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Abstract: This paper studies the supremum of chi-square processes with trend over a threshold-dependent-time

horizon. Under the assumptions that the chi-square process is generated from a centered self-similar Gaussian

process and the trend function is modeled by a polynomial function, we obtain the exact tail asymptotics of

the supremum of the chi-square process with trend. These results are of interest in applications in engineering,

insurance, queuing and statistics, etc. Some possible extensions of our results are also discussed.
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1 Introduction

Let {Y (t), t ≥ 0} be a centered self-similar Gaussian process with almost surely (a.s.) continuous sample paths

and index H ∈ (0, 1), i.e., Var(Y (t)) = t2H and for any a > 0 and any s, t ≥ 0

Cov(Y (at), Y (as)) = a2HCov(Y (t), Y (s)).

It has been shown that self-similar Gaussian processes such as fractional Brownian motion (fBm), sub-fractional

Brownian motion and bi-fractional Brownian motion are quite useful in applications in engineering, telecom-

munication, insurance, queueing, finance, etc., see [7, 14, 17, 20, 26, 35] and the references therein.

Let β, c be two positive constants. In this paper we are interested in the tail asymptptics of the supremum of

a chi-square process with trend given by

ψT (u) = P

(
sup
t∈[0,T ]

(
n∑
i=1

b2iY
2
i (t)− ctβ

)
> u

)
, u→∞, (1)

where Yi, i = 1, · · · , n are independent copies of the centered self-similar Gaussian process Y , and 1 = b1 =

· · · = bk > bk+1 ≥ bk+2 ≥ · · · ≥ bn > 0. Here T > 0 can be a finite constant, infinity, and eventually we allow

T = Tu, u > 0 to be a threshold-dependent positive deterministic function.

One motivation for considering (1) stems from its applications in engineering sciences, see [24] and the references

therein. More precisely, let X(t) = (X1(t), · · · , Xn(t)), t ≥ 0 be a vector Gaussian load process. Of interest is

the probability of exit

P (X(t) 6∈ Su(t), for some t ∈ [0, T ]) ,

where the time-dependent safety region Su(t), t ≥ 0 is defined by

Su(t) =

{
(x1, · · · , xn) ∈ Rn :

n∑
i=1

x2
i ≤ h(t, u)

}
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with h(t, u), t, u ≥ 0 some positive function. Various models for X and h(t, u) (especially, h(t, u) ≡ u) have

been discussed in the literature (e.g., [4, 2, 28, 29, 16]) for the case that T ∈ (0,∞). In this framework, ψT (u)

corresponds to the model with X = (b1Y1, · · · , bnYn) and h(t, u) = u+ ctβ . As one of the new features of this

contribution, we shall deal with different types of T = Tu, u ≥ 0; see Section 4.

Another motivation stems from its applications in insurance. Specifically, the surplus process of an insurance

company can be modeled by

Ru(t) = u+ ctβ −
n∑
i=1

b2iY
2
i (t), t ≥ 0, (2)

where u is the initial reserve, ctβ models the total premium received up to time t, and
∑n
i=1 b

2
iY

2
i (t) represents

the total amount of aggregated claims up to time t from n different types of risks. In this framework, ψT (u) is

called ruin probability which is the most important measure of risk of the insurance company; see, e.g., [3, 33].

Note that the model in (2) is also related with the framework of fluid queue; see, e.g., [10].

Finally, we remark that the study of ψT (u) also gives some insight into the study of some limiting test statistics.

In [13], it is shown that a test statistic converges weakly to

sup
t∈(0,1)

(
U(t)2

2t(1− t)
− C(t)− υD(t)

)
, (3)

where {U(t), t ∈ [0, 1]} is a standard Brownian bridge, C(t) = ln
(
1− ln(1− (2t− 1)2)

)
, D(t) = ln(1 + C(t)2)

and υ > 1. Apparently, the above process involved is a chi-square process with trend. Asymptotical results for

the tail probability of (3) is very interesting from statistical point of view; see, e.g., [19]. See also [22] and the

references therein for more applications of chi-type processes in statistics.

Outline of the rest of the paper: Section 2 is concerned about some preliminary results. In Theorem 2.1 we

show the tail asymptotics of the supremum of a chi-square process generated from a non-stationary Gaussian

process which extends some results in [28, 16]; Lemma 2.2 derives a Fernique-type inequality for certain Gaussian

random fields. In Section 3 we concentrate on the asymptotics of (1) over an infinite-time horizon (i.e., T =∞).

Under a local stationary condition on the correlation of the self-similar process Y (see (16)), in Theorem 3.1 we

derive the asymptotics of ψ∞(u). Section 4 is devoted to the symptotics of (1) over a threshold-dependent-time

horizon (i.e., T = Tu a positive deterministic function). As a corollary, we also obtain approximations of the

conditional first passage time of the process defined in (2). Finally, in Section 5 possible extensions of our results

are discussed. We show that general results can also be obtained for the model where Yi’s are independent but

not necessarily identical and for the model with a more general correlation structure (for Y ) than that in (16).

2 Preliminaries

Let {X(t), t ≥ 0} be a centered non-stationary Gaussian process with a.s. continuous sample paths. In the

following, unless otherwise stated, T is considered to be a positive finite constant. We impose the following

typical assumptions on the Gaussian process X (see [29]):

Assumption I: The standard deviation function σX(·) :=
√

Var(X(·)) of X attains its maximum (assumed to

be 1) over [0, T ] at the unique point t = t0 ∈ [0, T ]. Further, there exist some positive constants µ, a such that

σX(t) = 1− a|t− t0|µ(1 + o(1)), t→ t0.

Assumption II: There exist some ν ∈ (0, 2], d > 0 such that

rX(s, t) = Corr(X(s), X(t)) = 1− d|t− s|ν(1 + o(1)), s, t→ t0.
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Assumption III: There exist some positive constants G, γ and ρ such that

E
(
(X(t)−X(s))2

)
≤ G|t− s|γ

holds for all s, t ∈ [t0 − ρ, t0 + ρ] ∩ [0, T ].

For such a centered non-stationary Gaussian process X, it is known that (see, e.g., [31], Theorem D.3 in [29] or

Theorem 2.1 in [6])

P

(
sup
t∈[0,T ]

X(t) > u

)
=Mν,µ,d,a

1√
2π
u

( 2
ν−

2
µ )

+
−1

exp

(
−u

2

2

)
(1 + o(1)), u→∞, (4)

where (x)+ = max(0, x), and, with I(·) denoting the indicator function,

Mν,µ,d,a =


d1/νa−1/µΓ(1/µ+ 1)(1 + I(t0 6∈{0,T}))Hν , if ν < µ,

P
a
d
ν , if ν = µ,

1, if ν > µ.

(5)

Here Hν ∈ (0,∞) is the Pickands constant defined by

Hν = lim
S→∞

1

S
E

(
exp

(
sup
t∈[0,S]

(√
2Bν(t)− tν

)))

with {Bν(t), t ∈ R} a standard fBm defined on R with Hurst index ν/2 ∈ (0, 1]; and P
a
d
ν ∈ (0,∞) is the Piterbarg

constant defined by

P
a
d
ν = P̂

a
d
ν I(t0∈(0,T )) + P̃

a
d
ν I(t0∈{0,T}) ∈ (0,∞) (6)

with

P̂λν = lim
S1,S2→∞

Pλν [−S1, S2], P̃λν = lim
S→∞

Pλν [0, S] = lim
S→∞

Pλν [−S, 0],

Pλν [−S1, S2] = E

(
exp

(
sup

t∈[−S1,S2]

(√
2Bν(t)− (1 + λ)|t|ν

)))
, λ > 0,max(S1, S2) > 0.

We refer to [29, 7, 9, 12] for the properties and generalizations of the Pickands-Piterbarg and related constants.

