
History and the Future of Markup
Michael Piotrowski

Université de Lausanne, Section des sciences du langage et de l’information
<michael.piotrowski@unil.ch>

1. Introduction
The report of XML’s death has been greatly exaggerated, but it is becoming obvi-
ous that the halcyon days are over. To be sure, XML has enjoyed tremendous suc-
cess since its first publication as a W3C Recommendation in 1998. Nowadays
there are few areas of computing where, in some way or another, XML does not
play a role. There are probably hundreds of specifications and standards built on
XML, and dozens of related technologies, such as XSLT, XQuery, XPath, XML
Schema, XLink, XPointer, XForms, etc. The W3C press release on the occasion of
the tenth anniversary of XML quoted Tim Bray, one of the editors of the XML
Recommendation, as saying, “[t]here is essentially no computer in the world,
desk-top, hand-held, or back-room, that doesn’t process XML sometimes.”1 This
is certainly still true today: at the height of the hype, XML found its way into so
many applications, from configuration files to office documents, it is unlikely to
completely disappear anytime soon—even though it may become legacy technol-
ogy.

Nevertheless, when it comes to formats for representing and exchanging
structured data, JSON is now all the rage;2 for narrative documents, Markdown
enjoys a similar role. The W3C’s XML working groups have all been closed, and
HTML development has been taken over by what is essentially an industry con-
sortium that opposed the transition of HTML to XML. The primary syntax of
HTML5 looks like SGML, but the specification explicitly states that HTML is not
an SGML application: “While the HTML syntax described in this specification
bears a close resemblance to SGML and XML, it is a separate language with its
own parsing rules.”3

Markdown and similar lightweight markup languages clearly offer writers a
much more compact syntax for authoring simple documents, but even slightly
more complex documents require extensions. Consequently, people have defined
a large number of mutually incompatible extensions for different purposes. Pan-
doc4 does an amazing job at integrating many of them into a useful whole; one is
reminded of this 1989 speculation about the future:

1 W3C XML is Ten! [http://www.w3.org/2008/xml10/xml10-pressrelease]
2 Sinclair Target, “The Rise and Rise of JSON [https://twobithistory.org/2017/09/21/the-rise-and-rise-of-
json.html]”
3 HTML Standard [https://html.spec.whatwg.org/#parsing]

323

http://www.w3.org/2008/xml10/xml10-pressrelease
http://www.w3.org/2008/xml10/xml10-pressrelease
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://html.spec.whatwg.org/#parsing
https://html.spec.whatwg.org/#parsing


A new generation of software products may change this: perhaps the most desira-
ble result would be that by virtue of the markup minimization capability, together
with smart editors, authors will be using SGML without knowing about it, whilst
publishers reap the benefits. [1]

Except for the SGML part, of course: none of this is formally standardized.5
JSON and Markdown are in some respects certainly more convenient than

XML, but hardly “better” in an absolute sense, in particular not from a computer
science perspective. By defining an SGML DTD for HTML 5.1, Marcus Reichardt
has demonstrated that, “while nominally not based on SGML, owing to HTML
requiring legacy compatibility, HTML5 hasn’t striven far from its SGML roots,
containing numerous characteristics traceable to SGML idiosyncrasies.” [20].
This, as well as the bitter conflicts between the W3C and WHATWG,6 also sug-
gests that the dissociation of HTML5 from XML and SGML is not due to technical
requirements. It rather goes to show that the development of technology is not
solely determined by the technical superiority of one system over another, but
that it is to a large extent also driven by cultural forces, fads, and fashions. As
technology is created and used by humans, it is a cultural artifact.

On the one hand, it is thus more or less unavoidable that preferences change
for apparently “no good reason,” or that small practical advantages in one area
are used to justify giving up important benefits in other areas. On the other hand,
given the investments made into the creation of a complex ecosystem such as that
of XML, it would be a shame to simply throw it all away. This obviously applies
to business investments, but what is much more important is the intellectual
investment, the experiences and insights gained in the process.

2. Why we Need a History of Markup
This is why we need history of technology, in this case: a history of markup tech-
nology. If we want to advance the field rather than reinvent the wheel, we need to
know by which ways we arrived at the point where we are now—including the
roads not taken. Software, including markup languages, file formats, etc., are a
very peculiar class of artifacts: as they are not governed by the laws of physics,
designers enjoy, for better or worse, almost unlimited flexibility.

4 Pandoc: a universal document converter [https://pandoc.org/]
5 The CommonMark [https://commonmark.org/] initiative is working on a “standard, unambiguous
syntax specification for Markdown, along with a suite of comprehensive tests to validate Markdown
implementations against this specification.”
6 The conflict is even evident at many points in the HTML Standard [https://html.spec.whatwg.org/
multipage/parsing.html#parsing]; for example, it—correctly—notes that “few (if any) web browsers
ever implemented true SGML parsing for HTML documents” and that “the only user agents to strictly
handle HTML as an SGML application have historically been validators.” Claiming that this “has was-
ted decades of productivity” and that HTML5 “thus returns to a non-SGML basis” however, can only
be interpreted as a dig at the W3C.

History and the Future of Markup

324

https://pandoc.org/
https://pandoc.org/
https://commonmark.org/
https://commonmark.org/
https://html.spec.whatwg.org/multipage/parsing.html#parsing
https://html.spec.whatwg.org/multipage/parsing.html#parsing
https://html.spec.whatwg.org/multipage/parsing.html#parsing


There are of course papers that take a historical perspective on markup and
related technologies. For example, noting that “[d]ocument preparation has been
an increasingly important application of computers for over twenty-five years,”
Furuta set out in 1992 to “identify those projects that have been especially influ-
ential on the thinking of the community of researchers who have investigated
these systems” [5]. However, this overview (which covers publications up to
1988) was not intended as a history of document preparation, i.e., it does not link
developments and suggest causalities. An actual history of markup would be a
topic for at least one PhD thesis. The goal of this paper is thus merely to encour-
age a reflection on the history of markup, using SGML and XML as an example.

