may stimulate the activity of PPARα indirectly. According to this
scenario, PAR bZip proteins govern the expression of the ACOT
isoforms 1 to 4, which in turn liberate FAs from acyl-CoA esters
that may serve as PPARα ligands. In order to examine this pos-
sibility, the hepatic expression of ACOT 1 to 4 was down-regu-
lated by the injection of siRNAs into the tail vein (for
experimental details, see SI Text, Table S1, and Fig. S5). As shown
in Fig. 2C and Fig. S5, a decrease in ACOT2, ACOT3, and

A

B

C

D

E

Fig. 1. Expression of PPARα in PAR bZip 3KO mice. (A) Temporal expression
of Pparα mRNA in the livers of WT and PAR bZip 3KO mice. RNA levels were
estimated by real-time RT-PCR. Mean values� SEM obtained from six animals
are given. (B) Temporal expression of the PPARα target genes Cyp4a10 and
Cyp4a14 in the liver of WT and PAR bZip 3KO mice, as determined by real-
time RT-PCR. Mean values� SEM obtained from six animals are given.
(C) Temporal expression of Pparα pre-mRNA transcripts in the livers of WT
or Pparα KO mice. A PCR amplicon located in the second intron was used
in these quantitative RT-PCR experiments. Mean values� SEM obtained from
four animals are given. (D) Temporal expression of PPARα protein in liver nu-
clear extracts from PAR bZip 3KO andWTmice. Signals obtained with U2AF65

antibody were used as loading controls (U2AF65 is a constitutively expressed
splicing factor). (E) Ratio of liver PPARα protein/Pparα mRNA levels after
injection of the synthetic PPARα ligand WY14643 or its solvent (50% DMSO)
in PAR bZip 3KO mice at ZT2. Mean values� SEM obtained from six animals
are given. The raw data used for these computations are presented in Fig. S3.
The zeitgeber times (ZT) at which the animals were killed are indicated
(*p ≤ 0.05, **p ≤ 0.01 KO vs. WT, Student’s t test).
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ACOT4 expression was sufficient to specifically inhibit the
expression of the PPARα target genesCyp4a10 and Cyp4a14, con-
firming the role of ACOTs in the activation of PPARα. Likewise,
the intravenous application of an equimolar mixture of ACOT1-4
siRNAs specifically reduced the accumulation of Cyp4a10 and
Cyp4a14 mRNAs (Fig. 2C and Fig. S5).

Impaired Activity of PPARα in the Liver of PAR bZip 3KO Mice May Be
Due to a Deficiency of FAs. The results presented in the previous
section suggested that the down-regulation of ACOTs and LPL
in PAR bZip 3KO mice may have caused a decrease in the levels
of hepatic FAs that can serve as PPARα ligands. We thus mea-
sured the levels of various FAs in the livers of wild-type and

PAR bZip 3KO mice. In the former, the concentrations of all
examined FAs displayed a robust circadian fluctuation with a
maximum at ZT12 (Fig. 3A, gray columns). In addition, a second,
smaller peak was observed for most of the FAs. This bimodal
distribution was consistent with the hypothesis that the temporal
expression of ACOTs and LPL (see Fig. 2) were responsible for
the hepatic accumulation of FAs. In PAR bZip 3KO mice, the FA
levels were low throughout the day (Fig. 3A, white columns).
Again, these results were compatible with a down-regulation of
ACOTs and LPL in PAR bZip 3KO mice (Fig. 2B). Importantly,
several of the examined FAs had previously been identified as
PPARα ligands. For example, C18∶1, C18∶2, and C18∶3 appear
to be particularly potent PPARα ligands (15–17, 28), and the de-
crease in these FAs probably accounted for the down-regulation
of PPARα target genes in PAR bZip 3KO animals. The blunted
activation of the PPARα pathway in PAR bZip 3KO mice would
be expected to manifest itself in a broad dysregulation of hepatic
metabolism and associated changes in blood chemistry (26, 29).
As depicted in Fig. 3B, PAR bZip 3KO mice showed indeed an
increase in the serum concentrations of cholesterol, triglyceride,
and glucose, similar to the observations made with Pparα
KO mice.

A

B

C

Fig. 2. Regulation of the Acot genes cluster and lipid metabolizing enzymes
in PAR bZip 3KO. (A) Organization of the mouse Acot gene cluster on chro-
mosome 12. A sequence perfectly matching the PAR bZip consensus binding
site is located between Acot1 and Acot4. An EMSA experiment with liver
nuclear extracts from WT and PAR bZip 3KO mice shows that PAR bZip tran-
scription factors bind this sequence in a diurnal fashion. (B) Temporal expres-
sion of acetyl-CoA thioesterase (Acot) 1–4, lipoprotein lipase (Lpl), and FA
synthase (Fasn) mRNA in PAR bZip 3KO mice. Real-time RT-PCR experiments
were conducted with whole-cell liver RNAs from six animals for each time
point. The zeitgeber times (ZT) at which the animals were killed are indi-
cated. Mean values� SEM are given. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001
KO vs. WT, Student’s t test. (C) Expression of Cyp4a10 and Cyp4a14 mRNA
in mouse liver after treatment with siRNAs directed against Acot genes.
Real-time RT-PCR experiments were conducted with whole-cell liver RNAs
from four (control and individual Acot siRNA) or six animals (pool of the
four precedent Acot siRNA). Mean values� SEM are given (*p ≤ 0.05,
**p ≤ 0.005, control siRNA vs. Acot siRNA, Student’s t test).

A

B

Fig. 3. Lipid metabolism in PAR bZip 3KO mice. (A) Temporal accumulation
of FAs (C16∶0, C18∶0, C18∶1w7, C18∶1w9, C18∶2w6, and C20∶4w6) in the
livers of WT and PAR bZip 3KO mice. Mean values� SEM obtained from
four animals are given. The zeitgeber times (ZT) at which the animals were
killed are indicated. Note that the profiles of accumulation are daytime
dependent for all analyzed FAs in WT animals (ANOVA F½5;18� ¼ 3.29,
3.72, 9.00, 4.50, 3.86, and 4.01, and p ≤ 0.05, 0.025, 0.02, 0.015, 0.025,
and 0.025, respectively), whereas they are low and virtually invariable in KO
animals. In all the cases, values where statistically different between WT and
KO animals (ANOVA F½1;46� ¼ 15.85, 13.11, 10.95, 18.00, 13.96, and 11.62,
and p ≤ 0.0005, 0.001, 0.0025, 0.0001, 0.001, and 0.002, respectively). (B) Ser-
um concentrations of triglycerides, cholesterol, and glucose in WT and
PAR bZip 3KO animals. Mean values� SEM obtained from 12 WT and 17 KO
animals are given. For triglycerides, values obtained between ZT4 and ZT14
were separated from the values obtained between ZT16 and ZT2, due to their
strong circadian variations (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 KO vs. WT,
Student’s t test).
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PAR bZip 3KO Mice Have an Impaired Capacity to Adapt to Caloric
Restriction.A large number of genes induced by fasting are direct
or indirect target genes of PPARα (30, 31), and Pparα KO mice
have indeed difficulties in adapting to caloric restriction (29, 32–
36). If the activation of the PPARα signaling was inhibited in PAR
bZip 3KO mice, one would expect that these animals would also
have an impaired capacity to adjust their metabolism to reduced
food availability. In order to test this hypothesis, we exposed PAR
bZip 3KO mice to a feeding regimen in which the quantity of
food was reduced to 60% of what these mice absorbed when
food was offered ad libitum. As shown in Fig. S6, PAR bZip
3KO mice subjected to this regimen suffered from a rapid and
dramatic weight loss, as compared to wild-type mice. However
this difference could not be attributed to a difference in energy
expenditure, as O2 consumption and CO2 production were nearly
identical in wild-type and PAR bZip 3KO animals (Fig. S7). We
also compared the food anticipatory activity (FAA) of wild-type
and PAR bZip 3KO mice (Fig. S8 A and B). FAA manifests itself
in the onset of enhanced locomotor activity (wheel-running) a
few hours before the time when food becomes available. When
food availability was limited to a 6-h time span between ZT03
to ZT09, PAR bZip 3KO mice displayed exacerbated FAA and
actually shifted a large fraction of their wheel-running activity
to this time window during the light phase. As expected, wild-type
mice did show FAA but kept running the wheel mainly during the
dark phase. These results suggested that the activity associated
with food searching equaled or even dominated suprachiasmatic
nucleus-driven locomotor activity in PAR bZip 3KO animals
when food availability became limiting. Because PPARαKOmice
did not show enhanced FAA (Fig. S8C), the exacerbated FAA
cannot have been caused solely by the impaired PPARα
activity in PAR bZip 3KO mice.

PPARα Ligands Can Be Generated from Food-Derived and de Novo
Synthesized Lipids.As discussed above, PPARα ligands can be gen-
erated from diet-derived lipids or de novo synthesis by FASN, and
the first pathway appeared to be deficient in PAR bZip 3KO
mice. We wished to determine the expression of putative PPARα
target genes and genes with key functions in the production of
PPARα ligands in wild-type and PAR bZip 3KO mice that were
fed with a fat-free diet during an extended time span (5 wk). Un-
der these conditions, FAs can be produced exclusively through de
novo synthesis. As shown in Fig. 4A, the mRNAs of PPARα target
genes Cyp4a10 andCyp4a14 accumulated to similar levels in wild-
type and PAR bZip 3KO mice receiving a fat-free diet, unlike
what had been observed in animals fed on normal chow. The
similar expression of these PPARα target genes in mice receiving
a fat-free diet suggested that de novo synthesis of FAs serving
as PPARα agonists was not affected by the absence PAR bZip
transcription factors, and Fasn mRNA was indeed expressed
at similar levels in wild-type and PAR bZip 3KO mice receiving
fat-free food. Hence, the fat-free diet rescued the deficiency of
PPARα activity in PAR bZip 3KO mice, presumably because
de novo synthesis of FAs in liver did not depend upon pathways
requiring the circadian PAR bZip proteins. This interpretation
was validated by our observation that the hepatic concentrations
of various FAs were similar in wild-type and PAR bZip 3KO mice
exposed to a fat-free diet (Fig. S9). Interestingly, the expression
of Pparα and Acots was also rescued by the fat-free diet in PAR
bZip 3KO mice and, in keeping with earlier observations (11, 21,
22), both of these genes were indeed activated by PPARα ligands.
Lpl expression did not exhibit large differences between mice fed
with normal and fat-free chow. Similarly, blood glucose, choles-
terol, and triglyceride levels were not significantly different be-
tween wild-type and PAR bZip 3KO mice kept on a fat-free
diet (Fig. 4B), unlike what we have observed for animals fed with
normal chow.

Discussion
PAR bZip Transcription Factors DBP, HLF, and TEF Regulate Circadian
PPARα Activity. Here we present evidence for a metabolic clock
output pathway operative in hepatocytes, which connects the
PAR bZip transcription factors DBP, HLF, and TEF to the cir-
cadian activity of PPARα. This nuclear receptor has long been
known to play a key role in the coordination of lipid metabolism
and, like several other nuclear receptors, it accumulates in a cir-
cadian manner (3, 4). Our studies revealed that Pparα mRNA
levels were reduced in PAR bZip 3KO mice. However, PPARα
protein accumulated to higher than wild-type levels in these
animals, presumably due to its reduced transactivation potential.

Our gene expression studies, combined with hepatic FAs
measurements, offered a plausible biochemical pathway for the
PAR bZip-dependent activation of PPARα , schematized in Fig. 5.
PAR bZip proteins drive directly or indirectly the expression
of Acots and Lpl, which in turn release FAs from acyl-CoA
esters and lipoproteins, respectively. FAs then serve as ligands
of PPARα and initiate a feed-forward loop, in which PPARα
enhances transcription from its own gene. This scenario is sup-
ported by our observation that the siRNA-mediated dampening
of ACOT2, ACOT3, and ACOT4 expression led to a down-reg-

Fig. 4. Effect of fat-free diet on PPARα target genes expression and serum
biochemistry (A) Mice were fed ad libitum during 5 wk with a fat-free diet.
For each condition, four mice were killed at ZT0 and ZT12. Total liver RNAs
were extracted and analyzed by real-time RT-PCR for the expression of
mRNAs specified by PPARα target genes and Fasn, a marker gene of lipogen-
esis that is induced by the fat-free diet (#p ≤ 0.05, ##p ≤ 0.005, ###p ≤ 0.005
fat-free vs. normal diet in 3KO; §p ≤ 0.05, §§p ≤ 0.01, §§§p ≤ 0.00005 fat-
free vs normal diet in WT; *p ≤ 0.05 KO vs. WT, Student’s t test). (B) Serum
concentrations of triglycerides, cholesterol, and glucose were measured in
WT and PAR bZip 3KO animals fed with regular or fat-free chow.
Mean values� SEM obtained from eight WT and KO animals are given.
For FAs, values obtained between ZT4 and ZT14 were separated from the
values obtained between ZT16 and ZT2 (*p ≤ 0.05 fat-free vs. normal diet
in 3KO).
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ulation of the expression of Cyp4a10 and Cyp4a14, two bona fide
target genes of PPARα.

The accumulation cycles of Acots and Lpl mRNA had widely
different phases, yet both were strongly attenuated in PAR bZip
3KO mice. Whereas the phase of Acot expression was compatible
with that expected for direct PAR bZip target genes, Lpl mRNA
reached maximal levels at a time (ZT24) when all three PAR bZip
proteins were expressed at nadir values. We thus suspect that
Lpl transcription was controlled by a complex pathway, in which
the precise roles of PPARα and PAR bZip proteins remain to
be clarified. The temporal accumulation of most determined
FAs revealed a major peak at ZT12, when Acots were maximally
expressed, and a minor peak at ZT24, when Lpl was maximally
expressed. The control of FAs catabolism through oxidation and
lipid uptake are major functions of PPARα. On first sight, the low
hepatic FAs levels in PAR bZip 3KO mice, in which PPARα
activity appeared to be blunted, was perhaps surprising. However,
this apparent conundrum can be rationalized as follows. Free FAs
are natural ligands for PPARα, and a minimal FA threshold
concentration may thus be required for the activation of PPARα
(15–17, 28). Moreover, acyl-CoA esters antagonize the activation
of PPARα by free FAs (37, 38). Because, due to the reduced
expression of Acots in PAR bZip 3KO mice, these esters were
probably less efficiently hydrolyzed, the ratio of free FAs to
acyl-CoA esters is expected to be lower in these animals as com-
pared to wild-type mice. The attenuation of PPARα activity in
the PAR bZip 3KO mice is expected to be associated with an
impaired uptake of FAs from the blood (39–41).

PPARα expression has first been found to follow a daily rhythm
by Lemberger et al. (3). Subsequently, Oishi et al. (42) demon-
strated that the core-clock transcription factor CLOCK is re-
quired for circadian Pparα transcription and that CLOCK binds
to a series of E-box sequences within the first intron. This regula-
tion by CLOCK might explain why Pparα expression is still
circadian in PAR bZip 3KO mice, albeit with reduced amplitude
and magnitude.