Let {χ2
n,b(t), t ≥ 0} be a chi-square process with n degrees of freedom defined by

χ2
n,b(t) =

n∑
i=1

b2iX
2
i (t), t ≥ 0, (7)

where bi > 0, 1 ≤ i ≤ n and {Xi(t), t ≥ 0}, 1 ≤ i ≤ n, are independent copies of the centered Gaussian process

X satisfying assumptions I–III. As an analogue of (4), [16] derived the following tail asymptotics for χ2
n,1:

P

(
sup
t∈[0,T ]

χ2
n,1(t) > u

)
=Mν,µ,d,au

( 1
ν−

1
µ )

+Υn(u)(1 + o(1)), u→∞, (8)

where

Υn(u) := P
(
χ2
n,1(0) > u

)
=

2(2−n)/2

Γ(n/2)
un/2−1 exp

(
−u

2

)
, u ≥ 0.

The result in (8) was derived by using a similar double-sum method as in [28]. As shown in [28, 16] the usage of

the double-sum method for the chi-square process is usually technical, since we have to deal with the supremum

of a Gaussian random field with variance function attaining its maximum on an infinite set; see also [5] for a
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recent result in this direction. Below, we present a general result on the tail asymptotics of χ2
n,b allowing for

different bi’s. The next result may not be surprising (see [28, 16]), but it turns out that the proof is far from

trivial. As we will see the following result is crucial when dealing with the tail asymptotics of the supremum of

the chi-square process with trend; two other extensions of Theorem 2.1 will be discussed in Section 5.

Theorem 2.1 Let {χ2
n,b(t), t ≥ 0} be a chi-square process defined as above with generic X satisfying assump-

tions I–III. If 1 = b1 = · · · = bk > bk+1 ≥ bk+2 ≥ · · · ≥ bn > 0, then, as u→∞,

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u

)
=

n∏
i=k+1

(1− b2i )−1/2Mν,µ,d,au
( 1
ν−

1
µ )

+Υk(u)(1 + o(1)). (9)

We conclude this section with a Fernique-type inequality, which will be used in the proof of our main result.

The proof of it is quite similar to the classical Fernique’s inequality (see, e.g., [23]). We refer to [25] for new

developments on the Fernique-type inequality.

Lemma 2.2 Let {ξ(t), t ∈ [0, 1]n} be a centered Gaussian process with a.s. continuous sample paths and

Var(ξ(0)) = σ2 ≥ 0. Suppose that

E
(

(ξ(t)− ξ(s))
2
)
≤ Q

n∑
i=1

|ti − si|αi (10)

holds for all t, s ∈ [0, 1]n, with some constants Q > 0, αi > 0, 1 ≤ i ≤ n. Then, for all x > 0

P

(
sup

t∈[0,1]n
ξ(t) > x

)
≤ 2n+1 exp

(
−c
∗x2

Q

)
+ 2−1 exp

(
− x2

8σ2

)
,

where c∗ =
(

2n
∑∞
p=0

(
(p+ 1)2−(p+1) min1≤i≤n αi+1

)1/2)−2

, and if σ2 = 0 then the second term on the right-hand

side disappears.

3 Infinite-time Horizon

In this section we shall focus on the asymptotics of

ψ∞(u) = P

(
sup

t∈[0,∞)

n∑
i=1

b2iY
2
i (t)− ctβ > u

)
, u→∞, (11)

with Yi’s are the centered self-similar Gaussian processes as discussed in Section 1. Throughout the paper, for

technical reasons we assume that β > 2H. As demonstrated in [17, 18] it is useful to define, for β > 2H and

c > 0

Zi(t) =
Yi(t)√
1 + ctβ

, t ≥ 0, 1 ≤ i ≤ n. (12)

Indeed, by self-similarity of Yi’s, for any u > 0

ψ∞(u) = P

(
sup
t≥0

n∑
i=1

b2iZ
2
i (t) > u1− 2H

β

)
. (13)

Let σZ(t) =
√

Var(Z1(t)) . It is noted that σZ(t) attains its maximum on [0,∞) at the unique point

t0 =

(
2H

c(β − 2H)

) 1
β
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and

σZ(t) = A−1/2

(
1− B

4A
(t− t0)2(1 + o(1))

)
, t→ t0 (14)

with

A =

(
2H

c(β − 2H)

)−2H/β
β

β − 2H
, B = 2

(
2H

c(β − 2H)

)−2(H+1)/β

Hβ. (15)

In the rest of the paper we assume local stationarity for the standardized Gaussian process Y (t) := Y (t)/tH , t > 0

in a neighborhood of the point t0, i.e.,

lim
s→t0,t→t0

E
(
(Y (s)− Y (t))2

)
|s− t|α

= Q > 0 (16)

holds for some α ∈ (0, 2). Condition (16) is common in the literature; most of the known self-similar Gaussian

processes (such as fBm, sub-fBm, and bi-fBm) satisfy (16), see e.g., [16]. Note that the local stationarity at t0

and the self-similarity of the process Y imply the local stationarity at any point r ∈ (0,∞).

Next we present our main result concerning the tail asymptotics of the supremum of the self-similar chi-square

process with trend over an infinite-time horizon.

Theorem 3.1 Suppose that the generic process {Y (t), t ≥ 0} is a centered self-similar Gaussian process with

index H ∈ (0, 1) and correlation function satisfying (16). If β > 2H, then

ψ∞(u) = 21−1/αQ1/αA1/αB−1/2π1/2Hα
n∏

i=k+1

(1− b2i )−1/2

×u(1−2H/β)(1/α−1/2)Υk(Au1−2H/β)(1 + o(1)), u→∞.

4 Threshold-dependent-time Horizon

In this section we are concerned about the asymptotics of

ψTu(u) = P

(
sup

t∈[0,Tu]

n∑
i=1

b2iY
2
i (t)− ctβ > u

)
, u→∞.

Throughout this section we shall adopt the same notation as in Section 3. In addition, define

B(u) = 21/2B−1/2u
H+1
β −

1
2 , u > 0.

In what follows, the following two scenarios of Tu > 0 will be discussed:

i) The short time horizon: limu→∞
Tu
u1/β = s0 ∈ [0, t0);

ii) The long time horizon: limu→∞
Tu−t0u1/β

B(u) = x ∈ (−∞,∞].

Clearly, T =∞ is included in scenario ii) and T ∈ (0,∞) is covered by scenario i).

We present below our main result of this section.

Theorem 4.1 Suppose that the generic process {Y (t), t ≥ 0} is a centered self-similar Gaussian process with

index H ∈ (0, 1) and correlation function satisfying (16). Assume further that β > 2H. We have, as u→∞,

i) If limu→∞
Tu
u1/β = s0 ∈ [0, t0), then

ψTu(u) =

n∏
i=k+1

(1− b2i )−1/2Mα,1,Q2 t
α
0 ,D

(
u+ cT βu
T 2H
u

)( 1
α−1)

+

Υk

(
u+ cT βu
T 2H
u

)
(1 + o(1)),
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where the constant Mα,1,Q2 t
α
0 ,D

is given as in (5) with D =
2H−c(β−2H)sβ0

2(1+csβ0 )
.

ii) If limu→∞
Tu−t0u1/β

B(u) = x ∈ (−∞,∞], then

ψTu(u) = ψ∞(u)Φ(x)(1 + o(1)),

where the asymptotics of ψ∞(u) is given in Theorem 3.1 and Φ(·) denotes the standard normal distribution

function.

As a corollary of Theorem 4.1 we derive an approximation of the first passage time of the chi-square process

with trend, which goes in line with e.g., [18, 8, 15]. Precisely, define

τu = inf{t ≥ 0 : Ru(t) ≤ 0} (with inf{∅} =∞)

to be the first passage time to 0 of the process {Ru(t), t ≥ 0} defined in (2). Denote by
d→ convergence in

distribution when the argument tends to infinity, and let E be a unit mean exponential random variable and

N be a standard normal random variable. We have:

Corollary 4.2 Under the conditions and notation of Theorem 4.1

i) If limu→∞
Tu
u1/β = s0 ∈ [0, t0), then

(2H − cβsβ0
1+csβ0

)(u+ cT βu )

2T 2H+1
u

(Tu − τu)
∣∣∣(τu ≤ Tu)

d→ E, u→∞.

ii) If limu→∞
Tu−t0u1/β

B(u) = x ∈ (−∞,∞], then

τu − t0u1/β

B(u)

∣∣∣(τu ≤ Tu)
d→ N

∣∣∣(N ≤ x), u→∞.

