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Abstract

Our understanding of how speed and persistence of cell migration affects the growth rate

and size of tumors remains incomplete. To address this, we developed a mathematical

model wherein cells migrate in two-dimensional space, divide, die or intravasate into the

vasculature. Exploring a wide range of speed and persistence combinations, we find that

tumor growth positively correlates with increasing speed and higher persistence. As a bio-

logically relevant example, we focused on Golgi fragmentation, a phenomenon often linked

to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a

Golgi matrix protein, the downregulation of which correlates with poor patient survival.

Applying the experimentally obtained migration and invasion traits of Giantin depleted

breast cancer cells to our mathematical model, we predict that loss of Giantin increases the

number of intravasating cells. This prediction was validated, by showing that circulating

tumor cells express significantly less Giantin than primary tumor cells. Altogether, our

computational model identifies cell migration traits that regulate tumor progression and

uncovers a role of Giantin in breast cancer progression.

Author summary

The Golgi is a specialised structure inside cells that functions as a factory where molecules

necessary for diverse cell functions are modified and sorted for transport. One of the

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010995 April 17, 2023 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ghannoum S, Fantini D, Zahoor M,

Reiterer V, Phuyal S, Leoncio Netto W, et al. (2023)

A combined experimental-computational approach

uncovers a role for the Golgi matrix protein Giantin

in breast cancer progression. PLoS Comput Biol

19(4): e1010995. https://doi.org/10.1371/journal.

pcbi.1010995

Editor: Roeland M.H. Merks, Leiden University

Faculty of Science: Universiteit Leiden Faculteit der

Wiskunde en Natuurwetenschappen,

NETHERLANDS

Received: May 31, 2022

Accepted: March 4, 2023

Published: April 17, 2023

Copyright: © 2023 Ghannoum et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The R code for the

cancer simulator used in manuscript are deposited

in Github: https://github.com/ocbe-uio/Cancer_

simulator. All other relevant data are within the

manuscript and its Supporting Information files.

Funding: HF is supported by funding from the

Norwegian Cancer Society (grants 182815 &

208015), by the Norwegian Research Council

https://orcid.org/0000-0003-1455-5835
https://orcid.org/0000-0003-0724-3542
https://orcid.org/0000-0002-8247-700X
https://doi.org/10.1371/journal.pcbi.1010995
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010995&domain=pdf&date_stamp=2023-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010995&domain=pdf&date_stamp=2023-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010995&domain=pdf&date_stamp=2023-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010995&domain=pdf&date_stamp=2023-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010995&domain=pdf&date_stamp=2023-05-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010995&domain=pdf&date_stamp=2023-05-04
https://doi.org/10.1371/journal.pcbi.1010995
https://doi.org/10.1371/journal.pcbi.1010995
http://creativecommons.org/licenses/by/4.0/
https://github.com/ocbe-uio/Cancer_simulator
https://github.com/ocbe-uio/Cancer_simulator


proteins that maintains the physical structure of the Golgi is called Giantin. We found

that breast cancer patients whose tumors have lower Giantin die earlier compared to

patients with higher Giantin tumors. To find an explanation, we induced Golgi fragmen-

tation in breast cancer cells by depleting Giantin. Interestingly, we found that Giantin

depletion alters the migratory and invasive properties of those cells. To understand the

implications of altered migration and invasion, we run computer simulation of tumor

growth and progression with and without Giantin depletion. Our simulations predicted

that Giantin-depleted tumors, while smaller, are nevertheless capable of seeding more

cells inside the circulatory system. This is a precondition for the formation of metastases

in distant organs, which is the major factor that determines mortality in breast cancer

patients. To validate our model prediction, we showed that breast cancer cells that have

enter the circulatory system have lower Giantin that the tumors in the breast where the

cancer was originated. In summary, our combination of modeling and experimental vali-

dation provides a possible explanation for poor survival of breast cancer patients with low

Giantin levels.

1. Introduction

Breast cancer is the most commonly occurring cancer in women and the fifth most common

cause of cancer-related death [1,2]. The formation of metastases due to the spread of tumor

cells to distant organs, is the major factor that determines mortality in breast cancer patients

[3,4]. Metastatic dissemination of breast cancer cells is a multi-step process requiring the

acquisition of a motile phenotype, the ability to invade the surrounding tissue, break into ves-

sels and eventually extravasate and colonize distant organs [5]. Major research efforts in the

past decades led to a firm understanding of the role of cell division, apoptosis and invasion in

tumor progression and metastatic dissemination. However, there is surprisingly little knowl-

edge of whether and how tumorigenesis is affected by different migration traits such as speed

and directional persistence, i.e. the tendency to keep or change the direction of motion. Fur-

thermore, the differential contribution of cell migration and invasiveness to the ability of can-

cer cells to escape from the primary tumor remains elusive.

The Golgi apparatus (hereafter referred to as the Golgi) is a major cellular organelle that is

involved in the regulation of membrane trafficking and post-translational modifications. In

addition, the Golgi plays an important role as a regulator of directional cell migration [6–8].

Under normal conditions, the Golgi is an intact single-copy organelle comprised of stacks of

flattened cisternal membranes that are laterally linked to form the Golgi ribbon. This structure

is maintained by Golgi-matrix proteins. Giantin is a such a Golgi-matrix protein that was

shown to be important for maintaining the structural integrity of the Golgi [9–12]. Several

alterations in cultured cancer cells were reported to result in fragmentation of the Golgi

(reviewed in [13]). Moreover, RNAi screening approaches have identified a wide range of con-

ditions that affect the morphology of the Golgi [14–17]. Golgi fragmentation has been reported

to cause defects in cell polarization and therefore a delay in cell migration in wound closure

assays [6,8,18]. Our previous work indicates that loss of a Golgi matrix protein GM130 in

breast cancer cell lines is associated with altered migration and invasion [18]. However, this

analysis was so far only performed in cell lines and a confirmation of the pathophysiological

significance of Golgi fragmentation in patient samples remains to be shown. Moreover, it does

not answer the fundamental question of how cell migration affects tumor progression, a rela-

tionship that remains incompletely understood. For instance, increasing cell turnover was
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found to augment the effect of cell migration of tumor evolution [19]. The presence of cells

moving in opposite directions (so called oncostreams) correlates with tumor growth [20,21].

