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BOUNDS AND APPROXIMATIONS FOR DISCRETE
ASIAN OPTIONS IN A VARIANCE-GAMMA MODEL*

HANSJORG ALBRECHER MARTIN PREDOTA

Abstract

In this paper we give an overview on methods for calculating bounds and approxi-
mations for the Esscher price of European-style arithmetic and geometric average
options. We consider an incomplete market model with an asset price process
of exponential Lévy type with variance-gamma distributed log-returns. Numer-
ical illustrations of the accuracy of these bounds and approximations as well as
comparisons of the variance-gamma, average option prices with the corresponding
Black-Scholes prices and with Esscher prices in a normal inverse Gaussian model
are given.

1 Introduction

In the last few years various alternatives to the Black-Scholes market models have been
studied. It turned out that distributions of logarithmic asset returns can often be fitted
extremely well by normal inverse Gaussian (NIG) and variance-gamma (VG) distribu-
tions (see e.g. BARNDORFF-NIELSEN [4, 5, 6], LAM, CHANG AND LEE [25], MADAN,
CARR AND CHANG [28], MADAN AND MILNE [29], MADAN AND SENETA [30] or Ry-
DBERG [34, 35]).

The normal inverse Gaussian distribution and the variance-gamma distribution are sub-
classes of the generalized hyperbolic (GH) distribution. Hence they are infinitely divis-
ible and generate Lévy processes (Z;);>0, which give rise to the following exponential
Lévy model (see e.g. EBERLEIN AND PRAUSE [16]). By setting

St = S() eXp(Zt),

where (S;)i>0 denotes the asset price process over time, the log-returns of this model
produce exactly a normal inverse Gaussian distribution resp. a variance-gamma distri-
bution. (S;)i>o is again a Lévy process.
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Since such market models are incomplete (cf. CHERNY [12]), there are many candidates
of equivalent martingale measures for risk-neutral valuation of derivative securities. One
mathematically tractable choice is the so-called Esscher equivalent measure, a concept
which was introduced to mathematical finance by MADAN AND MILNE [29]; see also
GERBER AND SHIU [18]. This particular choice of the pricing measure can be justified
both within utility and equilibrium theory (cf. GERBER AND SHIU [19], BUHLMANN
ET AL. [8], CHAN [11] or GRANDITS [20]).

In [2] it was shown that the Esscher equivalent measure in the NIG model has a simple
structure and this property was used to obtain easy computable approximations and
bounds for the Esscher price of arithmetic and geometric average options. This paper
is an extension of [2] for an exponential Lévy model with variance-gamma distributed
log-returns. These two members of the generalized hyperbolic distributions are the
only ones that are closed under convolution, a property which is particularly useful in
connection with Lévy processes from a mathematical point of view.

Asian options are defined as options whose payoff depends on the average price of the
underlying asset during a prespecified time interval. They are the most frequently
traded exotic options (so far all Asian options are traded over-the-counter). Asian
options have become popular financial instruments such as in retirement plans and
life insurance contracts, since the arithmetic average tends to be more robust against
price manipulations than the asset itself. Asian options can also be used to hedge a
cooperation with a frequent cash flow in a foreign currency against uncertain exchange
rates.

In the sequel we will focus on the case of average rate calls, i.e. the payoff is given as
max(A — K,0), where A denotes the average and K denotes the strike price. We will
assume that the average is based on finitely many asset values and distinguish between
the arithmetic and the geometric average case. In most cases an analytical formula
for the price of an Asian option is not available. Thus it is desirable to derive fast
and accurate bounds and approximations for the corresponding prices (see e.g. BOYLE
[10], KEMNA AND VORST [24], TURNBULL AND WAKEMAN [37] or LARCHER AND
LEOBACHER [26]).

In this paper we will derive bounds and approximations for discrete Asian options in
an exponential Lévy model with variance-gamma distributed log-returns. For that pur-
pose we adapt several techniques developed for the Black-Scholes setting to this market
model.

In Section 2 we introduce various properties of the variance-gamma distribution needed
for the development of the VG asset price model and the derivation of the pricing
measure in Section 3. Section 4 uses stop-loss transforms to obtain upper bounds for
arithmetic average option Esscher prices. Two approximation techniques for arithmetic
average option prices are developed in Section 5. Section 6 contains approximation
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methods for geometric average rate options and gives bounds for the arithmetic average
option prices in terms of the geometric price. Finally, in Section 7 we compare the
Asian Esscher option prices in the variance-gamma model with the corresponding Black-
Scholes prices and with Esscher prices in the exponential NIG Lévy model showing
significant price differences if the option is out of the money. The qualitative behavior
of the Asian option price difference (as a function of strike price K and maturity 7T')
turns out to be similar to the corresponding difference for plain European options.