5 Extensions & Discussions

In Section 3 and Section 4, we have derived asymptotical results for the case where the chi-square process is

generated from a self-similar Gaussian process. In this section, we shall discuss two possible extensions: (a)

instead of independent copies of a self-similar Gaussian process we shall consider independent but non-identical

self-similar Gaussian processes; (b) instead of polynomial function |t−s|α in (16) we consider a regularly varying

function K2(|t− s|) with index α ∈ (0, 2].

As we have seen, Theorem 2.1 and Theorem 6.1 are fundamental for the proofs of our results in the last two

sections. Asymptotical results for the extended chi-square processes (as in the cases (a) and (b)) with trend

will follow similarly if corresponding extended results for Theorems 2.1 and 6.1 are available. Therefore, it is

sufficient at this point to present only an extension of Theorem 2.1; corresponding extension for Theorem 6.1

can also be obtained.

5.1 Non-identical Gaussian processes Xi’s

Let {Xi(t), t ≥ 0}, 1 ≤ i ≤ k be independent copies of the a.s. continuous Gaussian process X satisfying

assumptions I–III with the parameters therein, and let {Xi(t), t ≥ 0}, k + 1 ≤ i ≤ n be independent copies

of another a.s. continuous Gaussian process X(1) satisfying assumption III with parameter γ1 instead of γ.

Moreover, we suppose that the standard deviation function σX(1)(·) attains its maximum 1 over [0, T ] at t0 as
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well. Besides, {Xi(t), t ≥ 0}, 1 ≤ i ≤ k, and {Xi(t), t ≥ 0}, k+1 ≤ i ≤ n are assumed to be independent. Define

also

χ2
n,b(t) =

n∑
i=1

b2iX
2
i (t), t ≥ 0,

with 1 = b1 = · · · = bk ≥ bk+1 ≥ · · · ≥ bn > 0.

Theorem 5.1 Let {χ2
n,b(t), t ≥ 0} be a chi-square process defined as above. If γ ≥ ν and γ1 ≥ ν, then we have,

as u→∞,

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u

)
=

n∏
i=k+1

(1− b2i )−1/2Mν,µ,d,au
( 1
ν−

1
µ )

+Υk(u)(1 + o(1)). (17)

Remarks 5.2 a) Suppose that the generic processes X and X(1) are both fBm with indexes H ∈ (0, 1) and

H1 ∈ (0, 1), respectively. If H1 ≥ H, then the conditions of the last theorem are fulfilled.

b) From the proof of the last theorem we can see the assumption that {Xi(t), t ≥ 0}, k + 1 ≤ i ≤ n are identical

(in distribution) is not really necessary; here to simplify the notation we chose to work under this assumption.

5.2 General correlation structure

First, we formulate the general assumption about the correlation structure of the generic Gaussian process X.

Assumption II’: There exists some K(·), a regularly varying function at 0 with index ν/2 ∈ (0, 1], such that

rX(s, t) = Corr(X(s), X(t)) = 1−K2(|t− s|)(1 + o(1)), s, t→ t0.

Next, we introduce some further notation. Let q(u) =
←−
K(u−1/2) be the inverse function of K(·) at point u−1/2

(assumed to exist asymptotically). It follows that q(u) is a regularly function at infinity with index −1/ν which

can be further expressed as q(u) = u−1/νL(u−1/2), with L(·) a slowly varying function at 0. According to the

values of L(u−1/2) as u→∞, we consider the following three scenarios:

C1: µ > ν, or µ = ν and limu→∞ L(u−1/2) = 0;

C2: µ = ν and limu→∞ L(u−1/2) = L ∈ (0,∞);

C3: µ < ν, or µ = ν and limu→∞ L(u−1/2) =∞.
We present below our second extension of Theorem 2.1.

Theorem 5.3 Under the assumptions and conditions of Theorem 2.1 with assumption II replaced by assumption

II’, we have, as u→∞,

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u

)
=

n∏
i=k+1

(1− b2i )−1/2M̃ν,µ,1,a(u)u
( 1
ν−

1
µ )

+Υk(u)(1 + o(1)), (18)

where

M̃ν,µ,1,a(u) =


a−1/µΓ(1/µ+ 1)(1 + I(t0 6∈{0,T}))Hν

←−
L (u−1/2), for C1,

PaLνν , for C2,

1, for C3.

The proof of the last theorem follows by similar arguments as in the proof of Theorem 2.1, and thus we only

give some remarks. Actually, it relies on a corresponding extension of Lemma 7.1, which can be done as in the

proof of Theorem 8.2 in [29]. Note that the difference from the classical results in [29] is that for the case µ = ν

three sub-cases should be considered differently (depending on the property of L(·)). This is not observed in

the study of some other Gaussian random fields, e.g., [32] and [11], where it is shown that the substitution of

a polynomial function d|t − s|ν by a regularly varying function K2(|t − s|) in the correlation structure of the

Gaussian random fields does not influence much on the asymptotics. However, it seems not surprising to have

these sub-cases if one examines the proof of Theorem 8.2 in [29].
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6 Further Results & Proofs

This section is devoted to the proofs of Theorems 2.1, 3.1, 4.1 and 5.1 and Corollary 4.2. Let in the following

Q,Qi, i = 1, 2, ... denote positive constants whose values may change from line to line.

First, we present a result concerning the tail asymptotics of the supremum of a chi-square process over a

threshold-dependent time interval, which turns out to be crucial for the proofs of Theorem 2.1, Theorem 4.1

and Corollary 4.2. The technical proof of it is deferred to Appendix.

Theorem 6.1 Let {χ2
n,b(t), t ≥ 0} be a chi-square process given as in (7) with generic X satisfying assumptions

I–II, and 1 = b1 = · · · = bk > bk+1 ≥ bk+2 ≥ · · · ≥ bn > 0. Let further ∆x(u) = [t0 − x1(u)u−2/µ, t0 +

x2(u)u−2/µ] with functions xi(u), i = 1, 2 such that

lim
u→∞

xi(u) = xi ∈ [−∞,∞], lim
u→∞

xi(u)u−1/µ = 0, i = 1, 2.

If −x1 < x2, then

P

(
sup

t∈∆x(u)

χ2
n,b(t) > u2

)
=

n∏
i=k+1

(1− b2i )−1/2M̂ν,µ,d,a(x1, x2)u
( 2
ν−

2
µ )

+Υk(u2)(1 + o(1)) (19)

as u→∞, where

M̂ν,µ,d,a(x1, x2) =


d1/νa−1/µHν

(
Gµ(a1/µx2)−Gµ(−a1/µx1)

)
, if ν < µ,

P
a
d
ν [−d1/νx1, d

1/νx2], if ν = µ,

1, if ν > µ,

(20)

with Gµ(x) =
∫ x
−∞ e−|t|

µ

dt, x > 0 for any µ > 0.

Proof of Theorem 2.1: Without lose of generality we shall only consider the case that t0 ∈ (0, T ). As in the

proof of Theorem 6.1, we consider the Gaussian random field

Yb(t,v) =

n∑
i=1

biXi(t)vi

defined on GT = [0, T ]×Sn−1, where Sn−1 stands for the (n−1)-dimensional unit sphere. We refer to (34)–(36)

below for some important properties of the Gaussian random field Yb. It follows that

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u2

)
= P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
.

Therefore, we shall focus on the tail asymptotics of

P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
, u→∞.

Next define ∆u = [t0 − (lnu/u)2/µ, t0 + (lnu/u)2/µ], Cu = {v ∈ Sn−1 : vi ∈ [− lnu/u, lnu/u], k + 1 ≤ i ≤ n}
and let

π1(u) := P

(
sup

(t,v)∈∆u×Cu
Yb(t,v) > u

)
.

