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Abstract

In this paper we derive the exact asymptotics of the probability of Parisian ruin

for self-similar Gaussian risk processes. Additionally, we obtain the normal

approximation of the Parisian ruin time and derive an asymptotic relation

between the Parisian and the classical ruin times.
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1. Introduction

Let {XH(t), t ≥ 0} be a centered self-similar Gaussian process with almost surely

continuous sample paths and index H ∈ (0, 1), i.e., Var(XH(t)) = t2H and for any

a > 0 and s, t ≥ 0

Cov(XH(at), XH(as)) = a2HCov(XH(t), XH(s)).

Let β, c be two positive constants. In risk theory the surplus process of an insurance

company can be modeled by

Ru(t) = u+ ctβ −XH(t), t ≥ 0, (1)

∗ Postal address: Mathematical Institute, University of Wroc law, pl. Grunwaldzki 2/4, 50-384

Wroc law, Poland
∗∗ Postal address: University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland

1
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where u is the so-called initial reserve, ctβ models the total premium received up to time

t, and XH(t) represents the total amount of aggregated claims (including fluctuations)

up to time t. Typically, classical risk models assume a linear premium income, meaning

that β = 1. In this paper we deal with a more general case β > H allowing for non-

linear premium income. Below we shall refer to Ru as the self-similar Gaussian risk

process. The justification for choosing self-similar processes to model the aggregated

claim process comes from [35], where it is shown that the ruin probability for self-

similar Gaussian risk processes is a good approximation of the ruin probability for

some classical risk process. Recent contributions have shown that self-similar Gaussian

processes such as fractional Brownian motion (fBm), sub-fractional Brownian motion

and bi-fractional Brownian motion are useful in modeling of financial risks, see e.g.,

[20, 27, 28, 31, 23] and the references therein.

For any u ≥ 0, define the classical ruin time of the self-similar Gaussian risk process

by

τu = inf{t ≥ 0 : Ru(t) < 0} (with inf{∅} =∞) (2)

and thus the probability of ruin is defined as

P {τu <∞} . (3)

The classical ruin time and the probability of ruin for self-similar Gaussian risk pro-

cesses are well studied in the literature; see, e.g., [27, 28, 17].

Recently, an extension of the classical notion of ruin, that is the Parisian ruin,

focused substantial interest; see [10, 5, 9] and the references therein. The core of the

notion of the Parisian ruin is that now one allows the surplus process to spend a pre-

specified time under the level zero before the ruin is recognized. To be more precise,

let Tu model the pre-specified time which is a positive deterministic function of the

initial reserve u. In our setup, the Parisian ruin time of the self-similar Gaussian risk

process Ru is defined as

τ∗u = inf{t ≥ Tu : t− κt,u ≥ Tu}, with κt,u = sup{s ∈ [0, t] : Ru(s) ≥ 0}. (4)

Here we make the convention that sup{∅} = 0.
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In this contribution we focus on the Parisian ruin probability, i.e.,

P {τ∗u <∞} = P

{
inf
t≥0

sup
s∈[t,t+Tu]

Ru(s) < 0

}
. (5)

We refer to [5, 33, 7, 6, 10] for recent analysis of (5) for the Lévy surplus model. In

mathematical finance, Parisian stopping times have been studied initially by [4] in the

context of barrier options.

Assume for the moment that XH is a standard Brownian motion, β = 1 and Tu =

T > 0, u > 0. Thus Ru is the Brownian motion risk process with a linear trend. As

shown in [33], for any u ≥ 0

P {τ∗u <∞} =
exp

(
−c2T/2

)
− c
√

2πTΦ(−c
√
T )

exp (−c2T/2) + c
√

2πTΦ(c
√
T )

exp(−2cu), (6)

where Φ(·) is the distribution function of a standard Normal random variable. Since

the case β 6= 1 seems to be completely untractable, even for the Brownian motion risk

process, one has to resort to bounds and asymptotic results, allowing the initial capital

u to become large, see e.g., [19].

This contribution is concerned with the asymptotic behaviour of the Parisian ruin

probability as u→∞ for a large class of self-similar Gaussian risk processes. Under a

local stationarity condition on the correlation of the self-similar process XH (see (11))

and a mild condition on Tu (see (16)), in Theorem 3.1 we derive the asymptotics of

the Parisian ruin probability. Interestingly, as a corollary, it appears that for the fBm

risk process with a linear trend if H > 1/2, then

P {τ∗u <∞} = P {τu <∞} (1 + o(1)), u→∞ (7)

even if Tu grows to infinity at a specified rate, as u→∞.