2 The variance-gamma distribution

The variance-gamma (VG) distribution is defined by the density

(a2 _ ﬂQ))‘

fvaam (z) = fva(z) = VAL (V) (2a)> 172 |z — N‘/\_l/zK,\fl/Q(O!LI — ) ) (1)

where « > 3| > 0,A > 0, 4 € R and T'(z) denotes the gamma function. The name
of this distribution stems from the fact that it is obtained as a normal variance-mean
mixture where the mixing distribution is a gamma distribution.

The moment generating function of (1) has a particular simple structure:

a? — 32 A
M = _— < a. 2
volw o) (55 ) sl <a 2)
Thus it easily follows that
fVG(ayﬂaAlaul) * fVG(aa/Ba)‘27u2) = fVG(ay,BaAl‘i')\?,Ul‘i'UQ)' (3)

The first four cumulants of the VG distribution (which will be needed later) are given
by

X1 =u+%,

0= (et + )

X3 = ﬁﬁ(:’)auﬁ),

X4 = ﬁ(oﬁ + 60257 + B4).

37



H. Albrecher and M. Predota

The VG distribution was first introduced to mathematical finance by MADAN AND
SENETA [30] with 8 = 0. In this special case the cumulants simplify to

X1 =M
2\
XQn:ﬁ(Qn—l)! n>1
Xon+1 =0 n > 1.

The VG distribution is the limit case 6 = 0 of the generalized hyperbolic distribution
with density

_ ¢
- V2m o162 K, (C)
with ¢ = §y/a? — 5% and n(z) = ay/6? + (x — p)?, which was introduced by BARN-

DORFF-NIELSEN [3]. As a member of the class of generalized hyperbolic distributions
the VG distribution is infinitely divisible.

fon(x) AT (@) 2Ky o (n(2)),

Note, that the normal inverse Gaussian [2] and the variance-gamma distributions are
the only subclasses of the generalized hyperbolic distribution which are closed under
convolution (see e.g. BIBBY AND S@RENSEN [9]).

3 The VG Lévy asset price model

It is well-known that the classical Black-Scholes model for the asset price process, which
is based on geometric Brownian motion, has various deficiencies when compared to real
financial data. Among those, the normal distribution as a model for the log-returns has
too little probability mass in the center and in the tails. The probability density of the
VG distribution is rather peaked at the center and its tail decreases as

[z temelel+hr for ¢ — oo,

Thus it is a natural candidate for modelling log-returns (see e.g. LAM, CHANG AND
LEE [25]). Figure 3 illustrates the situation for a data set of daily returns of OMV
stocks.

In the sequel we will discuss an exponential Lévy asset price model (cf. EBERLEIN [14]).
Since the VG distribution is infinitely divisible, it generates a Lévy process (Z;);>o (i.e.
a stochastic process with stationary and independent increments, Z; = 0 a.s. and Z;
is VG-distributed). From the convolution property (3) it follows that the increments
are VG-distributed for arbitrary time intervals. This makes the VG Lévy processes (to-
gether with the normal inverse Gaussian Lévy processes in [2]) more natural generalized
hyperbolic Lévy processes than the other generalized hyperbolic Lévy processes.
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Figure 1: Price path of OMV (June 2001 - June 2002)

Figure 2: Log-returns of OMV (June 2001 - June 2002)
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Figure 3: Kernel estimator (dotted line) of log-returns of Figure 2 with fitted densities
in linear (left) and logarithmic (right) scale
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We denote the price of a non-dividend-paying stock at time ¢ > 0 by S; and consider
the following dynamics for the stock price process (see EBERLEIN [14])

dS; = S;- (dZ, + 2% —1 — AZ)), (4)

where (Z;)i>o denotes the VG Lévy motion, Z;- the left hand limit of the path at time ¢
and AZ;, = Z, — Z;- the jump at time £. Then, the solution of the stochastic differential
equation (4) is given by

Sy = So exp(Zy)
and it follows that the log-returns In(S;/S;_1) are indeed VG-distributed.

