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The Ptk2-Pma1 pathway enhances tolerance to terbinafine in 
Trichophyton rubrum
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ABSTRACT The increasing prevalence of dermatophyte resistance to terbinafine, a key 
drug in the treatment of dermatophytosis, represents a significant obstacle to treatment. 
Trichophyton rubrum is the most commonly isolated fungus in dermatophytosis. In 
T. rubrum, we identified TERG_07844, a gene encoding a previously uncharacterized 
putative protein kinase, as an ortholog of budding yeast Saccharomyces cerevisiae 
polyamine transport kinase 2 (Ptk2), and found that T. rubrum Ptk2 (TrPtk2) is involved 
in terbinafine tolerance. In both T. rubrum and S. cerevisiae, Ptk2 knockout strains were 
more sensitive to terbinafine compared with the wild types, suggesting that promotion 
of terbinafine tolerance is a conserved function of fungal Ptk2. Pma1 is activated through 
phosphorylation by Ptk2 in S. cerevisiae. Overexpression of T. rubrum Pma1 (TrPma1) in 
T. rubrum Ptk2 knockout strain (ΔTrPtk2) suppressed terbinafine sensitivity, suggesting 
that the induction of terbinafine tolerance by TrPtk2 is mediated by TrPma1. Further­
more, omeprazole, an inhibitor of plasma membrane proton pump Pma1, increased the 
terbinafine sensitivity of clinically isolated terbinafine-resistant strains. These findings 
suggest that, in dermatophytes, the TrPtk2-TrPma1 pathway plays a key role in promot­
ing intrinsic terbinafine tolerance and may serve as a potential target for combinational 
antifungal therapy against terbinafine-resistant dermatophytes.

KEYWORDS dermatophytosis, terbinafine resistance, proton pump, Pma1, Ptk2, 
omeprazole, Trichophyton rubrum

D ermatophytes are fungal pathogens that infect the surface tissues of mammals and 
other animals, causing symptoms such as itching and nail deformities. Dermato­

phytes can also exacerbate allergies in patients with asthma, significantly reducing their 
quality of life (1, 2). Antifungal drugs have been developed for fungal infections, and 
terbinafine, with its ability to inhibit squalene epoxidase in the ergosterol synthesis 
pathway, has been a highly effective medicine. However, terbinafine-resistant fungi have 
emerged in recent years (3–5), and the prevalence of resistant strains is a serious concern 
for the future treatment of dermatophytosis.

Recently, we reported that resistance to terbinafine is caused by mutations in 
squalene epoxidase, the target of terbinafine (6). The L393F and F397L mutations in 
squalene epoxidase are the major causes of terbinafine resistance reported worldwide (3, 
6–8). However, therapeutic targets and compounds to alleviate this resistance remain to 
be identified.

Drug repurposing is the practice of using a therapeutic agent that is already approved 
for the treatment of another disease. In the field of infectious diseases, drug repurposing 
has become a significant research strategy to discover effective therapeutics against 
drug-resistant bacteria (9, 10). Previous reports encourage the application of drug 
repurposing to aid in the research and development of therapies for dermatophytosis.

In the present study, we found that ablation of the gene encoding the putative 
protein kinase TERG_07844 in Trichophyton rubrum resulted in the decrease of tolerance 
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to terbinafine. Our findings suggest that the TERG_07844 gene product has a homolo­
gous function to the protein kinase Ptk2 of budding yeast and that the proton pump 
Pma1 functions downstream of the TERG_07844 gene product in terbinafine tolerance. 
We also found that omeprazole, a proton pump inhibitor approved for clinical use, 
potentiated the antifungal effect of terbinafine on terbinafine-resistant isolates. These 
results suggest that the Ptk2-Pma1 pathway enhances resistance to terbinafine in 
Trichophyton rubrum and could be a potential target for antifungal treatment.

RESULTS

TERG_07844 is involved in terbinafine tolerance

Protein kinases are involved in a wide range of physiological activities, including the 
regulation of intracellular ion concentrations and responses to external stresses such 
as antifungal drugs (11). Whole-genome analyses of dermatophytes have revealed a 
large number of genes encoding kinases of unknown function (12). Among these genes, 
we focused on several genes that are conserved among dermatophytes and are highly 
expressed in T. rubrum (13–15). In efforts to characterize the deletion mutants of these 
genes, we found that deletion of TERG_07844 leads to terbinafine sensitivity.