3. The Historical Trajectory of SGML and XML
As is well known, XML is an evolution of SGML, or, in the words of Egyedi and
Loeffen [4], XML was “grafted” onto SGML. It thus has a clearly identifiable
direct historical predecessor. The history of SGML has been documented several
times by its “father,” Charles Goldfarb, for example in Appendix A of The SGML
Handbook, “A Brief History of the Development of SGML” [8]. SGML is an evolu-
tion of GML, a set of macros for IBM’s SCRIPT formatter (itself modeled on Jerry
Saltzer’s RUNOFF) inspired by the idea of generic coding, which emerged in the
late 1960s. Generic coding describes the idea of marking up text elements for their
function (e.g., “heading”) rather than their appearance (e.g., “Helvetica Bold
14/16, centered”). Generic coding thus introduced an abstraction and advanced
the separation of content and form. Invented around the same time, Stanley Rice’s
text format models [21] can be considered the counterpart of generic coding in that
it permits designers to systematically map these abstract structures to concrete
formatting.7 Taking these ideas together, one could thus mark up text as “head-
ing” and then independently specify that headings are to be mapped to the
model “LDa” (14-point sans serif bold) for one application or “LBd” (12-point text
bold italic) for another—or the information “heading” could be used for the pur-
pose of information retrieval. It is not hard to see that these ideas were very
appealing for applications such as legal publishing, where highly structured texts
are to be formatted in various ways for print and ideally also made available in
electronic form, and thus also for IBM [7].

Goldfarb then went on to lead the development and standardization of GML
into SGML, published as an international standard in 1986 [10]. In “The Roots of
SGML—A Personal Recollection,”8 he writes:

7 In fact, Goldfarb has stated that “Stanley Rice, then a New York book designer and now a California
publishing consultant, provided my original inspiration for GML.” [7]
8 Charles F. Goldfarb, “The Roots of SGML—A Personal Recollection [http://www.sgmlsource.com/
history/roots.htm]”

History and the Future of Markup

325

http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/roots.htm


After the completion of GML, I continued my research on document structures,
creating additional concepts, such as short references, link processes, and concur-
rent document types, that were not part of GML. By far the most important of
these was the concept of a validating parser that could read a document type defi-
nition and check the accuracy of markup, without going to the expense of actually
processing a document. At that point SGML was born – although it still had a lot
of growing up to do.

The history of XML obviously does not begin with the publication of the W3C
XML 1.0 Recommendation in 1998, nor with the creation of the SGML Editorial
Review Board (ERB) by the W3C, which developed it, but the Web rather repre-
sented an incentive to revisit earlier proposals for simplifying SGML, such as
Sperberg-McQueen’s “Poor-Folks SGML”9 or Bos’s “SGML-Lite”10—or, as DeRose
put it, “XML stands within a long tradition of SGML simplification efforts” [3].
From today’s perspective, this historical development appears completely logical,
as it follows a familiar narrative: from humble beginnings to great success. How-
ever, it is important to recognize that this well-known narrative is just one of
many possible narratives. It mentions neither alternative approaches nor criti-
cism, nor failures. The Office Document Architecture (ODA, ISO 8613) [12] is all
but forgotten today, but it is one example of a quite different contemporaneous
approach to more or less the same goals as SGML.11 Criticism of the very idea of
embedded markup is far from new either; for example, Raymond et al. claimed in
1993 that since “the formal properties of document management systems should
be based on mathematical models, markup is unlikely to provide a satisfactory
basis for document management systems” [19]. Robin Cover has called this report
“a reminder that SGML has had significant intelligent detractors from the begin-
ning.”12 In fact, many of these lines of criticism continue until today.

4. Some Observations on SGML
At this point we would like to point out some historically interesting observations
that—while far from being obscure—seem to be less often discussed than, for

9 Michael Sperberg-McQueen, “PSGML: Poor-Folks SGML: A Subset of SGML for Use in Distributed
Applications [http://www.tei-c.org/Vault/ED/edw36.gml],” Document TEI ED W 36, October 8, 1992.
10 Bert Bos, “‘SGML-Lite’ – an easy to parse subset of SGML [https://www.w3.org/ People/ Bos/
Stylesheets/SGML-Lite.html],” July 4, 1995.
11 The Wikipedia article Open Document Architecture [https:// en.wikipedia.org/ wiki/
Open_Document_Architecture] (Open Document Architecture is the name used by ITU for their version
of the otherwise identical standard) states: “It would be improper to call ODA anything but a failure,
but its spirit clearly influenced latter-day document formats that were successful in gaining support
from many document software developers and users. These include the already-mentioned HTML
and CSS as well as XML and XSL leading up to OpenDocument and Office Open XML.” Given the
cleavage between SGML and ODA approaches and communities [15], we find this statement rather
dubious without further support.
12 http://xml.coverpages.org/markup-recon.html

History and the Future of Markup

326

http://www.tei-c.org/Vault/ED/edw36.gml
http://www.tei-c.org/Vault/ED/edw36.gml
http://www.tei-c.org/Vault/ED/edw36.gml
https://www.w3.org/People/Bos/Stylesheets/SGML-Lite.html
https://www.w3.org/People/Bos/Stylesheets/SGML-Lite.html
https://www.w3.org/People/Bos/Stylesheets/SGML-Lite.html
https://en.wikipedia.org/wiki/Open_Document_Architecture
https://en.wikipedia.org/wiki/Open_Document_Architecture
https://en.wikipedia.org/wiki/Open_Document_Architecture
http://xml.coverpages.org/markup-recon.html


example, the verbosity of the Concrete Reference Syntax (which is the only syntax
for XML) or the problem of overlapping markup.