However, how the combination of speed and persistence alters tumor growth is not well

characterized.

In the present study, we used in silico simulations to analyze the impact of a wide range of

speed-persistence combinations of the shape and size of tumors and on intravasation of cancer

cells. To this end, we constructed a mathematical model that accounts for migration, prolifera-

tion, invasion and death of cancer cells in a two-dimensional space. This model predicted that

speed and persistence are positively correlated with the growth of the primary tumor. We then

fed experimental measurements of cell migration and invasion into our model to study the

impact of Giantin depletion on tumor progression. The model predicted that Giantin-depleted

tumors, while smaller, are nevertheless capable of seeding more intravasating cells. This con-

clusion was then substantiated by showing that circulating tumor cells have lower Giantin lev-

els than primary tumor cells. Our combination of modeling and experimental validation

provides a possible explanation for the poor survival of breast cancer patients with low Giantin

levels.

2. Materials and methods

2.1. Cell culture and transfection

MDA-MB-231 and BT549 were cultured in RPMI supplemented with 10% FCS and 1% peni-

cillin/streptomycin (GIBCO). Cells were transduced with NucLight green lentivirus (Essen

BioScience, 4624). Infections were carried out using a multiplicity of infection (MOI) of three

transducing units per cell. The growth medium was changed after 24h of transduction and

cells were split after 72h. The transduced cells were sorted via fluorescence-activated cell sort-

ing (FACS) using a BD FACSAria cell sorter. Sorted cells were tested for mycoplasma. For

Giantin (GOLGB1) knockdown experiments, BT549 cells in optimal growth phase expressing

GFP localizes to the nucleus were semireverse-transfected with siGENOME SMARTpool

GOLGB1-siRNA (Dharmacon) with a final concentration of 15nM using HiPerfect (Qiagen,

301704) according to the manufacturer’s instructions. The SMARTpool of GOLGB1-siRNA

contains 4 individual siRNAs with the following sequences; GAACUAGAGUCUCGGUAUA,

UAAGAAUUGCAACCUAA, GUACACAGGUUAAGUGCUU and GAAGGUCUGUGAU

ACUCUA. The level of Giantin expression was determined by qRT-PCR. Total RNA was

extracted using a GenElute Mammalian Total RNA Miniprep Kit (Merck, RTN70), and cDNA

was reverse-transcribed using a High Capacity cDNA Reverse Transcription Kit (Thermo

Fisher Scientific, Cat # 4368814). The expression of Giantin was determined using SensiFAST

SYBR Hi-ROX (NordicBio, BIO-92002) and normalized to ACTIN using commercially avail-

able primers (Qiagen; for Giantin, QT00038087 and TBP, QT00000721).

2.2. Confocal immunofluorescence microscopy

GFP-BT549 cells were grown on glass cover-slips placed in a 6-well plate, and then fixed with

3% paraformaldehyde for 20 min at RT. Afterward, cells were washed in PBS with 20 mM gly-

cine followed by incubation for 5 min at RT in permeabilization buffer containing PBS with

0.2% triton X100. Then, the fixed cells were incubated with mouse monoclonal anti-GM130

antibody (BD-Biosciences/Puls Medical, 610823) dilution 1:1000. After incubation with pri-

mary Abs at 37˚C for 1 h followed by washing with PBS three times, cells were incubated for

another 1h in goat anti-mouse secondary antibody, Alexa Fluro 488 (Thermo Fisher Scientific,

A-11001) diluted in 3% BSA in PBS. Finally, cells were mounted in polyvinyl alcohol with

DABCO antifade and imaged. Imaging was performed on Zeiss LSM700 laser scanning
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confocal microscope. All images were acquired randomly using a Plan- Aphochromat 63x Oil

Ph3 M27 objective (NA 1.4).

2.3. Two-dimensional dense random migration assay

For optimal tracking efficiency we generated 3 populations; BT549 + GFP-BT549, BT549

+ Giantin-silenced GFP-BT549, and MDA_MB_231 + GFP-MDA_MB_231. These cells were

co-cultured at a ratio of 3:1 respectively in 96 well image-lock plates (EssenBio, 4739,

Lot#17040501) for 24 hours at 37˚C and 5% CO2. Then cells were scanned at ten-minute inter-

vals over 24h in Essen BioScience’s IncuCyte S3 with objective lenses 10x (NA; 0.95; Image

Resolution: 1.24um/pixel) using both the phase channel (HD Phase imaging in gray values)

and green channel (Emission Wavelength: 524nm; Excitation Wavelength: 460nm; Exposure

Time: 200ms). Images were collected using a Basler Ace 1920-155um camera with CMOS sen-

sor. Cellular viability was assessed throughout the course of the scanning by comparing the

phase cellular morphology between mother cells and their corresponding GFP cells. ImageJ

was used to linearly correct the brightness and contrast of the images and merging them as

multi-TIFF stack. All the images collected from the same experiment were modified the same

way to leave the information unaltered. GFP cells were tracked and subjected to trajectory

analysis using the in-house developed cellmigRation package as described in the next section

[22].

2.4. The cellmigRation package

The cellmigRation is an open-source R package that we developed to analyze cell movements

using TIFF images captured over time. Its latest stable version is hosted on the peer-reviewed

R Bioconductor repository for easy installation and usage (DOI: 10.18129/B9.bioc.

cellmigRation). The software includes two modules aimed at i) data import and pre-process-

ing; and ii) advanced analytics and visualization. Image pre-processing (Module 1) is per-

formed similar to what described by DuChez B, 2018 [23]. Briefly, we ported the FastTracks
software (https://www.mathworks.com/matlabcentral/fileexchange/60349-fasttracks) from

MATLAB to R and added functionality to automate some of the initial optimization steps

(background correction, signal detection). Similar to FastTracks, our R package can import

TIFF files, perform background removal, detect signal peaks corresponding to fluorescent par-

ticles in each stack of the image and record the corresponding centroid coordinates. Next, cell

trajectories are computed by connecting the closest centroids from consecutive stacks pro-

vided that they are located within a user-defined maximum displacement radius. Cell tracking

data can be used as input for the advanced analytic and deep trajectory analysis functions

(Module 2). Our software can compute several metrics and statistics. Specifically, cellmigRa-
tion includes functions dedicated to the analysis of i) cell persistence and speed; ii) directional-

ity; iii) mean squared displacement; iv) direction auto-correlation; and v) velocity auto-

correlation. Module 2 also includes functions aimed at exporting data, automatically building

cell-based and population-based visualizations and generating 3D interactive plots. Cell trajec-

tory Principal Component Analysis (PCA) and Clustering are supported as well.