A TERG_07844 knockout stain was generated from the terbinafine-susceptible T. 
rubrum strain CBS118892 by replacing the TERG_07844 open reading frame (ORF) with 
the neomycin resistance gene (nptII) cassette (ΔTERG_07844; Fig. 1A). We also generated 
a revertant strain (eYFP-TERG_07844C) by random integration of the eYFP-TERG_07844 
gene, which expresses the TERG_07844 gene product (XP_047604827) tagged with 
enhanced yellow fluorescent protein (eYFP) at the N-terminus (eYFP- XP_047604827) 
to obtain an information of the TrPtk2 subcellular localization, in the genome of 
ΔTERG_07844.

To confirm the loss of the TERG_07844 ORF, PCR was performed using primer pairs 
designed within the TERG_07844 ORF (primers 1 and 2 in Fig. 1A) and the neomycin 
resistance gene nptII cassette (primers 3 and 4 in Fig. 1A). PCR using the former primer 
pair amplified the PCR products in the parental strain CBS118892 and eYFP-
TERG_07844C, but not in ΔTERG_07844 (Fig. 1B). Conversely, PCR using the latter primer 
pair did not amplify the PCR products in CBS118892 but did in ΔTERG_07844 and eYFP-
TERG_07844C (Fig. 1C). In eYFP-TERG_07844C, two bands were amplified because of two 
selection markers, nptII and hph genes (Fig. 1C). Intracellular eYFP signals in eYFP-
TERG_07844C were confirmed by confocal microscopy (Fig. 1D).

To analyze the terbinafine susceptibility of T. rubrum CBS118892, ΔTERG_07844, and 
eYFP-TERG_07844C, we cultured these strains on agar plates in the presence and 
absence of low concentrations of terbinafine (Fig. 1E and G) and measured the diameter 
of the colonies (Fig. 1F and H). The mycelial growth of ΔTERG_07844 was comparable to 
that of CBS118892 and eYFP-TERG_07844C on the agar medium without terbinafine (Fig. 
1E and F). However, on agar medium containing terbinafine, the mycelial growth of 
ΔTERG_07844 was significantly reduced (Fig. 1G and H). These results suggest that 
TERG_07844 is involved in terbinafine tolerance in T. rubrum.

XP_047604827 encoded by TERG_07844 in T. rubrum is phylogenetically and 
functionally similar to S. cerevisiae Ptk2

To gain insight into TERG_07844, we performed a phylogenetic tree analysis to deter­
mine which kinases in S. cerevisiae are similar to XP_047604827 encoded by TERG_07844 
(Fig. 2A). The phylogenetic tree revealed that XP_047604827 is grouped with the 
halotolerance kinases Sat4 (accession number NP_009934) and Hal5 (accession number 
NP_012370) from S. cerevisiae. Deficiencies in these kinases result in the decrease of high 
salt tolerance in S. cerevisiae (16). The polyamine transport kinase, Ptk2 (accession 
number NP_012593), was also found in proximity to XP_047604827. In contrast to Sat4 
and Hal5, the absence of Ptk2 has been reported to cause high salt tolerance in S. 
cerevisiae (17, 18). Near XP_047604827, the protein XP_964224, identified as a Ptk2 
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FIG 1 Contribution of the TERG_07844 (TrPtk2) gene to terbinafine sensitivity in Trichophyton rubrum. (A) Schematic representation of the TERG_07844 

(TrPtk2) wild-type allele (top, CBS118892), deletion construct (middle, ΔTERG_07844), and revertant construct (bottom, eYFP-TERG_07844C). (B) PCR analysis of 

CBS118892 and ΔTERG_07844 (TrPtk2) and eYFP-TERG_07844C (eYFP-TrPtk2C) using primer pairs 1 and 2 . (C) PCR analysis of CBS118892 and ΔTERG_07844 

(TrPtk2) and eYFP-TERG_07844C (eYFP-TrPtk2C) using primer pairs 3 and 4. (D) Spores of eYFP-TERG_07844C (eYFP-TrPtk2C) were inoculated on SD for 2 days. 