Due to the incompleteness of this market model (see CHERNY [12]), we have to choose
an equivalent martingale measure for the risk-neutral valuation of derivative securities.
A mathematical tractable choice of such a measure is the equivalent Esscher measure.
It can be applied in exponential Lévy models, whenever the assumed distribution of
the log-returns is infinitely divisible (see GERBER AND SHIU [18] or EBERLEIN AND
KELLER [15]). Apart from its mathematical simplicity, this particular choice can also
be economically justified (see e.g. PRAUSE [32]). Another motivation for this choice of
measure for pricing purposes is the result of CHAN [11] that in a model very similar to
the exponential Lévy model the Esscher transform is the minimal martingale measure
in the sense of FOLLMER AND SCHWEIZER [17].

From (3) we have that the density of Z; is given by
va (@) = e (@)
For a real number 6§ let us consider the Esscher transform
Ox fxt Oz
F@:0) = D =
o et fiy)dy  M(6)

of the one-dimensional marginal distributions f*'(z) of (Z;);>o (this transform is well-
known in the actuarial literature, cf. BUHLMANN [7]).

(@), (5)

For any Lévy process (Z;);>o (on some filtered probability space (2, F, (F;)ier+,P)) it
is now possible to define a locally equivalent probability measure P? through

dP’ = exp(0Z;, — tlog M(6)) dP,

such that (Z?)i>o defined on (Q, F, (F,)scr+, P?) is again a Lévy process and the one-
dimensional marginal distributions of (Z?),>¢ are the Esscher transforms of the corre-
sponding marginals of (Z;)i>o (see e.g. RAIBLE [33]). PY is called the Esscher equivalent
measure.

The parameter # can now be chosen in such a way, that the discounted stock price
process (€7 S;)i>¢ is a P/-martingale, namely if 6 is the solution of

o — (B+0)?
2—(B+0+1)%

(6)

r:u—i-)\lna
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Here r is the constant daily interest rate. The uniqueness of the solution follows from
the general condition |3 + u| < a in (2). Thus € can easily be calculated numerically.

The following straight-forward observation will substantially simplify the calculation of
Esscher prices in the VG model:

Lemma 1 The Esscher transform of a VG-distributed random variable is again VG-
distributed. In particular,

Fva(apam (T:0) = fva(a,s+0am (@)-

As a first example, the value at time ¢ of a European call option with exercise price K
and maturity 7' can be represented by a simple analytical expression:

From EC; = Ef[e "% (Sy — K)* | F;] and Lemma 1 it follows that
ECt =

Sy / Glap ot a1 (@) dz — e T K / fva(as+o,m—or@—ow (@) dz (7)
k k

with k£ = In(K/S;). This value can be computed numerically.

4 Upper bounds for arithmetic average options us-
ing actuarial methods

In this section we consider the calculation of the Esscher price of a European-style
arithmetic average call option at time ¢ given by

) n—1 +
AA, = - E | (> Srx—nK

where n is the number of averaging days, K the strike price, 7" the time to expiration
and r the risk-free interest rate.

Fe| (8)

The main difficulty is the determination of the distribution of the dependent sum ) S;.
We will thus give bounds and approximations for (8).

A weak upper bound is the price of a plain European option with the same strike and
maturity. This was proven in KEMNA AND VORST [24] in the Black-Scholes case and
recently generalized to arbitrary distributions of the underlying asset in NIELSEN AND
SANDMANN [31] by an elementary portfolio argument.
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Another approach due to SIMON, GOOVAERTS AND DHAENE [36] for the derivation of
upper bounds for arithmetic Asian options in an arbitrage-free and complete market is
to interpret (8) as a stop-loss transform and use the stop-loss order to construct bounds.
In the sequel we will adapt their technique to the VG model.

The stop-loss transform W (r) of a distribution function F(z) with support D C R* is
defined by

Up(r) = /[ e ndrG)

and a stop-loss ordering among distribution functions F(z) and G(x) with support in
R* is given by
F<gG & Wp(r)<¥g(r)foralreR".

Thus we can rewrite (8) to

AAt -

for a given value Sy = s with F} ., = P?(A,(T) < z|S; = s), where

n—1
A (T) =) Sri.
k=0

In this way we have transformed the problem of pricing an arithmetic average option
to calculating the stop-loss transform of a sum of dependent risks. Hence we can apply
results on bounds for stop-loss transforms to our option pricing problem:

A positive random vector (X1,...,X,) with marginal distributions Fi(z1), ..., F.(x,)
is called comonotone, if Fx, . x, (z1,...,2,) = min{Fi(z1),..., F,(z,)} holds for every
Z1,--., Ty > 0. It immediately follows that a comonotone random vector (Xi,..., X},)
with given marginal distributions Fi(x1),..., F,,(z,) is uniquely determined.