2.5. Gelatin degradation assay

Sterile cover-slips (12 mm, #1 Menzel Microscope Coverslips) were coated with a thin layer of

0.2 mg/ml Oregon Green 488-gelatin (Life Technologies, G13186) for 20 min, fixed in 0.5%

glutaraldehyde for 40 min and washed three times with sterile PBS. Cover-slips were then

transferred to a 24-well plate and incubated in complete growth medium for 30 min at 37˚C.

BT549 cells transfected with either Ctrl-siRNA or GOLGB1-siRNA (Dharmacon) for 48h were
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seeded on top of the cover-slip at a density of 7.5x104 cells/well and incubated overnight. Cells

were then processed for anti-GM130 immunofluorescence staining. Images were randomly

acquired on Andor Dragonfly spinning disk using a Nikon Ti2 inverted optical microscope

equipped with a 60 × TIRF objective (Plan-APOCHROMAT 60 × /1.49 Oil). Fluorescence was

collected using an EMCCD camera (iXon Ultra 888, Andor). To quantify the gelatin degraded

areas per image, appropriate functions of ImageJ were used. The measured area was divided

by the number of cells in the corresponding image. Kruskal-Wallis rank sum test was used to

compare the gelatin degraded areas between the two conditions.

2.6. Patient-derived breast cancer xenografts

Patient-derived xenografts (PDX) were established at Institute for Cancer Research, Oslo Uni-

versity Hospital (MAS98.12 and MAS98.06) or the Institute Curie, France (HBCx-34 and

HBCx-39) as previously described [24,25]. Briefly, primary mammary tumor specimens were

implanted into immunodeficient mice. After initial establishment, the tumor tissue was serially

transplanted into mammary fat pads of nude athymic mice. Based on histopatological and

molecular characterization, the tumors were classified as triple-negative basal like (MAS98.12

and HBCx-39) and hormone receptors positive luminal B breast cancer (MAS98.06 and

HBCx-34) [24,26,27]. our μm thick paraffin sections were rehydrated in a serial dilation of eth-

anol and boiled in TRIS-EDTA (pH 9.0) for antigen retrieval. The tissue sections were permea-

bilized with triton X-100 and then incubated at RT for 2 hours with anti-Giantin antibody

(Nordic BioSite, bs-13356) dilution 1:1000. Then the tissue sections were washed with PBS

three times, cells were incubated for another 1h in goat anti-mouse secondary antibody, Alexa

Fluro 488 (Thermo Fisher Scientific, A-11001). The sections were incubated with Hoechst

33342 dye (Thermo Fisher Scientific, H3570) to stain the nuclei. The sections were rinsed with

Milli-Q water and embedded in polyvinyl alcohol mounting medium (Sigma Aldrich, 10981).

Fluorescence images were randomly acquired on on Andor Dragonfly spinning disk using a

Nikon Ti2 inverted optical microscope equipped with a 60×TIRF objective (Plan-APOCHRO-

MAT 60× /1.49 Oil). Fluorescence was collected using an EMCCD camera (iXon Ultra 888,

Andor). To quantify the Golgi state, Golgi structure was assessed by visual inspection and cate-

gorized as intact, fragmented or undetermined.

2.7. Breast tissue array

Invasive ductal carcinoma and adjacent normal breast tissue samples were obtained from US

Biomax, BC08118a. The slide was baked at 60˚C for 2h followed by incubation in Neo-clear

(Sigma 109843) for 5min. The slide was re-hydrated in serial dilutions of Ethanol and then

boiled in Tris/EDTA (pH 9,0) for 15min. After washing with PBS for 5min the slide was per-

meabilized using triton X-100 (0,25%) for 8min and then blocked in 5% BSA (in PBST) for 1h

at RT. To stain the Golgi, the slide was incubated with anti-Giantin antibody (Nordic BioSite,

bs-13356) in 1% BSA (PBST) for 2h at RT. After three times washing with PBST for 5min the

slide was incubated for another 1h in goat anti-mouse secondary antibody, Alexa Fluro 488

(Thermo Fisher Scientific, A-11001). After several washing steps, the Hoechst 33342 dye

(Thermo Fisher Scientific, H3570) was used to label the nuclei. Finally, the slide was rinsed with

Milli-Q water and embedded in polyvinyl alcohol mounting medium (Sigma Aldrich, 10981).

The fluorescence images were acquired and analyzed as previously described (section 2.6).

2.8. Circulating tumor cells/clusters (CTCs) datasets

To profile the expression of Giantin across normal and breast cancer cells in addition to circu-

lating breast tumor cells, we used two single cell RNA-seq (scRNA-seq) datasets. The first
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dataset consists of normal and breast cancer cells. Data are available in the GEO database with

accession numbers GSE114727 [28]. The other dataset consists of single circulating tumor

cells collected from the blood of breast cancer patients and obtained from several studies [29–

36] compiled in our previous work [37]. Data are available in the GEO database with accession

numbers GSE51827, GSE55807, GSE67939, GSE75367, GSE109761, GSE111065, GSE86978

and PRJNA471754. After downloading raw scRNA-seq read count data we followed a standard

pre-processing pipeline to filter the cells and genes as described in our previous work [37–39].

After filtering the cells we performed the median by ratio normalization method followed by

log transformation [39]. For comparison purposes among circulating tumor cells, normal and

breast cancer cells, cells with Giantin expression as zero were excluded from further down-

stream analysis.

2.9. Computational model of tumor progression

To investigate the impact of speed and directional persistence of breast cancer cells on tumor

growth, we use a 2D stochastic cell-based model inspired by the persistence random walk

model [40]. Our newly developed model accounts for cell migration, proliferation, intravasa-

tion and death.