PPARα Target Gene Expression is Rescued in PAR bZip 3KO Mice Fed
with a Fat-Free Diet. In animals kept on a fat-free diet, hepatic FA
synthesis is strongly induced (43). We thus suspected that the
intracellular availability of FAs rescued PPARα-mediated tran-

scription in PAR bZip 3KO mice. Indeed, the production of
mRNAs encoding enzymes implicated in FAs synthesis, such as
FASN, was strongly induced in wild-type and PAR bZip 3KO
mice receiving a fat-free diet. Furthermore, in contrast to mice
fed on a normal chow, PAR bZip 3KO and wild-type animals fed
on a fat-free diet accumulated similar hepatic levels of mRNAs
specified by Pparα, and the putative PPARα target genes Cyp4a10
and Cyp4a14. We did notice, however, that Acot expression,
whose overall magnitude was only slightly changed in Pparα KO
mice, was also rescued in PAR bZip 3KO mice kept on a fat-free
diet. Hence, as previously suggested (21, 22), Acot transcription
was also augmented by PPARα, but probably required high
concentrations of natural ligands (i.e., FAs). It is noteworthy
that 1-palmitoyl-2-oleoly-sn-glycerol-3-phosphocholine, whose
FASN-dependent synthesis was activated under a fat-free diet,
has recently been discovered as a highly potent PPARα li-
gand (24).

PAR bZip 3KO Mice Are Unable to Adapt to Restricted Feeding. Wild-
type mice exposed to caloric restriction lost about 13% of their
body mass during the first 3 wk and then kept their mass within
narrow boundaries over several months. In contrast, PAR bZip
3KO animals rapidly lost more than 20% of their weight and
had to be killed after about a week, because they probably would
have succumbed to wasting after this time period. At least in part,
the failure of PAR bZip deficient mice may be due to a decreased
PPARα activity, as Pparα KO mice have been reported to adapt
poorly to calorie restriction (29, 32–36). However, not all pheno-
types of PAR bZip 3KOmice related to feeding could be assigned
to an impaired PPARα activity. Thus, in contrast to PAR bZip
3KO mice, Pparα KO mice did not exhibit an exacerbated FAA.

The capacity to adapt activity and metabolism to feeding–
fasting cycles is primary to an animal’s health and survival, and
the disruption of the circadian timing system has indeed been
linked to obesity and other metabolic disorders (44–46).

Experimental Procedures
Animal Housing Conditions. All animal studies were conducted in
accordance with the regulations of the veterinary office of the
State of Geneva and of the State of Vaud. PAR bZip 3KO mice
with disrupted Dbp, Tef, and Hlf genes (8) and mice with Pparα
null alleles (12) have been described previously. Mice were main-
tained under standard animal housing conditions, with free access
to food and water, and a 12-h-light–12-h-dark cycle. Specific
treatments and feeding regimens are described in SI Text.

Blood Chemistry. Blood samples were harvested after decapitation
of the animals, and sera were obtained by centrifugation of
coagulated samples for 10 min at 2;000 × g at room temperature.
The sera were stored at −20 °C until analyzed. Triglycerides and
total cholesterol were measured using commercially available en-
zymatic kits according to the manufacturer’s instructions (Trigly-
ceride; Cholesterol; Roche/Hitachi Mannheim GmbH). Glucose
was measured using the glucose oxidase method adapted to
rodent (GO assay kit Sigma-Aldrich, Handels GmbH).

Liver FA Measurement: Mouse livers were homogenized in 0.5 mL
of phosphate buffered saline and 0.5 mL of methanol. This pro-
cedure inhibits triglycerides lipases and allows their elimination.
Each sample was immediately spiked with 50 nmol of 15∶0 FAs
as an internal standard. Subsequently, lipids were extracted
according to Bligh and Dyer (47) and FAs were then measured
by GC-MS as described in SI Text.

RNA Isolation and Analysis. Livers were removed within 4 min after
decapitation, frozen in liquid nitrogen, and stored at −70 °C until
use. The extraction of whole-cell RNA and its analysis by real-
time RT-PCR were conducted as described previously (8). The

Fig. 5. Model showing the regulation of PPARα bymetabolism and PAR bZip
transcription factors. (Left) Under normal diet conditions, the expression of
ACOTs are under the control of circadian PAR bZip transcription factors.
These transcription factors thus control the release of free FA from acyl-
CoA thioesters, and the free FAs stimulate PPARα activity. The activated
PPARα then stimulates transcription of Acot and Lpl, and in a feed-forward
loop reinforces its own expression and activity. (Right) Under a fat-free diet,
all free FAs are derived from the de novo synthesis pathway. Under these
conditions, PPARα activity is not dependent on PAR bZip transcription factors.
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values were normalized to those obtained for Gapdh mRNA.
Sequences of the oligonucleotides used are given in Table S2.

Preparation of Nuclear Protein Extracts and Western Blotting. Liver
nuclear proteins were prepared by using the NaCl-Urea-NP40
procedure (48). Western blotting was carried out as described
(9). The rabbit anti-PPARα and murine anti-U2AF65 antibodies
were purchased from Cayman Chemical and Sigma, respectively.
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SI Experimental Procedures
Animal Experiments. WY14643 treatment by intraperitoneal injection.
Two groups of six proline- and acidic amino acid-rich
domain basic leucine zipper (PAR bZip) 3KO male mice were
injected intraperitoneally at ZT2 with 100 mg∕Kg WY14643
(Biomol International) (10 mg∕mL in 50% DMSO) or the
equivalent volume of vehicle. Four hours after injection, mice
were killed and livers were removed and snap-frozen in liquid
nitrogen, or immediately processed for the purification of the
nuclear proteins used in the immunoblot experiments.

In vivo siRNA treatment. Chemically modified Stealth RNAi™ siR-
NA duplexes (Invitrogen) complementary to the four Acots genes
were complexed with Invivofectamine® 2.0 (Invitrogen) accord-
ing to manufacturer recommendation before the injection. For
each of the four examined acyl-CoA thioesterases (Acots 1–4),
six siRNAs with different sequences were tested in two different
mice, and the one yielding maximal suppression was selected for
the experiments shown in Fig. 2C and Fig. S5. The sequences of
these siRNA are given in Table S1. The solution containing con-
trol siRNA (an siRNA with sequences that do not target any gene
product that have been tested by microarray analysis and shown
to have minimal effects on gene expression), individual Acot siR-
NAs, or an equimolar mix of the four Acot siRNAs were injected
intravenously through the tail vein of 8-wk-old Balb/c mice at
ZT12 at a dose of 7 mg∕kg. Forty-eight hours after the injection,
mice were killed and livers were removed and snap-frozen in
liquid nitrogen, and stored at −70 °C before RNA was extracted.

Calorie restriction. PAR bZip 3KO mice and wild-type siblings
(nine KOs and seven wild-type 7—9-wk-old male mice) were fed
regular chow (ref 3800 from Provimi Kliba. Diet composition:
24% protein, 47.5% carbohydrate, 4.9% fat) ad libitum for
at least 3 mo. Mice were then separated (by placing them into
individual cages) and fed with powdered food that was delivered
by a computer-driven feeding machine (1). Average food con-
sumption was determined to be 4.2 g per day, per mouse for
animals fed ad libitum with regular chow, and this value was used
as the normal diet control value in the caloric restriction studies.
The animals were then subjected to a calorie diet reduced by 40%
(i.e., 2.52 g per day, per animal, distributed into 20 daily portions
delivered every 30 min between ZT12 and ZT22). The animals
were weighed twice a week in the morning for 11 wk.

Temporally restricted feeding. Servings of 3.4 g powdered chow
(80% of the normal diet control value) were offered in 12
portions between ZT03 and ZT09 by a computer-driven feeding
machine (1). The wheel-running activities of the animals were
recorded as described previously (2).

Fat-free feeding regimen.Eight-week-old PAR bZip 3KO mice and
wild-type siblings (four males and four females of each genotype)
were fed with regular chow ad libitum for at least 3 mo. The food
was then replaced by a fat-free diet (TD.03314 from Harlan
Teklad. Diet composition: 20.1% protein, 62.9% carbohydrate,
0% fat) for 5 wk.

Electromobility Shift Assay. The radiolabeled probe was prepared
by annealing two oligonucleotides encompassing the PAR bZip
binding site present in the Acot genes cluster and by filling in
the 5′ overhang with [α-32P]dCTP and Klenow DNA polymerase.
The sequences of these oligonucleotides were 5′-CCATAAAAT-
TACATAAG-3′ and 5′-TTGATTACTTATGTAATTTTATGG-3′.
Twenty micrograms of liver nuclear extract were incubated with
100 fmol of the double-stranded oligonucleotide in a 20-μL reac-
tion containing 25 mM Hepes (pH 7.6), 60 mM KCl, 5 mM
MgCl2, 0.1 mM EDTA, 7.5% glycerol, 1 mM DTT, 1 μg∕μL
salmon sperm DNA. After an incubation of 10 min at room
temperature, 2 μL of a 15% Ficoll solution were added, and
the protein–DNA complexes were separated on a 5% polyacry-
lamide gel in 0.25 × TBE (90 mM Tris/64.6 mM boric acid/2.5
mM EDTA, pH 8.3).

GC-MS Determination of Fatty Acids (FAs) Concentrations. Lipid ex-
tracts were taken to dryness in a speed-vac evaporator and resus-
pended in 240 μL of 50% wt/vol KOH and 800 μL ethanol for the
alkaline hydrolysis of lipids. After a 60-min incubation at 75 °C,
FAs were extracted with 1 mL of water and 2 mL of hexane. The
hexane phase was taken to dryness and redissolved in 50 μL of a
pentafluoro-benzyl bromide solution (3.4% in acetonitrile) and
10 μL of N;N-diisopropyl ethanolamine. After 10 min of incuba-
tion at room temperature, samples were evaporated under a
gentle stream of nitrogen and resuspended in 50 μL hexane.

A Trace-DSQ GC-MS (Thermo Scientific) equipped with a
TR5MS 30-m column was used for the mass-spectrometric ana-
lysis of lipids by gas chromatography. Helium was used as carrier
gas at 1 mL∕min in splitless mode at 300 °C injector temperature.
The initial oven temperature of 150 °C was held for 1 min and
then the temperature first was ramped up to 200 °C at a rate
of 25 °C∕min, which was followed by a ramp of 12.5 °C∕min
up to 325 °C, where the temperature was held for another 2 min.
The mass spectrometer was run in negative ion chemical ioniza-
tion mode where the FAs were detected in full scan as carboxy-
lates after loss of the pentafluoro-benzyl moiety. Methane was
used as CI gas, the source temperature was set to 250 °C, and
the transfer line temperature was 330 °C. Peak areas for FAs were
calculated by Xcalibur QuanBrowser and related to the internal
standard peak area.

1. van der Veen DR, et al. (2006) Impact of behavior on central and peripheral circadian
clocks in the common vole Microtus arvalis, a mammal with ultradian rhythms. Proc
Natl Acad Sci USA 103:3393–3398.

2. Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U (1997) The DBP gene
is expressed according to a circadian rhythm in the suprachiasmatic nucleus and
influences circadian behavior. EMBO J 16:6762–6771.
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Fig. S1. Hepatic expression of peroxisome proliferator-activated receptors α (PPARα) target genes in PAR bZip 3KO mice. (A) Microarray data obtained with
PAR bZip 3KO mouse liver RNA (1) were compared to data obtained with Pparα KOmouse liver RNA (2). Genes down-regulated in both genotypes with regard
to their wild-type counterparts are listed. The table corresponds to the list of genes down-regulated more than 1.25-fold in at least one of the KO genotypes
(when compared to strain-matched wild-type mice). (B) Temporal hepatic expression of genes coding for enzymes involved in peroxisomal FA β-oxidation
[acyl-CoA oxidase 1 (Acox1) and acyl-CoA acyltransferase 1B or thiolase B (Acaa1b)], mitochondrial FA β-oxidation [carnitine palmitoyltransferase 1 (Cpt1)
and mitochondrial medium-chain acyl-CoA dehydrogenase (Acadm)], and FA binding and transport [FA-binding protein 1 (Fabp1) or liver FA-binding protein
(L-FABP)] and CD36 (Cd36)] in wild-type and PAR bZip 3KO mice, as determined by real-time RT-PCR. Mean values� SEM obtained from four animals are given
(*p ≤ 0.05, **p ≤ 0.01, KO vs. WT, Student’s t test). As for Cyp4a genes, the PPARα target genes coding for enzymes involved in FA β-oxidation are also down-
regulated [Acox1, Acaa1b (see also Fig. S1A for these genes) and Cpt1] or not changed (Acadm) in the liver of PAR bZip 3KO mice. Interestingly, the genes
coding for proteins involved in the FA transport exhibit an increased expression in PAR bZip 3KO mice, confirming previously published microarray data (1).
Similar to what has been observed for Fasn expression, the increased expression of these genes is probably an indirect consequence of the disrupted FA
metabolism in PAR bZip 3KO mice, perhaps to compensate for the deficient import and/or metabolism of lipids absorbed with the food.

1 Gachon F, Fleury Olela F, Schaad O, Descombes P, Schibler U (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible

xenobiotic detoxification. Cell Metab 4:25–36.
2 Leuenberger N, Pradervand S, Wahli W (2009) Sumoylated PPARa mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. J Clin Invest

119:3138–3148.

Gachon et al. www.pnas.org/cgi/doi/10.1073/pnas.1002862108 2 of 7

http://www.pnas.org/cgi/doi/10.1073/pnas.1002862108


A

B

Fig. S2. Temporal expression of the PPARα target genes Cyp4a10 and Cyp4a14 in the liver of Pparα KO andwild-type mice. (A) Temporal expression of Cyp4a10
and Cyp4a14 in the liver of wild-type and PparαKOmice. (B) Temporal expression ofAcot 1–4, lipoprotein lipase (Lpl), and FA synthase (Fasn) mRNA in wild-type
and Pparα KO mice. Real-time RT-PCR experiments were conducted with whole-cell liver RNAs from four animals for each time point. The zeitgeber times (ZT)
at which the animals were killed are indicated. Mean values� SEM obtained from four animals are given (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 KO vs. WT,
Student’s t test).

Fig. S3. PPARα protein/mRNA ratio after the activation of PPARα by its synthetic ligandWY14643. Six PAR bZip 3KOmice were injected intraperitoneally with
DMSO (Left) or PPARα ligand WY14643 (100 mg∕kg) (Right) at ZT2. Livers were harvested 4 h later, and nuclear proteins and whole-cell RNAs were extracted.
The PPARα protein levels were quantified byWestern blot experiments (Upper), and PparαmRNAwas quantified by real-time RT-PCR (Center). Individual ratios
between liver PPARα protein and Pparα mRNA are plotted in the lower panel. The mean values� SEM are given in Fig. 1E.
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Fig. S4. Activation of hepatic Cyp4a, Acots, and Lpl expression after injection of the PPARα activator WY14643. Six PAR bZip 3KO male mice were injected
intraperitoneally with DMSO or PPARα ligand WY14643 (100 mg∕kg) at ZT2. Livers were harvested 4 h later, and whole-cell RNAs were
extracted. ThemRNAs of the indicated genes were quantified by real-time RT-PCR. Mean values� SEM are given (*p ≤ 0.05, **p ≤ 0.005, ***p ≤ 0.0005DMSO
vs. WY14643 injection, Student’s t test).