The combination of (7) with the asymptotic behaviour of P {τu <∞} derived in

[27] implies thus the exact asymptotic behaviour of the Parisian ruin probability.

Additionally, we derive the approximation of the conditional (scaled) Parisian ruin

time and the asymptotic relation between the classical ruin time and the Parisian

ruin time given that the Parisian ruin occurs. This result goes in line with, e.g.,

[2, 14, 19, 24, 28, 30, 22, 21, 25, 36], where the approximation of the classical ruin time
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is considered. The obtained normal approximation of the Parisian ruin time is a new

result even for the Brownian motion risk process with a linear trend.

Brief outline of the paper: In Section 2 we introduce our notation and present a

preliminary result concerning the tail of the sup-inf functional of a Gaussian random

field. The asymptotics of the Parisian ruin probability is given in Section 3, while the

time of the Parisian ruin is analyzed in Section 4. Proofs are relegated to Section 5.

2. Notation and Preliminaries

Let {XH(t), t ≥ 0} be a centered self-similar Gaussian process with almost surely

continuous sample paths and index H ∈ (0, 1), as defined in the Introduction. By

{Bα(t), t ≥ 0} we denote a standard fBm with Hurst index α/2 ∈ (0, 1].

It is useful to define, for β > H and c > 0

Z(t) =
XH(t)

1 + ctβ
, t ≥ 0. (8)

Indeed, by the self-similarity of XH , for any u positive

P {τ∗u <∞} = P
{

sup
t≥0

inf
s∈[t,t+Tu]

(
XH(s)− csβ

)
> u

}

= P

sup
t≥0

inf
s∈
[
0,Tuu

− 1
β

]Z(t+ s) > u1−Hβ

 . (9)

If follows that (cf. [27, 28]) σZ(t) =
√

Var(Z(t)) attains its maximum on [0,∞) at the

unique point

t0 =

(
H

c(β −H)

) 1
β

and

σZ(t) = A− BA2

2
(t− t0)2 + o((t− t0)2)

as t→ t0, where

A =
β −H
β

(
H

c(β −H)

)H
β

, B =

(
H

c(β −H)

)−H+2
β

Hβ. (10)

In the rest of the paper we assume the local stationarity of the standardized Gaussian

process XH(t) := XH(t)/tH , t > 0 in a neighborhood of the point t0 i.e.,

lim
s→t0,t→t0

E
(
(XH(s)−XH(t))2

)
K2(|s− t|)

= Q > 0 (11)
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holds for some positive function K(·) which is assumed to be regularly varying at 0

with index α/2 ∈ (0, 1). Condition (11) is common in the literature; most of the known

self-similar Gaussian processes (such as fBm, sub-fBm, and bi-fBm) satisfy (11); see,

e.g., [26]. Note that the local stationarity at t0 and the self-similarity of the process

XH imply the local stationarity of XH at any point r > 0 i.e.,

lim
s→r,t→r

E
(
(XH(s)−XH(t))2

)
K2(|s− t|)

=

(
t0
r

)α
Q.

Throughout this paper we denote by K←(·) the asymptotic inverse of K(·); by defini-

tion

K←(K(t)) = K(K←(t))(1 + o(1)) = t(1 + o(1)), t→ 0.

It follows that K←(·) is regularly varying at 0 with index 2/α; see, e.g., [19].

Let Hα be the classical Pickands constant, defined by

Hα = lim
T→∞

1

T
E

(
exp

(
sup
t∈[0,T ]

(
√

2Bα(t)− tα)

))
.

We refer to [1, 3, 13, 12, 16, 11, 18, 34, 39] for the basic properties of the Pickands and

related constants. A new constant that shall appear in our findings below is defined as

Fα(T ) = lim
S→∞

1

S
E

(
exp

(
sup
t∈[0,S]

inf
s∈[0,T ]

(√
2Bα(t+ s)− (t+ s)α

)))
∈ (0,∞) (12)

for any T ∈ [0,∞).

We conclude this section with a general result for the tail of the sup-inf functional

applied to the Gaussian process Z. Recall that by Φ(·) we denote the distribution

function of a standard Normal random variable. In order to simplify the notation, we

shall set

q = q(v) := K←
(

1

v

)
, v > 0. (13)

Theorem 2.1. Let {Z(t), t ≥ 0} be the centered Gaussian process given as in (8),

and let xi(·), i = 1, 2 be two functions such that limv→∞ xi(v) = xi, i = 1, 2 and

limv→∞ xi(v)v−1/2 = 0, i = 1, 2 for some x1, x2 ∈ R ∪ {∞} satisfying x2 > −x1.

