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Evolutionary theory predicts that the rate of extrinsic (i.e. age-
and condition-independent) mortality should affect important life
history traits such as the rate of ageing and maximum lifespan.
Sex-specific differences in mortality rates due to predation may
therefore result in the evolution of important differences in life
history traits between males and females. However, quantifying
the role of predators as a factor of extrinsic mortality is
notoriously difficult in natural populations. We took advantage
of the unusual prey caching behaviour of the barn owl Tyto alba
and the tawny owl Strix aluco to estimate the sex ratio of their
five most common prey. For all prey species, there was a
significant bias in the sex ratio of remains found in nests of
both these owls. A survey of literature revealed that sex-biased
predation is a common phenomenon. These results demonstrate
that predation, a chief source of extrinsic mortality, was strongly
sex-biased. This may select for alternate life history strategies
between males and females, and account for a male life span being
frequently lower than female lifespan in many animal species.

The physiological deterioration of organisms as they age

presents an evolutionary paradox: if organisms can

function well in youth, why can they not continue to

do so in old age. Evolutionary hypotheses propose that

aging evolves because of trade-offs with survival and

fertility late in life being sacrificed for the sake of early

reproduction and survival (the optimality explanation;

Williams 1957, Rose 1991, Partridge and Barton 1993),

or because of weaker selection against late-acting muta-

tions (mutational explanation; Medawar 1952, Williams

1957, Hamilton 1966). A prediction of these hypotheses

is that the rate of ageing should increase and the average

lifespan decrease as the rate of mortality resulting from

environmental factors (extrinsic mortality) increases

(Medawar 1952, Williams 1957, Rose 1991).

Evidence that longer maximum lifespan occurs in

organisms that have lower extrinsic mortality rates in the

wild comes from the comparison of distantly related

taxa. Birds and bats, which evade terrestrial predators by

flight, generally have greater potential longevities than

similarly sized terrestrial vertebrates (Promislow and

Harvey 1990, Austad and Fischer 1991, Brunet-Rossinni

and Austad 2004). Similarly, animals with thick shells

tend to live longer than animals without armours

(Gibbons 1987). Extreme maximum lifespan also occurs

in social insects where queens live in colonies that are

sheltered and heavily defended against predators (Keller

and Genoud 1998). In naked mole-rats, the evolution of

sociality in subterranean burrows has been accompanied

by a reduction of intrinsic mortality and a lifespan

increase (Sherman and Jarvis 2002). However, these wide

comparisons have shortcomings and should be consid-

ered as consistent with the evolutionary theories of

ageing rather than rigorous tests (Rose 1991, Partridge

and Barton 1993). Results of selection experiments in the

laboratory are also consistent with predictions of evolu-

tionary theories of ageing. Experimental studies on flies

have demonstrated a strong effect of extrinsic sources of

mortality on the rate of ageing (Reed and Bryant 2000,

Stearns et al. 2000).

An alternative possible method to test evolutionary

theories of ageing consists in conducting intraspecific

studies between classes of individuals exhibiting alter-

native life histories (Chapuisat and Keller 2002). One

such test consists in comparing male and female

intrinsic longevity in species where sexes exhibit

differences in extrinsic mortality. In many mammals

and birds one sex has a longer average lifespan than

the other (Allman et al. 1998, Moore and Wilson
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2002, Fox et al. 2003, Toı̈go and Gaillard 2003), with

females usually living longer than males (Promislow

1992, Promislow et al. 1992). However, for the vast

majority of species it is unknown whether this

difference stems from variations in intrinsic (environ-

ment-independent) or extrinsic (environment-induced)

mortality. Here we propose to take advantage of the

peculiar prey caching behaviour of owls to examine

whether there is a sex-biased predation rate. During

their reproductive period, owls habitually accumulate

dead prey items in the nesting cavity (Källander and

Smith 1990, Roulin 2004) and the sex of these remains

can be determined by visual inspection. For this study,

we selected two owl species, the barn owl Tyto alba

which forages in open area and the tawny owl Strix

aluco which primarily hunts in forests. For both

species we determined the sex ratio of their five

predominant prey species over a period of approxi-

mately 10 years.

The common vole Microtus arvalis was the most

common prey species found in nests of the barn owl.