The eYFP signals of the sample were observed under confocal microscopy and shown in white. Scale bar is 10 µm. (E–H) Terbinafine susceptibility of CBS118892, 

(Continued on next page)
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ortholog in the filamentous fungus Neurospora crassa (19), was also found (Fig. 2A). To 
determine whether XP_047604827 is functionally related to either Sat4/Hal5 or Ptk2, we 
examined the response of T. rubrum ΔTERG_07844 in a medium containing high salt 
concentrations. Compared with the terbinafine-sensitive strain CBS118892, 
ΔTERG_07844 exhibited enhanced mycelial growth in the presence of 0.5 M NaCl and 
displayed high salt tolerance, like the Ptk2-deficient S. cerevisiae strain ΔScPtk2 (17, 18). 
Moreover, the sensitivity of ΔTERG_07844 to compounds to which ΔScPtk2 is resistant 
was investigated (18). The results showed that ΔTERG_07844 is resistant to spermine and 
lithium chloride (Fig. 2B and C). These salt tolerances were significantly reduced in eYFP-
TERG_07844C (Fig. 2B and C). These results suggest that XP_047604827 encoded by 
TERG_07844 has phylogenetic and functional similarities to the Ptk2 protein of budding 
yeast. Consequently, we refer to T. rubrum XP_047604827 encoded by TERG_07844 as 
TrPtk2 in this study.

To investigate the general impact of fungal Ptk2 on terbinafine resistance, we 
assessed the sensitivity of the Ptk2-deficient S. cerevisiae strain ΔScPtk2 (Table 1) to 
terbinafine. As previously reported, ΔScPtk2 was resistant to spermine (Fig. 2D, left and 
center panels). Interestingly, ΔScPtk2 was sensitive to terbinafine (Fig. 2D, right panel), 
similar to ΔTrPtk2 (Fig. 1H). These observations suggest that the contribution of fungal 
Ptk2 to terbinafine tolerance is evolutionarily conserved in fungi.

Overexpression of TrPma1 suppresses the terbinafine sensitivity of ΔTrPtk2

In S. cerevisiae, the proton pump Pma1 is an essential protein for fungal growth (20). 
Pma1 is the most established substrate of Ptk2 and is activated by this kinase through 
phosphorylation in S. cerevisiae (21, 22). To investigate if TrPma1 functions downstream 
of TrPtk2, we overexpressed TrPma1 tagged with eYFP at its C-terminus (TrPma1-eYFP) in 
ΔTrPtk2 and examined whether TrPma1 could complement the terbinafine sensitivity of 
ΔTrPtk2. On terbinafine-free agar medium (control), T. rubrum CBS118892 (parent), 
ΔTrPtk2, eYFP-TrPtk2C (revertant), and TrPma1OE-eYFP (ΔTrPtk2 overexpressing TrPma1-
eYFP) (Table 1) showed similar growth rates (Fig. 3A). Mycelial growth was inhibited in T. 
rubrum ΔTrPtk2 not only on agar media containing terbinafine but also on agar media 
containing other squalene epoxidase inhibitors, namely, liranaftate and butenafine. 
Conversely, the mycelial growth in the presence of squalene epoxidase inhibitors was 
restored in the revertant strain eYFP-TrPtk2C and TrPma1OE-eYFP (Fig. 3A). These results 
suggest that TrPma1 acts downstream of TrPtk2 in the promotion of squalene epoxidase 
inhibitor resistance.

Since Pma1 functions as a proton pump on the plasma membrane in S. cerevisiae (23), 
TrPtk2 could potentially enhance resistance to terbinafine by regulating the subcellular 
localization of TrPma1. We overexpressed TrPma1-eYFP in CBS118892 and ΔTrPtk2, then 
cultivated these strains with or without terbinafine, and examined the subcellular 
localization of TrPma1-eYFP (Fig. 3B). In CBS118892, TrPma1-eYFP localized to the fungal 
cell surface, as reported for other fungal Pma1 (Fig. 3B). The membrane localization of 
TrPma1-eYFP was not affected in this strain cultured on terbinafine-containing agar 
medium, indicating that terbinafine does not disrupt the subcellular localization of 
TrPma1-eYFP. The localization of TrPma1-eYFP on the fungal cell surface was not 
disrupted in ΔTrPtk2 in the presence or absence of terbinafine. These results suggest that 
TrPtk2 is not involved in the regulation of TrPma1 subcellular localization and that TrPtk2 