Fig. S5. Effect of ACOT siRNA on Acot genes and non-PPARα regulated genes expression. (A) Accumulation of Acot mRNAs in mouse liver 48 h after the
treatment with siRNA directed against Acot genes. The siRNAs act mainly by decreasing the levels of their target mRNA (1), and the cellular concentrations of
Acot1, Acot2, and Acot4mRNAwere indeed reduced to 10% to 50% after the injection of their respective siRNAs. None of the six examined Acot3 siRNAs (see
SI Experimental Procedures) reduced its target mRNA significantly, yet three of them did lower the expression of the PPARα target genes Cyp4a10 and Cyp4a14.
A similar observation was made for the mix of the four Acot siRNAs. Indeed, it has recently be shown that siRNAs, similar to miRNAs, can also act by inhibiting
translation of their target mRNA, without reducing the levels of their target mRNAs (2, 3). This phenomenon could explain the observation that Acot3 siRNA
and the mix of the four Acot siRNAs strongly reduced the expression of Cyp4a10 and Cyp4a14. (B) Expression of genes involved in lipid metabolism (Srebp2 and
Ldlr), two transcripts whose levels were similar in wild-type and PPARα or PAR bZip 3KOmice (4–6). Note that neither individual Acot siRNAs nor the mix of the
four Acot siRNAs significantly affected the accumulation of Srebp2 and Ldlr mRNAs. These results support the specificity of the effect of the Acot siRNAs for
PPARα target genes. Real-time RT-PCR experiments were conducted with whole-cell liver RNAs from four (control and individual Acot siRNAs) or six animals
(pool of the four precedent Acot siRNAs). Mean values� SEM are given (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 control siRNA vs. Acot siRNAs, Student’s t test).

1 Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840.

2 Davidson TJ, et al. (2004) Highly efficient small interfering RNA delivery to primary mammalian neurons induces microRNA-like effects before mRNA degradation. J Neurosci

24:10040–10046.
3 Tang G (2005) siRNA and miRNA: An insight into RISCs. Trends Biochem Sci 30:106–114.
4 Gachon F, Fleury Olela F, Schaad O, Descombes P, Schibler U (2006) The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible

xenobiotic detoxification. Cell Metab 4:25–36.
5 Knight BL, et al. (2005) A role for PPARa in the control of SREBP activity and lipid synthesis in the liver. Biochem J 389:413–421.
6 Patel DD, Knight BL, Wiggins D, Humphreys SM, Gibbons GF (2001) Disturbances in the normal regulation of SREBP-sensitive genes in PPARa-deficient mice. J Lipid Res 42:328–337.
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Fig. S6. Response of PAR bZip 3KO mice to caloric restriction. Wild-type (black line) and PAR bZip 3KO (dotted line) animals were fed with a diet containing
only 60% of the normal calorie consumption during 11 consecutive weeks. Animals were weighed twice a week during this period. Mean relative weight
changes� SEM obtained from seven wild-type and nine KO animals are given.

Fig. S7. PAR bZip 3KO mice display normal O2 consumption and CO2 production. Oxygen consumption (VO2) and carbon dioxide production (VCO2) were
measured by indirect calorimetry with the Comprehensive Lab Animal Monitoring System (Columbus Instruments). After 3 d of accommodation, VO2 (A) and
VCO2 (B) were recorded during a 24-h period. Mean values� SD obtained from four animals of each genotype are given.
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Fig. S8. Food anticipatory activities (FAA) of wild-type, PAR bZip 3KO, and Pparα KO mice. (A) Examples of FAA recordings of wild-type (Left) and PAR bZip
3KO (Right) mice. Animals received 80% of their normal food consumption between ZT3 and ZT9 for the duration of the experiment. (B) Percentage mean
activity during a 24-h period for animals subjected to temporally restricted feeding. Mean values� SEM obtained from four animals of each genotype
(recorded between day 10 and day 20 after the onset of restricted feeding) are given. The areas under which values are significantly different (Student’s
t test p values ≤0.05) between PAR bZip 3KO and wild-type mice are indicated by black lines on top of the figure. (C) Examples of FAA of wild-type (Left)
and Pparα KO (Right) mice. Animals received 80% of their normal food consumption between ZT3 and ZT9 for the duration of the experiment.
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Fig. S9. Liver FA levels in mice exposed to a fat-free diet. Concentrations of FAs (C16∶0, C18∶0, C18∶1w9, C18∶1w11, C18∶2, and C20∶4) in the liver of wild-type
and PAR bZip 3KOmice at ZT0 and ZT12. Mean values� SEM obtained for four animals are given. In none of the cases did we detect statistically different values
with regard to either daytime or genotype.

Table S1. Sequences of the primers used for real-time PCR

Gene Forward primer Reverse primer

Pparα intron 1 TGGCCCCAACAGTAGGGTAG TGGAGGGCAGAGACATAGGG
Cyp4a10 GGAGCTCCAATGTCTGAGAAGAGT TCTCTGGAGTATTCTTCTGAAAAAGGT
Cyp4a14 TCTCTGGCTTTTCTGTACTTTGCTT CAGAAAGATGAGATGACAGGACACA
Acot1 GACTGGCGCATGCAGGAT CCAGTTTCCATAGAACGTGCTTT
Acot2 CAAGCAGGTTGTGCCAACAG GAGCGGCGGAGGTACAAAC
Acot3 GGTGGGTGGTCCTGTCATCT TGTCTTCTTTTTGCCATCCAAAT
Acot4 GGCCTTGAACTCACAGGGATT AGGTAGGGCCGAGCCTTTAA
Acox1 GGATGGTAGTCCGGAGAACA AGTCTGGATCGTTCAGAATCAAG
Acaab1 (Thiolase B) TCCAGGACGTGAAGCTAAAGC CATTGCCCACGGAGATGTC
Cpt1 CCTGGGCATGATTGCAAAG ACGCCACTCACGATGTTCTTC
Acadm (Mcad) AGCTGCTAGTGGAGCACCAAG TCGCCATTTCTGCGAGC
Fabp1 (L-Fabp) CCAGGAGAACTTTGAGCCATTC TGTCCTTCCCTTTCTGGATGA
Cd36 GATGACGTGGCAAAGAACAG TCCTCGGGGTCCTGAGTTAT
Srebp2 GCGTTCTGGAGACCATGGA ACAAAGTTGCTCTGAAAACAAATCA
Ldlr TGGGCTCCATAGGCTATCTG GCCACCACATTCTTCAGGTT

For the other genes, we used the following designed primers from Applied Biosystems: Gapdh
Mm99999915_g1; Pparα Mm00440939_m1; Lpl Mm00434770_m1; Fasn Mm01253300_g1.

Table S2. Sequences of Acot siRNA

Gene Sequence

Acot1 AGCUCUUCUUGUCUACCAGAGGGCU
Acot2 CCCAAGAGCAUAGAAACCAUGCACA
Acot3 GAACCCGAACCGGAUGGCACCUACU
Acot4 CAACGUCAUAGAAGUGGACUACUUU
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B. Sterol Carrier Protein 2 dependent diurnal lipid transport 

modulates rhythmic activation of signaling pathways in mouse 

liver 

 

Lipid trafficking and especially cholesterol trafficking is involved in the activation of TORC1 

pathway
301

. Cholesterol, major constituent of the cellular membranes, is known to confer 

fluidity and impermeability on them. As an essential component of the lipid rafts/caveolae
302

, 

it is involved in signal transduction
303

. These lipid rafts/caveolae are plasma membrane 

microdomains highly dynamics and enriched in sphingolipids, strerols such as cholesterol and 

certain lipid-anchored proteins
304

. These lipid rafts/caveolae are involved in the 

compartmentalized cellular processes
305, as they are the preferential site of receptors whose 

activation leads to the activation of different signaling pathways like the PI3K/AKT and 

ERK/MAPK
306-308

.  

Cells have two sources of cholesterol
301

. One source is endogen as the cholesterol can be 

synthesized in the endoplasmic reticulum. The second cholesterol source is exogen, originates 

by food intake, and results in the internalization of cholesterol mediated by the LDL (Low-

Density-Lipoproteins) endocytosis. Intracellular cholesterol trafficking of both sources 

requires transport proteins to reach their action localization in the plasma membrane and more 

precisely in microdomains termed lipid raft/caveolae. Here we will focus on SCP (Sterol 

Carrier Protein) 2, also known as non-specific lipid transfer protein.   

As mentioned above, de novo cholesterol is synthesized in endoplasmic reticulum and must 

be transported to its action location at the inner leaflet of the plasma membrane
309

. SCP2 

exhibits a diurnal expression pattern
310

. Its role in cholesterol metabolism is not completely 

established but some evidence shows that SCP2 is localized in the cytoplasm and is involved 
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in de novo cholesterol transport from the endoplasmic reticulum to the plasma membrane
311, 

312
. 

In this study, we confirm SCP2 diurnal expression without exhibiting rhythmic mRNA 

transcription or translation. This suggests that degradation of this protein could be 

rhythmically in wild-type mouse liver. In Bmal1 knockout mice, Scp2 mRNA expression 

appeared higher as well as its protein expression with an anticipated manner. Even Scp2 

mRNA expression appeared similar in wild-type and Cry1/2 knockout mice, the differences 

observed at the protein level showed the impact of the molecular clock for SCP2 expression in 

mouse liver.  

Investigations on the effects of Scp2 deletion on circadian physiology showed that Scp2 KO 

mice present a longer period in locomotor activity accompanied by lower night and day 

activities. In addition, while no significant differences appeared at both mRNA and protein 

levels for most of the circadian machinery factors despite a delayed Dbp expression, we 

described decreased amplitude of BMAL1 expression as well as higher and slightly delayed 

PER2 expression in Scp2 knockout mice compared to wild-type mice. All together, these 

results suggest that SCP2 could have an impact on the signaling pathways involved in the 

post-translational modifications regulating the stability of the circadian clock molecules.  

In addition, we showed that serum glucose and insulin concentrations were similar in both 

wild-type and Scp2 knockout mice. However, Scp2 knockout mice exhibit less circulating 

cholesterol, and lower but still rhythmic serum triglyceride. In Scp2 knockout mice liver, 

lipids content analyses showed disturbed rhythmic lipid accumulation. These results led us to 

the investigation of signaling pathways regulated by lipids like PPARα, SREBP or LXR. Both 

PPARα- and SREBP-regulated genes appeared up-regulated in Scp2 knockout mice while no 

effect was observed in LXR target genes. We showed here that despite the fact that lipid 
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metabolism and UPR activation can be linked, it is not done via SCP2-dependent mechanisms 

as the UPR activation was not affected in Scp2 knockout mice. We also investigate the 

possible involvement of SCP2 in TORC1 activated mechanism and the upstream TORC1 

activating signaling pathways. We showed that even their mRNA expression did not differ, 

the different components of the translation initiation complex undergo significant difference 

in their activation by phosphorylation especially for EIF4B. In addition, AKT and ERK 

pathways exhibit a disturbed phosphorylation leading to disturbances in TORC1 activation in 

Scp2 knockout mice.  

All together, these results demonstrate new evidences of the orchestration of signaling 

pathways activation by circadian clock.  
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Abstract 

Most of the living species on earth have evolutionary acquired a time keeper system to anticipate daily changes caused by the 

light-dark cycle caused the rotation of the earth. This pacemaker is based in all the system on a molecular 

transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a 24 hours period. Recent 

evidences suggest that post-transcriptional regulations play also a fundamental role at different steps of the process, fine tuning in 

this way the time keeping system and linking it to animal physiology. Systemic cues can indeed activate specific signaling 

pathways controlling gene expression at the transcriptional and post-transcriptional level. Among this signals, we consider here the 

possible role of lipid transport in this system, and more particularly the SCP2-dependent lipid transport. Indeed mice with a 

deletion of the Scp2 gene coding for a rhythmic lipid transporter present a modulated rhythmic activation of the lipid regulated 

transcription factors PPAR and SREBP. Moreover, these mice present a perturbed rhythmic activation of TORC1 and its 

upstream pathways, whereas rhythmic UPR activation is not affected. Finally, this defect in signaling pathways activation 

feedbacks on the clock by lengthening the circadian period of animals through post-translational regulation of core clock 

regulators. Conclusion: We show here that the rhythmic lipid transporter SCP2 modulates rhythmic activation of several signaling 

pathways in mouse liver, becoming in this way a new player involved in the establishment of the rhythmic mRNA and protein 

expression landscape. 
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Introduction 

As a result of living in an environment subject to light-dark cycles caused by Earth’s rotation, organisms from bacteria to 

mammals acquired during evolution a timing system allowing their anticipation of these diurnal variations. In mammals, this timer 

is called the circadian clock, circadian meaning about a day, and influences most aspects of physiology and behavior (1). As a 

consequence, perturbations or misalignments of the circadian clock in human, like for example in the case of shift-workers, lead to 

diverse pathologies including metabolic disorders and obesity (2), vascular diseases (3), and psychiatric disorders (4). If the 

oscillatory timing system is cell-autonomous, timing at the organism scale is based on a hierarchal organization. Indeed, a “master 

clock” within the SCN of the hypothalamus, which is daily resynchronized through light input via ganglionar cells of the retina, 

communicates timing signals to “slave” oscillators in other peripheral tissues which are more sensitive to systemic signals like 

metabolic signals coming from food (5). 

In mammals, the molecular oscillator consists in interconnected transcriptional and translational feedback loops with additional 

layers of control including temporal post-transcriptional and post-translational regulations (6). This additional layer of regulation 

is largely regulated by systemic signals coming from circadian clock and/or feeding coordinated rhythmic metabolism allowing in 

this way the adjustment of the molecular clockwork with the metabolic state of the cell (7). At least in part, this effect is mediated 

through the rhythmic activation of signaling pathways. In parallel, these signaling pathways also feedback on metabolism. We 

have for example recently shown that circadian-clock orchestrated liver metabolism regulate rhythmic activation of UPR (8) and 

mRNA translation through rhythmic activation of TORC1 pathway and the upstream pathways PI3K, ERK, and AMPK (9). 

To gain more insight about the metabolic pathways involved in this process, we speculate about the potential role of rhythmic lipid 

transport. Indeed, recent evidences show that lipid metabolism and transport is involved in the activation of the UPR (10), TORC1 

(11), or ERK (12) pathways. This activation often involved lipid-dependent organization of membrane proteins in lipid rafts (13) 

which produced changes in their structure and potential activation (14). In parallel, several signaling pathways are directly 

regulated by lipid metabolism. It is for example the case for PI3K/AKT (15, 16), LXR (17), PPAR (18), or SREBP (19). 

Interestingly, the two last one present a rhythmic activation caused by interconnection between circadian clock and rhythmic lipid 

metabolism (20, 21). 

In this context, we want to study the potential influence of rhythmic liver lipid transport on the activation of this pathway. Until 

now, SCP2 is the only intracellular lipid transporter that presents a diurnal expression in mouse liver. However, this rhythmic 

expression at the protein level is regulated at the post-transcriptional level as Scp2 mRNA does not present rhythmic expression 

(22, 23). SCP2 is involved in the transfer of many lipid species from the endoplasmic reticulum where they are synthesized to the 

plasma membrane (24), affecting in this way the formation of lipid rafts and cell signaling (for a review see (25)). The Scp2 locus 
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also encodes the Scpx mRNA through alternative transcription start site usage, the later encoded protein presenting peroxisomal 3-

ketoacyl-CoA thiolase activity involved in the oxidation of branched-chain lipids (26). As a consequence, lipid metabolism (27) 

and expression of proteins at the plasma membrane in lipid raft domains is perturbed in Scp2 deficient animals (28, 29). If the 

differential role of the two proteins encoded by the Scp2 locus in the process is not clearly established yet, in vitro experiments 

suggest that the lipid transport activity of SCP2 is required (30). 

We thus speculate that SCP2 could affect liver rhythmic lipid metabolism and transport and, as a consequence, rhythmic activation 

of signaling pathways through modification of the distribution of proteins in lipid rafts at the plasma membrane. We indeed show 

that rhythmic lipid content is affected in the liver of Scp2 KO mice which present also a perturbed rhythmic activation of several 

signaling pathways including PPAR, SREBP and TORC1 which also appeared to feedback on the molecular clock itself. If 

increasing evidences show that lipid metabolism and accumulation in mouse liver follow a diurnal rhythm controlled by feeding 

and the circadian clock (31, 32), we show for the first time that this rhythmic lipid metabolism and transport in turn affect 

activation of signaling pathways and participates in the global rhythmic transcriptome of the mouse liver. 
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Experimental Procedures 

Animal experiments 

All animal studies were conducted in accordance with the regulations of the veterinary office of the Canton of Vaud. Eight-week-

old male C57Bl/6J mice were purchased from Charles River Laboratory (L'Arbresle). Scp2 KO mice have been previously 

described (27) and have been acquired from Jackson Laboratory. In all experiments, male mice between 10 and 12 weeks of age 

are used. Unless noted otherwise, mice were maintained under standard animal housing conditions, with free access to food and 

water and in 12 hours light/12 hours dark cycles. However, for all experiments, animals were fed only at night during 4 days 

before the sacrifice to reduce effects of feeding rhythm and mice were sacrificed every 2 hours.  

The running-wheel activity has been monitored as previously described (33). Briefly, the mice were housed individually in cages 

equipped with running-wheel. The activity has been measured during 5 days in light-dark cycles followed by 18 days in constant 

darkness. Data were acquired and analysed with the Clocklab software (Actimetrics). 

 

RNA extraction and analysis 

Liver RNA were extracted and analysed by real-time quantitative RT-PCR, mostly as previously described (34). Briefly, 0.5 µg of 

liver RNA was reverse transcribed using random hexamers and SuperScript® II reverse transcriptase (Life Technologies). The 

cDNAs equivalent to 20 ng of RNA were PCR amplified in a LightCycler® 480 II System (Roche) using the TaqMan® or the 

SYBR® Green technologies. References and sequences of the probes are given in the tables. In each case, averages from at least 

three independent experiments are given, using Gapdh mRNA as controls. Probes references are given in Supplemental table X. 

 

Nuclear protein extractions and analysis 

Nuclear proteins were extracted mostly as described (34). Briefly, liver were homogenized in sucrose homogenization buffer 

containing 2.2 M sucrose, 15 mM KCl, 2 mM EDTA, 10 mM HEPES (pH7.6), 0.15 mM spermin, 0.5 mM spermidin, 1 mM DTT, 

and a protease inhibitor cocktail containing 0.5 mM PMSF, 10 μg/ml Aprotinin, 0.7 μg/ml Pepstatin A, and 0.7 μg/ml Leupeptin.  

Lysates were deposited on a sucrose cushion containing 2.05 M sucrose, 10 % glycerol, 15 mM KCl, 2 mM EDTA, 10 mM 

HEPES (pH7.6), 0.15 mM spermin, 0.5 mM spermidin, 1 mM DTT, and a protease inhibitor cocktail. Tubes were centrifuged 

during 45 min at 105 000 g at 4 °C. After ultra-centrifugation, the nucleus pellets were suspended in a nucleus lysis buffer 

composed of 10 mM HEPES (pH7.6), 100 mM KCl, 0.1 mM EDTA, 10 % Glycérol, 0.15 mM spermin, 0.5 mM spermidin, 0.1 

mM NaF, 0.1 mM sodium orthovanadate, 0.1 mM ZnSO4, 1 mM DTT, and the previously described protease inhibitor cocktail. 

Nuclear extracts were obtained by the addition of an equal volume of NUN buffer composed of 2 M urea, 2 % Nonidet P-40, 600 
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mM NaCl, 50 mM HEPES (pH7.6), 1 mM DTT and a cocktail of protease inhibitors, and incubation 20 min on ice. After 

centrifugation during 10 min at 21 000 g, the supernatants were harvested and constitute nuclear extracts. 

12.5 μg nuclear extracts were used for western blotting. After migration, proteins were transferred to PVDF membranes and 

western blotting was realized according to standard procedures. References for the antibodies are given in the table. 

 

Total protein extractions and analysis 

Frozen organs were homogenized in lysis buffer containing 20 mM HEPES (pH 7.6), 100 mM KCl, 0.1 mM EDTA, 1 mM NaF, 1 

mM sodium orthovanadate, 1 % Triton X-100, 0.5% Nonidet P-40, 0.15 mM spermin, 0.5 mM spermidin, 1 mM DTT, and the 

same protease inhibitor cocktail as for nuclear protein extractions. After incubation 30 min on ice, extracts were centrifuged 10 

min at 21 000 g and the supernatants were harvested to obtain total extracts. 

65 μg of extract was used for western blotting. After migration, proteins were transferred to PVDF membranes and western 

blotting was realized according to standard procedures. References for the antibodies are given in Table Y. 

 

Serum chemistry analysis 

Blood samples are collected every 2 hrs and sera are obtained after a centrifugation of 10 min at 10 000 rpm at room temperature. 

Sera are kept at -80°C until analysis. Insulin, glucose, cholesterol and triglycerides are respectively measured accordingly with the 

protocols of the Mouse Insulin ELISA kit (Mercodia), and the Glucose, Cholesterol, Triglycerides LabAssay kits (Wako). 
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Results 

SCP2 diurnal expression is regulated at the post-translational level but orchestrated by the circadian clock 

Diurnal expression of SCP2 has been originally described in rat liver in 1984 with an increased expression in the dark period (23). 

Post-transcriptional regulation has been suggested as neither Scp2 mRNA nor its translation appeared rhythmic in these conditions 

(22). We confirmed the rhythmic expression of SCP2 in mouse liver but with a different phase as the maximum of expression 

takes place around ZT 9 (Fig. 1A). As previously described, this rhythmic accumulation is not due to the rhythmic expression of 

Scp2 mRNA (Fig. 1B) or its translation evaluated by the presence of the mRNA in the polysomes (Fig. 1C). Non-characterized 

post-translational modifications of SCP2, and more particularly degradation, are thus probably involved in the rhythmic 

expression of SCP2, as suggested by the numerous SCP2 ubiquitylation sites characterized in mouse liver (35). 

We are nevertheless interested by the fact that the molecular circadian clock can regulate rhythmic SCP2 expression. To study this 

possibility, we measured SCP2 expression at both mRNA and protein levels in Bmal1 (36) and Cry1/Cry2 (37) KO which present 

a non-functional molecular oscillator and an arrhythmic behavior in constant darkness. A shown in Fig. 1D, Bmal1 KO mice 

present an increased expression of Scp2 mRNA at all the time points, whereas no changes were observed in Cry1/Cry2 KO. 

However, at the protein level, it appears that the clock affects the rhythmic accumulation of SCP2: SCP2 accumulates at high level 

and high amplitude in Bmal1 KO mice, whereas its rhythmic expression is phase advanced and with lower amplitude in Cry1/Cry2 

KO mice. This result demonstrates that if the circadian clock does not regulate directly SCP2 expression, it influences its stability, 

potentially through the regulation of lipid metabolism by the clock. Indeed, SCP2 accumulation exactly follows triglycerides 

levels in mouse liver (31), suggesting a possible stabilization of SCP2 by triglycerides. 

 

SCP2 influences circadian physiology and diurnal lipid metabolism 

Scp2 KO mice (27) were used to study the potential role of SCP2 on rhythmic liver lipid physiology and cell signaling. To control 

that circadian behavior is not altered in these animals, we measured their running wheel activity in constant darkness. As shown in 

Fig. 2A, Scp2 KO mice present a period longer by 16 min compared to wild-type mice and reduced locomotor activity that did not 

affect their day-night difference (around 1% activity during the day). Interestingly, the Scp2 locus has been linked to dystonia and 

motor neuropathy in human, pathology that can explain this reduced activity (38). 

To study the possible influence of Scp2 deletion on circadian genes expression, we measured their rhythmic expression in mouse 

liver. As shown in Fig. 2B, diurnal expression of Bmal1, Cry1, and Per2 are not significantly different between Scp2 KO and 

wild-type animals, whereas Dbp expression is slightly delayed. However, at the protein level, BMAL1 expression presents 

decreased amplitude and an advanced phase in KO animals, whereas PER2 presents an increased expression and a delayed phase 
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(Fig. 2C). As accumulation of these proteins is strongly under the control of post-translational modifications (39), this differences 

may reflect changes in the rhythmic activation of signaling pathways that controls their stability and can explain delayed phase of 

the circadian activity and Dbp expression (see below). 

As SCP2 played an important role in liver lipid metabolism and transport (27), we investigated general diurnal metabolic 

parameters in Scp2 KO mice. As shown in Fig. 3A, diurnal serum glucose concentration is identical between WT and KO animals, 

whereas diurnal insulin concentration presents only a mild delay (Fig. 3B). However, diurnal serum triglyceride (Fig. 3C) and 

cholesterol (Fig. 3D) concentrations are significantly decreased and present a lower amplitude in KO compare to WT. It strongly 

suggests that diurnal lipid metabolism is perturbed in Scp2 KO mice. To gain insight into this perturbed metabolism in the liver, 

we analyze the diurnal concentration of several lipid species in WT and KO mice. As show in Figure 3D, lipidomic analysis 

revealed that several lipid species identified and quantified in both species presents a rhythmic pattern in agreement with the 

previously published data (31): TAG, DAG and SE reach their maximum during the day, PC and Cer at the day-night transition, 

and PG, PE, and PI during the night (Fig. 3E). Among them, around 25 %, mostly TAG and SE, are not rhythmic in Scp2 KO mice 

liver, showing perturbed rhythmic lipid transport and metabolism in these animals. 

 

Diurnal activation of lipids regulated pathways is perturbed in Scp2 KO mice 

Several signaling pathways are directly regulated by lipids. For example the nuclear receptor PPAR, directly binds lipid 

molecules and activates its target genes implied in different physiological pathways including lipid metabolism (18). PPARhas 

been described as regulated in part by the circadian clock via its interaction with PER2(40, 41). However, we have previously 

shown that Ppar transcription and activation is under the control of the circadian clock and its output pathways through direct 

transcriptional control and synthesis of its ligands (20). As availability of these ligands, through control of their transport and 

synthesis, is potentially under the control of SCP2, we investigated diurnal activation of PPAR in Scp2 KO mice. As shown in 

Fig. 4A, the PPAR target genes Cyp4a14, Acox1, Lpl, and Cd36 present all an increased expression throughout the diurnal cycle, 

indicating an overall increase activation of the PPAR pathway. This is in accordance with the previously, but not explained, 

proliferation of peroxisomes in the liver of Scp2 KO mice (27). Interestingly, Ppar itself presents an increased and delayed 

expression probably as a consequence of the regulation of the Ppar promoter by PPAR itself (42).  

SREPB is another lipid regulated transcription factor: SREBP is an ER membrane bound protein that, under low sterol conditions, 

translocates to the Golgi to be cleaved. The remaining peptide is released and migrates to the nucleus where it activates the 

transcription of genes coding for enzymes involved in cholesterol and fatty acid metabolism (19). As shown in Fig. 4B, the 

SREBP target genes Hmgcr and Fasn are upregulated in KO, especially Hmgcr. Interestingly, if Fasn is mostly regulated by 
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SREBP1, Hmgcr is regulated by both isoforms of SREBP (43), suggesting a prominent activation of SREBP2 in Scp2 KO mice. 

Remarkably Srebp2 diurnal expression is upregulated at the transcriptional level in Scp2 KO mice, confirming this hypothesis. 

 

Diurnal activation of several signaling pathways is perturbed in SCP2 KO mice 

We have previously shown that several signaling pathways are rhythmically activated in mouse liver. Among them, UPR presents 

a 12 hours period rhythmic activation orchestrated by the circadian clock (8). As shown in Fig. 5, rhythmic maturation of Xbp1and 

nuclear expression of XBP1 are identical in WT and KO animals, as well expression of the UPR regulated genes Bip and Chop. 

Despite published linked between lipid metabolism and UPR activation (10), this pathway is not affected by SCP2 deficiency. 

However, rhythmic activation of the TORC1 pathway is clearly altered, probably as a consequence of the disturbed activation of 

the pathways involved in its activation. Indeed, TORC1 activation depends on several upstream kinases activation: AMPK inhibits 

TORC1 through the phosphorylation of TSC2 whereas TSC2 phosphorylation AKT activates TORC1 (44). Once activated, 

TORC1 activation leads to translational activation through the phosphorylation of 4E-BP1, EIF4G, EIF4B, and RPS6 (45). In 

parallel, phosphorylation of EIF4E is mediated through activation of the ERK pathway (46). As shown in Fig. 6, rhythmic 

phosphorylation of the TORC1 targets RPS6, EIF4B, and EIF4G is perturbed in Scp2 KO mice with, in addition to the normal 

maximum of phosphorylation that appeared in the beginning of the night in WT mice (9), a second peak of phosphorylation in the 

beginning of the day. In addition, phosphorylation of 4E-BP1 and EIF4B present an overall high phosphorylation level. 

Interestingly, differences are observed only at post-translational modifications as no differences are observed at the protein and 

mRNA expression levels, except for EIF4G which protein stability is linked to phosphorylation state (47) (Fig. 6 and S1). 

Concerning the upstream pathways, AKT rhythmic activation during the night (9) is preserved in Scp2 KO mice but with a high 

level of activation throughout the time (Fig. 7). By contrast, rhythmic ERK activation during the day (9, 48) is lost in Scp2 KO 

mice, which present a high activation throughout the time. These data converge in a perturbed activation of the TORC1 pathway in 

Scp2 KO mice, at rhythmic parameters and activation level, which can lead to perturbed rhythmic ribosome biogenesis. 
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Discussion 

Interplay between the circadian clock and SCP2-regulated lipid transport in mouse liver 

If lipid synthesis and accumulation follow a diurnal rhythm in mouse liver controlled by feeding and the circadian clock-regulated 

lipid metabolism (31, 32), we show here that rhythmic lipid transport regulated by SCP2 contributes to this diurnal accumulation. 