The other common prey were Apodemus spp. Because

A. sylvaticus and A. flavicollis could not always be

differentiated on the basis of the remains found in the

nest, we lumped data of these two species and give

the sex ratio data under the category Apodemus spp.

We also found that species of the genus Apodemus were

very common prey of the tawny owl. In addition, the

two other common prey species were the bank vole

Clethrionomys glareolus and the blackbirds Turdus

merula . Only very few Microtus arvalis were found in

nests of the tawny owl. The sex ratio of the four mammal

prey was significantly male biased (number of males/

number of females: range 1.26 to 2.13, Table 1). The

most extreme departure was found for the blackbird

where males accounted for 92% of the individuals preyed

upon (Table 1).

A survey of the literature revealed that sex ratio bias

during predation is very common. We found data for 11

bird species and all of them exhibited preferential

probabilities to catch prey of a given sex. Overall, the

departure from equal sex ratio was significant for 27 of

the 32 prey species identified, and sample sizes were

relatively small for the 5 cases with no significant

deviation from equal sex ratio (the number of prey sexed

ranged from 6 to 24 only). In the vast majority of cases

(26 out of 29) with a significant sex ratio bias, the sex

ratio of prey was male-biased.

We also found data about the sex ratio of prey of two

mammals (Table 1). In both cases the sex ratio of the

prey deviated from a 1:1 ratio. In one case the sex ratio

was significantly male biased while in the other it was

significantly female biased (Table 1).

Altogether these data support the view that sex-

biased mortality induced by predation is a general

phenomenon. Importantly, it appears that birds con-

sistently are more likely to prey upon males than

females. There are several possible explanations for

this pattern. First, males are more conspicuous in

colour or size than females in many species. However,

this is unlikely to be an important factor for predators

as owls since they prey at dusk and dawn thus

reducing the effect of colour dimorphism on predation

rate. Moreover, among the prey found in the owl nests

only T. merula exhibits a sexual dimorphism in colour.

Second, males may behave differently than females

(e.g. exhibit a greater tendency of males to disperse in

mammals) which might result in greater exposure to

predators. Thus, females of small mammals are often

hidden with pups in their burrow while males actively

defend their territory against conspecifics or predators.

Furthermore, in most mammals males have a greater

home range than females, and should be more easily

detected and caught by predators when they display

and contest with other males (Norrdahl and Korpi-

mäki 1998). Similarly, blackbird males significantly

increase their exposure to predators while singing at

dusk and dawn during the reproductive season. Third,

males may be less able to escape predators as a result

of a higher parasitic infection rate due to a higher

testosterone level and decreased immune function

(Moore and Wilson 2002).

The higher predation rate by birds on males may

have important implications on ageing rate and other

sex-specific life-history traits in species which are

mostly preyed upon by birds. According to classical

evolutionary theories, lower extrinsic mortality should

translate into a later onset of senescence (Medawar

1952, Williams 1957). Thus, the lower predation rate

on females should select for slower female senescence

and higher maximum lifespan compared to males.

However, the predictions become more complex if

mortality rates vary across age classes or if predation

slows the rate of population growth and influences

food availability (Abrams 2004). Indeed, if higher male

mortality stems from behavioural activities associated

with sexual display, territory defence and dispersal, as

suggested by Table 1, it is likely that sex-specific

differences in mortality rates will vary across age

classes (Sibly et al. 1997). This could be directly tested

by comparing the relative mortality rates of males and

females between different age classes (Catchpole et al.

2000) or indirectly by comparing relative mortality

rates during and outside the reproductive season. Such

data would be very useful to unravel the apparent

discrepancies between the predicted and expected

patterns of senescence that have been observed in

some species (Catchpole et al. 2004, Reznick et al.

2004).

The data we found in the literature does not allow us

to determine whether mammalian predators are more

likely to prey on males or females. It has been suggested
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that mammalian predators may frequently kill more

females because they use odour cues to locate the nest or

burrow which commonly are more likely to contain

females than males (Johnson and Sargeant 1977, Norr-

dahl and Korpimäki 1998). If this was true, one would

predict that opposite pattern of senescence between sexes

for species whose main predators are mammals exhibit-

ing a female biased rate of predation.