We have, for any u > 0 and any small ρ > 0

π1(u) ≤ P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
≤ π1(u) + P

(
sup

(t,v)∈GT /([t0−ρ,t0+ρ]×Cu)

Yb(t,v) > u

)

8



+P

(
sup

(t,v)∈([t0−ρ,t0+ρ]/∆u)×Cu)

Yb(t,v) > u

)
. (21)

Further, in view of Theorem 6.1

π1(u) =

n∏
i=k+1

(1− b2i )−1/2M̂ν,µ,d,a(−∞,∞)u
( 2
ν−

2
µ )

+Υk(u2)(1 + o(1)) (22)

as u→∞. By (34) and the Borell-TIS inequality (see, e.g., [1])

P

(
sup

(t,v)∈GT /([t0−ρ,t0+ρ]×Cu)

Yb(t,v) > u

)
≤ Q exp

(
− (u−Q1)2

2(1− δ0)

)
(23)

holds for all u large, with some constants Q > 0,Q1 > 0 and δ0 ∈ (0, 1). Further, in the light of (34), (36) and

the Piterbarg inequality given in Theorem 8.1 in [30]

P

(
sup

(t,v)∈([t0−ρ,t0+ρ]/∆u)×Cu)

Yb(t,v) > u

)
≤ Q2u

2(n+1)
γ∧2 −1 exp

(
− u2

2(1− (lnu/u)2Q3)2

)
(24)

holds for all u large, with some positive constants Q2,Q3. Consequently, the claim for the case that t0 ∈ (0, T )

follows from (21)–(24). This completes the proof. �

Proof of Theorem 3.1: Let T > t0 be some fixed large enough integer, and let

π(u) = P

(
sup
t∈[0,T ]

n∑
i=1

b2iZ
2
i (t) > u1−2H/β

)
, π1(u) = P

(
sup

t∈[T,∞)

n∑
i=1

b2iZ
2
i (t) > u1−2H/β

)
.

Clearly

π(u) ≤ ψ∞(u) ≤ π(u) + π1(u).

By the definition of Zi’s we have that there exist some constants Q > 0, ρ ≥ 0 such that

E
(
(Z1(t)− Z1(s))2

)
≤ Q|t− s|α

holds for any t, s ∈ [t0 − ρ, t0 + ρ]. Thus, in view of (14), (16) and Theorem 2.1 we conclude that

π(u) =

n∏
i=k+1

(1− b2i )−1/2Mα,2,Q2 ,
B
4A

(A(u))
2
α−1

Υk((A(u))2)(1 + o(1)), u→∞,

where A(u) = A1/2u1/2−Hβ . Therefore, to complete the proof it is sufficient to show that

π1(u) = o(π(u)), u→∞.

To this end, let Ỹb(t,v) =
∑n
i=1 biA

1/2Zi(t)vi, (t,v) ∈ [T,∞)× [−1, 1]n. We have

π1(u) = P

(
sup

(t,v)∈[T,∞)×Sn−1

Ỹb(t,v) > A(u)

)
.

We split the interval [T,∞) into subintervals [k, k + 1), k ≥ T. For every k ≥ T , we have (set Y ∗b (t,v) =√
1+ctβ

tH
Ỹb(t,v))

P

(
sup

(t,vv)∈[k,k+1)×Sn−1

Ỹb(t,v) > A(u)

)
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≤ P

(
sup

(t,v)∈[k,k+1)×[−1,1]n
Y ∗b (t,v) >

√
1 + c(k − 1)β

(k − 1)H
A(u)

)
. (25)

In addition, there exists some global constant Q such that for any k ≥ T

E (Y ∗b (t,v)− Y ∗b (t′,v′))
2

≤ 2AnE
(
Y (t)− Y (t′)

)2
+ 2A

n∑
i=1

(vi − v
′

i)
2

≤ Q

(
|t− t′|α +

n∑
i=1

(vi − v
′

i)
2

)

holds for all t, t′ ∈ [k, k+1),v,v′ ∈ [−1, 1]n. Next we split [−1, 1]n into 2n subsets of the form
∏n
i=1 ∆ji

i , ji = 1, 2,

where ∆1
i = [−1, 0] and ∆2

i = [0, 1]. By using Lemma 2.2 we derive, for k ≥ T

P

 sup
(t,v)∈[k,k+1)×

∏n
i=1 ∆

ji
i

Y ∗b (t,v) >

√
1 + c(k − 1)β

(k − 1)H
A(u)

 ≤ 2n+2e
−Q1

1+c(k−1)β

(k−1)2H
(A(u))2

,

with Q1 = min( c
∗

Q ,
1

8A ). This together with (25) yields that

P

(
sup

(t,v)∈[k,k+1)×Sn−1

Ỹb(t,v) > A(u)

)
≤ 22n+2e

−Q1
1+c(k−1)β

(k−1)2H
(A(u))2

.

Consequently, since T was chosen large enough

π1(u) ≤
∞∑
k=T

22n+2e
−Q1

1+c(k−1)β

(k−1)2H
(A(u))2

≤ 22n+2

∫ ∞
T−2

e−Q2(A(u))2yβ−2H

dy

≤ Q3(A(u))−2e−Q2(T−2)β−2H(A(u))2 = o(π(u))

as u→∞, where Q3 is a constant depending on T and Q2 = cQ1. This completes the proof. �

Proof of Theorem 4.1: Case i). We introduce a deterministic function m(u) =
u+cTβu
T 2H
u

, u > 0, and centered

Gaussian processes

Wu,i(t) =
Yi(t)√

1− cu
1+cu

(1− tβ)
, t ≥ 0, 1 ≤ i ≤ n,

with cu = cT βu /u, u > 0 such that limu→∞ cu = csβ0 =: c0. By the self-similarity of Y we have

ψTu(u) = P

(
sup
t∈[0,1]

n∑
i=1

b2iW
2
u,i(t) > m(u)

)
.

Let further c±ε0 = max(c0 ± ε, 0) and define

W±εi (t) =
Yi(t)√

1− c±ε0

1+c±ε0

(1− tβ)

, t ≥ 0, 1 ≤ i ≤ n,

for any sufficiently small ε > 0. Thus we have, for u large enough

P

(
sup
t∈[0,1]

n∑
i=1

b2i
(
W−εi (t)

)2
> m(u)

)
≤ ψTu(u) ≤ P

(
sup
t∈[0,1]

n∑
i=1

b2i
(
W+ε
i (t)

)2
> m(u)

)
.
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Next we consider the upper bound of ψTu(u). It follows that σW+ε
1

(t) attains its maximum over [0, 1] at the

unique point t0 = 1 and further

σW+ε
1

(t) = 1− 2H − (β − 2H)c+ε0

2(1 + c+ε0 )
|t− 1|(1 + o(1)), t→ 1,

Corr(W+ε
1 (t),W+ε

1 (s)) = 1− tα0Q

2
|t− s|α(1 + o(1)), s, t→ 1.

In addition, there exists some Q > 0 such that

E
(
(W+ε

1 (t)−W+ε
1 (s))2

)
≤ Q|t− s|α

holds for all s, t ∈ [1/2, 1]. Therefore, in view of Theorem 2.1

P

(
sup
t∈[0,1]

n∑
i=1

b2i
(
W+ε
i (t)

)2
> m(u)

)
=

n∏
i=k+1

(1− b2i )−1/2Mα,1,Q2 t
α
0 ,D+ε

(m(u))(
1
α−1)

+ Υk(m(u))(1 + o(1))

as u→∞, with D+ε =
2H−(β−2H)c+ε0

2(1+c+ε0 )
. Similar arguments give the same lower bound as above (with +ε replaced

by −ε) for ψTu(u), and thus letting ε→ 0 the claim in i) follows.

Case ii). Again, using the self-similarity we derive

ψTu(u) = P

(
sup

t∈[0,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
,

where A(u) = A1/2u1/2−H/β . Let tu = t0 − u−1/2+H/β lnu, and define

πtu(u) = P

(
sup

t∈[0,tu]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
.

Clearly,

P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
≤ ψTu(u) ≤ P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
+ πtu(u).