Rhythmic SCP2 accumulation seems to be controlled by a clock-orchestrated mechanism occurring at the post-translational level. 

Interestingly, SCP2 and TAG accumulate in the liver with the same rhythmic pattern (Fig 1A and 3E), suggesting a possible 

stabilization of SCP2 through TAG binding. Protein stabilization through lipid binding is well known for membrane protein (49), 

but has been also described for lipid-bound cytosolic protein like Perilipin (50). Considering the modification of rhythmic lipid 

content in circadian clock mutant mice (31, 51), it is thus conceivable that circadian clock-controlled lipid metabolism adjust 

rhythmic SCP2 half-life through formation of stable SCP2-TAG complexes. This will constitute according to our knowledge the 

first example of a rhythmic protein induced by protein-metabolite interaction. Considering the crucial role of post-translational 

regulations in the establishment of the rhythmic liver proteome (52, 53), it will be not surprising that such kinds of regulation will 

be described in a near future. 

The consequence of this disturbed lipid accumulation on rhythmic activation of signaling pathways seems also feedback on the 

clock itself. Indeed, Scp2 KO mice present an increased and delayed PER2 expression regulated at the post-translational level, in 

addition to a lengthening of the free running period. Interestingly, stabilization of PER2, for example through the inhibition of 

CK1 activity which controls PER2 degradation (54), leads also to period lengthening. It is thus conceivable that SCP2 regulated 

signaling pathways perturbed in Scp2 KO animals are involved in this period lengthening through the regulation of PER2 

degradation. If no clear regulation of CK1 by lipids has been demonstrated despite a possible regulation by PI (55), it has been 

shown that PPAR (56), AKT (57), and mTOR (57-59) pathways interfere with circadian clock genes expression and/or circadian 

behavior and physiology. In parallel, high fat diet has been linked also to modification of clock genes expression and circadian 

behavior (60). Taken together, these data suggest that lipid transport and metabolism, which are themselves regulated by the clock, 

are potentially important regulator of circadian clock function. 

 

Rhythmic activation of cell signaling by lipid metabolism and transport in mouse liver 

Increasing evidences link lipid metabolism and transport and cell signaling through different ways. Lipid metabolism can affect 

directly the activation of lipid-regulated proteins involved in several signaling pathways. It is for example the case for the nuclear 

receptors PPAR and LXR for which the rhythmic activation is directly regulated by the rhythmic activation of their respective 

ligands (20, 21). Interestingly, these pathways are also regulated by lipid intracellular transport which facilitates direct interaction 
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between these lipids and their ligands through appropriate intracellular transport (61). However, in other cases, lipid metabolism 

acts through the regulation of the cellular localization of the signaling molecules which influence in this way their maturation (for 

example in the case of SREBP (19)) or their potential activation by second signaling pathways through their correct localization in 

a favorable environment or conformation at the plasma membranes, for example in lipid rafts (13, 14). As expected, perturbation 

of lipid metabolism and transport also affect this pathway in all cases (15, 62, 63). Some interconnections between these two 

pathways are possible since for example LXR-regulated cholesterol metabolism perturbed AKT activation through perturbation of 

its localization in lipid rafts (64). Nevertheless, no rhythmic activation of signaling pathway by this mechanism has been reported 

yet. In this condition, our result showing that SCP2-regulated rhythmic lipid transport is involved in the rhythmic activation of 

signaling pathways is the first description of such regulation.  

However, involvement of other lipid transporter in this mechanism is not excluded. For example, the NPC1 protein, which is 

specifically involved in intracellular cholesterol transporter, is involved in the regulation of several signaling pathway (65). 

Indeed, NPC1 inhibition interfere with lipid rafts formation and, as a consequence, activation of the LXR and SREBP (66), 

PI3K/AKT (67), Insulin Receptor (68), and MAPK (69) pathways. Interestingly, we report here that NPC1 expression is rhythmic 

at both mRNA and protein levels and regulated by the circadian clock in mouse liver through transcriptional and post-

transcriptional regulations (Fig. S2), suggesting a potential role of NPC1 in diurnal activation of signaling pathways. Further 

experiments are however required to characterize the importance of these two, or additional, lipid transporters in rhythmic 

activation of signaling pathways. 
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Figures legends 

 

Figure 1: Temporal mRNA and protein expressions of Sterol Carrier Protein 2 

A. F. G. Temporal protein expression of SCP2 in wild-type (A), Bmal1 knockout and control 

(F) and Cry 1/2 double knockout and control (G) mouse liver. Western blots were realized on 

total liver extracts. Naphtol blue black staining of the membranes was used as a loading 

control. Each graph corresponds to the mean densitometric values of the western blot data 

associated.  

B. F. E. Temporal mRNA expression profile of Scp2 in wild-type (B), Bmal1 knockout and 

control (D) and Cry 1/2 double knockout and control (E) mouse liver.  

C. Temporal localization of Scp2 mRNA in the polysomal fraction.  

The zeitgeber times (ZT), with ZT0: lights on, ZT12: lights off, at which the animals were 

sacrificed, are indicated on each panel. For each time point, data are Mean ± SEM obtained 

from three independent animals. 

 

 

Figure 2: Influence of SCP2 in the circadian physiology 

A. Circadian locomotor (running-wheel) activity of Scp2 knockout (right panel) and wild-type 

(left panel) mice.  

B. Temporal mRNA expression profile of Bmal1, Cry1, Dbp and Per2 in Scp2 knockout 

(dotted line) and wild-type (solid line) mouse liver. 



C. Temporal protein expression of BMAL1 and PER2 in Scp2 knockout (right panel) and 

wild-type (left panel) mouse liver. Western blots were realized on nuclear liver extracts. 

Naphtol blue black staining of the membranes was used as a loading control. Each graph 

corresponds to the mean densitometric values of the western blot data associated.  

The zeitgeber times (ZT), with ZT0: lights on, ZT12: lights off, at which the animals were 

sacrificed, are indicated on each panel. For each time point, data are Mean ± SEM obtained 

from three independent animals. 

 

Figure 3: Perturbation of the diurnal lipid metabolism in Scp2 knockout mice 

A-D. Temporal serum concentration of glucose (A), insulin (B), triglycerides (C) and 

cholesterol (D) in Scp2 knockout (dotted line) and wild-type (solid line) mouse.  

E. F. Heatmap of the abundance of cycling (E) or non-cycling (F) lipid species in Scp2 

knockout mice.  

The zeitgeber times (ZT), with ZT0: lights on, ZT12: lights off, at which the animals were 

sacrificed, are indicated on each panel. For each time point, data are Mean ± SEM obtained 

from three independent animals. 

 

Figure 4: Alteration of the activation of lipids regulated pathways in Scp2 knockout 

mice 

A. Temporal mRNA expression profile of PPARα target genes Cyp4a14, Acox1, Lpl, Cd36 

and Pparα in Scp2 knockout (dotted line) and wild-type (solid line) mouse liver.  



B. Temporal mRNA expression profile of SREBP target genes Hmgcr, Fasn, Srebp1c and 

Srebp2 in Scp2 knockout (dotted line) and wild-type (solid line) mouse liver.  

C. Temporal protein expression of SREBP1 and SREBP2 in Scp2 knockout (right panels) and 

wild-type (left panels) mouse liver. Western blots were realized on nuclear liver extracts. 

Naphtol blue black staining of the membranes was used as a loading control. Each graph 

corresponds to the mean densitometric values of the western blot data associated.  

The zeitgeber times (ZT), with ZT0: lights on, ZT12: lights off, at which the animals were 

sacrificed, are indicated on each panel. For each time point, data are Mean ± SEM obtained 

from three independent animals. 

 

Figure 5: The regulation of the UPR stress pathway is not affected in Scp2 knockout 

mice 

A. Temporal mRNA expression profile of genes involved in the regulation of the UPR stress 

Bip, Chop, and sXbp1 in Scp2 knockout (dotted line) and wild-type (solid line) mouse liver.  

B. Temporal protein expression of sXBP1 in Scp2 knockout (right panel) and wild-type (left 

panel) mouse liver. Western blots were realized on nuclear liver extracts. Naphtol blue black 

staining of the membranes was used as a loading control. Each graph corresponds to the mean 

densitometric values of the western blot data associated.  

The zeitgeber times (ZT), with ZT0: lights on, ZT12: lights off, at which the animals were 

sacrificed, are indicated on each panel. For each time point, data are Mean ± SEM obtained 

from three independent animals. 

 



Figure 6: The rhythmic phosphorylation of translation initiation factors is altered in 

Scp2 knockout mice  

Temporal protein expression and phosphorylation profile of translation initiation factors in 

Scp2 knockout (right panel) and wild-type (left panel) mouse liver. Western blots were 

realized on total liver extracts. Naphtol blue black staining of the membranes was used as a 

loading control. Each graph corresponds to the mean densitometric values of the western blot 

data associated.  

The zeitgeber times (ZT), with ZT0: lights on, ZT12: lights off, at which the animals were 

sacrificed, are indicated on each panel. For each time point, data are Mean ± SEM obtained 

from three independent animals. 

 

Figure 7: The rhythmic activation of signaling pathways controlling translation 

initiation is altered in Scp2 knockout mice  

Temporal protein expression and phosphorylation profile of representative proteins of key 

signaling pathways involved in the regulation of translation initiation in Scp2 knockout (right 

panel) and wild-type (left panel) mouse liver. Western blots were realized on total liver 

extracts. Naphtol blue black staining of the membranes was used as a loading control. Each 

graph corresponds to the mean densitometric values of the western blot data associated.  

The zeitgeber times (ZT), with ZT0: lights on, ZT12: lights off, at which the animals were 

sacrificed, are indicated on each panel. For each time point, data are Mean ± SEM obtained 

from three independent animals. 

 



Figure S1: Temporal expression of translation initiation complex factors 

Temporal expression of factors involved in translation initiation in Scp2 KO mice and their 

control littermates. Temporal real-time RT-PCR expression profile translation initiation 

factors in mouse liver. For each time point, data are Mean ± SEM obtained from three 

independent animals. The Zeitgeber times (ZT), with ZT0: lights on, ZT12: lights off, at 

which the animals were sacrificed, are indicated on each panel. 

 

Figure S2: Rhythmic expression of NPC1 is circadian clock dependent. 

A. Npc1 expression was measured by real-time RT-PCR on liver RNAs obtained from 

arrhythmic Bmal1 (left panel) and Cry1/Cry2 (right panel) KO mice and their control 

littermates. Data are Mean ± SEM obtained from three independent animals. B. Protein levels 

were assessed by western-blot on total extracts in Bmal1 (upper panel) and Cry1/Cry2 (lower 

panel) KO mice and their control littermates. Naphtol blue black staining of the membranes 

was used as a loading control. The Zeitgeber times (ZT), with ZT0: lights on, ZT12: lights 

off, at which the animals were sacrificed, are indicated on each panel. 
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Table S1 : Cosinor statistical values related to rhythmic mRNA expression involved  in
the circadian clock and signaling pathways in Scp2 KO and wild-type mice

Genotype p value F(2,9) robustness
(%)

Mesor Amplitude Acrophase
(h)

fold change

Scp2 KO 0.000177 35.129 84.9 0.1074 0.022 1.26 1.613074418
WT 0.589938 0.992 0 1.340930239

Bmal1 KO 0.000121 41.208 86.9 0.4332 0.384 0.07 12.61631342
WT 0.000068 53.309 89.6 0.3804 0.2672 23.32 10.40495458

Cry1 KO 0.000022 94.51 93.9 0.4488 0.3437 20.58 8.547864226
WT 0.000051 61.04 90.8 0.4574 0.3293 20.56 7.427079148

Dbp KO 0.000272 29.608 82.4 0.2977 0.3832 10.92 103.9179487
WT 0.0048 10.456 59.9 0.2789 0.3881 10.04 77.63975155

Per2 KO 0.001026 18.074 73.4 0.3157 0.3327 15.28 19.99675886
WT 0.000309 28.166 81.6 0.3726 0.3529 15.06 13.07585266

Cyp4a14 KO 0.010681 7.881 51.5 0.4512 0.1803 3.66 4.723795676
WT 0.903592 0.102 0 16.26319397

Acox1 KO 0.868388 0.143 0 1.437809548
WT 0.000325 27.636 81.3 0.3653 0.0805 10.74 1.777709226

Lpl KO 0.003978 11.219 61.8 0.6235 20.95 5.92 2.74628662
WT 0.000165 36.21 85.3 0.3261 0.1627 4.1 3.560435931

Cd36 KO 0.124428 2.641 16 1.689982604
WT 0.045111 4.434 32.8 0.2017 0.0499 9.14 2.412037037

Ppara KO 0.001166 17.265 72.4 0.5497 0.28 11.44 2.751498133
WT 0.001987 14.308 68.1 0.3715 0.1705 10.24 2.989282697

Hmgcr KO 0.049291 4.26 31.5 0.5061 0.1816 17.5 3.50465868
WT 0.101446 2.97 19.7 3.936582196

Fasn KO 0.028951 5.361 39.2 0.4667 0.1847 20.24 4.327027666
WT 0.023321 5.852 42 0.3698 0.153 20.45 5.043459365

Srebp1c KO 0.025914 5.609 40.6 0.3913 0.0876 17.49 2.082407166
WT 0.011033 7.788 51.2 0.4562 0.1824 17.35 4.7716141

Srebp2 KO 0.125254 2.63 15.9 1.722547904
WT 0.157798 2.276 11.4 1.986686232

Bip KO 0.392926 1.044 0 4.097817103
WT 0.155558 2.297 11.7 4.749656285

Chop KO 0.515685 0.721 0 3.404024186
WT 0.717126 0.35 0 2.99215582

sXbp1 KO 0.072583 3.542 25.4 2.349473251
WT 0.513584 0.789 0 3.139220905



Table S2 : Cosinor statistical values related to rhythmic phosphorylation and expression
protein involved  in the circadian clock and signaling pathways in Scp2 KO and wild-
type mice

Genotype p value F(2,9) robustness
(%)