FIG 1 (Continued)

ΔTERG_07844, and eYFP-TERG_07844C, in the presence and absence of low concentrations of terbinafine. (E) Spores of CBS118892, ΔTERG_07844 (TrPtk2), and 

eYFP-TERG_07844C (eYFP-TrPtk2C) were inoculated on RPMI 1640 for 14 days. (F) The diameter of the mycelium on RPMI 1640 after 14 days was measured. The 

data shown are mean ± SD. The dots on the graph represent the diameter of individual samples (n = 3). (G) Spores of CBS118892, ΔTERG_07844 (TrPtk2), and 

eYFP-TERG_07844C (eYFP-TrPtk2C) were inoculated on RPMI 1640 with 5 ng/mL of terbinafine for 14 days. (H) The diameter of the mycelium on RPMI 1640 with 

5 ng/mL terbinafine after 14 days was measured. The data shown are mean ± SD. The dots on the graph represent the diameter of individual samples (n = 10).
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FIG 2 TERG_07844 gene product XP_047604827 of T. rubrum is phylogenetically and functionally similar to Ptk2. (A) Phylogenetic tree of fungal proteins related 

to XP_047604827 (TrPtk2) encoded by TERG_07844 inferred using the maximum likelihood method. The optimal tree is displayed. Evolutionary distances were 

estimated using the JTT model. (B–C) Effect of spermine and various salts on TERG_07844 (TrPtk2) growth. Spores of CBS118892, ΔTERG_07844 (TrPtk2), and 

(Continued on next page)
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promotes terbinafine tolerance by a mechanism other than the regulation of TrPma1 
subcellular localization.

Omeprazole enhances the antifungal activity of terbinafine in both terbina­
fine-susceptible and resistant strains

TrPtk2 inhibitors may be effective compounds for combination therapy for dermatophy­
tosis, as ΔTrPtk2 displayed greater sensitivity to terbinafine compared with the terbina­
fine-susceptible strain CBS118892 (Fig. 1F and G). However, no fungal Ptk2 inhibitors 
have been identified to date. We hypothesized that pharmacological inhibition of 
Pma1 might improve dermatophyte sensitivity to terbinafine, since TrPma1 functions 
downstream of TrPtk2 (Fig. 3C). We assessed the growth characteristics of CBS118892 
on agar medium containing terbinafine and omeprazole, an inhibitor of Pma1 in the 
yeast (24). Terbinafine alone had a significant inhibitory effect on the mycelial growth of 
CBS118892 dermatophytes (Fig. 4A and B). Furthermore, the combination of omeprazole 
and terbinafine resulted in greater inhibition of mycelial growth than either omeprazole 
or terbinafine treatment alone (Fig. 4A and B). These results suggest that omeprazole 
increases the terbinafine sensitivity of terbinafine-susceptible dermatophyte strains.

The resistance of T. rubrum to terbinafine is mainly due to specific mutations in the 
squalene epoxidase. The mutations L393F and F397L showed the highest minimum 
inhibitory concentrations (7). We investigated if omeprazole could enhance terbinafine 
sensitivity in resistant strains. For this purpose, we used clinical isolates of terbinafine-
resistant strains that had specific mutations in the squalene epoxidase gene. These 
included strain TIMM20092 with the F397L mutation and strains TIMM20093 and 
TIMM20094, both with the L393F mutation (6). In these terbinafine-resistant strains, both 
omeprazole and terbinafine exhibited inhibition of mycelial growth individually, except 
for terbinafine-treated TIMM20094, whose mycelial diameter was comparable with that 
of the vehicle control (Fig. 4C and D). Interestingly, co-administration of terbinafine and 
omeprazole resulted in more pronounced inhibitory effects than either medicine alone 

FIG 2 (Continued)

eYFP-TERG_07844C (eYFP-TrPtk2C) were inoculated on SDA with 2 mM spermine, 50 mM LiCl, 0.5 M NaCl, and 0.5 M KCl and incubated for 14 days (B). The 

diameter of the mycelium was measured (C). The data shown are mean ± SD. The dots on the graph represent the diameter of individual samples (n = 3 for 

spermine; n = 10 for others). (D) Acquired resistance of S. cerevisiae to spermine and susceptibility to terbinafine after deletion of the gene encoding Ptk2. Parent 

and ΔScPtk2 were grown in synthetic defined medium, and serial dilutions were dropped on synthetic defined agar plates with 2 mM spermine or 50 µg/mL 

terbinafine. Growth was measured after 3 days.