The model is based on 8 main assumptions: i) Cells are individual active agents that, for

simplicity, live in a 2D section. ii) Cell movement is characterized by a given speed and direc-

tionality. iii) The 2D tissue section receives nourishment from functional blood vessels that are

assumed to be perpendicular to the tissue section. iv) Cells in the nourished zone adjacent to a

functional blood vessel are more likely to proliferate faster and move within this zone than

leave it. v) Cell division depends on several factors, including proximity to blood vessels, local

cell density and the time since the division of the corresponding mother cell. vi) Cells that

spend the duration of a G1 phase in the nourished zones can have a shorter cell cycle length.

vii) Cells become necrotic and die if they are not able to divide due to lack of space after several

cell cycles. We also consider cells that spend prolonged periods of time without dividing, but

are able to re-enter the cell cycle. We refer to those cells as “quiescent”. In an in vivo situation,

such cells could be quiescent, dormant or senescent. viii) Cells moving towards a blood vessel

can intravasate when they get in contact with it.

The aforementioned assumptions were translated into a stochastic mathematical and

computational model that is fully described and parameterized in the Table A in S1 Text. The

model uses 2D continuous space and discrete time steps. Cells are described as circular agents

of a given diameter and their position is determined by the coordinates of the center of the cir-

cle in a 2D computational domain. At any given time point, two cells cannot overlap, but to

move from one location to another in each time step, cells can cross through locations that are

occupied by other cells. Cell movement is simulated according to speed profiles computed fol-

lowing an empirical distribution. The directionality of a cell is determined in terms of persis-

tence ratios, which range between 0 and 1. A persistence ratio of 1 refers to a very persistent

cell, which maintained a preferred overall direction of movements within bilateral 90 degrees.

Cell division is a stochastic event. The probability of a cell to divide is determined based on a

proliferation score PS = T + D + V, that depends on three additive factors: the time since the

division of the original agent (T), the local cell density (D), and proximity to blood vessels (V).

At each time point, these three factors are monitored for every cell in the simulated field. The

local cell density (D) is a discrete index reflecting the number of occupied spots around the tar-

get simulated cell in the Moore neighborhood (Fig G in S1 Text). The higher the number (n)

of occupied spots in the Moore neighborhood, the smaller is D. However, if the Moore neigh-

borhood of a cell is fully occupied by other cells (n = 8) we assume proliferation is completely
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inhibited. The proximity to a blood vessel (V) describes a proliferation advantage a cell can get

when it is located in well-nourished zones around blood vessels. We assumed that the prolifer-

ation rate is 30% higher in well-nourished zones. This assumption was estimated empirically

and is based on literature [41–43]. The proliferation probability is high when PS is equal or

higher than a predetermined cell cycle length. Instead, we assume a very low division probabil-

ity when PS is lower than the cell cycle length. Additionally, we assume that after cell division,

the two cells start the first phase of the cell cycle known as G1 phase. If a cell spends the needed

time to complete the G1 phase (tG1) in a well-nourished zone, the probability for division is

switched to high, regardless of the value of PS. Based on the lifespan length of a cell, it can be

classified as undergoing proliferation, quiescent or necrotic. If a cell is not undergoing cell

division within a particular period of cell-cycles (nn) then it is considered necrotic and

removed from the field. Cells that did not divide within a given period of cell-cycles (ns with ns
< nn) are considered as quiescent cells. Otherwise, cells are considered to undergo prolifera-

tion. Finally, cells are removed from the field to simulate i) cell death if a cell is not undergoing

cell division after a number of cell-cycles because of lack of available space. ii) intravasation if a

cell succeeded in penetrating into the lumen with a given probability.

In our model, the ability of a cell to move, divide, intravasate and leave a well-nourished

zone is a stochastic event. Such stochasticity is achieved by generating a uniform random num-

ber between 0 and 1 per cell per process per iteration. A process is triggered when the random

number is equal to or less than the corresponding parameter value, representing the probabil-

ity of the event to take place. The algorithm used for each discrete time step and for each cell is

described in detail in the S1 Text. Periodic boundary conditions were imposed to simplify the

implementation and to increase the computational efficiency. While the choice of periodic

boundary conditions avoids losing cells out of the simulation field, it may affect the spatial dis-

tribution of cells when the tumor is large enough to get in touch with the boundaries.

In each simulation, which is characterized by certain speed and directional persistence, we

accounted for the following outcomes: the number and distribution of cells in the 2D domain,

the number of intravasating cells, the proliferation outcome and the mean time spent in the

nourished zones. In this way we were able to estimate the optimal speed-persistence combina-

tion that leads to bigger tumors and more intravasation. We also used the model to study the

pathological relevance of Golgi fragmentation in breast cancer. Computer simulations were

performed mainly in HPC solutions provided by the Oslo Centre for Epidemiology and Bio-

statistics, at the University of Oslo and also on the Abel computer cluster, owned by the Uni-

versity of Oslo, and operated by the Department for Research Computing at USIT, the

University of Oslo IT-department. The source code to simulate the model in addition to the

simulation data are available at https://github.com/ocbe-uio/Cancer_simulator.

3. Results

3.1. The effect of cell speed and persistence on tumor progression

Two of the most intuitive parameters to characterize cell movement are the speed and direc-

tional persistence. We first investigated the impact of these two parameters on tumor growth

and intravasation using computational modeling. Our model accounted for cell migration,

proliferation, intravasation, and cell death (see the Methods section and Table A in S1 Text for

a full description of the model and its parameterization). Briefly, cells were freely moving in a

two-dimensional space, were assigned a certain rate of division, and were assumed to die if

they had not performed a division for longer than three doubling times. This allowed us to

simulate cell death and thereby tumor necrosis in poorly nourished areas. To account for

growth advantage and attraction of the well-nourished areas close to blood vessels, cells were
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assigned a lower likelihood to leave this area and were given a 30% growth advantage (faster

doubling). We implemented extensive numerical simulations of 130 speed-persistence combi-

nations. We used live epifluorescence imaging of cells (BT549 and MDA-MB-231) migrating

freely in 2D followed by automated tracking to infer a realistic range of parameter space for

persistence and speed (see Figs I and J in S1 Text for the experimental outcome). For each sim-

ulation of a 90 days period, we computed the changes in the number and distribution of cancer

cells. We characterized the spatial cell distribution using the uniformity index (UI) [44–46].