Further, for all v large denote Θx1,x2(v) =
[
t0 − x1(v)v−1, t0 + x2(v)v−1

]
. Then, for

any positive function λ(·) such that limv→∞ λ(v) = λ ∈ [0,∞) we have, as v →∞

P

{
sup

t∈Θx1,x2 (v)

inf
s∈[0,λ(v)q]

Z(t+ s) > v

}
=
Fα(D0λ)

Hα

(
Φ
(
A−

1
2B

1
2x2

)
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−Φ
(
−A− 1

2B
1
2x1

))
× P

{
sup
t≥0

Z(t) > v

}
(1 + o(1)), (14)

where D0 = 2−
1
αA−

2
αQ

1
α , and Fα(·) defined in (12) is positive and finite.

The complete proof of Theorem 2.1 is given in Section 5.

3. Asymptotics of the Parisian ruin probability

In this section we display the main result of the paper, which is the asymptotics of

the Parisian ruin probability P {τ∗u <∞}, as u→∞, for the self-similar Gaussian risk

model in (1). First, we note that in the light of the seminal contribution [27]

P {τu <∞} =
A

3
2−

2
αQ

1
αHα

2
1
αB

1
2

u
2H
β −2

K←(u
H
β −1)

exp

(
−u

2(1−Hβ )

2A2

)
(1 + o(1)) (15)

holds as u→∞. In order to control the growth of Tu, we shall assume that

lim
u→∞

Tuu
− 1
β

K←(u
H
β −1)

= T ∈ [0,∞). (16)

Theorem 3.1. Let {Ru(t), t ≥ 0} be the self-similar Gaussian risk process given as in

(1) with XH satisfying (11) and Tu, u > 0 satisfying (16). If τ∗u denotes the Parisian

ruin time of Ru, then as u→∞

P {τ∗u <∞} =
Fα(D0T )

Hα
P {τu <∞} (1 + o(1)), (17)

where D0 = 2−
1
αA−

2
αQ

1
α with Fα(T ) defined in (12).

The proof of Theorem 3.1 is deferred to Section 5; it relies on the general result for

the asymptotics of sup-inf functional of the Gaussian process Z, given in Theorem 2.1.

Remark 1. Observe that the Pickands constant Hα = Fα(0) and H1 = 1 (cf. [39]).

It is not clear how to calculate Fα(T ) using the definition in (12). However for the

special case α = 1, (6) and (19) below imply

F1(T ) =
exp (−T/4)−

√
πTΦ(−

√
T/2)

exp (−T/4) +
√
πTΦ(−

√
T/2)

, T > 0. (18)

In this paper we shall refer to Fα(T ) as the generalized Pickands constant.
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As a corollary of the last theorem we present next a result for the fBm risk processes

with a linear trend where XH is assumed to be a standard fBm B2H . Specifically, for

any H ∈ (0, 1] we have

Cov(XH(t), XH(s)) =
1

2
(t2H + s2H− | t− s |2H), t, s ≥ 0

and thus (11) holds with K(t) = tH , t ≥ 0 and Q = t−2H
0 = [H/(c(β − H))]−2H/β if

further β > H.

Corollary 3.2. Let Ru(t) = u + ct − B2H(t), t ≥ 0 and let Tu, u > 0 be such that

limu→∞ Tuu
1/H−2 = T ∈ [0,∞). If c > 0 and H ∈ (0, 1), then as u→∞

P {τ∗u <∞} = F2H(D0T )
2−

1
2H√

H(1−H)

(
cHu1−H

HH(1−H)1−H

) 1
H−2

× exp

(
− c2Hu2(1−H)

2H2H(1−H)2(1−H)

)
(1 + o(1)), (19)

where D0 = 2−
1

2H c2H−2(1−H)2− 1
H .

Remark 2. Using the fact that F2H(0) = H2H , Corollary 3.2 implies that

P {τ∗u <∞} = P {τu <∞} (1 + o(1))

as u→∞, if T = 0 (i.e. Tu = o(u(2H−1)/H)). Thus, if H > 1/2, the asymptotics of the

Parisian ruin probability coincides with the asymptotics of the classical ruin probability

even if Tu grows to infinity, provided that T = 0. This property is another manifestation

of the long-range dependence structure of fBm with Hurst index H > 1/2.