It can easily be shown (see e.g. DHAENE ET AL. [13]) that an upper bound for the
stop-loss transform of a sum of dependent random variables Y ;_, X with marginal
distributions Fi(x1),..., Fy(z,) is now given by the stop-loss transform of the sum
> py Yk, where (Y1,...,Y},) is the comonotone random vector with marginal distribu-

tions Fi(x1), ..., Fu(zy,), ie.
ZXk <q ZYk-
k=1 k=1

Let us define

Fg(z) :=P’ (i Y, < :c> :
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then we have (cf. DHAENE AT AL. [13])
Fg'(z)=> F;'(z) foreach z € R

and
Up (7 Z‘I’Fk( Fgr(z ))) for each z € R™.

Hence this upper bound of the arithmetic average option price can be viewed as a sum
of prices of European call options with strike prices F, '(Fg(z)).

The following proposition is an adaption of the result of SIMON, GOOVAERTS AND
DHAENE [36] to our situation. Let in the sequel F'(xs,ts,x1,%1) denote the conditional
distribution function of S;, under the equivalent Esscher martingale measure P? given
St1 = T, i.e.

In(z2/5t;)

F(zg,ty,71,1,) = / IVG(a,B+0,(ta—t )\ (ta—t1)u) (2) Az (1 < ).

Propos1t10n 1 ([36]) Let k* be such that T —k* <t <T —k*+1 and K; = nK —
Z Y Sr_k for j <n, K, =nK. Let AA,; be the price of an arithmetic average option
at tzme t as given in (8) and let furthermore ECy(kg, T — k) be the price of a European
option with strike price ki, and time to expiration T — k. Then we have for Ky« > 0

e_,.(T_ ) k*—1 k* 1
AA < — prF( T ksp)(FE) = Ze b ECy(ky, T — k), (10)
where
Ko :F’l(FR(Kk*),T—k,s,t), k=0,... k. (11)

Moreover, this choice of the strike prices Ky s best possible.

In case Ky« < 0, we have

Stk*_l k e "0 (T—t)
AA, = — 4 Sr_p—e " K.
R N S

k=0 k=k*

In order to obtain a bound for the arithmetic average option price we thus have to
calculate k* strike prices xy using (11) and then evaluate (10) using (7).

Table 1 compares the stop-loss upper bound for the Esscher price of the European-style
arithmetic average option with a Monte Carlo simulated price AA' obtained by gen-
erating 1 million sample paths (the European call option price ECy is also given). Since
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Stock |model | T| K | ECy | AAYC | SL bound | r.e. (%)

OMV VG |10 94 | 6.7814 | 6.2674 6.3316 1.01
So = 100 97 | 4.4098 | 3.5803 3.7319 4.06
98.5 | 3.4119 | 2.4538 2.6457 7.25

100 | 2.5619 | 1.5538 1.7633 11.88

101.5 | 1.8652 | 0.9063 1.1050 17.98

103 | 1.3168 | 0.4901 0.6545 25.12
106 | 0.6006 | 0.1192 0.1998 40.34

20 94 | 7.6898 | 6.6063 6.7389 1.97
97 | 5.5257 | 4.1180 4.3537 5.41
98.5 | 4.5895 | 3.0781 3.3509 8.14

100 | 3.7582 | 2.2092 2.4997 11.62
101.5 | 3.0334 | 1.5209 1.8063 15.80
103 | 2.4130 | 1.0058 1.2650 20.49
106 | 1.4620 | 0.3892 0.5679 31.47

NIG |10 94 | 6.7877 | 6.2642 6.3376 1.16
97 | 4.4105 | 3.5864 3.7335 3.94
98.5 | 3.4085 | 2.4554 2.6436 7.12

100 | 2.5546 | 1.5508 1.7574 11.76
101.5 | 1.8551 | 0.9031 1.0956 17.57
103 | 1.3053 | 0.4854 0.6437 24.59
106 | 0.5906 | 0.1160 0.1936 40.11

20 94 | 7.6941 | 6.5989 6.7444 2.16
97 | 5.5250 | 4.1090 4.3543 5.63
98.5 | 4.5860 | 3.0832 3.3480 7.91

100 | 3.7519 | 2.1998 2.4934 11.77
101.5 | 3.0247 | 1.5178 1.7972 15.55
103 | 2.4026 | 1.0004 1.2542 20.23
106 | 1.4503 | 0.3805 0.5580 31.80

Table 1: Comparison of simulated Asian option prices and the SL upper bound (r = 0.1)
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this paper is an extension of [2], where the exponential Lévy model with normal inverse
Gaussian distributed log-returns was investigated, we will also give the corresponding
prices in the NIG model for convenience of the reader. In all subsequent tables the
number of averaging days n equals the number of days T until maturity. The inverse
distribution function needed for the calculation of kj is interpolated, since there is no
analytic expression available. The numerical values indicate that the accuracy of the
upper bound is satisfying if the option is in the money.