High UI indicates a homogeneous distribution all over the simulation field, whereas low UI is

an indication for cluster formation. Due to the model stochasticity, simulations were repeated

twenty five times for each speed-persistence combination (see S1 Video).

Simulations showed that cell speed and persistence have a profound effect on the distribu-

tion of cancer cells generating tumors with different uniformity indices (UIs) (Fig 1A). At very

low speed, the simulation produced tumors that were very compact and in the extreme case

exhibited signs of tumor necrosis in the center of very compact tumors (see insets in Figs 1A

and A in S1 Text, panels A and B). A key prediction of our in silico simulations is that the size

of the tumor increases with both speed and persistence of cell migration (Fig A in S1 Text,

panel C). The impact of speed was stronger than that of persistence. When a fixed persistence

value was used, increasing the speed had a major impact on the number of cells in the tumor

(Fig 1B). The impact of persistence on the size of the tumor was barely noticeable at low speeds

(Fig A in S1 Text, panel D).

Cells moving towards and contacting a blood vessel were assigned a certain probability of

leaving the tumor by intravasation. We assigned a probability of 1:10000 (0.01%) of a cancer

cell to leave the primary tumor. This number is a pure estimate based on the assumption that a

tumor with a mass of 1 gram would contain around 108 cells [47] and the number of circulat-

ing tumor cells is between 1–3 CTCs per ml of blood assuming an average human to have 5L

of blood. Simulations showed that the number of intravasating cells increased with speed only

(Fig A in S1 Text, panel E). Under the same persistence condition, speed had a strong impact

on the number of intravasating cells, but no effect on persistence was observed when the speed

was kept constant (Fig 1C and 1D). This is most likely because speed has a stronger impact on

the total number of cells in the tumor and it is intuitive to assume that larger tumors will pro-

duce more intravasating cells.

3.2. Golgi fragmentation in breast cancer tissue

Next, we sought to explore the biological significance of our computational model. As stated

above, alterations of Golgi structure are well known to affect cell migration [6,15]. Thus, we

decided to test the pathophysiological relevance of our model predictions by investigating cell

migration traits associated with a condition that induces Golgi fragmentation. Although the

role of the Golgi in tumor progression has been discussed in the literature [6,13,48,49], there is

surprisingly little experimental evidence for structural alterations of the Golgi in patient-

derived tumor tissue. Golgi fragmentation has been reported in colorectal cancer [50] and

prostate cancer [51], but to the best of our knowledge no analysis of a Golgi structure in breast

cancer tissue is available. Thus, before directly investigating a specific condition that induces

Golgi fragmentation, we wanted to assess Golgi structure in patient-derived xenograft (PDX)

samples from triple-negative basal-like, or hormone receptors positive luminal B tumor tissue

(Fig 2A and 2B). In the triple-negative tumors, Golgi fragmentation was observed in 50% of

the examined cells whereas only 41% of the hormone receptors positive tumors contained frag-

mented Golgi. The prevalence of this phenotype tempts to speculate about a relevance of Golgi

fragmentation in breast cancer pathology. This notion is further supported by the observation
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of the higher prevalence of Golgi fragmentation in samples from invasive ductal carcinoma

compared to adjacent normal breast tissue (Fig B in S1 Text, panels A and B).

3.3. Giantin is a Golgi protein that might be involved in breast cancer

progression

Previous work has identified several genes whose depletion may result in Golgi fragmentation

[14,16]. However, because these data are from siRNA screens, it remains largely unclear

whether these gene depletions induce Golgi fragmentation in a direct manner. Thus, we

decided to focus on Golgi matrix proteins and tested whether their levels are linked to survival

of breast cancer patients using the kmplot database [52,53]. We focused on six matrix proteins

that have a relatively well understood role in maintaining Golgi morphology (GOLGA1,

GOLGA2, GOLGA3, GRASP55, GOLGB1 and GORASP1). With the exception of GRASP55
and GOLGA3, there was a significant trend indicating that low expression correlates with poor

survival (Fig C in S1 Text). This trend was very strong for Giantin (also known as GOLGB1,

Fig 2C) and therefore we decided to focus on this Golgi matrix protein for further studies.

Silencing Giantin expression in BT549 cells and MDA-MB231 cells worked reproducibly and

induced a fragmentation of the Golgi (Figs 2D and 2F and D in S1 Text, panel A). To investi-

gate the migratory pattern of BT549 cells upon Giantin knockdown, we analyzed the trajecto-

ries of cells that were freely migrating on a 2D surface. Cells were scaled and projected based

on their root mean square speed and persistence ratio. Scaling was done by normalizing them

to the mean values, which were assigned a value of 1. Using this approach, we defined four

groups with distinct migration and persistence values: group 1 (low speed, low persistence),

group 2 (low speed, high persistence). group 3 (high speed, low persistence) and group 4 (high

speed, high persistence) (Fig 3A). In comparison to control cells, BT549 cells lacking Giantin

were preferentially found in the low-speed groups 1&2 (Figs 3B–3D and D in S1 Text, panel

B). On the other hand, cell persistence was not appreciably affected by the depletion of Giantin

(Fig D in S1 Text, panels C and D). Seeing these experimental results through the lens of our

computational model, the migration pattern of Giantin depleted cells would result in a smaller

tumor, which we expect to seed fewer intravasating cells. This is difficult to reconcile with the

fact that patients with lower Giantin exhibit lower disease-free survival rates (Fig 2C). Our sim-

ulations were all carried out with a fixed rate of intravasation and therefore, it appears intuitive

that smaller tumors would produce less intravasating cells. Thus, we asked to what extent must

the rate of intravasation of a smaller tumor increase to produce more intravasating cells than a

bigger tumor? We therefore re-run our simulations with adjustments of the rates of intravasa-

tion. To better link these new simulations to our experimental data, we took into account the

number of cells with Golgi fragmentation in conditions of Giantin knockdown, where we

observed that 65% of cells display a fragmented Golgi. We assumed that the cells with frag-

mented Golgi are the ones with the highest level of Giantin knockdown where the biological

effects (i.e. slower cell migration) is also expected to be strongest. In the simulations, tumors