SGML is an extremely complex standard, and, as DeRose has remarked, the
“list of SGML complexities that do not add substantial value is quite long” [3].
Some of these complexites are easy to explain historically. One example is
markup minimization, which does not only include facilities for omitting start
and end tags, but also data tags, text that functions both as content and as
markup:13 these features were motivated by the desire to minimize the amount of
typing necessary when creating SGML documents with a simple text editor.
Another example is the character set description in the SGML declaration, necessita-
ted by the diversity of character sets and encodings in use at the time.

The reasons for other complexities are, however, less clear. For example,
despite SGML’s roots in a commercial product and extensive experience with it,
many aspects necessary for interoperable implementations were left undefined,
such as the resolution of public identifiers. Similarly, SGML does hardly say any-
thing about documents may be processed apart from validation, in particular
how they could be formatted for display or transformed for an information
retrieval system. Macleod et al. criticized this in 1992 as follows:

SGML is a passive standard. That is, it provides mechanisms through which
descriptive markup to be applied to documents but says nothing about how these
documents are to be processed. The SGML standard refers frequently to the
“application” but includes no clean mechanism for attaching applications to
SGML parsers. [14]

In fact, formatting seems to have been hardly a concern, as there is little in the
standard related to formatting SGML documents or for interfacing with a format-
ter, and the facilities that are available—namely, link process definitions (LPD)—
are not only weak, but also extremly complex, in particular in relation to what
one can accomplish with them. In the commentary to Appendix D of the stand-
ard, entitled “LINK in a Nutshell,” Goldfarb himself notes that “the problem is
not so much putting LINK in a nutshell as keeping it there” [8]. This is well
known—also because most of these features were removed from XML—but the
question is why so much effort was expanded that quickly turned out to be of
little use.

Another observation is that the SGML standard is strangely detached from
computer science terminology and concepts that were already well-established at
the time when the work on it started (between 1978 and 1980). Some of this is
related to terminology, such as the use of the term parser: Barron noted in 1989
that the term parser is “firmly established in the SGML community” (in fact, it is

13 In the SGML Handbook, Goldfarb calls data tags “to some extent an accident of history” and
despite having been largely supplanted by short references, “still quite complex for both user and
implementer” [8].

History and the Future of Markup

327



defined and used by the standard), whereas “a computer scientist would recog-
nise the SGML processor as a parser generator or compiler-compiler which takes
a formal specification of a language (the DTD) and generates a parser for that lan-
guage, which in turn is used to process the user’s document” [1].

Some problems are more serious; DeRose points out that “since SGML was
developed with a publishing viewpoint largely divorced from computer science
and formal language theory, it made some choices that led to bizarre consequen-
ces for implementers and users.” [3] Kaelbling noted in 1990:

Since SGML is a language intended for computer-based systems, it is reasonable
(in the absence of convincing argument to the contrary) that it should follow
established conventions within the realm of computer science. By following accep-
ted methods of notation and structural configuration, languages can be processed
by existing tools following well-understood theories and techniques, thus offering
considerable savings to development efforts. These savings are realized by auto-
matically performing tedious, error-prone calculations correctly and by checking
and clarifying the formal descriptions of the languages. [13]

In their 1993 review of SGML, Nordin et al. made a similar statement:

From a software engineering viewpoint, it would make sense to use whatever tools
are available to build SGML-based software. It is therefore of some interest to make
sure that a standard does not inadvertently complicate the product development
process.

As specified, SGML does not cleanly map to either LL(1) or LALR(1)-type
grammars. This has made it difficult to build SGML applications as the commonly
used implementation tools have been difficult to apply. [16]

Another formulation of this criticism: “It is not possible to construct a conforming
SGML parser using well known compiler construction tools such a Lex and Yacc,
since the language is context sensitive.” [18] The demand that the “specification
of a standard should reflect the state of the art” and that to this end, “the gram-
mar specifying SGML should be rewritten to allow for automatic processing by
common tools and techniques” [13]] seems altogether reasonable. Nordin et al.
[16]] refer to Kaelbling [13] as well as further authors to underline this point; they
also point to dissenting opinions (including Goldfarb’s). This is another case of a
problem that is well known, but again the question is: why? We suspect that the
documents referenced by Nordin may be difficult to obtain now, but they could
provide valuable insights on the rather striking fact that the editors of SGML, an
international standard, were either unaware of or chose to ignore both research
and proven practice in a relevant field.

A related observation is that even though it was clear to the editors of SGML
that an SGML document describes a tree, SGML almost exclusively focused on
the syntax. Goldfarb noted:

History and the Future of Markup

328



SGML can represent documents of arbitrary structure. It does so by modeling
them as tree structures with additional connections between the nodes. This tech-
nique works well in practice because most conventional documents ar in fact tree
structures, and because tree structures can easily be flattened out for representa-
tion as character sequences.

Except for the terminal nodes, which are “data”, each node in an SGML docu-
ment tree is the root of a subtree, called an “element”. The descendants of a node
are the “content” of that element. [8]

Despite that fact that parsing SGML documents shares many commonalities with
parsing programming language code—and this is also mentioned in the standard
—the parallels between the tree represented by an SGML document and the
abstract syntax tree (AST) produced by a parser for a programming language
seem not to have been apparent for the longest time. Considering an SGML or
XML document as a serialization of a tree that exists independently of the con-
crete serialization (rather than the other way round) is a very powerful notion,
especially in conjunction with a standard API to manipulate the tree.

In hindsight this appears obvious, but historically it seems to be a realization
that was apparently not obvious at all. This does not mean that nobody had
thought of it. For example, Furuta and Stotts already noted in 1988 that one of the
most important problems to be solved in document processing is “to determine
how composite document objects may be converted from one structure to
another” [6]] and presented a system for transforming document trees based on
H-graphs [17], explictly mentioning SGML as a possible application. However,
only with the Document Object Model (DOM) and XPath the idea that an XML
document describes a tree that is independent of its serialization, and on which
programs can operate, took hold and eventually became explicit.14 It is this
notion that we think is the real foundation of today’s XML ecosystem.15

5. The Future of Markup
Price noted in 1998 that the “historical origins of SGML as a technique for adding
marks to texts has left a legacy of complexities and difficulties which hinder its
wide acceptance.” [18] This was proven true by XML: it is fascinating how
quickly it was adopted and how an extremely rich ecosystem developed once
many of these complexities had been discarded.

The early adoption by US Department of Defense and other government agen-
cies (even before the publication of the final standard) was probably the decisive

14 Conceptually this notion obviously already existed in DSSSL [11], but it remains for the most part
implicit. For example, the standard talks about “transforming one or more SGML documents into zero
or more other SGML documents” (page 9), i.e., it is the serialized documents that are considered pri-
mary.
15 And which allows XQuery, for example, to process JSON just like XML.

History and the Future of Markup

329



for SGML to survive despite all of its problems. Looking back, it seems that a
closer link of SGML to computer science research would have made it much eas-
ier to create tools and thus promoted a wider adoption. It may also have permit-
ted people to realize earlier that the abstract tree structure is more important than
the concrete syntax;16 this would have greatly reduced the importance attributed
to syntax.

It is also interesting to see that markup minimization—arguably the most syn-
tax-focused feature of SGML there is—was a central concern. Due to the problems
it created, it was completely rejected by XML—the XML Recommendation
famously states as design goal 10: “Terseness in XML markup is of minimal
importance.”17 Apart from the necessity to abandon markup minimization to
make DTD-less parsing possible, one could say that the focus on markup syntax
had become obsolete by the time it was realized that it is the abstract tree that is
important. However, it probably also caused the backlash that we can now
observe in the rise of JSON, Markdown, and similar formats that are essentially
minimized HTML, as well as the reintroduction of minimization into HTML5.

Already in 1994, a critic pointed out that “SGML relies on technology from the
1970s, when almost all computers were mainframes, almost all data was textual,
and sharing data—much less applications—between hardware platforms was
almost unheard of” [9]; Price noted in 1998 that “SGML 86 reflects thinking from
the 1960’s and 1970’s. Texts were not supposed to vary while being read” [18]. In
the last 20 years both the types of content and users’ interaction with it have sig-
nificantly changed: at least on the Web the assumption that a document is static
data that is parsed and rendered in what essentially amounts to batch mode is no
longer true. This becomes evident in the HTML5 specification:18

This specification defines an abstract language for describing documents and
applications, and some APIs for interacting with in-memory representations of
resources that use this language.

The in-memory representation is known as “DOM HTML”, or “the DOM”
for short.

There are various concrete syntaxes that can be used to transmit resources that
use this abstract language, two of which are defined in this specification.

16 In this context, Eliot Kimbers reflection in “Monastic SGML: 20 Years On [http://drmacros-xml-
rants.blogspot.com/2013/08/monastic-sgml-20-years-on.html]” are interesting: “As I further developed
my understanding of abstractions of data as distinct from their syntactic representations, I realized
that the syntax to a large degree doesn’t matter, and that our concerns were somewhat unwarranted
because once you parse the SGML initially, you have a normalized abstract representation that largely
transcends the syntax. If you can then store and manage the content in terms of the abstraction, the
original syntax doesn’t matter too much.”
17 Extensible Markup Language (XML) 1.0 (Fifth Edition) [https://www.w3.org/ TR/ REC-xml/ # sec-
origin-goals]
18 HTML Standard [https://html.spec.whatwg.org/multipage/introduction.html#html-vs-xhtml]

History and the Future of Markup

330

http://drmacros-xml-rants.blogspot.com/2013/08/monastic-sgml-20-years-on.html
http://drmacros-xml-rants.blogspot.com/2013/08/monastic-sgml-20-years-on.html
http://drmacros-xml-rants.blogspot.com/2013/08/monastic-sgml-20-years-on.html
https://www.w3.org/TR/REC-xml/#sec-origin-goals
https://www.w3.org/TR/REC-xml/#sec-origin-goals
https://www.w3.org/TR/REC-xml/#sec-origin-goals
https://html.spec.whatwg.org/multipage/introduction.html#html-vs-xhtml
https://html.spec.whatwg.org/multipage/introduction.html#html-vs-xhtml


These three sentences alone reflect significant conceptual differences to SGML,
that are not evident from the seemingly conservative syntax. These include the
formulation “documents and applications,” the central role the DOM and the
APIs to manipulate it, and the decoupling of the DOM from a concrete syntax.
When XML was introduced, a frequently mentioned advantage over HTML was
the possibility for users to create their own elements—the semantics of which
would have to be defined by some application. HTML5 introduces the notion of
custom elements,19 which superficially seems equivalent. In fact, however, both the
elements and their behavior are specified programmatically (i.e., in JavaScript)
through the DOM API by subclassing HTMLElement (or a subclass thereof). This is
a very different approach: first, because the element is not defined on the markup
level but on that of the DOM, and second, because it also directly associates
semantics with the element.

While HTML documents have for quite some time been a mix of HTML and
JavaScript code operating on the DOM, custom elements represent a significant
conceptual shift: HTML documents now have definitely become programs, with
markup just serving as “DOM literal” or a kind of “here-document” for Java-
Script. Is this the future of markup? In any case, this is the direction HTML is tak-
ing.

6. Conclusion
XML has come a long way. Its development and that of its ecosystem into what
we have today is the result of over 50 years of history of document processing.
Some choices were made consciously, others less so, and some features can only
be described as historical accidents. We must look back in order to understand
what lies ahead of us; taking a historical perspective can help to uncover hidden
assumptions, implicit notions, critical decisions, misunderstandings, and so on,
which still shape our understanding today. For Despite their similar appearances,
HTML5 is conceptually quite different from SGML and XML. On the other hand,
despite its different appearance, Markdown is very close to the traditional pro-
cessing model of SGML. Its growing popularity in more and more domains
requires more and more extensions, but it lacks a well-defined extension mecha-
nism. The CommonMark20 initiative aims to define and standardize a single com-
mon vocabulary, whereas one of the fundamental assumptions of SGML and
XML is that this is not possible.

Sperberg-McQueen said in 1992 that “part of its [SGML’s] accomplishment is
that by solving one set of problems, it has exposed a whole new set of prob-
lems.”21 This is particularly true in a historical perspective. The point of this
paper is to encourage reflection on and discussion of the history of markup tech-

19 HTML Standard [https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements]
20 https://commonmark.org/

History and the Future of Markup

331

https://commonmark.org/
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://commonmark.org/


nologies to advance the state of the art. In order to recognize opportunities and
limitations of new technologies it is necessary to be able to compare it to previous
technologies; at the same time, the design of new markup languages (understood
in a wide sense) is, like that of programming languages, “always subtly affected
by unconscious biases and by historical precedent” [2]; even approaches that aim
to be “radically new” define themselves with respect to what has been there
before. Those who cannot remember the past are condemned to repeat it.

References
[1] David Barron 1989. Why use SGML. Electronic Publishing. 2, 1, 3–24.
[2] Michael F. Cowlishaw 1984. The design of the REXX language. IBM Systems

Journal. 23, 4, 326–335. doi:10.1147/sj.234.0326.
[3] Steven J. DeRose 1999. XML and the TEI. Computers and the Humanities. 33, 1–2,

11–30.
[4] Tineke M. Egyedi and Arjan Loeffen 2002. Succession in standardization:

Grafting XML onto SGML. Computer Standards & Interfaces. 24, 4, 279–290.
doi:10.1016/s0920-5489(02)00006-5.

[5] Richard Furuta 1992. Important papers in the history of document preparation
systems: Basic sources. Electronic Publishing. 5, 1, 19–44.

[6] Richard Furuta and P. David Stotts 1988. Specifying structured document
transformations. Document Manipulation and Typography. Proceedings of the
International Conference. Cambridge University Press, Cambridge, 109–120.

[7] Charles F. Goldfarb 1997. SGML: The reason why and the first published hint.
Journal of the American Society for Information Science. 48, 7, 656–661.
doi:10.1002/(sici)1097-4571(199707)48:7%3C656::aid-asi13%3E3.0.co;2-t.

[8] Charles F. Goldfarb 1990. The SGML handbook. Oxford University Press,
Oxford, UK.

[9] George F. Hayhoe 1994. Strategy or SNAFU? The virtues and vulnerabilities of
SGML. IPCC 94 proceedings. Scaling new heights in technical communication.
IEEE, New York, NY, USA, 378–379.

[10] International Organization for Standardization 1986. ISO 8879:1986.
Information processing — Text and office systems — Standard Generalized Markup
Language (SGML). Geneva.

21 Michael Sperberg-McQueen, “Back to the Frontiers and Edges. Closing Remarks at SGML ’92: the
quiet revolution [http://www.w3.org/People/cmsmcq/1992/edw31.html], October 29, 1992.

History and the Future of Markup

332

http://www.w3.org/People/cmsmcq/1992/edw31.html
http://www.w3.org/People/cmsmcq/1992/edw31.html
http://www.w3.org/People/cmsmcq/1992/edw31.html


[11] International Organization for Standardization 1996. ISO/IEC 10179:1996.
Information technology — Processing languages — Document Style Semantics and
Specification Language (DSSSL). Geneva.

[12] Vania Joloboff 1986. Trends and standards in document representation. Text
Processing and Document Manipulation. Proceedings of the International
Conference. British Computer Society; Cambridge University Press,
Cambridge, 107–124.

[13] Michael Kaelbling 1990. On improving SGML. Electronic Publishing. 3, 2, 93–
98.

[14] Ian A. Macleod, Brent Nordin, David T. Barnard, and Doug Hamilton 1992. A
framework for developing SGML applications. Proceedings of Electronic
Publishing 1992 (EP 92). Cambridge University Press, Cambridge, 53–63.

[15] Charles K. Nicholas and Lawrence A. Welsch 1992. On the interchangeability
of SGML and ODA. Electronic Publishing. 5, 3, 105–130.

[16] Brent Nordin, David T. Barnard, and Ian A. Macleod 1993. A review of the
Standard Generalized Markup Language (SGML). Computer Standards &
Interfaces. 15, 1, 5–19. doi:10.1016/0920-5489(93)90024-l.

[17] Terrence W. Pratt 1983. Formal specification of software using H-graph
semantics. Graph-grammars and their application to computer science. H. Ehrig, M.
Nagl, and G. Rozenberg, eds. Springer. 314–332.

[18] Roger Price 1998. Beyond SGML. Proceedings of the Third ACM Conference on
Digital Libraries (DL ’98). ACM Press, New York, NY, USA, 172–181.

[19] Darrell Raymond, Frank Tompa, and Derrick Wood 1993. Markup
reconsidered. Technical Report #356. Department of Computer Science, The
University of Western Ontario.

[20] Marcus Reichardt 2017. The HTML 5.1 DTD. Proceedings of XML Prague 2017.
University of Economics, Prague, 101–118.

[21] Stanley Rice 1978. Book design: Text format models. Bowker, New York, NY,
USA.

History and the Future of Markup

333


	XML Prague 2019
	Table of Contents
	General Information
	Sponsors
	Preface
	Task Abstraction for XPath Derived Languages
	1. Introduction
	1.1. The vision of XPDLs
	1.2. Novel applications of XPDLs
	1.2.1. XPDLs as Web Languages
	1.2.2. Binary Processing with XPDLs

	1.3. Motivation
	1.4. Our Requirements

	2. Current Approaches by Implementers
	2.1. BaseX
	2.2. eXist-db
	2.3. MarkLogic
	2.4. Saxon
	2.5. xq-promise
	2.6. Conclusion of Implementers Survey

	3. Solutions offered for non-XPDLs
	3.1. Actor Model
	3.2. Async/Await
	3.3. Coroutines
	3.4. IO Monads
	3.5. Promises and Futures
	3.6. Reactive Streams
	3.7. Conclusion of non-XPDL Solutions Survey

	4. EXPath Tasks
	4.1. The Design of EXPath Tasks
	4.1.1. Abstract Data Types
	4.1.2. Typing a Task
	4.1.3. Asynchronous Tasks
	4.1.4. Executing a Task

	4.2. Using EXPath Tasks
	4.2.1. Composing Tasks
	4.2.2. Using Asynchronous Tasks
	4.2.3. Using Tasks with IXSL


	5. Conclusion
	5.1. Future Work

	A. EXPath Tasks Module Definitions
	A.1. Namespaces and Prefixes
	A.2. Types
	A.3. Functions
	A.3.1. Basic Task Construction
	A.3.1.1. task:value
	A.3.1.2. task:of

	A.3.2. Task Composition
	A.3.2.1. task:bind
	A.3.2.2. task:then
	A.3.2.3. task:fmap
	A.3.2.4. task:sequence

	A.3.3. Task Error Management
	A.3.3.1. task:error
	A.3.3.2. task:catch
	A.3.3.3. task:catches
	A.3.3.4. task:catches-recover

	A.3.4. Asynchronous Tasks
	A.3.4.1. task:async
	A.3.4.2. task:wait
	A.3.4.3. task:wait-all
	A.3.4.4. task:cancel
	A.3.4.5. task:cancel-all

	A.3.5. Unsafe Tasks
	A.3.5.1. task:RUN-UNSAFE



	Bibliography

	Ex-post rule match selection: A novel approach to XSLT-based Schematron validation
	1. Introduction
	2. Design of an XSLT-based Schematron processor
	3. Ex-post rule match selection
	4. Conclusion and future work
	Bibliography

	Authoring Domain Specific Languages in Spreadsheets Using XML Technologies
	1. An Entirely Incomplete Description of DSLs
	2. DSLs in Business Application Development
	3. DSLs in Spreadsheets
	4. Using XML Technologies To Read Spreadsheet Data
	4.1. The Simple Structure of Data Within a Spreadsheet
	4.2. Using XPATH for Addressing Data within the Simple Model
	4.3. Extracting the Simple Spreadsheet Model from Real-world Spreadsheets

	5. Using XML Technology to Generate Artifacts from a DSL
	5.1. Producing artifacts using TEXT output
	5.2. Producing XML and JSON artifacts
	5.3. Producing XSLT artifacts

	6. Some examples of DSLs in Spreadsheets
	6.1. An Automaton or Finite State Machine (FSM) as DSL
	6.1.1. Objectives of the FSM DSL in a Spreadsheet
	6.1.2. Description of the DSL Model
	6.1.3. Describing the Java Abstract Class
	6.1.4. A Stylesheet for Generating the Java Abstract Class
	6.1.5. Generating the DOT / GraphViz artifact
	6.1.6. Generating the DOT artifact

	6.2. Configuring Instances of an Enterprise Application in a Spreadsheet DSL
	6.2.1. Overall Objectives of the Configuration DSL
	6.2.2. Requirements for Configuration
	6.2.3. A Model Specifying The Configuration of Instances of a System
	6.2.4. Generating the Configuration Artifacts
	6.2.5. Generating non-Properties Configuration Artifacts
	6.2.6. Added Benefits of the Configuration DSL

	6.3. Extracting Tabular Data from XML Documents
	6.3.1. High-level Objectives
	6.3.2. The Requirements for Extracting Tabular Data from XML
	6.3.3. The Model for Describing the Extraction of the XML Data
	6.3.4. Testing and Analyzing the Data Extraction
	6.3.5. Business Expert Usage of the CSV Extraction DSL

	6.4. Schema to Schema Translations
	6.4.1. Overall Objectives
	6.4.2. Requirements
	6.4.3. Benefits of Generating the XSLT from the Schema-to-Schema DSL


	7. Conclusions
	8. Caveats
	Bibliography

	How to configure an editor
	1. Introduction
	2. Iteration 0
	2.1. The beginning: canInsert
	2.2. Schemata as regular expressions

	3. Iteration 1
	3.1. Validation
	3.2. Synthesis
	3.3. Flow behaviour
	3.4. Blueprints
	3.5. Schema-independent primitives: vertical insert nodes
	3.6. Operations
	3.6.1. JSONML


	4. Iteration 2
	4.1. Families, Content Visualization Kit
	4.2. Selectors
	4.3. Stencils
	4.4. Extender

	5. Iteration 3 (now)
	5.1. XPath
	5.2. XPath observers
	5.3. XQuery & Update Facility

	6. Conclusion
	Bibliography

	Discover the Power of SQF
	1. Introduction
	2. Schematron QuickFix
	3. SQF Use Cases
	3.1. Quality Assurance
	3.2. Efficiency

	4. Abstract Quick Fixes
	5. Multilingual Support in SQF
	6. Generate Quick Fixes Dynamically
	7. Interactive Schematron through SQF
	7.1. An ignore concept
	7.1.1. How can an ignore concept work in Schematron?
	7.1.2. XSLT style guide example
	7.1.3. Interaction with SQF

	7.2. XSD Guide
	7.2.1. Design patterns examples
	7.2.2. Using Schematron and SQF
	7.2.3. Multiple Choice
	7.2.4. Input by the user
	7.2.5. Mode filter by rule order and use-when condition
	7.2.6. Complex tasks with XSLT
	7.2.7. Escali plugin feature
	7.2.8. Restrictions and open issues
	7.2.9. Summary and conclusions


	8. Conclusion

	Tagdiff: a diffing tool for highlighting differences in the tagging of text-oriented XML documents
	1. Introduction
	2. Algorithm
	2.1. First phase: Diffing of the unparsed XML documents
	2.2. Second phase: Segmentation of the parsed XML documents
	2.3. Third phase: Visual segmentation
	2.4. Fourth phase: Alignment of sequences of differing segments
	2.5. Fifth phase: Prettyprinting

	3. Implementation
	4. Evaluation
	5. Related work
	5.1. Diffing algorithms
	5.2. Command line tools
	5.3. GUI tools
	5.4. Usability

	6. Conclusion
	7. Acknowledgements
	Bibliography

	Merge and Graft: Two Twins That Need To Grow Apart
	1. Introduction
	2. Terminology
	3. A word about conflicts
	4. How do merge and graft differ?
	5. Advantages of XML for rule-based conflict resolution
	6. Integration with Git Merge
	6.1. Avoiding conflict confusion
	6.2. Improved non-conflicting results
	6.3. Simpler software design

	7. Representing merge conflicts
	8. Conclusions
	References

	The Design and Implementation of FusionDB
	1. Introduction
	1.1. Issues Identified by Users
	1.2. Issues Identified by Developers
	1.2.1. Correctness
	1.2.2. Performance
	1.2.3. Missing Features


	2. Design Decisions
	2.1. Storage Engine
	2.1.1. Why we opted not to improve eXist-db's
	2.1.2. Why we opted not to build our own
	2.1.3. How and why we chose a 3rd-party

	2.2. ACID Transactions
	2.2.1. Transactions for FusionDB
	2.2.2. FusionDB Transactions and XQuery
	2.2.3. FusionDB Transactions and APIs

	2.3. Concurrency and Locking
	2.3.1. Incorrect Locking
	2.3.2. Lock Implementations
	2.3.3. Asymmetrical Locking
	2.3.4. Hierarchical Locking
	2.3.5. Concurrent Collection Caching
	2.3.6. New Locking Features

	2.4. UUIDs
	2.5. Key/Value Metadata
	2.6. Online Backup
	2.6.1. Full Document Export
	2.6.2. Checkpoint Backup

	2.7. BLOB Store

	3. High-level Architecture
	3.1. Programming Language
	3.2. Column Families

	4. Conclusion
	5. Future Work
	Bibliography

	xqerl_db: Database Layer in xqerl
	1. Introduction
	2. Overview of the System
	3. Databases
	3.1. Node Table
	3.2. String Table
	3.3. Path Table and Transactions

	4. Future Work
	5. Conclusion
	Bibliography

	An XSLT compiler written in XSLT: can it perform?
	1. Introduction
	2. Motivation
	3. The Compilers
	3.1. The XJ Compiler
	3.2. The XX Compiler
	3.2.1. Static inclusion
	3.2.2. Normalisation
	3.2.3. XSLT compilation
	3.2.4. XPath compiling and type checking
	3.2.5. Component binding
	3.2.6. Reflections on the design

	3.3. Comparing the Two Compilers

	4. Compiler Performance
	4.1. Methodology
	4.2. Targets
	4.3. Measurement Techniques
	4.4. Speeding up the XX Compiler on the Java Platform
	4.4.1. XPath Parsing
	4.4.2. Further investigations
	4.4.3. Subtree Copying
	4.4.4. Algorithmic Improvements
	4.4.5. Epilogue

	4.5. So what about Javascript?

	5. Conclusions
	References

	XProc in XSLT: Why and Why Not
	1. Introduction
	2. The overall approach taken
	3. Immediate or Compiled
	4. XProc Features
	4.1. Definition
	4.2. Comparing some features
	4.3. Dependency Management
	4.4. Running external processes
	4.5. Expression Languages and Variables
	4.6. Reading and Writing Archives

	5. Limitations and Restrictions of the XSLT Approach
	5.1. Restrictions on Reading Created Resources
	5.2. Other Languages
	5.3. Validation, XInclude, and Other Parsing options

	6. Conclusions
	Bibliography

	Merging The Swedish Code of Statutes (SFS)
	1. Intro & Background
	1.1. The Swedish Code of Statutes
	1.2. Merging Companies (and Content)
	1.3. Merging SFS Content

	2. The Merge Process
	2.1. What You Need to Understand First
	2.2. Assumptions and Approach
	2.3. Legacy Publishing at NJ
	2.4. Legacy Publishing at KG

	3. Implementation
	3.1. Transformation and Validation Pipelines
	3.2. Examples
	3.3. KG/NJ to EXC
	3.4. Diff and Merge
	3.5. EXC to KG++
	3.6. KG++ to EXC
	3.7. Unit Tests

	4. Issues
	4.1. eXist-DB to the Rescue!
	4.2. Up-conversion
	4.2.1. Mixed Content
	4.2.2. Running Headers
	4.2.3. Manual Lists

	4.3. Tag Abuse
	4.3.1. Fake Lists
	4.3.2. Fake Headings

	4.4. Preferred Content
	4.5. Manual Selection
	4.6. Diffing and Merging Problems
	4.6.1. Identifying Normative Content
	4.6.2. Versioning Problems
	4.6.3. Versioning Problems, Pt II
	4.6.4. Other Diffing Problems: The Merge As A Quality Assurance


	5. Conclusions
	5.1. Why Not XQuery?

	Short Glossary
	Bibliography

	JLIFF, Creating a JSON Serialization of OASIS XLIFF
	1. Introduction
	2. Lay of the land
	2.1. I18n and L10n Standards
	2.2. The Notion of Extracting XLIFF Payload from Native Formats

	3. The abstract Localization Interchange Object Model (LIOM)
	3.1. The Core Structure
	3.2. LIOM Modules
	3.2.1. LIOM modules originating in XLIFF 2.0
	3.2.2. The ITS Module


	4. The design of JLIFF
	5. Reference Implementation
	6. Discussion and Conclusions
	Bibliography

	History and the Future of Markup
	1. Introduction
	2. Why we Need a History of Markup
	3. The Historical Trajectory of SGML and XML
	4. Some Observations on SGML
	5. The Future of Markup
	6. Conclusion
	References

	Splitting XML Documents at Milestone Elements Using the XSLT Upward Projection Method
	1. Introduction
	2. Description
	3. Examples
	3.1. Split at Page Break
	3.2. Put Two-Column Regions into Separate FO Blocks
	3.3. Split at Line Breaks, Excluding Footnotes, List Items, etc.

	4. Performance
	5. Applicability of XSLT 3.0 Features: Dynamic XPath Evaluation, Streaming
	5.1. Streaming
	5.2. Dynamic XPath Evaluation

	6. Summary
	Bibliography

	Sonar XSL
	1. The Necessity of Code Quality Measurement
	1.1. The Axes of code Quality
	1.1.1. Tests and testability
	1.1.2. Duplicated code
	1.1.3. Potential bugs
	1.1.4. Complex code
	1.1.5. Architecture and Design
	1.1.6. Documentation and Comments


	2. The Existing Standard : SonarQube
	2.1. The main concept : Rules
	2.2. Dealing with Issues
	2.3. The verdict : Quality Gates
	2.4. Whats SonarQube Brings
	2.5. The lack of an XSL-Specific SonarQube plugin

	3. The XSLT-Quality Schematron
	3.1. Examples of Rules from XSLT-Quality

	4. The Sonar-XSL-Plugin Prototype
	4.1. Architecture of the Plugin
	4.1.1. The Schematron-Sonar Module
	4.1.2. Some Schematron packages


	5. Evolutions and Perspectives

	Copy-fitting for Fun and Profit
	1. Introduction
	1.1. Copy-fitting as estimating
	1.2. Copy-fitting as adjustment

	2. Copy-fitting for fun
	3. Copy-fitting for profit
	3.1. Books
	3.2. Manuals and other documentation

	4. Standards for copy-fitting of XML or HTML
	4.1. Extensible Stylesheet Language (XSL) 1.1
	4.2. Extensible Stylesheet Language (XSL) Requirements Version 2.0
	4.3. List of CSS features required for paged media

	5. Existing Extensions
	5.1. Print & Page Layout Community Group
	5.2. AH Formatter
	5.3. FOP

	6. Copy-fitting Implementation
	6.1. Error condition XSLT
	6.2. Formatting error XML
	6.3. PDF error report
	6.4. Copy-fitting instructions

	7. Future Work
	8. Conclusion
	Bibliography

	RDFe – expression-based mapping of XML documents to RDF triples
	1. Introduction
	2. RDFe example
	2.1. Getting started
	2.2. Linking resources
	2.3. Adding a dynamic context

	3. RDFe language
	4. RDFe model components
	4.1. Semantic extension
	4.2. Semantic map
	4.3. Resource model
	4.4. Property model
	4.5. Context constructor

	5. Evaluation
	5.1. Input / Ouput
	5.2. Hybrid triples and preliminary resource description
	5.3. Asserted target nodes
	5.4. Processing steps

	6. RDFe for non-XML resources
	7. Conformance
	7.1. Minimal conformance
	7.2. Optional feature: XQuery Expressions Feature
	7.3. Implementation-defined extension functions

	8. Implementation
	9. Discussion
	A. Processing semantic maps - formal definition
	A.1. Section 1: Top-level rule
	A.2. Section 2: Resolving an rdfee to a set of triples
	A.3. Section 3: Resolving input documents to a set of rdfees
	A.4. Section 4: auxilliary rules

	Bibliography

	Trialling a new JATS-XML workflow for scientific publishing
	1. Introduction
	1.1. Typical workflows

	2. A new experimental workflow
	2.1. The Texture editor
	2.2. Reviewing with EasyChair
	2.3. The “hybrid” PDF creation pipeline

	3. Conclusions
	3.1. Alternatives
	3.2. Next steps
	3.3. Visual documents

	Bibliography

	On the Specification of Invisible XML
	1. Introduction
	2. The Grammar
	3. Nonterminals and Terminals
	4. What's in a Name?
	5. Spaces and comments
	6. Serialisation and Marks
	7. Attribute lifting
	8. Ambiguity
	9. The ixml Serialisation
	10. Implementation
	11. Future work
	12. Conclusion
	13. References
	Bibliography