For the boundary case Tu = Tu1/H−2 with T > 0, the Parisian ruin probability and

the classical ruin probability are not asymptotically equivalent, as the initial capital u

tends to infinity.

In [32] a different type of Parisian ruin is considered, where the deterministic pre-

specified time Tu is replaced by an independent random variable (in particular, an

exponential random variable is dealt with therein, see also [8]). In the following

corollary we calculate the Parisian ruin probability of this model.

Corollary 3.3. Let {Ru(t), t ≥ 0} be the self-similar Gaussian risk process given as

in (1) with XH satisfying (11). If T is a positive random variable independent of
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{Ru(t), t ≥ 0}, then

P

{
inf
t≥0

sup
s∈[t,t+T ]

Ru(s) < 0

}
= P {τu <∞} (1 + o(1)), u→∞ (20)

holds, provided that 2H + α > 2β.

4. Normal approximation of the Parisian ruin time

In this section we present a normal approximation for the conditional (scaled)

Parisian ruin time. Additionally, we derive an asymptotic relation between the classical

ruin time and the Parisian ruin time, given that the Parisian ruin occurs.

Hereafter
d→ and

p→ stand for convergence in distribution and convergence in proba-

bility, respectively.

Theorem 4.1. Let τu, τ
∗
u be the classical ruin time and the Parisian ruin time for the

self-similar Gaussian risk process {Ru(t), t ≥ 0} given as in (1). If XH satisfies (11)

and Tu, u > 0 satisfies (16), then as u→∞

τ∗u − t0u
1
β

A
1
2B−

1
2u

H
β + 1

β−1

∣∣∣(τ∗u <∞)
d→ N , (21)

where A,B are as in (10) and N is a standard Normal random variable. Moreover, as

u→∞,

τ∗u − τu
u
H
β + 1

β−1

∣∣∣(τ∗u <∞)
p→ 0. (22)

The complete proof of Theorem 4.1 is given in Section 5.

As a straightforward implication of Theorem 4.1 it follows that if H + 1 = β, then

(τ∗u − τu)
∣∣∣(τ∗u <∞)

p→ 0, u→∞. (23)

Remark 3. In [28] a slightly more general class of Gaussian processes was considered.

Under additional technical conditions as A1 and A3 therein similar results as in

Theorem 3.1 and Theorem 4.1 also hold for that class of Gaussian processes; the only

difference is that in (21) and (22) we shall have
√

Var(XH(u1/β)) instead of uH/β and

s0(u) (in their notation) instead of t0.

We note that extensions of our result to Gaussian processes with random variance

under similar conditions as in [29] are also possible.
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5. Proofs

This section is dedicated to proofs of Theorems 2.1, 3.1 and 4.1 and Corollary 3.3.

We first present a crucial lemma which can be seen as an extension of the celebrated

Pickands lemma; see, e.g., [37, 38, 39]. We refer to [15] for recent developments in this

direction.

Let λ1, λ2 be two given positive constants. Consider a family of a.s. continuous

centered Gaussian random fields

{Xv(t, s), (t, s) ∈ [0, λ1]× [0, λ2]}

indexed by v > 0. We shall assume that its variance equals 1 and the correlation

functions rv(t, s, t
′, s′) = Cov(Xv(t, s), Xv(t

′, s′)), (t, s), (t′, s′) ∈ [0, λ1] × [0, λ2], v > 0

satisfy the following two conditions:

C1. There exist constants D > 0, α ∈ (0, 2] and a positive function f(·) defined in

(0,∞) such that

lim
v→∞

(f(v))2(1− rv(t, s, t′, s′)) = D |s+ t− s′ − t′|α

holds for any (t, s), (t′, s′) ∈ [0, λ1]× [0, λ2].

C2. There exist constants C > 0, v0 > 0, γ ∈ (0, 2] such that, for any v > v0, with

f(·) given in C1

(f(v))2(1− rv(t, s, t′, s′)) ≤ C(|s− s′|γ + |t− t′|γ)

holds uniformly with respect to (t, s), (t′, s′) ∈ [0, λ1]× [0, λ2].

