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Summary statement 35 

The observed partial correlation between herbivore resistance, defensive metabolites 36 

accumulation, and gene expression suggests complex network of gene interactions 37 

governing the postulated trade-off between constitutive defences and their 38 

inducibility.   39 

 40 

  41 
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Abstract 42 

 The hypothesis that constitutive and inducible plant resistance against 43 

herbivores should trade-off because they use the same resources and impose costs to 44 

plant fitness has been postulated for a long time. Negative correlations between 45 

modes of deployment of resistance and defences have been observed across and 46 

within species in common garden experiments.  We therefore tested whether that 47 

pattern of resistance across genotypes follows a similar variation in patterns of gene 48 

expression and chemical defence production. Using the genetically tractable model 49 

Arabidopsis thaliana and different modes of induction, including the generalist 50 

herbivore Spodoptera littoralis, the specialist herbivore Pieris brassicae, and 51 

jasmonate application, we measured constitutive and inducibility of resistance across 52 

seven A. thaliana accessions that were previously selected based on constitutive 53 

levels of defence gene expression. According to theory, we found that modes of 54 

resistance traded-off among accessions, particularly against S. littoralis, in which, 55 

accessions investing in high constitutive resistance did not increase it substantially 56 

after attack, and vice-versa. Accordingly, the average expression of eight genes 57 

involved in glucosinolate production negatively predicted larval growth across the 58 

seven accessions. We next measured glucosinolate production and genes related to 59 

defence induction on healthy and herbivore-damaged plants. Surprisingly, we only 60 

found a partial correlation between glucosinolate production, gene expression and the 61 

herbivore resistance results. These results suggest that the defence outcome of plants 62 

against herbivores goes beyond individual molecules or genes but stands on a 63 

complex network of interactions.  64 

 65 

Key words: glucosinolates, jasmonic acid, plant defences, plant-herbivore 66 

interaction, specificity of resistance, VSP2  67 
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Introduction  68 

Plants, to ward off herbivore attack, have evolved a whole array of defence 69 

traits (Schoonhoven et al., 2005), which can be always present or only induced after 70 

herbivore feeding (Karban and Baldwin, 1997). The general consensus argues that 71 

inducible defences have evolved as a cost-saving strategy (Karban et al., 1997), in 72 

which undamaged plants can divert resources from defence to growth and 73 

reproduction. Zangerl & Rutledge (1996) postulated that the pattern of constitutive 74 

and inducible defences, at the plant or at the organ level, depends on the probability 75 

of the attack and the value of the organ. In other words, plants or organs, which are 76 

regularly attacked by herbivores, should have high levels of constitutive defences 77 

and low levels of induced defences. By extrapolations, in populations where 78 

herbivory is low, plants should invest little in constitutive defences and more in 79 

inducibility of defence, in which inducibility is the difference between the induced 80 

state minus the constitutive state of defence in an organ of the plant. Recent 81 

examples have shown that inducibility is dependent on the spatial variation on the 82 

plant populations and herbivore pressure (e.g. Moreira et al., 2014; Rasmann et al., 83 

2014), suggesting that at the landscape level there are constraints on simultaneously 84 

producing both types of defence investment within one species.  85 

Indeed, because we know that the expression of redundant traits is costly for 86 

the plant (Koricheva et al., 2004), and because we assume that constitutive and 87 

induced defences are two traits in competition for the same resources in the plant, we 88 

should expect a trade-off (or negative correlation) between them (Agrawal et al., 89 

2010). In other words, if both constitutive and inducible resistance traits are adaptive, 90 

we should observe a negative correlation between constitutive and induced resistance 91 

across populations or species of plants (Agrawal et al., 2010). Several examples have 92 

shown trade-offs between constitutive and inducible resistance, both within (e.g. 93 

Gianoli, 2002; Rasmann et al., 2014; Rasmann et al., 2011) and across species (e.g. 94 

Kempel et al., 2011; Moreira et al., 2014; Rasmann and Agrawal, 2011; Zhang et al., 95 

2008). Additionally, Thaler & Karban (1997) mapped constitutive and inducible 96 

defences along the phylogeny of Gossypium spp., and showed independent and 97 

repeated origins and losses of both defence traits, indicating evolutionary lability and 98 

independence in the mode of defence investment. In Acacia, it was shown that 99 

constitutive extrafloral nectar production originated from inducible production in 100 

closely related species (Heil et al., 2004). To summarize, past research indicates that 101 
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constitutive and inducibility of resistance evolve depending on the herbivore pressure 102 

and the probability of attack at a particular site. Nevertheless, constrains imposed by 103 

resource acquisition force the two mode of defence investment to negatively 104 

correlate with each other. 105 

With this study we aimed to take a step further in the study of the 106 

interactions, and putative trade-off, between inducible and constitutive resistance and 107 

investigate the genetic bases explaining the pattern. We specifically asked whether 108 

patterns of trade-off between constitutive and inducible resistance (i.e. the effect of 109 

the plant’s defensive arsenal on the performance of the herbivores, according to 110 

Karban & Baldwin (1997)) is correlated to similar patterns of defensive secondary 111 

metabolites and gene induction. To address our questions we used a highly 112 

genetically-tractable plant, the thale cress Arabidopsis thaliana (Brassicaceae); a 113 

small annual plant from Eurasia but naturalized across all continents expect 114 

Antarctica. Basal genome-wide expression levels have been characterized for over 115 

750 Arabidopsis accessions. In addition, major biosynthetic pathways involved in 116 

insect resistance, including the jasmonate pathway (Howe and Jander, 2008), are 117 

well characterized (Bodenhausen and Reymond, 2007). Furthermore, Arabidopsis, 118 

like most species in the Brassicales, contains glucosinolates. When insect herbivores 119 

feed on the plant, they damage tissues and bring glucosinolates in contact with an 120 

activated enzyme, the myrosinase, which results in the production highly toxic 121 

hydrolysis breakdown products such as nitriles, isothiocyanates or thiocyanates 122 

(Halkier and Gershenzon, 2006). Moreover, several studies have already shown 123 

specificity in inducible resistance against specialists versus generalist herbivores in 124 

Arabidopsis (De Vos et al., 2005; Rasmann et al., 2012). Generally, it was shown 125 

that the glucosinolates have a negative impact on generalist herbivores fitness, but it 126 

has little, none, or positive effect on specialist herbivores (Mueller et al., 2010; 127 

Schweizer et al., 2013).  128 

Here we hypothesize that, 1) according to classic theory, previously induced 129 

plants are more defended against subsequent herbivore attack than undamaged 130 

plants; 2) generalist herbivores are more susceptible than specialist herbivores, 3) 131 

there is a negative genetic correlation between constitutive and inducibility of 132 

resistance, and 4) both glucosinolate production, and gene expression related to 133 

defence induction correlate with patterns of induced resistance.  134 

 135 
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Material and methods 136 

Plant material 137 

Seeds of all accessions were obtained from The Nottingham Arabidopsis 138 

Stock Centre (NASC). For all the experiments (see below), all plants were grown in 139 

a growth chamber (short days, 20°C, 55% RH) with a 3:1 mix of commercial potting 140 

soil (Orbo-2, Schweizer AG, Lausanne; Switzerland) and perlite. All plants were six 141 

weeks old at the time of the experiments. 142 

 143 

Microarray data  144 

 Constitutive expression data for Arabidopsis accessions were downloaded 145 

from the ArrayExpress repository database (http://www.ebi.ac.uk/arrayexpress; 146 

experiment E-TABM-18). Data are part of the At GenExpress project 147 

(http://arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp) and consist 148 

of expression values from 4-day-old seedlings from 34 accessions grown in soil in 149 

the same conditions and at the same time (Lempe et al, 2005).  150 

 151 

Inducible resistance experiment 152 

To measure the specificity of trade-offs between inducible and constitutive 153 

resistance in Arabidopsis, we performed an experiment with three different induction 154 

treatments: a control treatment (no induction), a jasmonic acid (JA) application, and 155 

an herbivore induction. