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Abstract

The highly polymorphic human leukocyte antigen (HLA) locus encodes cell surface proteins that
are critical for immunity. H#LA-A expression levels vary in an allele-dependent manner,
diversifying allele-specific effects beyond peptide-binding preference. Analysis of 9763 HIV-
infected individuals from 21 cohorts shows that higher HLA-A levels confer poorer control of
HIV. Elevated HLA-A expression provides enhanced levels of an HLA-A-derived signal peptide
that specifically binds and determines expression levels of HLA-E, the ligand for the inhibitory
NKG2A natural killer (NK) cell receptor. HLA-B haplotypes that favor NKG2A-mediated NK cell
licensing (i.e., education) exacerbate the deleterious effect of high H#LA-A on HIV control,
consistent with NKG2A-mediated inhibition impairing NK cell clearance of HIV-infected targets.
Therapeutic blockade of HLA-E:NKG2A interaction may yield benefit in HIV disease.

Diversity within regions of human leukocyte antigen (HLA) class | molecules that determine
peptide-binding specificity has a major impact on human disease pathogenesis. Variation in
expression levels across alleles of certain HLA genes has also been shown to associate with
disease outcome (1-6), emphasizing the importance of HLA polymorphism that determines
characteristics other than peptide specificity alone. Elevated expression levels of HLA-C
associates with reduced HIV viral load (VL) (1), resulting, in part, from a greater frequency
of cytotoxic T lymphocyte (CTL) responses to HLA-C—restricted peptides with increasing
HLA-C. Like HLA-C, HLA-A alleles vary in expression levels in an allotype-specific
manner (7), but these two class | loci have many distinguishing characteristics. Compared
with HLA-C, HLA-A is expressed at a 13- to 18-fold higher level on the cell surface (8) and
is about twofold more polymorphic. Mechanisms of transcriptional regulation for these two
loci are also distinct under healthy conditions (7, 9, 10). These and other differences may
affect how these two loci affect human disease.

We verified that the pattern of allele-specific variation in HLA-A expression levels was not
modified by HIV infection by comparing HLA-A expression in 243 HIV-uninfected and 162
HIV-infected ethnicity-matched individuals (fig. S1). Being HIV infected did not associate
with a change in the overall level of HLA-A MRNA expression (Effectynagjusted = 0.00, SE =
0.07, £P=1), nor did HIV status modify expression estimates for any single HLA-A allele
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(interaction P-values were 0.226 to 0.987 for each of the alleles tested). Therefore, in HIV
infection, the gradient in HLA-A expression level attributable to each allele is similar to that
in healthy individuals.

To test whether HLA-A expression levels are associated with HIV control, we examined a
pooled data set of 2298 HIV-infected (clade C) individuals recruited at 11 sites in sub-
Saharan Africa, in which the estimated effect of each HLA allele on HIV VL measured
cross-sectionally has been reported (11). The HLA-A expression level of each allele,
estimated for black African individuals, was positively correlated with the estimate of effect
of that allele on HIV VL (correlation coefficient £=0.54, £=0.007, Fig. 1A and Table 1).

Next, we sought to validate the discovery of a deleterious effect of elevated HLA-A
expression level in independent cohorts with prospective follow-up and of broader
demographic background. We included 62,843 VL measurements obtained longitudinally
over a total of 32,804 person years of antiretroviral therapy—free observation time (median
2.86 years per individual) in 5818 individuals enrolled in one of six studies in the USA or
one study in Switzerland (see online methods). We modeled HLA-A expression as z-scores
(equivalent to one standard deviation change in expression level), using mMRNA levels
measured in 436 white and black healthy donors (table S1). Consistent with the discovery
analysis among sub-Saharan Africans, elevated HLA-A expression levels were significantly
associated with higher HIV viremia, even after accounting for the individual allelic effects of
HLA-A, -B, and -C. For every one z-score increase in HLA-A expression level, the VL
increase over time was 0.06 logyo copies/ml higher (P = 4.4 x 10~19; Table 1). Grouping
individuals by estimated ~HLA-A expression level demonstrates the effect of increasing
HLA-A expression on unadjusted HIV VL (Fig. 1B).

The association between HLA-A expression level and HIV viremia was independently
significant in each ethnicity stratum (Pyhites = 6.1 X 1075; Pagricans/African-Americans = 1.1 X
10718; and Ayispanicrother = 2.3 x 10719), notwithstanding distinct HLA-A allelic frequencies
in each ethnic group. Among 2019 donors enrolled during acute, early HIV infection with
known dates of seroconversion, elevated HLA-A expression was similarly associated with
higher VL (P= 2.5 x 1079), confirming that this finding is unlikely to be confounded by
frailty bias. HLA-A expression level was associated with a spectrum of alternative HIV
outcomes, including elevated mean VL (P= 9.3 x 10712) and odds of being an HIV
noncontroller (HIV VL >10,000 copies/ml) relative to being a controller (HIV VL <2000
copies/ml) (P= 9.2 x 10~11). Furthermore, among 2100 individuals for whom longitudinal
CD4* T cell count measures were available, higher HLA-A expression was strongly, and
substantially, associated with reduced CD4* T cell counts (Table 1). The effects of HLA-A
expression levels on VL and CD4 count were stable over time (Fig. 1, B and C), consistent
with a temporally sustained mechanism. Finally, we examined a partially nonoverlapping
(39.1% of donors were not included in the VL analyses) collection of five natural-history
cohorts, including 1159 antiretroviral-naive individuals followed prospectively after HIV
infection. Even in this limited sample, elevated HLA-A expression was associated with
accelerated progression to AIDS1g9g7 (P = 0.04) and progression to CD4* T cell count of
<200 cells/ul (P=0.02), again after adjusting for all individual HLA alleles.
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HLA-A expression levels vary across alleles in a continuous manner, indicating multiple
polymorphic regulatory sites that together determine the expression level of any given allele.
As no single variant controls HLA-A expression levels, genome-wide association studies
(GWAS) are not expected to detect such effects. Using formal HLA-A typing results, we
inferred expression level for 3057 white, Hispanic, and black individuals included in the
International HIV Controllers GWAS (12) (40% of whom were not included in any of the
analyses described above). HLA-A expression was significantly associated with HIV elite
controller or noncontroller status even after adjusting for population structure (P= 2.7 x
1075). This observation emphasizes a limitation of GWAS when the combined effects of
multiple genetic variants determine a phenotype.

Next, we sought to determine the likely mechanism(s) for the finding that elevated HLA-A
expression associates with impaired HIV control. HLA-E serves as a ligand for the strongly
inhibitory receptor CD94/NKG2A expressed on both natural killer (NK) cells and T cells.
Expression of HLA-E is dependent on stable binding of a signal peptide derived from the
leader sequence of HLA-A, -B and -C molecules (residues —22 to —14 relative to the mature
protein) (13, 14). Methionine at position 2 of the signal peptide (residue —21) stabilizes and
promotes HLA-E expression, and all HLA-A and -C allotypes are fixed for methionine,
whereas HLA-B contains a polymorphism that encodes either methionine (=21M) or
threonine (—21T) at this position (15, 16). Unlike HLA-A, there is minimal variance in
HLA-B transcriptional levels across alleles and individuals (17), so HLA-E expression is
expected to vary not as a consequence of differences in HLA-B expression levels, but rather
as a result of HLA-B —21M/T variation. Accordingly, HLA-B —21M enhances HLA-E
expression level in a copy-dependent manner (15). We tested whether HLA-A expression
levels may similarly be associated with HLA-E expression levels. Among 58 healthy donors,
higher predicted HLA-A expression levels, and therefore higher HLA-A—derived signal
peptide, was significantly correlated with higher HLA-E expression levels on the cell
surface, independently of the reported effects of HLA-B -21 (Fig. 2A and table S2).

HLA-E has two common allelic variants denoted £*01.:01 and £*01.:03, reportedly varying
in peptide affinities, peptide repertoires, and surface expression levels (18). Although HLA-
E*01.03 associates with higher surface expression in univariate analyses, this association
was not significant after adjusting for HLA-B —-21 and HLA-A genotypes (table S2). As
HLA-E*01:03and HLA-B-21M alleles are in significant linkage disequilibrium (D" =
0.52), the increased peptide supply attributable to HLA-B —21M and HLA-A expression
level likely account for higher expression of HLA-E* 01:03, rather than the variant
distinguishing HLA-E£*01:03from — E£#01:01. Accordingly, HLA-E variants did not show
independent association with HIV outcomes (table S3). Similarly, addition of HLA-E
genotype to a model fitting HLA-A expression and HLA-B-21M (and their interaction) was
inferior to a model excluding HLA-E genotype in explaining HIV viremia.

The responsiveness of NK cells varies according to the presence of inhibitory-receptor/HLA
pairs because of a process termed NK cell education or licensing (19). Accordingly,
quantitative variation in HLA expression may influence target cell recognition through both
ligand density variation and licensing modulation. The HLA-B -21 M/T variant
distinguishes between two sets of HLA haplotypes that have differential effects on NK cell
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education, where —27ZM marks haplotypes that bias toward NKG2A-mediated education and
—21T marks alternative haplotypes that bias toward KIR (killer cell immunoglobulin-like
receptor)-mediated education (15). The reported linkage disequilibrium between HLA-B
-21IMand HLA-B Bw6/HLA-C groupl alleles that interact poorly with KIR is evident in
our cohort (fig. S2). Using a ligand-independent activation assay designed to measure NK
cell licensing, NKG2A*/KIR™ NK cells from HLA-B -21MM+ donors were more
responsive than NKG2A/KIR* NK cells from the same donors (Pyiicoxon = 1.5 X 1075), and
notably, the strength of licensing among NKG2A*/KIR™ NK cells correlated with HLA-A
expression level (R =0.69, P=0.03; Fig. 2B). Conversely, KIR*/ NKG2A™ NK cells were
more strongly licensed in HLA-B —21TT donors (P= 1.1 x 107°), and this was not
correlated with HLA-A expression. Thus, HLA haplotypes characterized by both HLA-B
—-21M and high HLA-A genotypes, which provide highest levels of HLA-E epitope, strongly
bias toward NKG2A-mediated education.

We next tested whether variation in HLA-A expression alters NK cell responses toward HIV-
infected target cells, and whether this varies according to HLA-B —21 genotype. Increasing
HLA-A expression was significantly correlated with greater inhibition of NK cell
degranulation exclusively among HLA-B —21MM donors, when target cells were HIV
infected and the autologous effector NK cells necessarily expressed NKG2A (R=-0.77, P=
0.016, Fig. 2C). These data extend previous observations (20).

We reasoned that the genetic epidemiological effect of HLA-A expression level on impairing
HIV control may vary according to HLA-B -21 genotype. We examined the two extremes in
variation of NK cell education demarcated by HLA-B-21 MM versus TT, although
education varies across a continuum(21). Haplotypes tagged by HLA-B -21M exacerbate
the deleterious effect of HLA-A expression on HIV viremia (interaction A= 5.3x1079),
regardless of ethnicity (Fig. 3). The effect of HLA-A expression level on HIV viremia is of
greater magnitude in individuals with two HLA-B methionine-encoding alleles [V Leffect-MM
=0.22, 95% confidence interval (ClI) 0.17-0.26 logyg copies/ml per one z-score, P=1.5 x
10721 than in donors with two threonine-encoding HLA-B alleles (VLeffect.TT = 0.06, 95%
C1 0.04-0.08 log1g copies/ml per one zscore, P= 1.8 x 1079). The independent effect of
HLA-B-21Mvaried across Caucasians and Africans/African Americans (fig. S4), perhaps
owing to substantial differences in HLA haplotypes in Africans. In an HLA-B -21M/M
individual, decrease in HLA-A expression by two zscores (0.44log;q copies/ml lower VL)
is comparable in magnitude to the effect of the presence of HLA-B*57 (0.41 logyg copies/ml
lower VL in the same data set).

Taken together, these data support a model of increased HLA-A expression having a
deleterious effect on HIV control through enhanced HLA-E expression that results in
increased NKG2A-mediated NK (and/or T cell) inhibition, and impaired elimination of HIV-
infected target cells.

HIV is capable of avoiding both T cell and NK cell recognition of infected host cells. HIV
Nef-mediated reduction of HLA-A and -B (22) surface expression and Vpu-mediated
reduction of HLA-C (23) likely serve to reduce antigen presentation and T cell killing of
infected targets. These viral mechanisms occur posttranslationally (22, 23) and should not
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affect the contribution of HLA class I signal peptides to enhancing HLA-E expression. This
in turn may serve to allow continued evasion of NK cell responses through enhanced
NKG2A inhibition among those individuals with HLA haplotypes that provide ample signal
peptide to bind HLA-E. HIV encodes a peptide (AISPRTLNA, AA9) that may further
exploit the inhibitory effects of HLA-E, but discrepancies regarding the effects of this
peptide on HLA-E expression, NKG2A binding, and NK cell killing have been reported (24,
25). NKG2A-expressing CD8 T cells are involved in antiviral responses (26), but the
functional assays that we used are not appropriate for evaluating CD8* T cell responses, and
thus, we cannot rule out a role for CD8 T cells in the genetic data presented herein.
Although NKG2C, an activating receptor that also binds HLA-E (27), may play some role in
the pathway that we delineate, signaling through NKG2A dominates and overrides NKG2C
signaling (28).

These data show that expression level variation participates in the complex patterns of HLA
associations in HIV disease, a pattern recognized for class | in other species (29). Blockade
of HLA-E:NKG2A-mediated inhibition in vivo is a therapeutic strategy being explored
through clinical trials of an antibody against NKG2A (monalizumab) for treatment of
rheumatoid arthritis (NCT02331875), cancer (NCT 02557516, NCT02643550,
NCT02459301, NCT02671435), and stem-cell transplantation (NCT02921685), because a
role for HLA-E—-mediated immunosuppression is recognized in these disorders (30, 31). Our
data suggest that antagonizing HLA-E/NKG2A interactions, perhaps in combination with
other therapies, may provide benefit in HIV disease. This might be an attractive approach in
HIV cure strategies. Genetic validation of NKG2A as a therapeutic target in additional
diseases by testing for effects of HLA-A and HLA-B-21 genotypes may rationalize the use
of anti-NKG2A therapy in other disorders.
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Fig. 1. Elevated HLA-A expression levels are associated with increased HIV viremia and reduced
CD4™ T cell counts

(A) Data represent 2298 HIV-infected individuals from South Africa, Botswana, and
Zambia, enrolled at 11 sites with cross-sectionally measured VLs. Each dot represents the
average estimated expression level for a specific HLA-A allele by that allele’s reported
effect on cross-sectional VL (11). A linear regression line is shown in blue with 95%
confidence interval in gray. The size of each point is scaled by the number of contributing
alleles; however, the correlation estimate is not weighted. (B) HIV viremia among 5818
HIV-infected adults and (C) CD4* T cell counts among 2100 HIV-infected adults followed
prospectively and grouped according to one-unit zscore change in HLA-A expression. VLs
are plotted against time following seroconversion or date of enrollment (censored at ~5
years). In (B) and (C), lines are best fit (LOWESS lines) to unadjusted VL or CD4 counts.

Science. Author manuscript; available in PMC 2018 July 05.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Ramsuran et al.

Page 9

A
B 4
g ® .
° § s
3 40 < e .
c - HLA-B -21 variant
o « . o o« M/M
a 35 so o s o . < M/T
o . o T/T
& o % .o 7 °
X 30 . S
w
S 2
T - . . .
-1 0 1 2
HLA-A expression level (z-score)
B
HLA-B -21 M/M HLA-B -21 T/T
501
A
= A% :
& 401 A .- : s NK cell subset
2 A . e -A-NKG2A+
® 301a.2 A A R —e-KIR+
¥ A A -
> emmmdA c s
+ 201 ® A : a
g ° o &
= .___-__r—,
£ 101 o
0 1 2 0 1 2
HLA-A expression level (z-score)
C HLA-B -21 M/M HLA-B -21 T/T
HIV Uninfected HIV Infected HIV Uninfected HIV Infected
g Targets Targets " Targets Targets
3 201 » . o 3 121 . L
¥ o | 181 @ %o ¥ o . 404
+ X . + X 107 .
&= .. * 161 ° <=z 5 ® 304 ¢
S + ° . - o N + 81 Y ° o
~ . O~ ®
X2 5{e o 14 3 XS ] . 20 .
=] Za L
coo 0 e S0 4 o 101
05 1.0 15 20 25 05 10 15 20 25 05 10 15 20 25 05 10 15 20 25
HLA-A mRNA expression level HLA-A mRNA expression level
. &8 )
@€ G20 . 22 o e .l . o 40 °
x ; 28 e °
g' =151 ﬁl X g 30{ ° .
Grtw-" ° 241 o Glt 6 ¢ .o 8 1% 1e
X o . ® e ° X o 204
3 a ®e ° 20] ®e° . Z o 4 ¢ o
o 51° C o ° ° °
05 10 15 20 25 05 10 15 20 25 05 10 15 20 25 05 10

Fig. 2. HLA-A expression and HLA-B —-21M regulate HLA-E expression, resulting in biased

HLA-A mRNA expression level

15 20 25
HLA-A mRNA expression level

licensing of NKG2A-expressing NK cells that are impaired in their killing of HIV-infected target

cells

(A) HLA-E expression according to HLA-A expression and HLA-B —21M in 58 HIV-
uninfected donors. Each dot represents HLA-E expression levels (expressed as median
signal intensity on a linear scale), as determined by CyTOF (15), and imputed HLA-A
expression (z-score) (Rpearson = 0.43; 95% C1 0.20-0.62; P=5 x 1074). (B) NKG2A* NK
cell licensing varies by HLA-A expression and HLA-B —21M. Peripheral blood
mononuclear cells (PBMCs) from 10 HLA-B —21M/M and 10 HLA-B -21T/T donors were

coincubated with Raji cells pretreated with mouse antibody (2.5 ug/ml) against human CD20
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for 6 hours to probe NK cell licensing and education. Each point represents the proportion of
IFN-y* NK cells from each individual that are NKG2A*/KIR™ (triangles) or KIR*/NKG2A™~
(circles) as a function of HLA-A expression. Dotted and solid lines show best fit lines for
NKG2A* and KIR" subsets, respectively. The association between NK cell responsiveness
and HLA-A expression for NKG2A* NK cells in HLA-B —21M/M donors was Roearson =
0.69 (95% C1 0.10-0.92), A= 0.03; all other correlations were not significant. (C) PBMCs
from 9 HLA-B —21M/M and 9 HLA-B -21T/T donors were cocultured for 6 hours with
autologous T cell blasts that were left uninfected or were infected with HIV [vesicular
stomatitis virus G glycoprotein (VSV-G) pseudotyped NL4-3] and stained for CD107A, a
marker of NK cell degranulation (see fig. S3 for gating strategy). HLA-A expression was
formally measured in these T cell blasts by quantitative polymerase chain reaction and is
expressed relative to B2M expression levels. Plots show individual proportions of NK cells
expressing CD107a among NKG2A*KIR™ and NKG2A~KIR™ subsets. A best fit line is
shown for significantly correlated observations. Red and black lines and dots denote TT and
MM donors, respectively. The association between NKG2A*KIR™ NK cell response to HIV-
infected target cells, and HLA-A expression in HLA-B —21M/M donors was Rpearson = =
0.77 (95% CI -0.21 to —0.95), P=0.02; all other correlations were not significant.
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Fig. 3. The effect of HLA-A expression on HIV VL is modified by HLA-B alleles encoding
methionine at position —21 in the signal peptide

The magnitude of effect (slope) of HLA-A expression on HIV viral load is stronger among
individuals with HLA-B-21 MM (VL from 428 individuals, black line, VLeffect-mm = 0.22
logyg copies/ml, A= 1.5 x 10721 adjusted for HLA-A, -B, and -C) compared with HLA-B
TT (VL from 3071 individuals, red line, VLegfect-TT = 0.06 logyg copies/ml, = 1.8 x 1079
adjusted for HLA-A, -B, and -C). Interaction A= 5.3 x 107°. Gray shading represents 95%
Cl of the linear estimate.
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