Lemma 5.1. Let {Xv(t, s), (t, s) ∈ [0, λ1] × [0, λ2]}, v > 0 be the family of centered

Gaussian random fields with variance equal to 1 defined above. If both C1 and C2

hold, then for any positive function θ(·) satisfying limv→∞ f(v)/θ(v) = 1 we have

P

{
sup

t∈[0,λ1]

inf
s∈[0,λ2]

Xv(t, s) > θ(v)

}
= Hα(D

1
αλ1, D

1
αλ2)(1 + o(1))

× 1√
2πθ(v)

exp

(
− (θ(v))2

2

)
(24)

as u→∞, where

Hα(λ1, λ2) = E

(
exp

(
sup

t∈[0,λ1]

inf
s∈[0,λ2]

(√
2Bα(t+ s)− (t+ s)α

)))
∈ (0,∞).
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Proof. Note that the sup-inf functional satisfies F1-F2 in [15]. The proof follows by

similar arguments as the proof of Lemma 1 therein, and therefore we omit the technical

details.

The next result plays an important role in the proof of Theorem 3.1. We refer to

[27] for its proof.

Lemma 5.2. Let {Z(t), t ≥ 0} be defined as in (8) and set v(u) = u1−H/β. If c > 0

and β > H, then for any G > t0 we have as u→∞

P {τu <∞} = P

{
sup
t∈[0,G]

(
XH(t)− ctβ

)
> u

}
(1 + o(1))

= P

 sup
t∈[t0− ln v(u)

v(u)
,t0+

ln v(u)
v(u) ]

Z(t) > v(u)

 (1 + o(1)). (25)

Further, as u→∞

P

 sup
|t−t0|> ln v(u)

v(u)

Z(t) > v(u)

 = o

(
P
{

sup
t≥0

Z(t) > v(u)

})
. (26)

5.1. Proof of Theorem 2.1

We shall give only the proof for the case∞ > x2 > 0 > −x1 > −∞. The other cases

can be established by similar arguments. Since our approach is of asymptotic nature,

we assume in the following that v is sufficiently large so that xi(v) > 0, i = 1, 2. Let

S > 2λ be any positive constant. With q = q(v) defined in (13) we denote

4k = [kSq, (k + 1)Sq] , k ∈ Z, and Ni(v) =
⌊
S−1xi(v)q−1v−1

⌋
, i = 1, 2,

where b·c is the ceiling function. For any small ε0 > 0, denote λ+
ε0 = λ + ε0 and

λ−ε0 = max(0, λ− ε0). It follows by Bonferroni’s inequality that

N2(v)+1∑
k=−N1(v)−1

Q+
k (v) ≥ P

{
sup

t∈Θx1,x2 (v)

inf
s∈[0,λ(v)q]

Z(t+ s) > v

}

≥
N2(v)∑

k=−N1(v)

Q−k (v)− Σ1(v) (27)

for large enough u, where

Q+
k (v) = P

{
sup
t∈4k

inf
s∈[0,λ−

ε0
q]
Z(t0 + t+ s) > v

}
, k ∈ Z,
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Q−k (v) = P

{
sup
t∈4k

inf
s∈[0,λ+

ε0
q]
Z(t0 + t+ s) > v

}
, k ∈ Z,

and

Σ1(v) =
∑

−N1(v)≤k<l≤N2(v)

P

{
sup
t∈4k

inf
s∈[0,λ+

ε0
q]
Z(t0 + t+ s) > v,

sup
t∈4l

inf
s∈[0,λ+

ε0
q]
Z(t0 + t+ s) > v

}
.

Next, we shall derive upper bounds for Q+
k (v) and lower bounds for Q−k (v). First, note

that

Q+
k (v) ≤ P

{
sup
t∈4k

inf
s∈[0,λ−

ε0
q]
Z(t0 + t+ s) >

v

σ+
Z (k, v)

}

Q−k (v) ≥ P

{
sup
t∈4k

inf
s∈[0,λ+

ε0
q]
Z(t0 + t+ s) >

v

σ−Z (k, v)

}
,

where Z(t) := Z(t)/σZ(t), t ≥ 0 and

σ−Z (k, v) = inf
t∈4k

inf
s∈[0,λ+

ε0
q]
σZ(t0 + t+ s), σ+

Z (k, v) = sup
t∈4k

sup
s∈[0,λ−

ε0
q]
σZ(t0 + t+ s).

Furthermore, since

σZ(t) = A− A2B

2
(t− t0)2(1 + o(1)), t→ t0 (28)

for any small ε1 > 0 there exists v0 such that for any v > v0 (set below B± = B(1±ε1))

1

σ−Z (k, v)
≤ 1

A
+
B+

2

(
((k + 1)S + λ+

ε0)q
)2
,

1

σ+
Z (k, v)

≥ 1

A
+
B−

2
(kSq)

2

hold for k = 0, · · · , N2(v) + 1, and also

1

σ−Z (k, v)
≤ 1

A
+
B+

2
(kSq)

2
,

1

σ+
Z (k, v)

≥ 1

A
+
B−

2

(
((k + 1)S + λ−ε0)q

)2
hold for k = −N1(v) − 1, · · · ,−1. Moreover, for any k = −N1(v) − 1, · · · , N2(v) + 1,

set Zk,v(t, s) = Z(t0 + kSq+ tq+ sq), (t, s) ∈ [0, S]× [0, λ+
ε0 ]. It follows from (11) that,

for the correlation function rZk,v (·, ·, ·, ·) of Zk,v

lim
v→∞

2v2(1− rZk,v (t, s, t′, s′)) = Q |s+ t− s′ − t′|α (29)

holds for any (t, s), (t′, s′) ∈ [0, S]× [0, λ+
ε0 ]. Furthermore, for sufficiently large v

2v2(1− rZk,v (t, s, t′, s′)) ≤ G0
K2(q |s+ t− s′ − t′|)

K2(q)
,
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for all (t, s), (t′, s′) ∈ [0, S] × [0, λ+
ε0 ], with some positive constant G0. Set Smax =

max{|s+ t− s′ − t′| : (t, s), (t′, s′) ∈ [0, S] × [0, λ+
ε0 ]}. Using Potter bounds (cf. [19]),

for any small δ > 0 we have, when v is sufficiently large

K2(q |s+ t− s′ − t′|)
K2(q)

≤ G1 max
(
Sα−δmax , S

α+δ
max

)( |s+ t− s′ − t′|
Smax

)α−δ
≤ G2(|t− t′|α−δ + |s− s′|α−δ)

holds uniformly with respect to (t, s), (t′, s′) ∈ [0, S] × [0, λ+
ε0 ], where G1, G2 are two

positive constants. Hence, by an application of Lemma 5.1, where we set

f(v) =
v

A
, θk(v) =

(
1

A
+
B+

2

(
((k + 1)S + λ+

ε0)q
)2)

v, D =
Q

2A2
,

we obtain, for any k = 0, · · · , N2(v) + 1

Qk(v) ≥ Hα(D0S,D0λ
+
ε0)

1√
2πθk(v)

exp

(
− (θk(v))2

2

)
(1 + o(1)), u→∞,

where D0 = D
1
α = 2−

1
αA−

2
αQ

1
α . Therefore, as v →∞ (set ζ(v) = v−2q−1 exp(− v2

2A2 ))

N2(v)∑
k=0

Qk(v) ≥ Hα(D0S,D0λ
+
ε0)

A√
2πv

N2(v)∑
k=0

exp

(
− (θk(v))2

2

)
(1 + o(1))

=
1

S
Hα(D0S,D0λ

+
ε0)

A√
2π
ζ(v)

∫ x2

0

exp

(
−B

+

2A
x2

)
dx(1 + o(1)), (30)

where we used that limv→∞ vq = limv→∞ vK←
(

1
v

)
= 0 and limv→∞ x2(v)v−1/2 = 0.

Similarly, as v →∞

−1∑
k=−N1(v)

Qk(v) ≥ 1

S
Hα(D0S,D0λ

+
ε0)

A√
2π
ζ(v)

∫ 0

−x1

exp

(
−B

+

2A
x2

)
dx(1 + o(1)). (31)

Furthermore, with the same arguments as above for any S1 > 2λ

N2(v)+1∑
k=−N1(v)−1

Qk(v) ≤ 1

S1
Hα(D0S1, D0λ

−
ε0)

A√
2π
ζ(v)

×
∫ x2

−x1

exp

(
−B

−

2A
x2

)
dx(1 + o(1)). (32)

Consequently, (27) and (30-32) imply (set ζ̄(v) := D0A
3
2 ζ(v)/

√
B+)

1

D0S1
Hα(D0S1, D0λ

−
ε0)

(
Φ

((
B−

A

) 1
2

x2

)
− Φ

(
−
(
B−

A

) 1
2

x1

))
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≥ lim sup
v→∞

P

{
sup

t∈Θx1,x2 (v)

inf
s∈[0,λ−

ε0
q]
Z(t+ s) > v

}
/ζ̄(v)

≥ lim sup
v→∞

P

{
sup

t∈Θx1,x2 (v)

inf
s∈[0,λ(v)q]

Z(t+ s) > v

}
/ζ̄(v)

≥ lim inf
v→∞

P

{
sup

t∈Θx1,x2 (v)

inf
s∈[0,λ(v)q]

Z(t+ s) > v

}
/ζ̄(v)

≥ lim inf
v→∞

P

{
sup

t∈Θx1,x2 (v)

inf
s∈[0,λ+

ε0
q]
Z(t+ s) > v

}
/ζ̄(v) (33)

≥ 1

D0S
Hα(D0S,D0λ

+
ε0)

(
Φ

((
B+

A

) 1
2

x2

)
− Φ

(
−
(
B+

A

) 1
2

x1

))
− lim sup

v→∞
Σ1(v)/ζ̄(v).