In conclusion, this survey reveals a large and

pervasive sex ratio bias of prey species collected by

different predator species. This bias in predation rate

most likely stems from sex-specific differences in the

prey behaviour, with males engaging in sexual displays

and other activities that increase their probability of

being preyed upon. Inversely, females might sometimes

be more likely to be preyed upon, for example when

female mallards incubate their eggs (Johnson and

Sargeant 1977). These differences in predation rates

are expected to affect the rate of senescence and other

life history traits. These findings warrant additional

studies to precisely determine how and why males

are more frequently preyed upon than females, how

the rate of predation varies between age classes and

whether there are seasonal variations for sex specific

differences in predation. The unusual predation beha-

viour of owls provides an ideal system to address these

questions.
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Table 1. Number and sex ratio (males:females) of prey remains found in nests, in dens or in pellets of different predator species.
Type: O: observation of record kills; D: prey remains in dens; N: prey remains in nests; P: prey remains in pellets. For barn owl (Tyto
alba ), prey remains were sexed between 1990 and 2004 in 631 broods and for tawny owl (Strix aluco ) between 1997 and 2005 in 394
broods from a population located in western Switzerland. P-values of binomial tests are given.

Predators Prey
Birds

Type Males Females Sex ratios P-value Reference

Strix aluco Turdus merula N 36 3 12 B/0.001 present study

Aegolius funereus Carduelis flammea N 3 5 0.6 1.0 Korpimäki 1981
Fringilla montifringilla N 3 3 1 1.0 Korpimäki 1981
F. coelebs N 47 10 4.7 B/0.001 Korpimäki 1981
Emberiza citrinella N 12 1 12 0.006 Korpimäki 1981

Falco peregrinus Waterfowls (6 species) N 18 1 18 B/0.001 Cade 1960
Philomachus pugnax N 48 16 3 B/0.001 Lindberg 1983

Vulpes vulpes Anas platyrhynchos D 44 166 0.26 B/0.001 Johnson and Sargeant
1977

Mammals
Panthera leo Tragelaphus strepsiceros O 207 143 1.45 B/0.001 Owen-Smith 1993

Tyto alba Microtus arvalis N 1421 974 1.46 B/0.001 present study
Aegolius funereus N 32 14 2.29 0.012 Korpimäki 1981
Falco tinnunculus,

Buteo buteo, Circus cyanus
P 1175 594 1.98 B/0.001 Halle 1988

Aegolius funereus Microtus agrestis N 24 11 2.18 0.04 Korpimäki 1981
Aegolius funereus N 2326 746 3.11 B/0.001 Koivunen et al. 1996
Tyto alba P 80 42 1.90 B/0.001 Brown 1971
Tyto alba N 168 16 10.5 B/0.001 Taylor 1994

Aegolius funereus M. rossiaemeridionalis N 623 270 2.31 B/0.001 Koivunen et al. 1996

Circus cyaneus,
Ardea herodius

Microtus townsendi P 97 65 1.49 B/0.001 Beacham 1979

Bubo virginianus Microtus montanus P 9 31 0.29 B/0.001 Longland and Jenkins
1987

Falco tinnunculus Microtidae N 16 3 5.33 0.022 Korpimäki 1985

Tyto alba Clethrionomys glareolus P 195 143 1.36 0.005 Brown 1971
Strix aluco N 164 77 2.13 B/0.001 present study
Aegolius funereus N 208 61 3.41 B/0.001 Korpimäki 1981
Aegolius funereus N 1586 743 2.13 B/0.001 Koivunen et al. 1996

Tyto alba Apodemus spp. N 858 662 1.30 B/0.001 present study
Strix aluco N 463 368 1.26 B/0.001 present study

Falco tinnunculus,
Buteo buteo, Circus cyanus

Apodemus sylvaticus P 217 128 1.69 B/0.001 Halle 1988

Tyto alba Mus musculus P 13 79 0.16 B/0.001 Dickman et al. 1991
Aegolius funereus N 8 4 2 1.0 Korpimäki 1981

Aegolius funereus Micromys minutus N 15 9 1.67 1.0 Korpimäki 1981
Bubo virginianus Peromyscus maniculatus P 15 43 0.35 B/0.001 Longland and Jenkins

1987
Dipodomys ordii P 9 5 1.2 1.0 Longland and Jenkins

1987

Aegolius funereus Sorex araneus N 81 55 1.47 0.031 Korpimäki 1981
Aegolius funereus N 240 194 1.24 0.031 Koivunen et al. 1996
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