Fig 1. Effect of cell speed and persistence on tumor growth and intravasation. (A) Upper plots illustrate how the

distribution of cancer cells at the end of the simulation changes for different speeds and the same fixed persistence

(P = 0.25). Each of these plots is a representative simulation field of a 2D tumor section characterized with a particular

speed. Cell colors represent the time cells are generated. While green-pink labels represent cells that have divided more

recently, purple-blue cells have divided a longer time ago. Necrotic areas are labeled with a gray mask. Bars represent

the mean uniformity index of twenty five simulation replicates. Different colors refer to different speeds. Within one

color, persistence gradually increases. (B) Number of cancer cells at different time points across gradual speed but fixed

persistence (P = 0.45). (C) Number of intravasating cells at different time points across gradual speed but fixed

persistence (P = 0.45). (D) Number of intravasating cells at different time points across gradual persistence value but

fixed speed of 30um/h. Error bars represent the standard deviation of the data.

https://doi.org/10.1371/journal.pcbi.1010995.g001
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Fig 2. Immunofluorescence staining for Golgi marker Giantin. (A) Representative images of triple-negative basal

like PDX samples (upper panel). Bar plot showing the percentage of cells with intact and fragmented Golgi (lower

panel) in different triple-negative basal like PDX samples (MAS98.12 and HBCx-39; n = 4 with 25 fields each). (B)

Representative images of hormone receptors positive luminal B PDX samples (upper panel). Bar plot showing the

percentage of cells with intact and fragmented Golgi (lower panel) in different hormone receptors positive luminal B

PDX samples (MAS98.06 and HBCx-34; n = 4 with 25 fields each). Error bars represent standard deviation of the data.

(C) Kaplan–Meier survival curves in patients with high and low Giantin expression. The graph was generated using the

kmplot database (https://kmplot.com/) (D) Representative image of BT549 cells stably expressing nuclear GFP were

transfected with Ctrl or Giantin siRNA. After 72 h, cells were fixed and immunostained against GM130 to label the

Golgi (red). (E) Barplot showing the average values of the relative gene expression (ΔΔCq method by qPCR) of Giantin

from 3 biological replicates in BT549 cells. Cells were harvested 72 h after siRNA transfection. Statistical significance

was determined using Kruskal-Wallis rank sum test (*** p< 0.001). (F) Immunoblot from 3 independent experiments

in MDA-MB-231 cells harvested 72 h after transfection with control or Giantin siRNA. Cells were lysed and

immunoblotted against Giantin (upper blot) and against vinculin (lower blot) to probe for equal loading.

https://doi.org/10.1371/journal.pcbi.1010995.g002
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Fig 3. BT549 migration and invasion. (A) A schema showing the four groups of BT549 cells based on speed and persistence. (B) Bar plot showing the

distribution of cells in each group. (C) The four migratory fashion groups of 2850 BT549 control cells pooled from 3 experiments. (D) The four migratory

fashion groups of 2800 BT549 cells with Giantin knockdown pooled from 3 experiments. (E-F) Simulated impact of increasing the intravasating rate of cells

with fragmented Golgi on the total number of intravasating cells and total number of simulated cells. Error bars represent the standard deviation of twenty five

replicates. (G) Representative confocal immunofluorescence images of fluorescent gelatin degradation assay in BT549 cells. Degraded areas are visualized in

black. The Golgi is visualized in yellow. (H) Violin plot showing the quantification of the gelatin-degraded area. Green triangles represent the median value.

Black dots represent the gelatin-degraded area normalized to cell number. Statistical significance is assessed by Kruskal-Wallis rank sum test (*** p< 0.001), n

= 20 microscopic fields from 2 independent experiments.

https://doi.org/10.1371/journal.pcbi.1010995.g003
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with low Giantin, were considered to have 65% of cells with slower cell migration. Because

control conditions exhibited 14% of cells with Golgi fragmentation, we used this value for the

simulation of tumors with high levels of Giantin. The higher the number of cells with Golgi

fragmentation, the smaller the tumor and the less intravasated cells it produced. This is to be

expected, because Golgi fragmentation (induced by Giantin depletion) slows cells migration,

which in our model reduces the size of the tumor, thereby having less cells than can intrava-

sate. When we assigned the Giantin-depleted tumor a 2-fold higher intravasation rate, we

observed that it produced a similar amount of intravasated cells compared to control condi-

tions with only 14% fragmented Golgi (Fig 3E). Of note, the tumor with 65% Golgi fragmenta-

tion was still smaller (Fig 3F) indicating that the increase in intravasation rate can overcome

the effect of the size of the primary tumor. Increasing the intravasation rate by 4-fold allowed

the tumors with high degree of Golgi fragmentation to seed more intravasated cells (Fig 3E),

which again could not be explained by the tumor size (Fig 3F). Based on this, we hypothesized

that increasing the invasion rate by at least 4-fold would allow smaller tumors to seed more cir-

culating tumors cells, which might give rise to more metastasis and hence explain poor patient

survival.

To experimentally test whether Giantin depleted cells exhibited higher invasion rates, we

tested their ability to degrade extracellular matrix. To this end, cells were seeded on glass cover

slips coated with fluorescent gelatin. By analyzing the pattern and size and the area of the

digested gelatin we found that silencing Giantin resulted in a marked increase of the median

ability of cells to degrade gelatin. This increase ranged from a few percent to more than 30-fold

(see violin plot and representative images in Fig 3G and 3H).

To predict the pathological relevance of Giantin loss in breast cancer we expanded our in
silico model to account for a higher rate of invasion which we observed experimentally. The

revised model had three additional assumptions: 1) each cell in the tumor has a probability of

developing the low Giantin phenotype; 2) cells with low Giantin have higher invasiveness,

which yields to higher intravasating capability; 3) cells follow the migratory phenotype of one

of the four aforementioned groups based on the percent abundance of the groups. The in silico
outcome of tumor progression in two independent populations (S2 Video) that diverge in the

percent abundance of cells with low Giantin (14% and 65%) shows significant difference in

terms of uniformity index, number of generated cells and number of intravasating cells (Fig

4A). Furthermore, we tested the impact of increasing fraction of low-Giantin cells in the popu-

lation (0%, 25%, 50%, 75% and 100%) on tumor progression (S3 Video). The results show that

the higher the fraction of cells with low Giantin, the lower the uniformity index and the smaller

the tumor but with higher intravasation capability (Fig 4B and 4D). The number of intravasat-

ing cells in a population of a thousand cancer cells was found to be statistically significant

among all the different groups with the highest number (30 ± 4) in a pure population of cells

with low Giantin expression (Fig E in S1 Text). Thus, the combination of our mathematical

and cell biological experiments provides a possible explanation for the poor disease-free sur-

vival of patients with low Giantin levels.

3.4. Giantin expression in breast cancer patients

Because our simulation results suggest that loss of Giantin increases the invasive capability of

tumor cells to intravasate into the circulation, we would expect circulating tumor cells to have

lower Giantin expression than the primary tumor. To test this hypothesis, first we investigated

the expression of Giantin in circulating breast tumor cells (n = 1448) compared to a house-

keeping gene (ACTB) (Fig 5A). Then, we profiled the expression of Giantin in individual can-

cer cells (n = 168) and adjacent normal breast cells (n = 1500) collected from patients with
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Fig 4. Impact of loss of Giantin on tumor growth and intravasation. (A) Modeling outcome of a tumor with 14%

cells with fragmented Golgi versus a tumor with 65% cells with fragmented Golgi. Statistical significance was

determined using two sample t-test (*** p< 0.001), (B) Upper plots demonstrate the distribution of cancer cells after

90 days from the tumor initiation with different percent abundance values of cells with fragmented Golgi. Cells with an

intact Golgi (IG) are depicted in blue and cell with a fragmented Golgi (FG) are depicted in yellow. Bars represent
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breast cancer in addition to circulating breast tumor cells (n = 627). The single-cell RNA-seq

analysis showed significant gradual decrement in mRNA levels of Giantin across the three

datasets with lowest expression in the circulating breast tumor cells (0.24 ± 0.81) compared to

primary breast cancer cells (0.99 ± 0.96) and their adjacent normal breast cells (1.84 ± 0.76)

(Fig 5B). On the other hand, we observed a marginal difference in the expression of a house-

keeping gene (ACTB) (Fig 5C).

4. Discussion

In addition to state-of-the art experiments, mathematical and computational models provide

insights into complex cancer processes including tumor growth [54,55], metastasis [56–58],

treatment response [56,59–64] and cell migration and invasion in 2D and 3D matrices [65–

68]. In particular, cell-based models have been recently applied to investigate the roles of pro-

liferation, migration, and necrosis in tumor progression of different cancers (reviewed in

[69]). The present study represents a new step in understanding the impact of different traits

of cell migration on the progression of breast cancer through an integrated experimental-

computational approach. Thereby, we provide a possible explanation for the poor survival of

breast cancer patients with low expression of Giantin. Loss of this Golgi matrix protein results

in fragmentation of the Golgi apparatus, a phenomenon that we found to be very prevalent in

patient-derived breast cancer specimens. Our computational approach shows that a simple

model accounting for cellular activities and migratory characteristics can be used to study

tumor size and the intravasation rate over a given time. Importantly, our model suggests that

cells with lower speed lead to a smaller and more compact tumor. Because silencing Giantin

led to a reduction in migration speed, our model predicts that tumors with low Giantin expres-

sion would be smaller in size. Thus, our computational model indicated the need for further

experimental results to explain the clinical survival data. We then noted that silencing Giantin

enhanced invasiveness of breast cancer cells and through further computational simulations,

we found that this enhanced invasiveness could overcome the effect of the smaller size such

mean uniformity index of twenty five replicates. Different colors refer to different time points. (C) Number of cancer

cells at different time points across gradual percent abundance values of cells with fragmented Golgi. (D) Number of

intravasating cells at different time points across gradual percent abundance values of cells with fragmented Golgi.

Error bars represent the standard deviation of twenty five replicates.

https://doi.org/10.1371/journal.pcbi.1010995.g004

Fig 5. Giantin expression profile. (A) Boxplot showing the expression of Giantin and actin (ACTB) at single cell level in CTCs (n = 1448). (B) Boxplot

showing the expression of Giantin at single cell level in CTCs (n = 627), breast tumor (n = 168) and adjacent normal breast (n = 1500). Statistical significance

was determined using the Kruskal–Wallis rank sum test, followed by pairwise comparisons using the Wilcoxon rank sum test (*** p< 0.001). (C) Boxplot

showing the expression of actin (ACTB) at single cell level in CTCs (n = 627), breast tumor (n = 168) and adjacent normal breast (n = 1500).

https://doi.org/10.1371/journal.pcbi.1010995.g005
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that Giantin-low tumors would produce more circulating tumor cells. This notion is the obser-

vation that CTCs express lower Giantin levels than the primary tumor.

Several questions arise from our work. One question is whether the compactness of tumors

with lower Giantin levels can be validated clinically. Based on this, it will be interesting to eval-

uate the chemosensitivity of tumors with different levels of compactness. It is possible that che-

motherapeutics might have less access to compact tumors, thus making these tumors more

likely to relapse after an initial round of therapy. Our mathematical model focused mainly on

the cancer cells and did not consider the role of cancer associated fibroblasts or the tumor

stroma. It is possible that Giantin-low tumors might be smaller, but also less compact due to

the higher invasiveness. Indeed, less compact tumors were found to be associated with lym-

phovascular space invasion and the formation of lymph node metastases [70]. Our model and

the experimental follow-up do not allow to determine how the Giantin-low trait is being

selected for. While the acquisition of a more invasive phenotype is an advantage for intravasa-

tion, it appears counterintuitive to select for a trait that would cause a growth disadvantage.

However, it is possible that this switch between a pro-invasive trait and a pro-growth trait is a

reflection of this phenotypic plasticity that is well known in tumors. It is also possible that the

invasive phenotype might alter the interaction of cancer cells with their microenvironment

and thereby alter tumorigenesis in a way that can only be investigated using in vivo imaging

techniques and is therefore beyond the scope of the current study.

The exact explanation of the elevated invasion capability of cells with low Giantin is not yet

clear but a few possible scenarios can be hypothesized. One possible explanation is that Giantin

depleted cells exhibit a reduction in their speed, thus having more time for efficient degrada-

tion of the collagen while moving slowly on top of it. Another scenario is that silencing Giantin

induces the expression of matrix metalloproteinases (MMPs) to degrade many components of

the extracellular matrix. Finally, there is evidence that fragmentation of the Golgi enhances the

rate of intra-Golgi trafficking [71]. Although this has so far only been shown in the context of

neurodegeneration, it is possible that a fragmented Golgi would accelerate the secretory trans-

port of MMPs and thereby enhance extracellular matrix degradation.

Taken together, our work used a combination of mathematical modeling and wet-lab

experiments and proposed that the speed of cancer cell migration has a major impact on the

shape and size of a tumor and this may explain how loss of Giantin could contribute to the

process of tumorigenesis.
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S1 Text. Fig A. Impact of cell speed and persistence on tumor progression. (A) Strong negative
correlation between number of necrotic cells and uniformity index (Pearson correlation coeffi-
cient = -0.76). (B) Weak negative correlation between number of quiescent cells and uniformity
index (Pearson correlation coefficient = -0.24). (C) Number of cancer cells after 90 days from the
tumor initiation across different speed-persistence combinations. (D) Number of cancer cells at
different time points (blue: day 70, yellow: day 80 and gray: day 90) across gradual persistence
value but fixed speed of 30um/h. (E) Number of intravasating cells after 90 days from the tumor
initiation across different speed-persistence combinations. Error bars represent the standard

deviation of twenty five replicates. Fig B. Immunofluorescence staining for Golgi marker gian-
tin (yellow). (A) Representative image of adjacent normal breast tissue patient samples. (B) Rep-
resentative image of invasive ductal carcinoma patient section. Fig C. Kaplan–Meier survival
curves for six matrix proteins that have a relatively well understood role in maintaining Golgi

morphology (GOLGA1, GOLGA2, GOLGA3, GRASP55, GOLGB1 and GORASP1). Fig D.

Impact of Golgi fragmentation on cell migration. (A) Percentage of cells denoted with
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fragmented Golgi in BT549 cells. (B) Bar plot showing the percentage of cells based on speed, low
speed includes group 1&2 whereas high speed includes group 3&4. (C) Bar plot showing the per-
centage of cells based on persistence, low persistence includes group 1&3 whereas high persistence
includes group 2&4. (D) Bar plot showing the averaged persistence ratio per group. Fig E. Num-
ber of intravasating cells in a population of a thousand cancer cells. Statistical significance
was determined using the Kruskal–Wallis rank sum test, followed by pairwise comparisons using
the Wilcoxon rank sum test with Bonferroni Correction (* p< 0.05, *** p< 0.001). Fig F. Cell’s
speed-persistence. (A) 5-day speed profile. (B) Schematic chart explaining how the persistence
ratio is computed for a cell that moved from a to b. Fig G. Simulation field and the local den-
sity. (A) A 2D section showing the architecture of the simulated tumor field. Black squares repre-
sent the lumen of blood vessels. Red squares represent the well-nourished zones. The blue circle
represents a single cancer cell. (B) Schema explaining the way of computing the local cell density.

Fig H. Simulating the position of the new movement of the second daughter cell resulted from
division of the original cell. (A) Location of the original cell before (magenta) and after (black)
division, the black line represents the distance between the initial location of the second cell and
the new location. (B) All possible locations of the new location of the second cell. (C) Possible loca-
tions in case of forward movement (red dots) or backward movement (orange dots). (D) Exclud-
ing the spots occupied by other cells. (E) Stochastic selection of the location of the the new
location of the second cell in case of forward movement (red dot) or backward movement (orange
dot). Fig I. Experimental observations of BT548 andMDA-MB-231 cells. (A) Violin plot show-
ing of reported mean diameter of MDA-MB-231 in the several studies and in-house microscopic
observation. Median cell diameter is shown in red whereas the mean is shown in orange. (B) line
plot showing the number of BT549 cells cultured in RPMI medium containing 3%, 9% or 15%

serum at three different time points. (C) Quantification of the gelatin-degraded area. Bars repre-
sent the median value. Error bars represent quantile-based coefficient of variation relative to con-
trol cells by Kruskal-Wallis chi-squared test (*** p< 0.001), n = 13 microscopic fields from 2
independent experiments. Fig J. Experimental observations of Bt548 and MDA-MB-231 cells.
(A) Violin plot showing the distribution of the values of root mean square speed for BT549 and
MDA_MB_231 cells. (B) Violin plot showing the distribution of the values of persistence ratio for
BT549 and MDA_MB_231 cells. (C) Cartesian product of the persistence ratio and the root
mean square speeds used for the modeling. (D) A scatterplot showing the relationship between
the persistence ratio and the root mean square speeds of BT549 cells (orange) and
MDA_MB_231 cells (gray). (E) Movement options of simulated cells. Black arrow represents the
previous movement. Red triangles represent the possible locations of a forward movement
whereas orange triangles represent the possible locations of a backward movement. Fig K. Simu-
lating cell movements. (A) A schema with a panel of mathematical equations explaining how
the X and Y coordinates of the new movement are computed. (B) Possible locations in case of for-
ward movement (red dots) or backward movement (orange points). (C) A stochastic selection of
a forward movement from P2 to P3 and a backward movement from P2 to P4. Fig. The simula-
tion field. (A) Moore neighborhood. (B) Moore neighborhood in periodic boundary conditions.
(C) The grid-based spatial reference system embedded on top of the 2D simulation field, arrows
show the increase in the lattice square numbering. Table A. A description of the parameters

used in the proposed model. Table B. Parameters used in the proposed model with their corre-

sponding computational name.
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S1 Video. Six simulation examples showing different speed-persistence combinations.
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S2 Video. Two simulation examples showing the in-silico outcome of tumor progression

in two independent populations that diverge in the percent abundance of cells with low

Giantin (14% and 65%).

(MP4)

S3 Video. Five simulation examples showing the in-silico outcome of tumor progression in

different independent populations that diverge in the percent abundance of cells with low

Giantin.

(MP4)
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