In the following, we shall first derive the asymptotics of the common term on both sides of the above formula,

which will give the exact asymptotics of ψTu(u). Then we show that πtu(u) is asymptotically negligible. In view

of (14), (16) and Theorem 6.1, we have, for any x ∈ (−∞,∞)

P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
= ψ∞(u)Φ(x)(1 + o(1)), u→∞.

Next we show that the last formula is also valid for x =∞. Since, for any fixed y ≥ 0,

P

(
sup

t∈[tu,t0+yB(u)]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
≤ P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
≤ ψ∞(u),

we obtain from Theorem 6.1 that

Φ(y) ≤ limu→∞

P
(

supt∈[tu,Tuu−1/β ]

∑n
i=1 b

2
iAZ

2
i (t) > (A(u))2

)
ψ∞(u)

≤ limu→∞
P
(

supt∈[tu,Tuu−1/β ]

∑n
i=1 b

2
iAZ

2
i (t) > (A(u))2

)
ψ∞(u)

≤ 1.
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Therefore, letting y →∞ we conclude that

P

(
sup

t∈[tu,Tuu−1/β ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
= ψ∞(u)(1 + o(1)), u→∞.

To complete the proof we prove that πtu(u) = o(ψ∞(u)) as u→∞. We have

P

(
sup

t∈[0,tu]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
= P

(
sup

(t,v)∈[0,tu]×Sn−1

Ỹb(t,v) > A(u)

)
,

where Ỹb(t,v) =
∑n
i=1 biA

1/2Zi(t)vi, (t,v) ∈ [0, t0+1]×Sn−1. Further, there exist some constants δ ∈ (0, 1),Q >

0 such that

E
(

(Ỹb(t,v))2
)
≤ 1− δ < 1, t ∈ [0, t0 − ρ],v ∈ Sn−1,

E
(

(Ỹb(t,v)− Ỹb(t,v))2
)
≤ Q(|t− s|α +

n∑
i=1

(vi − v
′

i)
2), t ∈ [t0 − ρ, t0 + ρ],v ∈ Sn−1

hold. Therefore, as in the proof of Theorem 2.1, by the Borell-TIS inequality we have

P

(
sup

t∈[0,t0−ρ]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
≤ e−

(A(u)−Q0)2

2(1−δ)2 = o(ψ∞(u)), u→∞, (26)

with Q0 = E
(

sup(t,v)∈[0,t0−ρ]×Sn−1
Ỹb(t,v)

)
< ∞, and by the Piterbarg inequality and (14) (or by a direct

application of [34], Proposition 3.2) we have

P

(
sup

t∈[t0−ρ,tu]

n∑
i=1

b2iAZ
2
i (t) > (A(u))2

)
≤ Q1(A(u))2(n+1)/αΨ

(
A(u)

1−Q2(A(u)−1 lnA(u))2

)
= o(ψ∞(u)) (27)

as u→∞, where Q1 and Q2 are two positive constants. Consequently, we conclude from (26) and (27) that

πtu(u) = o(ψ∞(u)), u→∞.

This completes the proof. �

Proof of Corollary 4.2: Case i). For notational simplicity, we let

f(u) =
2T 2H+1

u

(2H − cβsβ0
1+csβ0

)(u+ cT βu )
, u > 0.

By definition, for any x > 0

P
(
Tu − τu
f(u)

> x
∣∣∣τu ≤ Tu) =

ψTu−xf(u)(u)

ψTu(u)
.

Further, it follows from Theorem 4.1 that

lim
u→∞

ψTu−xf(u)(u)

ψTu(u)
= lim
u→∞

e
u+cT

β
u

2T2H
u
−u+c(Tu−xf(u))

β

2(Tu−xf(u))2H = e−x,

establishing the claim in i).

Case ii). Similarly as above, in the light of Theorem 4.1 we have, for any y ≤ x

lim
u→∞

P
(
τu − t0u1/β

B(u)
< y
∣∣∣τu ≤ Tu) = lim

u→∞

ψt0u1/β+yB(u)(u)

ψTu(u)
=

Φ(y)

Φ(x)
.
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Thus, the proof is complete. �

Proof of Theorem 5.1: One approach is to follow a similar proof as Theorem 2.1 by using the double-sum

method. Here, we give another proof based on the ideas and results in [16], [28] and [27]. We first show that

P

(
sup
t∈[0,T ]

χ2
n,b(t) > u

)
= P

(
sup
t∈[0,T ]

χ2
k,1(t) +

n∑
i=k+1

b2iX
2
i (t0) > u

)
(1 + o(1)) (28)

holds as u→∞, which in view of Lemma 2.1 in [27] is sufficient. Indeed, lettingG(u) = P
(

supt∈[0,T ] χ
2
k,1(t) ≤ u

)
we have from (8) that

lim
u→∞

1−G(u+ y)

1−G(u)
= exp

(
−1

2
y

)
, ∀y ∈ R.

Further let H(u) = P
(∑n

i=k+1 b
2
iX

2
i (t0) ≤ u

)
. It is known (cf. Example 2 in [21]) that

1−H(u) = O

(
ur exp

(
− u

2bk+1

))
= o(1−G(u))

for some r ∈ N. Moreover, by choosing some θ ∈ (1/2, 1/(2bk+1)) we have that∫ ∞
0

eθxdH(x) <∞.

Therefore, by Lemma 2.1 in [27] the claim in (9) follows from (28).

It remains to show (28). To this end, we introduce the following two Gaussian random fields:

Yb(t,v) =

n∑
i=1

biviXi(t), Zb(t,v) =

k∑
i=1

viXi(t) +

n∑
i=k+1

biviXi(t0), t ≥ 0, v ∈ Rn.

As in the proof of Theorem 2.1 it is sufficient that

P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
= P

(
sup

(t,v)∈GT
Zb(t,v) > u

)
(1 + o(1)) (29)

holds as u → ∞. Next we have that the standard deviations σYb
(t,v) and σZb

(t,v) attain their absolute

maximum (equal to 1) over GT at all points of C0 given as

C0 = {t0} × {v ∈ Sn−1 : v2
1 + · · ·+ v2

k = 1} ⊂ GT .

Further we consider the expansions of the standard deviations and the correlations of the Gaussian random

fields Yb and Zb around the sphere C0. By direct calculations we have

σYb
(t,v) = 1− a|t− t0|µ(1 + o(1))− 1

2

n∑
i=k+1

(1− b2i )v2
i (1 + o(1)),

σZb
(t,v) = 1− a|t− t0|µ(1 + o(1))− 1

2

n∑
i=k+1

(1− b2i )v2
i (1 + o(1)) (30)

hold as t→ t0 and
∑n
i=k+1 v

2
i → 0. Further, since γ > ν, γ1 ≥ ν,

rYb
(t,v, s,u) = Corr(Yb(t,v), Yb(s,u)) = 1− d|t− s|ν(1 + o(1))− 1

2

n∑
i=1

b2i (vi − ui)2(1 + o(1)),

rZb
(t,v, s,u) = Corr(Zb(t,v), Yb(s,u)) = 1− d|t− s|ν(1 + o(1))− 1

2

n∑
i=1

b2i (vi − ui)2(1 + o(1)) (31)
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hold as s, t→ t0,
∑n
i=k+1 v

2
i → 0 and

∑n
i=k+1 u

2
i → 0. The technical proof of (31) is relegated to the Appendix.

Define a neighborhood Cu of C0 as

Cu = {(t,v) : a|t− t0|µ +
1

2

n∑
i=k+1

(1− b2i )v2
i < lnu/u} ∩ GT .

By an application of Borell inequality and Piterbarg inequality as in the proof of Lemma 8.1 in [29] we can

show that

P

(
sup

(t,v)∈GT
Yb(t,v) > u

)
= P

(
sup

(t,v)∈Cu
Yb(t,v) > u

)
(1 + o(1)), (32)

P

(
sup

(t,v)∈GT
Zb(t,v) > u

)
= P

(
sup

(t,v)∈Cu
Zb(t,v) > u

)
(1 + o(1)) (33)

hold as u → ∞. Moreover, since we are concerned about the asymptotic results it follows that the expansions

of the standard deviations and the correlations of the Gaussian random field Yb (or Zb) around the sphere C0

are the only necessary properties influencing the asymptotics of (32) (or (33)); this is due to the fact that Yb

and Zb are Gaussian and Cu → C0 as u→∞. Therefore, it follows from (30) and (31) that (29) is established.

This completes the proof. �

7 Appendix

This section is devoted to the proofs of Theorem 6.1 and Eq. (31).

We first present a lemma concerning the tail asymptotics of the supremum of a Gaussian random field over a

threshold-dependent-time interval, which is crucial for the proof of Theorem 6.1.

Lemma 7.1 Let {X(v),v ∈ Rn} be a centered stationary Gaussian random field with a.s. continuous sample

paths and covariance function r(·) satisfying

r(v) = 1− d1|v1|α(1 + o(1))−
n∑
i=2

div
2
i (1 + o(1)), v2

1 + v2
2 + · · ·+ v2

n → 0,

with α ∈ (0, 2] and di > 0, i ≤ n. Define

X∗(v) =
X(v)

(1 + c1|v1|β)
(
1 +

∑n
i=k+1 civ

2
i

) , v ∈ Rn

with some 1 < k < n and c1 > 0, ci > 0, k + 1 ≤ i ≤ n, β > 0. Let A ⊂ Rk−1 be a Jordan measurable set with

positive Lebesgue measure mes(A). Let further ∆̃x(u) = [−x1(u)u−2/β , x2(u)u−2/β ] with functions xi(u), i = 1, 2

such that

lim
u→∞

xi(u) = xi ∈ [−∞,∞], lim
u→∞

xi(u)u−1/β = 0, i = 1, 2.

Denote D(u) = ∆̃x(u)×A× [− lnu/u), lnu/u]n−k. If −x1 < x2, then

P

(
sup

v∈D(u)

X∗(v) > u

)
= 2−1/2π−k/2

k∏
i=2

d
1/2
i

n∏
i=k+1

√
1 + di/cimes(A)

×M̂α,β,d1,c1(x1, x2) uk−2+(2/α−2/β)+e−
u2

2 (1 + o(1))

as u→∞, with M̂α,β,d1,c1(x1, x2) given as in (20).
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Proof: Note that

H2 =
1√
π
, P̂c/d2 =

√
1 + d/c.

The proof follows by a little modification of the proof of Theorem 8.2 in [29]; see also Lemma 6 in [28] or

Theorem 3.2 in [16]. �

Proof of Theorem 6.1: The key idea is to work with Gaussian random fields instead of analyzing chi-square

processes. The first step is standard (see, e.g., [29]). We consider the Gaussian random field

Yb(t,v) =

n∑
i=1

biXi(t)vi,

defined on Gx(u) = ∆x(u)× Sn−1, where Sn−1 stands for the (n− 1)-dimensional unit sphere. Since from [29]

sup
t∈∆x(u)

χn,b(t) = sup
(t,v)∈Gx(u)

Yb(t,v)

we have that

P

(
sup

t∈∆x(u)

χ2
n,b(t) > u2

)
= P

(
sup

(t,v)∈Gx(u)

Yb(t,v) > u

)
.

It follows that the standard deviation σYb
of Yb attains its maximum (equal to 1) over Gx(u) only at points on

{(t0,v),v ∈ Sn−1, vi = 0, k+ 1 ≤ i ≤ n}. Furthermore, following the arguments as in [28] we conclude that σYb

and the correlation function rYb
of Yb have the following asymptotic expansions:

σYb
(t,v) = 1− a|t− t0|µ(1 + o(1))−

n∑
i=k+1

1− b2i
2

v2
i (1 + o(1)) (34)

as t→ t0 and v2
k+1 + · · ·+ v2

n → 0, and

rYb
(t,v, t′,v′) = 1− d|t− t′|ν(1 + o(1))−

n∑
i=1

b2i
2

(vi − v′i)2(1 + o(1)) (35)

as t, t′ → t0, v
2
k+1 + · · ·+ v2

n → 0, and v′
2
k+1 + · · ·+ v′

2
n → 0.

In addition, there exist δ > 0,Q > 0 such that

E
(

(Yb(t,v)− Yb(t′,v′))
2
)
≤ Q(|t− t′|γ +

n∑
i=1

(vi − v′i)2) (36)

holds for all (t,v) ∈ ([t0−ρ, t0 +ρ]∩ [0, T ])×Sn−1. Next define Cu := {v ∈ Sn−1 : vi ∈ [− lnu/u, lnu/u], k+1 ≤
i ≤ n}. Let

π(u) := P

(
sup

(t,v)∈∆x(u)×Cu
Yb(t,v) > u

)
.

We have, for any u > 0

π(u) ≤ P

(
sup

(t,v)∈Gx(u)

Yb(t,v) > u

)
≤ π(u) + P

(
sup

(t,v)∈∆x(u)×(Sn−1/Cu)

Yb(t,v) > u

)
.

Further, in the light of (34), (36) and the Piterbarg inequality given in Theorem 8.1 in [30]

P

(
sup

(t,v)∈(t,v)∈∆x(u)×(Sn−1/Cu)

Yb(t,v) > u

)
≤ Qu

2(n+1)
γ∧2 −1 exp

(
− u2

2(1− (lnu/u)2Q1)2

)
(37)
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holds for all u large, with some positive constants Q,Q1. In the following we shall give the asymptotics of π(u),

from which we shall see that the right-hand side of (37) is asymptotically negligible. Thus we conclude that

P

(
sup

(t,v)∈Gx(u)

Yb(t,v) > u

)
= π(u)(1 + o(1)), u→∞.

To this end, we partition Cu into sets of small diameters. To make it more precise, we resort to the following

polar coordinates, i.e., for any v ∈ Sn−1

vn = sin(θ1), vn−1 = cos(θ1) sin(θ2), . . . , vk+1 = sin(θn−k)

n−k−1∏
i=1

cos(θi), . . . , v1 =

n−1∏
i=1

cos(θi),

with θi ∈ [−π/2, π/2], 1 ≤ i ≤ n− 2, θn−1 ∈ [0, 2π). We divide [−π/2, π/2]k−2 × [0, 2π] into several small cubes

with length of edge R > 0, denoted by {Bj}j∈N , with

N = {j ∈ Z : Bj ⊂ [−π/2, π/2]k−2 × [0, 2π]}.

Therefore, the corresponding partition of Cu can be represented as {Dj}j∈N with

Dj =

{
v = v(θ) : (θn−k+1, · · · , θn−1) ∈ Bj , vi ∈ [− lnu/u, lnu/u], k + 1 ≤ i ≤ n

}
,

where

v(θ) = (cos(θ1) · · · cos(θn−2) cos(θn−1), · · · , sin(θ1)).

Further, set

N1 = {j ∈ Z : Bj ⊂ [−π/2 +R, π/2−R]k−2 × [R, 2π −R]}.

It follows from Bonferroni’s inequality that

∑
j∈N1

P

(
sup

∆x(u)×Dj
Yb(t,v) > u

)
−Π(u) ≤ π(u) ≤

∑
j∈N

P

(
sup

∆x(u)×Dj
Yb(t,v) > u

)
, (38)

where

Π(u) =
∑

i<j∈N1

P

(
sup

∆x(u)×Di
Yb(t,v) > u, sup

∆x(u)×Dj
Yb(t,v) > u

)
.

Since

Cov (Yb(t,v), Yb(t′,v′)) =

n∑
i=1

biviv
′
iCov(X(t), X(t′))

the Gaussian random field Yb(t,v) is rotational invariant in law with respect to v under the orthogonal matrix

A =

(
Ãk O

O En−k

)
, (39)

where Ãk is any k × k orthogonal matrix and En−k is the (n− k)× (n− k) unit matrix. Hence, for any j ∈ N
there exists a orthogonal matrix Aj of the form (39) such that (1, 0, · · · , 0) ∈ AjDj , and thus

P

(
sup

∆x(u)×Dj
Yb(t,v) > u

)
= P

(
sup

∆x(u)×Dj
Yb(t, Ajv) > u

)

= P

(
sup

∆x(u)×AjDj
Yb(t,v) > u

)
.
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Suppose (1, 0, · · · , 0) ∈ D0. Therefore, for the summand in (38) it is sufficient to consider the case j = 0. Define

projections gl : Rl → Rl−1, 1 < l ≤ n with gl(v1, . . . , vl) = (v2, · · · , vl). For u large enough and R sufficient

small, we have(
gk(
√

1− (n− k)(lnu/u)2Dk
0 )
)
× [− lnu/u, lnu/u]

n−k ⊂ gn(D0) ⊂
(
gkD

k
0

)
× [− lnu/u, lnu/u]

n−k
:= Eu(Dk

0 ),

where Dk
0 = {(cos(θ1) · · · cos(θk−1), · · · , cos(θ1) sin(θ2), sin(θ1)), (θ1, · · · , θk−1) ∈ B0} is a subset of the (k − 1)-

dimensional unit sphere. Clearly, for any R > 0 small enough there exists εR ∈ (0, 1) such that

(1− εR)mes
(
Dk

0

)
≤ mes

(
gkD

k
0

)
≤ (1 + εR)mes

(
Dk

0

)
,

mes
(
gk(
√

1− (n− k)(lnu/u)2Dk
0 )
)
→ mes

(
gkD

k
0

)
(40)

hold as u→∞. Consequently, since the projection gn on D0 is one-to-one for u large enough and R sufficient

small, we conclude that

P

(
sup

(t,ṽ)∈∆
(1)
x (u)

Yb(t, ṽ) > u

)
≤ P

(
sup

(t,v)∈∆x(u)×D0

Yb(t,v) > u

)
≤ P

(
sup

(t,ṽ)∈∆
(2)
x (u)

Yb(t, ṽ) > u

)
,

where ṽ = (v2, . . . , vn) and

∆(1)
x (u) = ∆x(u)× Eu(

√
1− (n− k)(lnu/u)2Dk

0 ), ∆(2)
x (u) = ∆x(u)× Eu(Dk

0 ).

Define next independent centered stationary Gaussian process {X±ε1 (t), t ≥ 0} and centered homogeneous

(stationary) Gaussian random field {X±ε2 (ṽ), ṽ ∈ Rn−1} with unit variances and correlation functions satisfying

ρ±ε1 (t) = 1− (1± ε)2d|t|ν(1 + o(1)), t→ 0, ρ±ε2 (ṽ) = 1− (1± ε)
n∑
i=2

b2i v
2
i (1 + o(1)), ṽ → 0.

Then X̃±ε(t, ṽ) =
X±ε1 (t)+X±ε2 (ṽ)√

2
, t ≥ 0, ṽ ∈ Rn−1, is a centered homogeneous Gaussian random field with unit

variance and correlation function satisfying

ρ±ε(t, ṽ) = 1− (1± ε)d|t|ν(1 + o(1))− (1± ε)
n∑
i=2

b2i
2
v2
i (1 + o(1)), (t, ṽ)→ (t0,0).

Further, we have that

rYb
(t,v, t′,v′) = 1− d|t− t′|ν(1 + o(1))−

n∑
i=2

b2i
2

(vi − v′i)2(1 + o(1)) (41)

holds as t, t′ → t0,v,v
′ → (1, 0, · · · , 0). This can be established as in Lemma 9 in [28]. Therefore, by Slepian

lemma (cf. [29]) we derive, for u sufficient large and R > 0 small enough

P

(
sup

(t,ṽ)∈∆
(2)
x (u)

Yb(t, ṽ) > u

)
≤ P

(
sup

(t,ṽ)∈∆
(2)
x (u)

X̃+ε(t, ṽ)

(1 + (1− ε)a|t− t0|µ)(1 + (1− ε)
∑n
i=k+1

1−b2i
2 v2

i )
> u

)

P

(
sup

(t,ṽ)∈∆
(1)
x (u)

Yb(t, ṽ) > u

)
≥ P

(
sup

(t,ṽ)∈∆
(1)
x (u)

X̃−ε(t, ṽ)

(1 + (1 + ε)a|t− t0|µ)(1 + (1 + ε)
∑n
i=k+1

1−b2i
2 v2

i )
> u

)
.

Consequently, we have from Lemma 7.1 that

P

(
sup

(t,ṽ)∈∆
(2)
x (u)

Yb(t, ṽ) > u

)
≤ a(ε)(2π)−k/2

n∏
i=k+1

(1− b2i )−1/2mes(gkD
k
0 )
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×M̂ν,µ,d,a(x1, x2)uk−2+(2/ν−2/µ)+e−
u2

2 (1 + o(1))

holds as u → ∞, where a(ε) → 1 as ε → 0. Since further mes(Sk−1) =
∑
j∈N mes(Dj) = 2πk/2/Γ(k/2) we

conclude that

lim sup
u→∞

∑
j∈N P

(
sup∆x(u)×Dj Yb(t,v) > u

)
∏n
i=k+1(1− b2i )−1/2M̂ν,µ,d,a(x1, x2)u(2/ν−2/µ)+Υk(u2)

≤ a′(ε, εR) (42)

with a′(ε, εR)→ 1 as ε→ 0 and R→ 0. Similarly, we have

lim inf
u→∞

∑
j∈N1

P
(

sup∆x(u)×Dj Yb(t,v) > u
)

∏n
i=k+1(1− b2i )−1/2M̂ν,µ,d,a(x1, x2)u(2/ν−2/µ)+Υk(u2)

≥ b′(ε, εR)

∑
j∈N1

mes(Dj)

mes(Sn−1)
(43)

with b′(ε, εR)→ 1 as ε→ 0 and R→ 0.

Next we show that

lim sup
R→0

lim sup
u→∞

Π(u)

u(2/ν−2/µ)+Υk(u2)
= 0. (44)

We have for any u > 0

Π(u) ≤
∑

i<j∈N1,Di∩Dj=∅

pij(u) +
∑

i<j∈N1,Di∩Dj 6=∅

pij(u) =: Π1(u) + Π2(u),

where

pij(u) := P

(
sup

(t,v)∈∆x(u)×Di
Yb(t,v) > u, sup

(t,v)∈∆x(u)×Dj
Yb(t,v) > u

)
.

We first consider the sum taking over Di ∩Dj = ∅. The following standard upper bound

pij(u) ≤ P

(
sup

(t,v,t′,w)∈∆x(u)×Di×∆x(u)×Dj

(
Yb(t,v) + Yb(t′,w)

)
> 2u

)

will be crucial for the proof, where Yb(t,v) = Yb(t,v)/σYb
(t,v). Since Di ∩ Dj = ∅, in view of (35) we have

that, for any (t,v) ∈ ∆x(u)×Di, (t
′,w) ∈ ∆x(u)×Dj ,

E
(
(Yb(t,v) + Yb(s,w))2

)
= 4− 2(1− rYb

((t,v, t′,w)) ≤ 4(1− δ1)

holds with some δ1 ∈ (0, 1) independent of j. Thus, in the light of Borell-TIS inequality, there exists a common

positive constant Q such that, for all u > Q

P

(
sup

(t,v,s,w)∈∆x(u)×Di×∆x(u)×Dj

(
Yb(t,v) + Yb(s,w)

)
> 2u

)
≤ e−

(2u−Q)2

8(1−δ1)

holds for all Di, Dj , i, j ∈ N satisfying Di ∩Dj = ∅. Consequently,

Π1(u) ≤ N2
Re
− (2u−Q)2

8(1−δ1) (45)

with NR representing the number of i in N1. Next, for the other sum taking over Di ∩Dj 6= ∅ we consider first

the special summand when i = 0, so that (1, 0, · · · , 0) ∈ D0 ∪Dj . By using the projection gn, we have

p0j(u) = P

(
sup

(t,ṽ)∈∆x(u)×(gn(D0))

Yb(t, ṽ) > u, sup
(s,w̃)∈∆x(u)×(gn(Dj))

Yb(s, w̃) > u

)
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≤ P

(
sup

(t,ṽ)∈∆x(u)×Eu(Dk0 )