TABLE 1 Fungal strains used in this study

Species and strains Description Reference

Trichophyton rubrum
  CBS118892 A terbinafine-sensitive clinical isolate from a patient nail sample. (12)
  ΔTERG_07844

(ΔTrPtk2)
The TERG_07844 ORF was replaced with the neomycin resistance gene (nptII) in the strain. This strain was 

derived from CBS118892.
This study

  eYFP-TERG_07844C 
(eYFP -TrPtk2C)

A complementary (revertant) strain by random integration of the N-terminal eYFP tag-fused TERG_07844
gene into the ΔTERG_07844 (ΔTrPtk2) genome.

This study

  TrPma1OE-eYFP ΔTrPtk2 overexpressing eYFP-tagged TrPma1 by random integration of the C-terminal eYFP tag-fused
TrPma1 gene into the ΔTERG_07844 (ΔTrPtk2) genome.

This study

  TIMM20092 A terbinafine-resistant clinical isolate has a F397L in the squalene epoxidase. (6)
  TIMM20093 A terbinafine-resistant clinical isolate has a L393F in the squalene epoxidase. (6)
  TIMM20094 A terbinafine-resistant clinical isolate has a L393F in the squalene epoxidase. (6)
Saccharomyces cerevisiae
  Parent A strain harboring pYES2-HTH derived from BY4741 (purchased from Horizon Discovery Ltd.). This study
  ΔScPtk2 A strain harboring pYES2-HTH derived from YJR059W (a Ptk2 deletion strain derived from BY4741)

(purchased from Horizon Discovery Ltd.).
This study
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(Fig. 4C and D). These results suggest that omeprazole enhances terbinafine sensitivity 
even in terbinafine-resistant dermatophytes.

DISCUSSION

The present study suggests that the fungal Ptk2-Pma1 pathway promotes tolerance to 
squalene epoxidase inhibitors, including terbinafine (Fig. 5). Although terbinafine has 
potent antifungal activity on its own, the finding in this study that inhibition of the 
TrPtk2-TrPma1 pathway enhances the efficacy of terbinafine is clinically important in 
terms of overcoming terbinafine-resistant strains. Inhibition of the ATPases, including 
kinases and proton pumps, has recently emerged as a novel therapeutic approach 
against drug-resistant dermatophytes (25). Our finding that the antifungal efficacy of 
terbinafine against terbinafine-resistant dermatophytes is enhanced by omeprazole 
underscores the importance of this strategy. The veterinary antiparasitic milbemycin 
has been reported to promote the activity of the antifungal drugs itraconazole and 
voriconazole via inhibition of the dermatophyte efflux pump MDR3 (26). Omeprazole, 
which was found to enhance the antifungal effect of terbinafine in this study, has an 
advantage over milbemycin in terms of clinical applicability as it is a drug approved 
for human use. This study also suggests that compounds that potentiate the activity of 
antifungals can be found by repurposing non-antifungal drugs.

Based on the studies in S. cerevisiae (21, 22), we propose that TrPma1 functions 
downstream of TrPtk2 in the promotion of tolerance to terbinafine. Consistent with 
this idea, we observed that the terbinafine susceptibility of T. rubrum was increased 
when TrPma1 was inhibited by omeprazole and that the terbinafine sensitivity of the 
Trptk2 mutant was ameliorated upon TrPma1 overexpression. Nevertheless, it remains 
inconclusive whether and how TrPtk2 functions upstream of TrPma1 in T. rubrum, as 
these observations could have a different basis. In future studies, it will be important to 
demonstrate the TrPtk2-dependent phosphorylation of TrPma1 in T. rubrum and that the 
activity of TrPma1 depends on TrPtk2. In addition, the molecular mechanism by which 
the fungal Ptk2-Pma1 pathway contributes to terbinafine tolerance remains unknown. As 