5 Two approximations for the distribution of the
arithmetic mean

In this section we study approximations of the arithmetic option price (8) using Edge-
worth series expansions. For notational simplicity we will assume t = 0 and n = T in
(8), i.e. the averaging starts at time ¢ = 1 and we determine the price at time ¢t = 0

(gsk_n;()+

The extension to the general case is straightforward. In the sequel we will make use of
the following classical result:

efrT
AAy = F?
n

]-'0] . (12)

Lemma 2 ([23]) Let F and G be two continuous distribution functions with G € C°
and x1(F) = x1(G), and assume that the first five moments of both distributions ezist.
Then we can expand the density f(x) in terms of the density g(x) as follows

x2(F) — x2(G) &% x3(F) — x3(G) &%g
f(z) =g(z) + 5 572 (&) ~ 3 5.3 (@)

X4(F) = x4(G) + 3 (x2(F) — x2(G))” 8'g
4! ozt

+

(z) +&(2),

where () is a residual error term.

We will now approximate the distribution function of >, _, Si (which we denote by F)
by a lognormal distribution G (see TURNBULL AND WAKEMAN [37] and LEVY [27] for
a similar procedure in the Black-Scholes case). Therefore let us define

S;
Si1’

Ri: i=1,...,n

and

L,=1
Li*1:1+RiLia 222,,77,
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Then we have
D Sk =S)(Ri+RiRy+--+ RiRy...Ry) = SoRiLy.
k=1

Since we can rewrite equation (12) to

—rT
e’SO

n

AA, = 104

it remains to determine E’[(R;L;)™] for m = 1,2,3,4. Because of the independent
increments property of a Lévy process, we have F?[(R; L,)™] = E?[RP]E’[L™] and

m

Bl =2l L= ()

edtse! (13)
In order to apply recursion (13), we need to determine the moments E’[RF):

Lemma 3 For all k € N we have

R = exp) (= g ) (1)

The moments E?[L7], m = 1,2, 3,4, and subsequently the cumulants x;(F) can now be
calculated recursively starting with E°[LF] = 1V k € {0,..., m} by using (13) and (14).

The parameters ji and 62 of the approximating lognormal distribution are determined so
that the first two moments of the approximating and the original distribution coincide,
ie.

=20 (F)) ~ 5 In (4(F) + xa(F)
5% =1In (XA(F) + xo(F)) — 2In(x1(F)).

In this way we have derived a lognormal approximation pricing formula for an arithmetic
average option in the VG model, which we call the Turnbull-Wakeman price AAOTW at
time ¢ = 0:

Proposition 2 The price at time 0 of a Furopean-style arithmetic average option in
the VG model with maturity T and strike price K can be approximated by

~ ~92 nK 7 nkK
AATY — o7 5o (W;@ (u+a ~—lnS—0> i (u In 3% ))
n o 0 o

nKkK 2 nK
oS0 (060 ~:(©) 2 (%) )~ i) 20 (%)
n 3! oz 4! 0z?
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If we omit the terms of third and fourth order, then we call the corresponding approxi-
mation the Levy price

~ ~2 nKk ~ nK
AAL:e’TT@ Y & o —Ints, —%(I) A-In's :
0 n G Sy G

Another natural way to obtain an appproximation of Y ,_, Sy is to match its the first
four moments with a VG distribution. This leads to a system of equations

26x2(F) (36 + B?)
xo(F) = ===
~4 ~2 22 R4

(@4 — B*)(a> - B?)
which we can solve numerically to obtain & and B and then the other two parameters
are determined by

xo(F)(& - 5°)?

A= ——,
2(a2 + 2

3 26\

fi=x(F) - o

The approximated option price is then given by

AN =e T % /d (z — d) fvaasim (@) dz with d =nK/S,.

In Table 2 we compare the performance of these approximation techniques for the
arithmetic average option and give the relative error with respect to the Monte Carlo
price AA%/IC. The results show that the VG approximation outperforms the Turnbull-
Wakeman approximation, which itself is superior to the Levy approximation in most
cases.