Yb(t, ṽ) > u

)
+ P

(
sup

(t,ṽ)∈∆x(u)×Eu(Dk0 )

Yb(t, ṽ) > u

)

−P

 sup
(t,ṽ)∈∆x(u)×Eu(

√
1−(n−k)(lnu/u)2Dk0∪Dkj )

Yb(t, ṽ) > u


with w̃ = (w2, · · · , wn), and Dk

j = {(cos(θ1) · · · cos(θk−1), · · · , cos(θ1) sin(θ2), sin(θ1)), (θ1, · · · , θk−1) ∈ Bj}.
Further, with the aid of Lemma 7.1 we get

lim sup
u→∞

p0j(u)

(2π)−k/2
∏n
i=k+1(1− b2i )−1/2M̂ν,µ,d,a(x1, x2)uk−2+(2/ν−2/µ)+e−

u2

2

≤ a(ε)mes(gk(Dk
0 )) + a(ε)mes(gk(Dk

j ))− b(ε)mes(gk(Dk
0 ∪Dk

j )),

where a(ε), b(ε) are two positive functions such that a(ε) → 1, b(ε) → 1 as ε → 0. Since for any fixed i ∈ N1,

#{j ∈ N1, D
k
j ∩Dk

i 6= ∅} = # {j ∈ N1, Bj ∩Bi 6= ∅} ≤ 3k−1. Thus we conclude that

lim sup
u→∞

Π2(u)

(2π)−k/2
∏n
i=k+1(1− bi)−1/2M̂ν,µ,d,a(x1, x2)uk−2+(2/ν−2/µ)+e−

u2

2

≤ 3k(c(ε, εR)− c′(ε, εR))mes(Sk−1) (46)

with c(ε, εR) → 1 and c′(ε, εR) → 1 as ε → 0 and R → 0. Therefore, we obtain from (45) and (46) that (44)

holds. Consequently, the claim follows from (42), (43) and (44) by letting ε → 0 and R → 0. This completes

the proof. �

Proof of (31): We only present the proof for rYb
(t,v, s,u), since the proof for rZb

(t,v, s,u) follows similarly.

In the following, all the asymptotics are meant for s, t→ t0,
∑n
i=k+1 v

2
i → 0 and

∑n
i=k+1 u

2
i → 0.

Denoting v1 = (v1, · · · , vk, 0, · · · , 0) and u1 = (u1, · · · , uk, 0, · · · , 0) we have

1− rYb
(t,v, s,u) =

∑n
i=1 E

(
(biXi(t)vi − biXi(s)ui)

2
)
− (σYb

(t,v)− σYb
(s,u))

2

2σYb
(t,v)σYb

(s,u)

=
σYb

(t,v1)σYb
(s,u1)

σYb
(t,v)σYb

(s,u)
ξ1(t,v, s,u) + ξ2(t,v, s,u) + ξ3(t,v, s,u), (47)

where

ξ1(t,v, s,u) =

∑k
i=1 E

(
(Xi(t)vi −Xi(s)ui)

2
)
− (σYb

(t,v1)− σYb
(s,u1))

2

2σYb
(t,v1)σYb

(s,u1)
,

ξ2(t,v, s,u) =

∑n
i=k+1 E

(
(Xi(t)vi −Xi(s)ui)

2
)

2σYb
(t,v)σYb

(s,u)
,

ξ3(t,v, s,u) =
(σYb

(t,v1)− σYb
(s,u1))

2 − (σYb
(t,v)− σYb

(s,u))
2

2σYb
(t,v)σYb

(s,u)
.

By assumption II we have

ξ1(t,v, s,u) = 1− E (X1(t)X1(s))

σX1(t)σX1(s)

∑k
i=1 viui√∑k

i=1 v
2
i

√∑k
i=1u

2
i

= d|t− s|ν(1 + o(1)) +
1

2

k∑
i=1

(vi − ui)2(1 + o(1)) + o

(
n∑

i=k+1

(ui − vi)2

)
. (48)

Further, we have

n∑
i=k+1

E
(

(biXi(t)vi − biXi(s)ui)
2
)

=

n∑
i=k+1

b2i

(
E
(

(Xi(t)−Xi(s))
2
)
v2
i + E

(
(Xi(s)vi −Xi(s)ui)

2
)
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+2E ((Xi(t)vi −Xi(s)vi)(Xi(s)vi −Xi(s)ui))
)
.

Next we deal with the last three terms on the right-hand side in turn. By assumption III and the fact that

γ1 ≥ ν we get

n∑
i=k+1

b2iE
(

(Xi(t)−Xi(s))
2
)
v2
i ≤ G1

n∑
i=k+1

b2i v
2
i |t− s|γ1 = o(|t− s|ν),

and

n∑
i=k+1

b2iE
(

(Xi(s)vi −Xi(s)ui)
2
)

=

n∑
i=k+1

b2iσ
2
Xk+1

(s)(ui − vi)2 =

n∑
i=k+1

b2i (ui − vi)2(1 + o(1)).

In addition, we have

2

n∑
i=k+1

b2iE ((Xi(t)vi −Xi(s)vi)(Xi(s)vi −Xi(s)ui))

≤ 2

n∑
i=k+1

b2i
(
E
(
(Xi(t)vi −Xi(s)vi)

2
))1/2 (E ((Xi(s)vi −Xi(s)ui)

2
))1/2

≤ 2

n∑
i=k+1

b2iG
1/2
1 |t− s|γ1/2|vi||vi − ui|

≤
n∑

i=k+1

b2iG
1/2
1 (|t− s|γ1 |vi|+ |vi|(vi − ui)2)

= o(|t− s|ν) + o

(
n∑

i=k+1

(vi − ui)2

)
.

Therefore, we obtain

ξ2(t,v, s,u) =
1

2

n∑
i=k+1

b2i (ui − vi)2(1 + o(1)) + o(|t− s|ν). (49)

Moreover, it follows that

(σYb
(t,v1)− σYb

(s,u1))
2

= (σYb
(t,v1)− σYb

(t,u1))
2

+ (σYb
(t,u1)− σYb

(s,u1))
2

+2(σYb
(t,v1)− σYb

(t,u1))(σYb
(t,u1)− σYb

(s,u1)).

Direct calculation yields that

(σYb
(t,v1)− σYb

(t,u1))
2 ≤

( k∑
i=1

v2
i

)1/2

−

(
k∑
i=1

u2
i

)1/2
2

= a(v,u)

n∑
i=k+1

(vi − ui)2

with a(v,u)→ 0, and

(σYb
(t,u1)− σYb

(s,u1))
2

= (σX1(t)− σX1(s))
2

(1 + o(1))

hold. Since further by assumption III

(σX1(t)− σX1(s))
2 ≤ G|t− s|γ
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we conclude, by the fact that γ ≥ ν,

2(σYb
(t,v1)− σYb

(t,u1))(σYb
(t,u1)− σYb

(s,u1))

≤ (a(v,u))−1/2 (σYb
(t,v1)− σYb

(t,u1))
2

+ (a(v,u))1/2 (σYb
(t,u1)− σYb

(s,u1))
2

= o (|t− s|ν) + o

(
n∑

i=k+1

(vi − ui)2

)

implying that

(σYb
(t,v1)− σYb

(s,u1))
2

= (σX1(t)− σX1(s))
2

(1 + o(1)) + o (|t− s|ν) + o

(
n∑

i=k+1

(vi − ui)2

)
.

Similarly,

(σYb
(t,v)− σYb

(s,u))
2

= (σX1
(t)− σX1

(s))
2

(1 + o(1)) + o (|t− s|ν) + o

(
n∑

i=k+1

(vi − ui)2

)
.

Therefore,

ξ3(t,v, s,u) = o((σX1
(t)− σX1

(s))
2
) + o (|t− s|ν) + o

(
n∑

i=k+1

(vi − ui)2

)

= o (|t− s|ν) + o

(
n∑

i=k+1

(vi − ui)2

)
. (50)

Consequently, the claim in (31) follows by combining (47)–(50). �
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