Moreover, since

Σ1(v) ≤
∑

−N1(v)≤k<l≤N2(v)

P

{
sup
t∈4k

Z(t0 + t) > v, sup
t∈4l

Z(t0 + t) > v

}

similar arguments as in the proof of Eqs. (31) and (32) in [24] imply

lim
S→∞

lim sup
v→∞

Σ1(v)/ζ̄(v) = 0. (34)

Let us assume for the moment that

lim sup
S→∞

1

S
Hα(S,D0λ) > 0. (35)

Letting first ε0, ε1 → 0 and then S, S1 →∞ we get from (33) and the definition of Hα

∞ > Hα ≥ lim inf
S→∞

1

S
Hα(S,D0λ) ≥ lim sup

S→∞

1

S
Hα(S,D0λ) > 0.

Further, in view of (15) and (25) we have

P
{

sup
t≥0

Z(t) > v

}
= D0A

3
2B−

1
2Hαζ(v)(1 + o(1)), v →∞.

Therefore, the claim of Theorem 2.1 follows with Fα(λ) ∈ (0,∞).

Next, we prove (35). Define

Ev =
⋃
k

(
42k ∩Θx1,x2

(v)

)
, N∗(v) = ]{k ∈ Z : 42k ∩Θx1,x2

(v) 6= ∅}.

For any v positive

P

{
sup

t∈Θx1,x2 (v)

inf
s∈[0,λ+

ε0
q]
Z(t, s) > v

}
≥ P

{
sup
t∈Ev

inf
s∈[0,λ+

ε0
q]
Z(t, s) > v

}
. (36)
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Using Bonferroni’s inequality and the same arguments as in the derivation of (30) yield

P

{
sup
t∈Ev

inf
s∈[0,λ+

ε0
q]
Z(t, s) > v

}

≥ 1

2S
Hα(D0S,D0λ

+
ε0)

A√
2π
ζ(v)

∫ x2

−x1

exp

(
−B

+

2A
x2

)
dx− Σ2(v), (37)

where

Σ2(v) =
∑

k,l∈N∗(v),k>l

P

{
sup
t∈42k

inf
s∈[0,λ+

ε0
q]
Z(t0 + t+ s) > v,

sup
t∈42l

inf
s∈[0,λ+

ε0
q]
Z(t0 + t+ s) > v

}

≤
∑

k,l∈N∗(v),k>l

P

{
sup
t∈42k

Z(t0 + t) > v, sup
t∈42l

Z(t0 + t) > v

}
.

Similar arguments as in the proof of Eq. (32) in [24] show that

lim sup
v→∞

Σ2(v)/ζ̄(v) ≤ G3S
∑
k≥1

exp (−G4(kS)α) (38)

for some positive constants G3, G4. Therefore, combining (33), (36-38) we conclude

that

lim inf
S1→∞

1

S1
Hα(S1, D0λ) ≥ 1

S

 1

2D0
Hα(D0S,D0λ)−G5S

2
∑
k≥1

exp (−G4(kS)α)

 ,

with some positive constant G5. Since Hα(D0S,D0λ) is positive and increasing as S

increases, then for S sufficiently large the right hand side in the last formula is strictly

positive, implying thus (35). This completes the proof.

5.2. Proof of Theorem 3.1

The proof is based on an application of Theorem 2.1. From (9) we have that

P {τ∗u <∞} = P
{

sup
t≥0

inf
s∈[0,Sv ]

Z(t+ s) > v

}
,

with

v = v(u) = u1−Hβ Sv = Sv(u) = Tuu
− 1
β , u > 0.

Further, condition (16) implies limv→∞ Sv/q = T ∈ [0,∞), and

Π(v) ≤ P
{

sup
t≥0

inf
s∈[0,Sv ]

Z(t+ s) > v

}
≤ Π(v) + Σ(v), (39)
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where

Π(v) = P

 sup
t∈[t0− ln v

v ,t0+ ln v
v ]

inf
s∈[0,Sv]

Z(t+ s) > v

 ,

Σ(v) = P

{
sup

|t−t0|≥ ln v
v

Z(t) > v

}
.