6 Arithmetic and geometric average options

We now turn to a geometric average option with Esscher price given by
GAOZE_TT ]Ea [(GT—K)+‘:F0} 3 (15)

where Gr = ([}, Sp)"/™ and K denotes the strike price. Again, we have chosen ¢ = 0
and n = T (the generalization to arbitrary ¢ > 0 and arbitrary starting times of the
averaging period is straightforward). Here we have

n

-1 1
Xo+...+=X,
n n

lnGT: lnSo+X1+
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model | T K | AAYC | AAY | re(%) | AATY | re.(%) | AAL | re (%)
VG 10 94 | 6.2674 | 6.2573 0.16 | 6.2710 0.06 | 6.2694 0.03
97 | 3.5803 | 3.5879 0.22 | 3.5799 0.01 | 3.5838 0.10
98.5 | 2.4538 | 2.4797 1.05 | 2.4563 0.10 | 2.4594 0.23
100 | 1.5538 | 1.5899 2.27 | 1.5610 0.46 | 1.5614 0.49
101.5 | 0.9063 | 0.9373 3.31 | 0.9161 1.07 | 0.9147 0.92
103 | 0.4901 | 0.5046 2.87 | 0.4981 1.61 | 0.4963 1.25
106 | 0.1192 | 0.1094 8.96 | 0.1210 1.49 | 0.1196 0.33
20 94 | 6.6063 | 6.5916 0.22 | 6.5932 0.20 | 6.5951 0.17
97 | 4.1180 | 4.1242 0.15 | 4.1088 0.22 | 4.1123 0.14
98.5 | 3.0781 | 3.0930 0.48 | 3.0721 0.20 | 3.0743 0.12
100 | 2.2092 | 2.2280 0.84 | 2.2067 0.11 | 2.2071 0.10
101.5 | 1.5209 | 1.5369 1.04 | 1.5205 0.03 | 1.5193 0.11
103 | 1.0058 | 1.0129 0.70 | 1.0047 0.11 | 1.0025 0.33
106 | 0.3892 | 0.3813 2.07 | 0.3880 0.31 | 0.3859 0.86

NIG | 10 94 | 6.2642 | 6.2569 0.12 | 6.2784 0.23 | 6.2748 0.17
97 | 3.5864 | 3.5867 0.01 | 3.5824 0.11 | 3.5879 0.04
98.5 | 2.4554 | 2.4781 0.92 | 2.4522 0.13 | 2.4593 0.16
100 | 1.5508 | 1.5881 2.35 | 1.5517 0.06 | 1.5558 0.32
101.5 | 0.9031 | 0.9356 3.47 | 0.9054 0.25 | 0.9051 0.22
103 | 0.4854 | 0.5032 3.54 | 0.4897 0.88 | 0.4867 0.27
106 | 0.1160 | 0.1088 6.62 | 0.1194 2.85 | 0.1164 0.34
20 94 | 6.5989 | 6.5905 0.13 | 6.5990 0.00 | 6.6011 0.03
97 | 4.1090 | 4.1223 0.32 | 4.1091 0.00 | 4.1153 0.15
98.5 | 3.0832 | 3.0908 0.25 | 3.0684 0.48 | 3.0735 0.32
100 | 2.1998 | 2.2256 1.16 | 2.1997 0.01 | 2.2020 0.10
101.5 | 1.5178 | 1.5345 1.09 | 1.5118 0.40 | 1.5108 0.46
103 | 1.0004 | 1.0108 1.03 | 0.9958 0.46 | 0.9925 0.80
106 | 0.3805 | 0.3799 0.16 | 0.3821 0.42 | 0.3784 0.56

Table 2: Comparison of simulated Asian option prices and approximations on OMV
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with X %% VG. Thus the distribution of In G is not VG anymore. However, we will

approximate it with a VG(&4, B, :\, 1) distribution by matching the first four cumulants
(which for In G are easy to obtain in terms of the cumulants of X; and functions of n,
see [2]).

Then, the price of a European-style geometric average option at time 0 is approximated
by

GA® = =7 /K (5 = K) frogvaaiim (@) 2. (16)

This value can be calculated numerically.

Next, we derive bounds for AA, using approximation (16) for the geometric average
option price. Since the geometric average is always less or equal the arithmetic average,
we have

GAy=e"E’ [(Gr — K)t|FR] < e F [(Ar — K)T|Fo] = AA,,

where Ay = 137 S,. Following VORST [38], we obtain the upper bound
n k=1

AAg < GAg + &7 (]E” [Ar|Fo] — B [GT|f—O]) —: AAV. (17)

The expected value E’ [AT|.7-"0] = 2E’[R L] in (17) can be calculated by recursion (13),
and E? [GT‘]-"O] ~ My(1), since In Gr is approximated by a VG distribution.