Mesor Amplitude Acrophase (h) fold
change

SCP2 WT 0.000183 34.679 84.7 0.6877 0.2565 9.15 2.328796

BMAL1 KO 0.001085 17.718 73 0.5631 0.1071 5.02 1.562068
WT 0.001149 17.357 72.5 0.6008 0.2196 8.11 4.327242

PER2 KO 0.002614 12.996 65.7 0.3992 0.3437 18.48 20.46211
WT 0.013169 7.293 49.1 0.1716 0.1775 17.06 50.78053

sXBP1 KO 0.280083 1.47 0 3.996046
WT 0.589666 0.568 0 11.51941

P-EIF4E KO 0.144284 2.411 13.2 2.798669
WT 0.007071 9.152 56 0.4462 0.2009 7.37 4.925861

P-EIF4G KO 0.001123 17.499 72.7 0.3367 0.2584 19.33 7.857111
WT 0.023242 5.859 42.1 0.3209 0.1865 16.93 4.94066

P-EIF4B KO 0.18052 2.077 8.8 5.035737
WT 0.015436 6.869 47.2 0.11 0.0645 17.43 4.713967

P-
4EBP1

KO 0.00182 14.754 68.8 0.6445 0.1565 11.54 1.806493

WT 0.564615 0.617 0 1.837553
P-RPS6 KO 0.044081 4.48 33.2 0.3932 0.2396 18.07 14.56473

WT 0.001068 17.818 73.1 0.371 0.4352 16.6 71.2969
P-AKT KO 0.006582 9.384 56.8 0.4645 0.25 17.2 5.245264

WT 0.000314 27.99 81.5 0.1417 0.0952 16.17 3.710415
P-ERK KO 0.064351 3.759 27.4 1.846368

WT 0.000174 35.391 85 0.3925 0.1403 6.87 2.503327



Table S3 : Cosinor statistical values related to serum measurements in Scp2 KO and
wild-type mice

Genotype p value F(2,9) robustness
(%)

Mesor Amplitude Acrophase (h) fold change

Glucose KO 0.129815 2.574 15.2 1.475746295
WT 0.023216 5.862 42.1 1.8317 0.1582 13.34 1.376423221

Insulin KO 0.002756 23.758 15.2 2.1325 1.2766 19.42 4.162980759
WT 0.002608 13.006 42.1 2.1876 1.7963 17.1 7.270994261

Triglycerides KO 0.013342 7.257 49 0.9336 0.2063 23.36 1.936409188
WT 0.00089 19.014 74.5 1.1907 0.3991 0.13 2.477136213

Cholesterol KO 0.166743 2.194 10.4 1.623615585
WT 0.249314 1.625 2 1.65562497



References of the antibodies used for Western blotting

Protein Reference Company

P-EIF4E (Ser 209)
EIF4E
P-EIF4G (Ser 1108)
EIF4G
P-EIF4B (Ser 422)
EIF4B
P-4EBP1 (Thr 37/46)
4EBP1
P-RPS6 (Ser 235/236)
RPS6
P-TSC2 (Ser 1387)
TSC2
P-AKT (Ser 473)
AKT
P-p44/42 MAPK (Erk1/2)
(The 202 / Tyr 204)
P44/42 MAPK (Erk1/2)
SCP2
sXBP1
BMAL1
PER2
NPC1

9741
2067
2441
2469
3591
3592
2855
9644
2211
2217
5584
4308
4060
4691
4376

9102
HPA027101
Sc-7160
Preitner et al., 2002
Brown et al., 2005
Ab36983

Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology

Cell Signaling Technology
Sigma
Santa Cruz Biotechnology

Abcam



Taqman probes used for real-time PCR (Life technologies)

Gene Probe reference

Gapdh

Eif4e

Eif4g1

Eif4a2

Eif4ebp3

Fasn

Lpl

Ppara

Scd1

Mm 99999915_g1

Mm 00725633_s1

Mm 00524099_m1

Mm 00778003_s1

Mm 01406408_m1

Mm00662319_m1

Mm00434770_m1

Mm00440939_m1

Mm00772290_m1



Sequences of the primers used for real-time PCR

Gene Forward primer Reverse primer

Gapdh

Scp2

Bip

Chop

sXbp1

Cyp4a14

Acox1

Cd36

Hmgcr

Srebp1c

Srebp2

Npc1

Bmal1

Cry1

Dbp

Per2

CATGGCCTTCCGTGTTCCTA

GGCCTTCTTTCAAGGGAAAC

GAAAGGATGGTTAATGATGCTGAG

CATACACCACCACACCTGAAAG

CTGAGTCCGAATCAGGTGCAG

TCTCTGGCTTTTCTGTACTTTGCTT

GGATGGTAGTCCGGAGAACA

GATGACGTGGCAAAGAACAG

AGCTTGCCCGAATTGTATGTG

GGAGCCATGGATTGCACATT

GCGTTCTGGAGACCATGGA

TGAATGCGGTCTCCTTGGTC

GCATTCTTGATCCTTCTTTGGT

CTGGCGTGGAAGTCATCGT

CGTGGAGGTGCTTAATGACCTTT

ATGCTCGCCATCCACAAGA

CCTGCTCTTCCGTGTTCCTA

CTAAGCCCTGACGACGAGAC

GTCTTCAATGTCCGCATCCTG

CCGTTTCCTAGTTCTTCCTTGC

TGGCCGGGTCTGCTGAGTCCG

CAGAAAGATGAGATGACAGGACACA

AGTCTGGATCGTTCAGAATCAAG

TCCTCGGGGTCCTGAGTTAT

TCTGTTGTGAACCATGTGACTTC

GGCCCGGGAAGTCACTGT

ACAAAGTTGCTCTGAAAACAAATCA

CTCACTGGCTTCCTTTGGTA

CCAAGAAGGTATGGACACAGACAAA

CTGTCCGCCATTGAGTTCTATG

CATGGCCTGGAATGCTTGA

GCGGAATCGAATGGGAGAAT
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III. Metabolic defects in Bmal1 knockout mice 
 

Deficiency in the molecular circadian clock has been shown to be involved in metabolic 

syndromes and obesity. Indeed, several studies present evidence of impaired glucose and 

insulin metabolism in various clock deficient mice models
66, 313-315

. Some characteristics 

observed in circadian clock genes deficient mice, such as glucose intolerance defect and 

hyperglycemia were also observed in obesity mice models as Ob/Ob and Db/Db mice
316

.  

Feeding is also an important parameter involved in metabolic defects. Indeed, feeding/fasting 

cycle constitutes an external cue involved in the synchronization of peripheral organs like the 

liver. Mice challenged with a high-fat diet exhibit obesity characteristics, but it has been 

shown that their molecular circadian clock was also disrupted because of changes in feeding 

behaviour
317

. However, mice fed a high-fat diet in restricted conditions exhibit a normal 

circadian clock function without presented metabolic disorders
318

. 

To investigate involvement of the circadian clock in metabolic disorders, we used two 

approaches. First, obesity has been induced by the Ob mutation in the gene encoding for 

leptin. Second, it was induced by a high-fat challenge in Bmal1 knockout mice.  

 

 Metabolic defects in genetically obese Bmal1 KO mice A.

 

(1) Bmal1 KO mice harboring the Ob mutation 

exhibit premature death. 

 

We generated a new mice line that is deficient in a functional circadian clock and obese. To 

this end we used Bmal1 KO and Ob mice that carry a mutation in the gene encoding for leptin 

(Ob mutation). Because both Bmal1 KO and Ob/Ob mice are infertile
319, 320

, we crossed mice 
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expressing both knockout and mutation at the heterozygote state: Bmal1
KO/WT

 Ob
Ob/WT

 and the 

littermates were used as control in this study. As shown in figure 16A, the proportions of each 

of the 9 genotypes obtained of the born pups are in accordance with the theorical Mendelian 

proportions. This first result means that this crossing did not generate embryonic lethality. 

However, we did observe some dead mice after birth. It appeared that these deaths were 

genotype-related, as we estimated 45% of Bmal1
KO/KO

 Ob
Ob/WT

 and 60% of Bmal1
KO/KO

 

Ob
Ob/Ob

 mice died (figure 16B)  between 4 and 5 weeks after birth (figure 16C).  

 
Figure 16: Obese Bmal1 knockout mice died prematurely.  

 
A. Proportions of each genotype of born mice (filled bars) compared to the theorical Mendelian 

proportions (streaked bars). B. Proportions of death for each genotype. C. Repartition of dead  

Bmal1
KO/KO

 Ob
Ob/WT

 and Bmal1
KO/KO

 Ob
Ob/Ob

 mice depending on their age. 



68 
 

During this study we performed experiments on male mice belonging to the following four 

genotypes: Bmal1
WT/WT

 Ob
WT/WT

, Bmal1
KO/KO

 Ob
WT/WT

, Bmal1
WT/WT

 Ob
Ob/Ob

 and Bmal1
KO/KO

 

Ob
Ob/Ob

 respectively called WT (wild-type), KO (Bmal1 KO) , Ob (obese) and  ObKO (Obese 

Bmal1 KO) mice.   

 

(2) ObKO  mice exhibit an obese phenotype 

 

The first step of this study consisted in the characterization of this new mice line. The mice 

have been weighted every week at ZT3 from the weaning to 16 weeks. As shown in the figure 

17A, while the Ob mice exhibit a rapid weight gain, the ObKO mice body weight curve 

appeared similar to WT and KO mice. The pictures of the different mice (figure 17B) showed 

that WT and KO mice were not recognizable without molecular genoytyping. However, Ob 

and ObKO mice exhibit clear phenotyping marks. To understand why the ObKO mice appear 

“kind of obese” without exhibiting a high weight gain, we measured some parameters. At 6 

weeks and at ZT3, the mice underwent body weight, size measurements and an analysis of the 

body composition via EchoMRI technology. The first parameter, the body mass index (figure 

17C) resulted in part of these measurements showed that WT and KO mice have a similar 

body mass index of about 2.7 Kg/m
2 

while the ObKO mice exhibit an intermediate body mass 

index (3.5 Kg/m
2
) between the WT/KO mice and the Ob mice (4.2 Kg/m

2
). The differences in 

body mass index are also due to mice size variations between genotypes. Indeed, KO and 

ObKO mice exhibit a smaller size then WT and Ob mice (data not shown) reflecting thus 

growth defects. Concerning the fat content analysis (figure 17D), we showed a clear 

distinction between the obese and non-obese mice as WT and KO mice present 8.7 and 9.6% 

of fat while the fat content in Ob and ObKO mice is respectively 38.7 and 34.8%. The last 

argument allowing us to assimilate the ObKO mice to an obese phenotype is the weight of 
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different organs as liver or white adipose tissue. Indeed, in WT and KO mice, liver weight 

represented from to 3 to 4% of the total mice weight while it represented a significant higher 

percentage in Ob and ObKO mice (figure 17F). The same observation was done concerning 

the proportion of white adipose tissue as it represented less than 2% of the body weight in WT 

and KO mice while the proportion of this tissue reached 8.8 and 6.7% of the whole mouse 

weight in Ob and ObKO mice respectively. 

 

(3) Glucose homeostasis is impaired in ObKO mice 

 

Ob/Ob mice are described as hyperglycemic and insulin resistant, that is why they are 

frequently used as model for studies on diabetes. Recent evidences shown that pancreatic 

molecular circadian clock coordinates insulin release. Deficient molecular clock is sufficient 

to generate diabetes mellitus
313

. We hypothesized here that mice harboring both Ob mutation 

and molecular clock deficiency could undergo severe diabetes which may explain the 

premature death of ObKO mice previously described (figure 16).  
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Figure 17: ObKO mice exhibit obese phenotype. 

 
A. Body weight curves corresponding to WT (blue), KO (green), Ob (red) and ObKO (purple) mice. 

Each mouse is weighted from 3 to 16 weeks after birth at ZT6. B. Representative pictures of mice of 

interest. The mice are all 12 week-old. C. Body Mass Index of each 6 week-old mice of interest. D. 

Proportion of fat content for each mice of interest. The fat content is given by the EchoMRI analyser 

on 6 week-old fed mice at ZT3. E. Body weight of fed mice before the sacrifice at ZT12. F. Proportion 

of organs. Liver and white adipose tissues (WAT) were weighted after dissection. Data are Mean ± 

SEM obtained from 7 to 10 independent animals for each genotype. The Zeitgeber Times (ZT) are 

defined as followed: ZT0 lights on; ZT12: lights off. Statistical analysis were done with the t-test (** 

P< 0.01 and * P<0.05 compared to other genotypes). 
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We first measured the glycemia on the 10 week-old mice after 15 hour-starvation (ZT3) and 

then after 6 hour-refeeding (ZT9). In WT mice, the glycemia after starvation is 6 mmol/l and 

after refeeding the glycemia increased to reach 10.3 mmol/l (figure 18A). The KO mice 

exhibit a higher glycemia after starvation (8.3 mmol/l) than WT mice, but the glycemia did 

not increase as much as we could expect after the refeeding period (9.9 mmol/l). KO mice are 

thus insulin-sensitive. It may thus suggest a defect in enzymes, such as amylases, catalyzing 

glucose release from the food. The food intake, leading to activation of insulin-related 

signaling pathways, allows the glucose entry into cells through different glucose transporters. 

Indeed, glucose entry in hepatocytes and pancreatic β-islets is mediated by GLUT2
321

 while 

GLUT4 is responsible for glucose internalization in adipose tissue and skeletal muscles
322

. Ob 

and ObKO mice exhibit starved glycemia a little higher (respectively 7.2 and 7.7 mmol/l) 

compared to WT mice, but glycemia after refeeding reaches a very high level (respectively 

15.7 and 12 mmol/l). In these mice, the post-prandial glycemia may reflect impairment in 

insulin-activated pathways leading defects in glucose clearance.  

Glucose and insulin concentrations measurements in the serum at ZT12 on 13 week-old mice 

(figure 18 B and C) showed that WT and KO mice exhibit the same behavior: their serum 

glucose concentration at this time point was 12 mmol/l and their serum insulin concentration 

was about 2 µg/l. In Ob mice the glucose concentration in the serum was the double (22 

mmol/l) and the serum insulin concentration was more than 6 times higher than the WT and 

KO mice (12.9 µg/l). These results are in accordance with hyperglycemic and 

hyperinsulinemic phenotype of Ob/Ob mice. Leptin deficient mice eat much more which can 

explain the hyperglycemia and insulin resistance. The hyperinsulinemia is the result of insulin 

resistance. ObKO mice exhibit also a high serum glucose (18 mmol/l), certainly due to high 

food intake. However, their serum insulin concentration was quite low (4.4 µg/l) oppositely to 

Ob mice. This result can be explained by low pancreatic insulin secretion.   
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The glycogen accumulation in the liver reflects the glucose storage. GSK (Glycogen Synthase 

Kinase) 3 is a key enzyme involved in glucose conversion to glycogen. The glycogen 

accumulates rhythmically in the liver in WT mice, the lower accumulation corresponding time 

point occurring at ZT12. Moreover, this rhythm seems to be dependent on the molecular clock 

as it is impaired in Bmal1 KO mice liver (figure 18D, left panel). In addition, Bmal1 KO mice 

exhibit a lower glycogen accumulation (almost the half) throughout the entire day compared 

to WT mice (figure 18E, right panel). We extracted the glycogen from liver samples of the 13 

week-old mice sacrificed at ZT12 (figure 18F). In WT mice liver, the glycogen concentration 

was 19 µg/mg of tissue. The glycogen proportion in KO mice liver (39.6 µg/mg of tissue) 

doubled compared to the one in WT mice liver. The glycogen accumulation in Ob mice liver 

appeared to be intermediate (28.9 µg/mg of tissue) compared to the WT and KO mice liver. 