Taking x1(v) = x2(v) = ln v and λ(v) = Sv/q in Theorem 2.1 we conclude that

Π(v) =
Fα(D0T )

Hα
P
{

sup
t≥0

Z(t) > v

}
(1 + o(1))

=
Fα(D0T )

Hα
P {τu <∞} (1 + o(1)), u→∞.

Moreover, from (26) we have Σ(v) = o(Π(v)) as u→∞, establishing thus the proof.

5.3. Proof of Corollary 3.3

For any u > 0 we have

P
{

sup
t≥0

inf
s∈[t,t+T ]

(
XH(s)− csβ

)
> u

}
≤ P

{
sup
t≥0

(
XH(s)− csβ

)
> u

}
= P {τu <∞} .

Further, for any small positive ε ∈ (0, 2H +α− 2β) by the independence of T and XH

P
{

sup
t≥0

inf
s∈[t,t+T ]

(
XH(s)− csβ

)
> u

}
≥ P

{
sup
t≥0

inf
s∈[t,t+T ]

(
XH(s)− csβ

)
> u, T < u

2H+α−2β−ε
αβ

}

≥ P

sup
t≥0

inf
s∈[t,t+u

2H+α−2β−ε
αβ ]

(
XH(s)− csβ

)
> u

P
{
T < u

2H+α−2β−ε
αβ

}
.

Hence, the claim follows from Theorem 3.1, by letting u→∞.

5.4. Proof of Theorem 4.1

We use the same notation as in the proof of Theorem 3.1. For any x ∈ R and u > 0

P {τ∗u <∞}P

{
τ∗u − t0u

1
β

A
1
2B−

1
2u

H
β + 1

β−1
≤ x

∣∣∣τ∗u <∞
}

= P
{
τ∗u ≤ t0u

1
β +A

1
2B−

1
2xu

H
β + 1

β−1
}
.

Next we focus on the asymptotics of

P
{
τ∗u ≤ t0u

1
β +A

1
2B−

1
2xu

H
β + 1

β−1
}
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= P

 sup

t∈[0,t0u
1
β +A

1
2B− 1

2 xu
H
β

+ 1
β

−1
]

inf
s∈[t,t+Tu]

(
XH(s)− csβ

)
> u


= P

 sup
t∈[0,t0+A

1
2B− 1

2 xv−1]

inf
s∈[0,Sv ]

Z(t+ s) > v

 ,

where

v = v(u) = u1−Hβ , Sv = Sv(u) = Tuu
− 1
β , u > 0.

Similarly to the proof of Theorem 3.1, we have

Π0(v) ≤ P

 sup
t∈[0,t0+A

1
2B− 1

2 xv−1]

inf
s∈[0,Sv]

Z(t+ s) > v

 ≤ Π0(v) + Σ0(v),

where

Π0(v) = P

 sup
t∈
[
t0− ln v

v ,t0+A
1
2B− 1

2 xv−1
] inf
s∈[0,Sv]

Z(t+ s) > v


Σ0(v) = P

{
sup

t∈[0,t0− ln v
v ]

Z(t) > v

}
.

In the light of Theorem 2.1 and (26) we conclude that, as u→∞

P
{
τ∗u ≤ t0u

1
β +A

1
2B−

1
2xu

H
β + 1

β−1
}

= (1 + o(1))
Fα(D0T )

Hα
P {τu <∞}Φ(x).

Therefore, the claim of (21) follows by applying Theorem 3.1. Moreover, as shown in

[28], Theorem 1

τu − t0u
1
β

A
1
2B−

1
2u

H
β + 1

β−1

∣∣∣(τu <∞)
d→ Ñ , u→∞,

with Ñ an N(0, 1) random variable. Consequently, by Lemma 2.3 in [24](
τu − t0u

1
β

A
1
2B−

1
2u

H
β + 1

β−1
,

τ∗u − t0u
1
β

A
1
2B−

1
2u

H
β + 1

β−1

)∣∣∣(τ∗u <∞)
d→ (Ñ , Ñ ), u→∞

implying thus (22). This completes the proof.
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[11] Dȩbicki, K., Hashorva, E. and Ji, L. (2014). Tail asymptotics of supremum of certain Gaussian

processes over threshold dependent random intervals. Extremes 17(3), 411–429.
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[15] Dȩbicki, K. and Kosiński, K. (2014). On the infimum attained by the reflected fractional

Brownian motion. Extremes 17, 431–446.
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