VORST [38] also proposed the approximation
AA(\), = e_rT ]Ea [(GT — KI)_I—‘fo] with K, =K — (Ee [AT|F0] — ]Ea [GT|.'F0])

for the price of an arithmetic average value option, leading to

AA(\)/ = e’"T/ ($ - KI)fLogVG(m) dzx.

KI

Remark. Since the asset price model is arbitrage-free, the above techniques can also
directly be used for the derivation of prices of put option of Asian type due to put-call
parity.

The numerical values for the Vorst approximation AAX and its relative error w.r.t.
AA%’IC are depicted in Table 3. Moreover, the approximation GAj is compared with the
simulated geometric price GA}'®. And finally the upper bound AA is given.
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model | T K | AAYC | AAY |re(%) | GAYC | GA} |re.(%) | AAY | re.(%)
VG | 10 94 | 6.2674 | 6.2713 0.06 | 6.2407 | 6.2435 | 0.05 | 6.2726 0.08
97 | 3.5803 | 3.5892 0.25 | 3.5584 | 3.5655 | 0.20 | 3.5946 0.40

98.5 | 2.4538 | 2.4640 0.41 | 2.4348 | 2.4441 | 0.38 | 2.4732 0.78

100 | 1.5538 | 1.5619 0.52 | 1.5378 | 1.5468 | 0.58 | 1.5758 1.40

101.5 | 0.9063 | 0.9105 0.46 | 0.8933 | 0.9003 | 0.78 | 0.9293 2.48

103 | 0.4901 | 0.4901 0.00 | 0.4802 | 0.4839 | 0.77 | 0.5129 4.45

106 | 0.1192 | 0.1163 2.49 | 0.1148 | 0.1146 | 0.18 | 0.1436 | 16.99

20 94 | 6.6063 | 6.6006 0.09 | 6.5564 | 6.5479 | 0.13 | 6.6064 |  0.00

97 | 4.1180 | 4.1188 0.02 | 4.0760 | 4.0750 | 0.03 | 4.1335 0.38

98.5 | 3.0781 | 3.0782 0.00 | 3.0404 | 3.0407 | 0.01 | 3.0991 0.68

100 | 2.2092 | 2.2065 0.12 | 2.1758 | 2.1759 | 0.01 | 2.2344 1.13

101.5 | 1.5209 | 1.5139 0.46 | 1.4917 | 1.4903 | 0.09 | 1.5487 1.80

103 | 1.0058 | 0.9935 1.24 | 0.9811 | 0.9763 | 0.49 | 1.0348 2.80

106 | 0.3892 | 0.3762 3.46 | 0.3735 | 0.3685 | 1.36 | 0.4270 8.85

NIG | 10 94 | 6.2642 | 6.2768 0.20 | 6.2380 | 6.2486 | 0.17 | 6.2781 0.22
97 | 3.5864 | 3.5922 0.16 | 3.5649 | 3.5681 | 0.09 | 3.5976 0.31

98.5 | 2.4554 | 2.4626 0.29 | 2.4369 | 2.4424 | 0.23 | 2.4719 0.67

100 | 1.5508 | 1.5559 0.33 | 1.5352 | 1.5405 | 0.34 | 1.5700 1.22

101.5 | 0.9031 | 0.9018 0.14 | 0.8904 | 0.8914 | 0.11 | 0.9209 1.93

103 | 0.4854 | 0.4816 0.79 | 0.4759 | 0.4754 | 0.11 | 0.5049 3.86

106 | 0.1160 | 0.1132 2.47 | 0.1117 | 0.1116 | 0.09 | 0.1411 | 17.79

20 94 | 6.5989 | 6.6063 0.11 | 6.5497 | 6.5527 | 0.05 | 6.6122 0.20

97 | 4.1090 | 41207 |  0.28 | 4.0680 | 4.0760 | 0.20 | 4.1355 0.64

98.5 | 3.0832 | 3.0765 0.22 | 3.0462 | 3.0382 | 0.26 | 3.0976 0.47

100 | 2.1998 | 2.2012 0.06 | 2.1672 | 2.1700 0.13 2.2294 1.33

101.5 | 1.5178 | 1.5060 0.78 | 1.4894 | 1.4819 | 0.51 | 1.5414 1.53

103 | 1.0004 | 0.9847 1.59 | 0.9761 | 0.9672 | 0.92 | 1.0267 2.56

106 | 0.3805 | 0.3696 2.95 | 0.3653 | 0.3619 | 0.94 | 0.4214 9.71

Table 3: Comparison of simulated Asian option prices and approximations on OMV
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7 Comparison with the Black-Scholes and the NIG
model

In this section we compare the numerical results for the Esscher option prices obtained
in the VG model to the corresponding values in the NIG model and in the Black-Scholes
setting. In the Black-Scholes model there is an explicit pricing formula for the geometric
average option (see KEMNA AND VORST [24]):

fp+6>—InK

o

BIGA, = e'T (en+&2/2 ®(dy) — K@(dQ)) with d; = L dy=dy — 6,

where

R T+ZL o2 o on(2n+1)(n+1)
,U;:hlS()'FTn(r—?), 0 =0T 6n2 .