FIG 3 Overexpression of TrPma1 suppresses terbinafine sensitivity of TERG_07844 deletion mutant. (A) Spores of strains were inoculated on RPMI 1640 

with 5 ng/mL terbinafine, 6.4 ng/mL liranaftate, or 10 ng/mL butenafine and incubated for 14 days. (B) Spores of CBS11882 + TrPma1 eYFP and TrPma1OE-

eYFP(ΔTrPtk2 + TrPma1 eYFP) were inoculated on RPMI 1640 and incubated for 2 days or on RPMI 1640 with 0 or 1 µg/mL terbinafine for 3 h. The eYFP signals of 

the sample were observed under confocal microscopy and shown in white. Scale bars are 10 µm.
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FIG 4 The proton pump inhibitor, omeprazole, enhances the antifungal activity of terbinafine in terbinafine-resistant isolates. (A and B) Combination of 

omeprazole and terbinafine resulted in greater inhibition of mycelial growth than either omeprazole or terbinafine treatment alone. (A) Spores of CBS118892 

were inoculated on SDA with 0 or 20 µg/mL omeprazole and/or 1 ng/mL terbinafine and incubated for 15 days. (B) The diameters of the mycelium on SDA with 0 

or 20 µg/mL omeprazole and/or 1 ng/mL terbinafine were measured after 15 days of incubation. The data shown are mean ± SD. The dots on the graph represent

(Continued on next page)
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there was no change in the subcellular localization of TrPma1-EYFP in the TrPtk2 mutant, 
TrPtk2 control of TrPma1 was not through regulation of the subcellular localization of 
TrPma1. In S. cerevisiae, Pma1 is phosphorylated by Ptk2 and exports protons from 
the cell (21, 22). The drug:H+ antiporter major facilitator superfamily (MFS) in budding 
yeast requires the proton gradient that crosses the plasma membrane for drug efflux 
(27). TrPtk2 may phosphorylate TrPma1, thereby facilitating the formation of the proton 
gradient necessary for the drug efflux pump to export terbinafine. An efflux pump MDR2 
has been identified as a transporter for terbinafine excretion in dermatophytes (28). 
Since TrPtk2 has also been reported to promote polyamine, Na+, and Li+ uptake (29–31), 
it is possible that the TrPtk2-TrPma1 pathway contributes to the acquisition of terbina­
fine resistance by other mechanisms. Further functional analysis of the TrPtk2-TrPma1 
pathway is necessary to better understand terbinafine resistance in dermatophytes. The 
increased sensitivity to terbinafine of the ΔScPtk2 strain of S. cerevisiae lacking Ptk2 
demonstrated in this study will also allow S. cerevisiae to be used for further studies as a 
genetic analysis tool alongside studies in T. rubrum.

The terbinafine-resistant dermatophyte isolates used in this study have the L393F 
and F397L substitution mutations in squalene epoxidase (6). The ability of omeprazole 
to enhance the antifungal activity of terbinafine against these clinical isolates with the 
major known resistance mutations is critical for therapeutic applications. Furthermore, 
we found that all three squalene epoxidase inhibitors used in the present study exhibited 
enhanced antimicrobial activity against ΔTrPtk2 compared with the terbinafine-suscepti-
ble parent strain CBS118892. The potential enhanced antifungal activities of squalene 
epoxidase inhibitors other than terbinafine are important for the further analysis of the 
function of TrPtk2 as a new medication target and its clinical translation.

MATERIALS AND METHODS

Fungal and bacterial strains and culture conditions

Agrobacterium tumefaciens EAT105 (32) was cultured at 28°C in Agrobacterium induction 
medium supplemented with 0.2 mM acetosyringone. Fungal strains used in this study 
are listed in Table 1. Trichophyton rubrum CBS118892, a clinical isolated strain from a 
patient nail sample, was used (12). Terbinafine-resistant T. rubrum isolates (TIMM20092, 
TIMM20093, and TIMM20094) (6) were cultured at 28°C on Sabouraud dextrose agar 
(SDA; 1% Bacto peptone, 4% glucose, 1.5% agar, and pH unadjusted) or 0.165 M 

FIG 4 (Continued)

the diameter of individual samples (n = 3). (C and D) Decreased terbinafine resistance in terbinafine-resistant isolates in the presence of omeprazole. (C) Spores of 

TIMM20092, TIMM20093, and TIMM20094 were inoculated on SDA with 0 or 20 µg/mL omeprazole and/or 2 µg/mL terbinafine and incubated for 10 days. (D) The 

diameters of the mycelium on SDA with 0 or 20 µg/mL omeprazole and/or 2 µg/mL terbinafine were measured after 10 days of incubation. Since TIMM20092 

cultured on SDA agar with 20 µg/mL omeprazole and 2 µg/mL terbinafine showed almost no mycelial growth, the diameter was designated as the diameter of 

the original spot. The data shown are mean ± SD.The dots on the graph represent the diameter of individual samples (n = 3).