ObKO mice exhibit a liver glycogen accumulation 1.5 fold higher than in obese mice liver 

(45.2 µg/mg of tissue). High glycogen accumulation through over-activation of GSK3 has 

been linked to insulin resistance. It was thus surprising to observe high glycogen 

accumulation in ObKO mice while they are apparently insulin-sensitive. Considering the fact 

that ZT12 corresponds to the highest glycogen accumulation in Bmal1 KO mice compared to 

WT, we may suppose that at ZT20 or ZT0, glycogen accumulation would be still the same 

than at ZT12 in ObKO mice while it would be much higher in Ob mice.     
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Figure 18: The glucose homeostasis is impaired in obese knockout mice. 

A. Glycemia measurements after 15 hour starvation (filled bars) and after 6 hour-refeeding (streaked 

bars) on 10 week-old mice. B and C. Serum glucose (B) and insulin (C) measurements performed on 

13 week-old mice at ZT12. D. Temporal glycogen accumulation in Bmal1 wild-type (blue) and 

knockout (green) mice liver (left panel) and whole day glycogen accumulation corresponding(right 

panel). E. Glycogen accumulation in the liver of 13 week-old mice at ZT12. Data are Mean ± SEM 

obtained from 6 to 8 independent animals for each genotype of interest. The Zeitgeber Times (ZT) are 

defined as followed: ZT0 lights on; ZT12: lights off. Statistical analysis were done with the t-test (** 

P< 0.01 and * P<0.05 compared to other genotypes; ## P< 0.01 comparison between starved and refed 

conditions). 
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(4) ObKO mice exhibit an impaired glucose 

clearance but are insulin sensitive. 

 

We performed both glucose and insulin tolerance tests on 11 and 12 week-old mice 

respectively. We choose to perform these experiments at ZT3 because it appeared to be the 

most responding time-point
323

.  

After glucose injection, all the mice exhibit an increased glycemia (figure 19A, right panel). 

However, in WT mice, after 15 min the glycemia stabilizes and starts to decrease after 30 min 

to reach the basal glycemic level at 90 minutes after the glucose injection. In KO, Ob and 

ObKO mice, the glycemia continues to increase until 30 minutes after the injection. The curve 

slopes (figure 19A, left panel) reflect the capacity of glucose elimination from the blood 

called glucose clearance. We can observe that KO and ObKO mice exhibit faster clearance 

than wild-type mice. Ob mice can be qualified as glucose resistant because of their lower 

glucose clearance capacity.        

Concerning insulin tolerance tests, we show here (figure 19B) that all the mice exhibit a 

decreased glycemia after insulin injection except the Ob mice which revealed insulin 

intolerance or resistance. We can also observe that KO mice are highly insulin sensitive as the 

glycemia did not reach the basal level even after 180 min. In ObKO mice, we can observe a 

similar effect even the basal glycemia was higher.  
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Figure 19: Glucose and insulin tolerance tests. 

A. Glucose tolerance test realized on 11 week-old mice at ZT3 after 15 hour-starvation (left panel) and 

the clearance slopes (right panel) associated. The mice underwent intra-peritoneal injection of glucose 

(1g/Kg of mice). B. Insulin tolerance test realized on 12 week-old mice at ZT3. The mice underwent 

intra-peritoneal injection of insulin (1UI/Kg of mice). Data are Mean ± SEM obtained from 6 to 10 

independent animals for each genotype of interest.  

 



76 
 

(5) ObKO mice exhibit low hepatosteatosis but high 

circulating triglycerides concentration.  

  

Liver steatosis consisted in an excess of fatty acids mostly as triglycerides accumulation
324

. 

Steatosis has been shown to be related to obesity and insulin resistance. Ob/Ob mice have 

been described as exhibiting extended adipose tissue and liver steatosis
325

. We performed 

liver slices of each of our mice of interest (figure 20A-D). The slices treated with HE 

coloration have been analysed by a histopathologist who did not know the genotype of the 

mice. In WT (figure 20A) and KO (figure 20B) mice liver, no steatosis has been noticed while 

Ob mice liver (figure 20C) showed steatosis estimated in 90-100% of hepatocytes. In ObKO 

mice (figure 20D), liver steatosis has also been found but with a lower degree as only 20 to 

30% of hepatocytes exhibited triglycerides droplets. This result is consistent with the lower 

insulin resistance observed in obese knockout mice previously described. We also looked at 

the circulating triglycerides in the serum (figure 20E). In 13 week-old mice, at ZT12, 

circulating triglycerides levels are significantly higher in KO and ObKO mice as they are 

respectively 1.8 and 2 fold higher than in WT mice.   
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Figure 20: Triglyceride homeostasis in obese Bmal1 knockout mice. 

A-D. Representative histology of WT (A), KO (B), Ob (C) and ObKO (D) mice liver. Liver 

slices have been realized from 15 week-old mice. The slices were treated with 

Hematoxylin/Eosin coloration. The scale bars are indicated on the pictures (50 µm) and the 

objective used is 10X. The arrows showed lipid droplets. E. Serum triglyceride concentration 

on 13 week-old mice at ZT12. Data are Mean ± SEM obtained from 6 independent animals 

for each genotype of interest. The Zeitgeber Times (ZT) are defined as followed: ZT0 lights 

on; ZT12: lights off. Statistical analysis were done with the t-test (** P< 0.01 ; * P<0.05). 



78 
 

B. Metabolic defects in diet-induced obese Bmal1 KO mice  

 

In order to study the evolution of obesity induced by the food in molecular circadian clock 

deficient mice, we fed 8 week-old Bmal1 KO and WT mice with high-fat and control diet 

during 12 weeks. The mice are weight before starting the experimentation and then every 

week until the sacrifice time. From the 4
th

 week of the experiment, mice underwent different 

in vivo measurements as analysis of the body composition via EchoMRI technology, starved 

and refed glycemia measurements, glucose and insulin tolerance tests.  

  

(1) Bmal1 KO mice fed with high-fat diet become 

obese prematurely 

 

It appeared that the mice fed with control diet, whatever their genotype, exhibit similar gain of 

weight (figure 21A), body mass index (figure 21B), but the fat content of Bmal1 knockout 

mice is a little higher than wild-type mice during the first weeks of the experiment to become 

similar at the end (figure 21C). While no difference in the organs weight ratio was observe at 

the sacrifice time (figure 21E), it appeared however that the Bmal1 KO mice fed with control 

diet exhibit a lighter body weight compared to the wild-type (figure 21D). Concerning the 

mice fed with high-fat diet, more differences were observed. Indeed, the weight gain (figure 

21A), the increased of the body mass index (figure 21B) and the proportion of fat (figure 21C) 

appeared faster in Bmal1 knockout mice than in wild-type mice. However, at the end of the 

experiment, they reach the same level for each of these characteristics. We can notice that 

liver/body ratio appeared lower for WT mice fed with high-fat diet compared to control diet 

fed WT mice (figure 21E, right panel), but liver mass is actually higher. This can be explained 

by the difference of their body weight measured at the sacrifice time (figure 21D).  
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  Figure 21: Bmal1 knockout mice present obese phenotype. 

A. Relative gain of weight of each group of mice. Each mouse is weighted from 8 (beginning 

of the experiment) to 20 weeks after birth at ZT6. B. Evolution of the Body Mass Index of the 

mice. D. Proportion of fat content for each group of mice. The fat content is given by the 

EchoMRI analyser on fed mice at ZT3. D. Body weight of fed mice before the sacrifice at 

ZT12. E. Proportion of organs (right panel) and organs weight (left panel). Liver and white 

adipose tissues (WAT) were weighted after dissection. Data are Mean ± SEM obtained from 6 

to 10 independent animals for each condition. The Zeitgeber Times (ZT) are defined as 

followed: ZT0 lights on; ZT12: lights off. Statistical analysis were done with the t-test (** P< 

0.01 ; * P<0.05). 
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WT mice fed with high-fat regimen become obese but the mice were not fed long enough to 

observe a significant increase in liver weight ratio. 

 

(2) Glucose homeostasis is impaired in diet-induced 

obese mice 

 

Before starting the feeding experiment, we measured the glycemia on the 8 week-old mice 

after 15 hour-starvation (ZT3) and then after 6 hour-refeeding (ZT9).The results obtained are 

in accordance with the ones observed on wild-type and knockout mice coming from the 

Ob.Bmal1 mice line. Indeed, in wild-type mice, the glycemia after starvation is 5 mmol/l and 

after refeeding the glycemia increased to reach 10.5 mmol/l (figure 22A). The knockout mice 

exhibit a higher glycemia after starvation (6.8 mmol/l) than wild-type mice. But the glycemia 

did not increase as much as we could expect after the refeeding period (9.3 mmol/l). During 

the experiment (figure 22B) the glycemia after starvation in control diet fed mice did not 

change. However, after refeeding, their glycemia tended to decrease at the end of the 

experiment expecially in wild-type mice. Concerning the high-fat fed mice, Bmal1 knockout 

mice exhibit higher glycemia after starvation than the wild-type, but at the end of the 

experiment, Bmal1 knockout mice exhibit a decreased gylcemia to present the same glycemia 

than the wild-type mice. The same observation was done on glycemia measured after 

refeeding.  
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  Figure 22: Impairment of glucose homeostasis in mice fed with high-fat diet. 

A. B. Glycemia measurements after 15 hour starvation (filled bars or lines) and after 6 hour-

refeeding (streaked bars or dashed lines) on 8 week-old wild-type and Bmal1 knockout mice 

before the beginning of the feeding experiment(A) and every 3 weeks during the experiment 

(B). Data are Mean ± SEM obtained from 6 to 8 independent animals for each genotype of 

interest. The Zeitgeber Times (ZT) are defined as followed: ZT0 lights on; ZT12: lights off. 

Statistical analysis were done with the t-test (** P< 0.01 ; * P<0.05 compared to other 

genotypes; ## P< 0.01;  # P< 0.05 comparison between starved and refed conditions). 

 

(3) Bmal1 KO liver exhibit less steatosis  

 

We performed liver slices of mice in each condition (figure 23). Both control diet fed wild-

type (figure 23A) and Bmal1 knockout mice (figure 23B) present normal liver without 
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steatosis. When wild-type mice are fed with high-fat diet during 12 weeks, we can notice the 

presence of lipid droplets in hepatocytes. This steatosis is however very low compared to 

obese mice previously described (figure 20C). In contrast, high-fat diet fed Bmal1 knockout 

mice liver exhibit much less lipid droplets than the high-fat diet mice liver. In this condition, 

Bmal1 deletion prevents triglycerides accumulation in liver leading to hepatosteatosis.  

 

Figure 23: Triglyceride homeostasis in obese Bmal1 knockout mice. 

A-D. Representative histology of WT CD (A), KO CD (B), WT HFD (C) and KO HFD (D) mice liver. 

Liver slices have been realized from 21 week-old mice. The slices were treated with 

Hematoxylin/Eosin coloration. The scale bars are indicated on the pictures (50 µm) and the objective 

used is 10X. The arrows showed lipid droplets.  
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(4) Delayed glucose clearance in high-fat diet fed 

mice 

  

During the feeding experiment, we followed the evolution of the response of the mice to 

glucose injection. It appeared that the way organisms manage the excess of circulating 

glucose did not change so much weeks after weeks (figure 24, left panels). In addition, it is 

clear that we have two different groups depending on the feeding. Indeed, high-fat diet mice 

exhibit a delayed glucose clearance as it started 30 to 60 minutes after the injection. However, 

the slopes reflecting glucose clearance showed increased glucose intolerance in wild-type 

mice fed with high fat diet (figure 24, right panels) in function of the time. Indeed, while the 

glucose clearance do not change in control diet fed mice and in high fat diet Bmal1 knockout 

fed mice, the speed of glucose elimination from the blood is low at 13 weeks and became 

even lower.   

Concerning the insulin tolerance test, we show here (figure 25) that all the mice exhibit a 

decreased glycemia after insulin injection. However the wild-type mice fed with high-fat diet 

exhibit less important insulin sensitivity. While they were fed with high-fat diet, Bmal1 

knockout mice remained still very sensitive to insulin even it was clear that this sensitivity 

appeared less important than in mice fed with control diet expecially during the first weeks of 

the experiment.  
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Figure 24: Evolution of the glucose clearance. 

 
A-C Glucose tolerance tests performed on 13 (A), 16 (B) and 19 (C) week-old mice at ZT3 after 15 

hour-starvation. The mice underwent intra-peritoneal injection of glucose (1g/Kg of mice). Right 

panels correspond to the clearance slopes for each experiment. Data are Mean ± SEM obtained from 6 

to 10 independent animals for each genotype of interest. The Zeitgeber Times (ZT) are defined as 

followed: ZT0 lights on; ZT12: lights off.  
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Figure 25: Evolution of the 

insulin sensitivity. 

A-C Insulin tolerance tests 

performed on 14 (A), 17 (B) and 

20 (C) week-old mice at ZT3. The 

mice underwent intra-peritoneal 

injection of insulin (0.5UI/Kg of 

mice). Data are Mean ± SEM 

obtained from 6 to 10 independent 

animals for each genotype of 

interest. The Zeitgeber Times 

(ZT) are defined as followed: ZT0 

lights on; ZT12: lights off. 
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DISCUSSION 

 

Circadian rhythms involvement in metabolism consists in activation of the right signaling 

pathway at the right time to ensure an adapted physiology. To study metabolic defects due to 

misalignments of circadian clock, we used both genetic and diet-induced obesity models as 

previously described.  

 

I. Premature death for Bmal1 KO mice harboring Ob mutation 
 

As both Ob/Ob and Bmal1 KO mice are infertile
319, 320

, it is thus neceassary to cross 

heterozygotes to generate these mice. For both mice lines, no embryonic or premature death 

has been reported. It was thus surprising to observe 45% and 60% of dead Ob
Ob/+ 

Bmal1
KO/KO

 

and Ob
Ob/Ob 

Bmal1
KO/KO

 mice respectively. Ob mutation in one allele is thus sufficient to 

cause death Bmal1 deficient mice. Experiments on Ob
Ob/+ 

Bmal1
KO/KO

 mice did not show any 

differences with Bmal1 KO mice concerning the glucose homeostasis, and glucose and insulin 

tolenrence. However, Leptin deficiency in one allele in Bmal1 KO mice leads to increasing fat 

percentage (data not shown). This is in accordance with intermediate obese phenotype already 

described in  Ob/+ mice
326

. It seems thus that BMAL1 and Leptin may directly or indirectly 

interact in a critical physiological process. In addition, most of these deaths occurs during a 

particular 2-3 weeks period after weaning but after this critical period, obese knockout mice 

do not exhibit significant mortality until 13 weeks after birth, age of the sacrifices. We thus 

have no information concerning their ageing.  
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II. Involvement in bone metabolism 
 

In our experiments, to calculate the body mass index of each mice, we measured their size. 

Wild-type and obese mice measured 8.5 and 8.3 cm respectively while knockout and obese 

knockout mice exhibit significant smaller size (8.1 and 7.6 cm respectively).  

Recently, circadian clock
327

 and leptin
328

 have been shown to be involved in bone metabolism 

at different levels. Indeed, synchronized by glucocorticoids releasing, the clock resided in 

osteoclasts contributes to circadian expression of osteoclast-related genes
327

. In addition, 

osteoblasts number and activity are increased by leptin through peripheral pathways
328

. The 

disruption of circadian clock through Bmal1 deletion associated with leptin defect created 

smaller size of the mice revealing their importance in bone metabolism.  

 

III. Food intake consequences 
 

During our experiments, we did not measure food intake. However, leptin defect leads to 

increasing food intake especially during the light phase compared to wild-type mice. High-fat 

diet can also influence time and amount of food intake. Indeed, wild-type mice under high-fat 

regimen exhibit higher food intake during the light (about 20% of total food intake) phase 

compared to control animals
317

. This abnormal feeding behaviour impacts on regulation of 

circadian clock as fasting/feeding cycles which are considered as a strong Zeitgeber. This 

leads to consequences at the metabolic level. Indeed, activation of SREBP1c in liver has been 

linked to feeding behaviour
329

. When fasting/feeding cycles are altered by disrupted light/dark 

cycles, clock genes deletion, leptin deficiency, or induced by high-fat regimen, this leads to 

abnormal activation of the lipogenesis through SREBP1c signaling pathway, leading as a 
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consequence to obesity. In addition, mice fed with high-fat diet only during the night exhibit 

restored circadian gene oscillations. They also exhibit alteration in fatty acid and glucose 

metabolisms preventing thus obesity and liver steatosis and glucose tolerance
318

.  

 

IV. Protective effect of Bmal1 deletion in obesity  
 

Insulin resistance, a consequence of T2D (Type 2 Diabetes), is characterized by high serum 

glucose and insulin levels due to high pancreatic insulin secretion. In addition, animal liver 

exhibits steatosis and high glycogen accumulation. We show here that genetic obese mice 

exhibit hyperglycemia, hyperinsulinemia, liver steatosis, glucose and insulin resistances. In 

contrast, while they exhibit an obese phenotype, genetic and diet-induced obese Bmal1 KO 

mice present characteristics of insulin sensitivity such as low steatosis in liver and low insulin 

levels in the serum. It has been recently reported in Bmal1 KO and Clock
Δ19

 mutant mice that 

pancreatic insulin secretion was impaired
313, 323

. In these studies, the authors demonstrated 

that circadian clock is involved in both size and proliferation of pancreatic β islets. In 

addition, as islet insulin content does no vary between wild-type and Clock
Δ19

 mutant mice, 

the low pancreatic insulin secretion may thus be explained mainly by defects in size, 

proliferation and function (insulin exocytosis) of the endocrine part of pancreas. They also 

reported the same defect in pancreas-specific Bmal1 KO mice which activity and feeding 

behaviour and body composition are not affected.  Clock
Δ19

 mutant mice have been described 

as developing metabolic syndrome under high-fat diet
330

. As both mice models present the 

same defect in insulin secretion, it thus suggests that disruption of core clock in pancreas is 

sufficient to generate defect in insulin secretion independently to adipogenesis.  
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Interestingly, Ob/Ob mice which both Lxrα and Lxrβ genes are deleted (LOKO mice) 
331

 

present a similar phenotype than ObKO mice without exhibiting mortality. Indeed, these 

LOKO mice are clearly obese, but protected from hepatosteatosis. In addition, LOKO mice 

are insulin-sensitive, β cell expansion is impaired and de novo lipogenesis occurs especially in 

adipose tissue. Rhythmic LXR activation has been proposed
282

. Indeed, rhythmic REV-ERBα 

accumulation in hepatocytes leads to rhythmic activation of SREBP pathway which thus 

rhythmically activates LXR pathway. As REV-ERBα expression is activated by 

CLOCK:BMAL1 heterodimer, the similar phenotypes observed in LOKO and obese Bmal1 

knockout mice may thus suggests circadian clock control of LXR pathway via REV-ERBα.  

 

 

V. Involvement of mitochondrial metabolism in insulin 

sensitivity 
 

Ob/Ob mice exhibit higher levels of plasma NEFA (Non Esterified Fatty Acids) 332
. UCP 

(UnCoupling Protein) 2 is a mitochondrial protein involved in oxidative phosphorylation. Its 

activity has been shown to be increased by fatty acid
333

 and ROS (Reactive Oxygen Species) 

which are generated during oxidative phosphorylation
334

. UCP2 plays a role in insulin 

secretion in β-islets 332, 335-337
. Several in vivo studies of the role of UCP2 in insulin secretion 

lead to controversial results
335, 336

. However, the hypothesis of insulin secretion inhibition by 

UCP2 has been shown by UCP2 overexpression or inhibition in isolated pancreatic β-cells
337

. 

In addition to insulin secretion, UCP2 has also been reported to be involved in glucagon 

secretion from pancreatic α-islets
338

. Indeed, deletion of UCP2 in α-islets leads to impaired 

glucagon secretion during fasting.  
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Recently, β-islets specific Bmal1 knockout mice exhibit high accumulation of ROS and as a 

consequence high UCP2 activity. Nrf2 (Nuclear factor erythroid 2-related factor 2), a 

regulator of antioxidant, has been shown to be a direct target of Bmal1. In this model, its own 

expression and antioxidant Nrf2-induced expression are disrupted contributing in ROS 

accumulation
314

. In addition, oxidative phosphorylation has been reported to be dependent on 

circadian clock
339

. Mitochondrial fatty acid oxidation exhibits a circadian oscillation in wild-

type mice. This phenomenon has been shown to be dependent on clock gene in MEF (Mouse 

Embryonic Fibroblast) deleted of Clock, or Bmal1 or Cry1/2. It appears thus that 

mitochondria and circadian clock play interconnected role in insulin resistance and as a 

consequence in type 2 diabetes.  
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CONCLUSION  AND  FURTHER  WORK 

 

During this doctoral work, we were interested in the influence of circadian clock on 

metabolism. We thus present evidences of circadian clock orchestrated activation of signaling 

pathways. Indeed, AMPK, PI3K/AKT, ERK pathways are rhythmically activated leading to 

rhythmic modulation of TORC1. We showed that TORC1 downstream targets, 4EBP1 and 

RPS6, exhibit also rhythmic phosphorylation leading to rhythmic translation initiation. The 

study of these mechanisms in circadian clock deficient mice (Bmal1 and Cry1/2 KO mice) led 

us to clearly link them to circadian core clock. As a consequence, we demonstrated major role 

of circadian clock in ribosome biogenesis which occurs mostly at the beginning of the dark 

phase when energy and nutrients are available in sufficient amount, which is during the night 

in rodents
340

.  

 

We reported also that signaling pathways activation depends on circadian clock indirectly. 

Indeed, SCP2, a lipid transporter from the endoplasmic reticulum to the lipid rafts localized in 

plasma membrane, is rhythmically expressed in liver. SCP2 deficiency leads to defects in the 

activation of PI3K/AKT and ERK signaling pathways in mice liver. It may suggest thus that 

ribosome biogenesis could be also influenced by circadian clock controlled-lipid trafficking 

but this remains to be investigated. In addition, Scp2 KO mice exhibit impairments in insulin, 

triglycerides and cholesterol concentration in serum. As these mice present a longer free 

running period, it is possible to envisage a shift in feeding behavior. As a consequence of 

Scp2 deletion, PPARα and SREBP target genes expressions are impaired in liver, reflecting 

thus its impacts in lipid homeostasis. Rhythmic PPARα activation has been shown to be 
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dependent on the circadian clock via PAR bZip-dependent fatty acids release 
300

. 

Interestingly, while PPARα itself and its target genes are down regulated in PAR bZip KO 

mice liver, SCP2 deficiency leads to their up regulation. As both PAR bZip and SCP2 

expressions are circadian clock controlled, it suggests that PPARα pathway activation is 

restricted at a precise time controlled by circadian clock. SREBP signaling pathway is 

stimulated by insulin dependent PI3K/AKT – TORC1 pathways
215

. We thus suppose that 

delayed circulating insulin in Scp2 KO mice may lead to upreglation of PI3K/AKT – TORC1 

pathways and in fine SREBP activation. Further genomic analysis may help in the 

understanding of SCP2 controlled PPARα and SREBP pathways hyper activation. 

Plasma membrane lipid rafts, as preferential site of receptors, have been linked to promotion 

of signaling pathways activation for example PI3K/AKT and ERK/MAPK
306-308

. While SCP2 

is involved in lipid rafts formation, we surprisingly found signaling pathways hyperactivation 

in Scp2 deleted mice liver. SCP2 is one intracellular lipid transporter among others in the cell. 

SCP2 deficiency may thus provoke compensatory effects leading to upregulation of other 

lipid transporters which lipid specificity would be different. As a consequence, this 

phenomenon may lead to changes in the nature of components constituting lipid rafts. To 

answer this question, investigation of lipid raft composition would be helpful.  

 

All these signaling pathways play crucial role in metabolic processes. For example, 

PI3K/AKT signaling pathway activation via insulin is involved in lipogenesis through SREBP 

activation
215

. Abnormal high insulin levels in serum could thus induce abnormal lipogenesis 

and as a consequence deregulated glucose/lipid homeostasis. This is what happens in case of 

insulin resistance caused by metabolic defects. In order to better understand involvements of 

circadian clock in metabolic defects, we generated and characterized genetic obese Bmal1 KO 
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mice. Besides premature death of Ob
Ob/+ 

Bmal1
KO/KO

 and Ob
Ob/Ob 

Bmal1
KO/KO

 (ObKO) mice 

which remains unexplained, ObKO mice exhibit obese phenotype accompanied with 

hyperglycemia, glucose resistance, but insulin sensitivity and reduced liver steatosis. In 

parallel, diet-induced obese Bmal1 KO mice present the same characteristics, showing thus a 

protectived effect of Bmal1 deletion against insulin resistance. To further investigate how 

BMAL1 is involved in this phenomenon, it would be interesting first to characterized feeding 

and drinking behavior of both obese Bmal1 KO mice models. It has been shown, both Bmal1 

KO and Clock
Δ19

 mutant mice present defects in pancreatic insulin secretion
313, 323

. Glucose 

stimulated-insulin secretion assay in β-islets of our models would give us more precise 

information on endocrine pancreatic function. As oxidation level through ROS detection
314

 

and the activity of UCP2
330, 333-335

 have been linked to defect of pancreatic insulin secretion, 

further investigation of mitochondrial function may give answers in understanding of insulin 

resistance mechanisms. Energy balance regulation is appealing different tissues such as liver, 

adipose tissues, muscles, and pancreas. Genomic and proteomic studies on these different 

tissues are necessary to have information on regulation of signaling pathways involved in 

energy balance.    
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EXPERIMENTAL  PROCEDURES 

 

I. Animal experiments 
 

All animal studies were conducted in accordance with our regional committee for ethics in the 

regulations of the veterinary office of the Canton of Vaud.  

The generation of obese Bmal1 knockout mice resulted in crossing Ob
Ob/+

 Bmal1
KO/+

 mice. 

The male mice harboring the following genotyping were used for the experiments: Ob
+/+

 

Bmal1
+/+

, Ob
+/+

 Bmal1
KO/KO

, Ob
Ob/+

 Bmal1
KO/KO

, Ob
Ob/Ob

 Bmal1
+/+

, and Ob
Ob/Ob

 Bmal1
KO/KO

.  

Bmal1 floxed mice, previously described (Storch et al, 2007) were crossed with the mice 

expressing the CRE recombinase under the control of the CMV promoter (Schweng et al, 

1995) to obtain Bmal1 knockout mice. Eight-week-old Bmal1 wild-type and knockout male 

mice were fed with high-fat or control diets for 12 weeks to study the diet-induced obesity.  

In all experiments, unless noted otherwise, mice are maintained under standard animal 

housing conditions, with free access to the food and water and in a 12 hours light / 12 hours 

dark cycles. Mice were weighted every week and were sacrificed at ZT0 and ZT12. 

 

 Body composition analysis A.

 

For Ob.Bmal1 KO mice, echoMRI experiments are done at 6 weeks and Bmal1 WT and KO 

mice in high fat and control diets undergo EchoMRI at 12, 15 and 18 weeks. These 

measurements to determine the body composition are performed at ZT3. Mice are weighted 
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and their size between the snout and the tail base was measured in order to determine the body 

mass index (BMI). 

 

 Glycemia measurements B.

 

For Ob.Bmal1 KO mice, the experiment is done at 10 weeks and Bmal1 WT and KO mice in 

high fat and control diets undergo these glycemia measurements at 12, 15 and 18 weeks. Mice 

undergo glycemia measurements (Breeze2 system, Bayer) after 15 hours of starvation (ZT3) 

and after 6 hours of refeeding (ZT9). At both time-points, blood samples from the vain tail are 

collected and sera are obtained after a 10 minute-centrifugation at 10 000 rpm at room 

temperature. Sera are kept at -80°C until analysis.   

 

 Glucose tolerance test C.

 

At 11 weeks, Ob.Bmal1 KO mice undergo a glucose tolerance test at ZT3.  Concerning the 

Bmal1 WT and KO mice put under high-fat or control diet, glucose tolerance tests are 

performed at 13, 16 and 19 weeks. The glucose tolerance test is performed after 15 hours of 

starvation (ZT3). Glycemia measurements (Breeze2 system, Bayer) occurred 0, 15, 30, 60, 90, 

120 and 180 minutes after the intra-peritoneal injection of glucose (1g/Kg).  
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 Insulin tolerance test D.

 

At 12 weeks, Ob.Bmal1 KO mice undergo an insulin tolerance test at ZT3.  Concerning the 

Bmal1 WT and KO mice put under high-fat or control diet, glucose tolerance tests are 

performed at 14, 17 and 20 weeks. At ZT3, glycemia measurements (Breeze2 system, Bayer) 

occurred 0, 15, 30, 60, 90, 120 and 180 minutes after the intra-peritoneal injection of insulin 

(1UI/Kg for the Ob.Bmal1 KO mice line and 0.5UI/Kg for Bmal1 WT and KO mice put under 

high-fat or control diet).  

 

II. Serum chemistry analysis 

 

Blood samples are collected every 2 hrs and sera are obtained after a centrifugation of 10 min 

at 10 000 rpm at room temperature. Sera are kept at -80°C until analysis. Insulin, glucose, 

cholesterol and triglycerides are respectively measured accordingly with the protocols of the 

Mouse Insulin ELISA kit (Mercodia), and the Glucose, Cholesterol, Triglycerides LabAssay 

kits (Wako). 

 

III. Glycogen extraction  

 

The tissue glycogen extractions have been previously described
341

. Briefly, frozen tissues 

were incubated 20 minutes at 100°C in KOH solution. Ethanol 95% solution is added and a 

20 minutes centrifugation at 840g at 4°C allows the precipitation of glycogen in a pellet. The 
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glycogen is then diluted in water. Glycogen measurements are performed in phenol 5% and 

sulphuric acid solutions. The optic density used is 490 nm.  

 

IV. Liver slices 
 

Liver pieces were fixed overnight in 10% formalin solution. Pieces were then washed three 

times in PBS solution. Liver slices underwent standard Hematoxylin/Eosin coloration.  
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