Here o2 denotes the variance of the log-returns, which can be estimated from historical
data. The arithmetic average option price (3% AAq in the Black-Scholes model can not
be obtained by an explicit formula. Thus we use a Quasi-Monte Carlo simulated price

(cf. HARTINGER AND PREDOTA [22]).

In Table 4 the Black-Scholes prices are compared with the NIG resp. VG Esscher prices
AAS/[C and the relative difference is given. Note that in the Black-Scholes setting the
Esscher pricing principle also yields the correct (unique) option prices. Whereas the
NIG prices are very similar to the VG prices, the Black-Scholes prices slightly differ
from the VG Esscher prices and tend to be significantly lower than the latter if the
options are out of the money.

Figures 4 and 5 depict the dependence of the price difference of Asian options in the
Black Scholes model and in the NIG model on strike K and maturity 7. The qualitative
behavior of these differences is similar to the corresponding differences for European
option prices depicted in Figure 6.
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Stock | model | T K | AAYC | B9AAy | 1.d.(%) | GAYC | B9GAg | r.d.(%)
oMV VG |10 94 | 6.2674 | 6.2528 0.23 | 6.2407 | 6.2262 0.23
(So = 100) 97 | 3.5803 | 3.5760 0.12 | 3.5584 | 3.5542 0.12
98.5 | 2.4538 2.4652 0.46 | 2.4348 2.4463 0.47

100 | 1.5538 | 1.5752 1.36 | 1.5378 | 1.5594 1.39

101.5 | 0.9063 | 0.9249 2.01 | 0.8933 | 0.9122 2.07

103 | 0.4901 | 0.4958 1.15 | 0.4802 | 0.4862 1.23

106 | 0.1192 | 0.1066 11.82 | 0.1148 | 0.1026 11.89

20 94 | 6.6063 | 6.5788 0.42 | 6.5564 | 6.5295 0.41

97 | 4.1180 | 4.1039 0.34 | 4.0760 | 4.0627 0.33

98.5 | 3.0781 | 3.0715 0.22 | 3.0404 | 3.0345 0.19

100 | 2.2092 | 2.2073 0.09 | 2.1758 | 2.1747 0.05

101.5 | 1.5209 | 1.5190 0.13 | 1.4917 | 1.4907 0.07

103 | 1.0058 | 0.9989 0.69 | 0.9811 | 0.9751 0.62

106 | 0.3892 | 0.3749 3.81 | 0.3735 | 0.3602 3.69

NIG | 10 94 | 6.2642 | 6.2528 0.18 | 6.2380 | 6.2262 0.19

97 | 3.5864 | 3.5760 0.29 | 3.5649 | 3.5542 0.30

98.5 | 2.4554 | 2.4652 0.40 | 2.4369 | 2.4463 0.38

100 | 1.5508 | 1.5752 1.55 | 1.5352 | 1.5594 1.55

101.5 | 0.9031 | 0.9249 2.36 | 0.8904 | 0.9122 2.39

103 | 0.4854 | 0.4958 2.10 | 0.4759 | 0.4862 2.12

106 | 0.1160 | 0.1066 8.82 | 0.1117 | 0.1026 8.87

20 94 | 6.5989 | 6.5788 0.31 | 6.5497 | 6.5295 0.31

97 | 4.1090 | 4.1039 0.12 | 4.0680 | 4.0627 0.13

98.5 | 3.0832 | 3.0715 0.38 | 3.0462 | 3.0345 0.39

100 | 2.1998 | 2.2073 0.34 | 2.1672 | 2.1747 0.35

101.5 | 1.5178 | 1.5190 0.08 | 1.4894 | 1.4907 0.09

103 | 1.0004 | 0.9989 0.15 | 0.9761 | 0.9751 0.10

106 | 0.3805 | 0.3749 1.49 | 0.3653 | 0.3602 1.42

Table 4: Comparison of simulated Asian option prices in the NIG model and the Black-
Scholes model
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