FIG 5 Model of terbinafine tolerance mechanism in T. rubrum. Terbinafine tolerance in Trichophyton rubrum might be 

promoted by the phosphorylation of TrPma1 by TrPtk2. The tolerance of T. rubrum to terbinafine is decreased by TrPtk2 

knockout and omeprazole treatment.
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MOPS-buffered RPMI 1640 agar. S. cerevisiae BY4741 and YJR059W were purchased from 
Horizon Discovery Ltd. (California). Parent (BY4741/pYES2-HTH) and ΔScPtk2 (YJR059W/
pYES2-HTH) were cultured at 30°C on yeast extract peptone dextrose (YPD) or synthetic 
defined medium. Conidia of T. rubrum were prepared as described previously (33). 
pYES2-HTH was purchased from addgene (Massachusetts). For the spot assay, overnight-
cultured yeast suspension was diluted with a synthetic defined medium to an optical 
density of 0.2 (=1.6 × 106 CFU/mL). The suspension was serially diluted, and 3 µL of each 
suspension was plated onto a synthetic defined agar plate. The samples were incubated 
at 28°C for 3 days.

Plasmid construction

A TERG_07844 (TrPtk2)-targeting vector, pAg1-ΔTrPtk2, was constructed using the 
following procedure. First, approximately 1.6-kb fragments of the 5′ and 3′-UTR regions 
of the TERG_07844 ORF were amplified from T. rubrum genomic DNA via PCR with 
specific primer pairs (F: 5′-GAAGGAGTCTTCTCCTGATCTTCAGCCAAGCAGGG-3′ and R: 5′-T
CAATATCATCTTCTATCGTCGAGTGGCTTGAGTG-3′; F2: 5′-CGTCATGAATCATCTGCAACTGATC
ACTGACTGCG−3′ and R2: 5′-GTGAATTCGAGCTCGCCCGCGAAGATCACAGATCA−3′). The 
plasmid backbone of pAg and the antibiotic resistance gene cassette were obtained 
by PCR amplification from the pAg1-3′-UTR of ARB_02021. Finally, these four fragments 
were fused together using the In-Fusion system (Takara Bio, Inc., Japan).

To construct a vector for TrPtk2 complementation (pCS2-hph-eYFP-TrPtk2), the 
following steps were performed. First, the antibiotic resistance gene cassette (hph) 
was inserted between the NotI and KpnI sites of pCS2+ N-terminal eYFP, which was 
generated by inserting the eYFP gene into the BamHI site of pCS2+ (kind gift from S. 
Kurisu at Tokushima University) (34, 35). Subsequently, the tef1 promoter (Ptef1) was 
amplified from the T. indotineae genome by PCR with a specific primer pair (F: 5′-GC
GGTCGACCCACTAAGACTCCTTCAAGCTCC-3′ and R: 5′-GCGAAGCTTGGTGACGGTGTATTTT
TGTGTGG-3′) and inserted between the SalI and HindIII sites of the pCS2+ N-terminal 
eYFP-derived vector. Finally, the TrPtk2 gene was amplified from T. rubrum cDNA via PCR 
using a specific primer pair (F: 5′- GCTGTACAAGGGATCCATGGCCGGTTCGTCTACAT-3′ and 
R: 5′-GTTCTAGAGGCTCGATTAGTTGTAGCCATCGCCCA-3′), and the fragment was inserted 
between the BamHI and XhoI sites of the above vector.

To construct a vector for TrPma1-eYFP overexpression (pCS2-hph-TrPma1-eYFP), the 
following steps were performed. First, the antibiotic resistance gene cassette (hph) was 
inserted between the NotI and KpnI sites of pCS2+ C-terminal eYFP (kind gift from S. 
Kurisu at Tokushima University) (34, 35). Subsequently, the tef1 promoter (Ptef1) was 
amplified from the T. indotineae genome by PCR with a specific primer pair (F: 5′-GC
GGTCGACCCACTAAGACTCCTTCAAGCTCC-3′ and R: 5′-GCGAAGCTTGGTGACGGTGTATTTT
TGTGTGG-3′) and inserted between the SalI and HindIII sites of the pCS2+ C-terminal 
eYFP-derived vector. Finally, the Trpma1 gene was amplified from T. rubrum cDNA by PCR 
using a specific primer pair (F: 5′-TCTTTTTGCAGGATCGCCACCATGGCCGACCACGCAGCC
-3′ and R: 5′-CCTCTAGAGGCTCGAGGTGCGCTCTTCTCGTGCTG-3′), and the fragment was 
inserted between the BamHI and XhoI sites of the above vector.

Transformation of T. rubrum

The A. tumefaciens-mediated transformation (ATMT) technique was used to alter T. 
rubrum, as previously described (13–15). The concentrations of G418 and hygromycin B 
for selection were 200 and 600 µg/mL, respectively. PCR was used to assess the intended 
transformants and pure genomic DNA. A Quick-DNA Fungal/Bacterial Miniprep Kit (Zymo 
Research, California) was used to extract the total DNA. The T-01 system (TAITEC, Japan) 
with 5-mm stainless steel beads was used to perform a study on the collision of beads 
with fungal cells. For confirmation, PCR was conducted using two primer pairs (primer 
1: 5′-GCTTCTCCATCCCTGCTGTT-3′, primer 2: 5′ATTCGTCTGCAAGGGGACAG-3′, primer 3: 
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5′-AGAAGATGATATTGAAGGAGCACTTTTTGGGCTT-3′, and primer 4: 5′-AGATGATTCATGAC
GTATATTCACCG-3′)

Fluorescent microscopy observation

CBS118892 + TrPma1 eYFP, ΔTERG_07844 + TrPma1 eYFP, or eYFP-TrPtk2C strains were 
seeded with 1–5 × 106 spores on sterile cover glasses and placed in a 12-well plate. 
They were then incubated with 500 µL of SD liquid medium at 28°C overnight. On the 
second day, the SD medium was replaced with fresh medium, and the spores were 
further incubated at 28°C overnight. On the third day, the supernatant was removed, 
and the cells were cultured in RPMI 1640 with or without terbinafine for 3 h. The sample 
was fixed with 4% paraformaldehyde (PFA, Nacalai Tesque, Japan) at room temperature 
for 15 minutes. The samples were washed three times with PBS and mounted on glass 
slides using Aqua-Poly/Mount (Polysciences, UK). The stained cells were observed using a 
confocal microscope system (AX, Nikon, Japan).

Phylogenetic tree analysis

The evolutionary history was inferred using the maximum likelihood method and 
the Whelan and Goldman + Freq. model. The tree with the highest log likelihood 
(−13,606.41) was used. The percentage of trees in which the associated taxa clustered 
together was shown below the branches. The initial trees for the heuristic search were 
obtained automatically by applying the Neighbor-Join and BioNJ algorithms to a matrix 
of pairwise distances that were estimated using the JTT model and then selecting the 
topology with the superior log likelihood value. A discrete Gamma distribution was used 
to model the evolutionary rate differences among the sites [5 categories (+G, parameter 
= 5.3335)]. The tree was drawn to scale, with branch lengths measured in the number 
of substitutions per site. This analysis involved eight amino acid sequences. There was a 
total of 1,163 positions in the final data set. The evolutionary analyses were conducted in 
MEGA11 software.

Statistical analysis

The means of the two groups were compared using Student’s t-test. For three or more 
groups with a single variable, one-way analysis of variance (ANOVA) with Tukey’s post 
hoc test was conducted. For means of three or more groups with two variables, two-way 
ANOVA with Tukey’s post hoc test was performed. Prism 9 software (GraphPad Software, 
Boston) was utilized for these statistical analyses. Statistical significance was defined at a 
P value of <0.05. n.s., not significant. *, P value <0.05. **, P value <0.01. ***, P value <0.001. 
****, P value <0.0001.
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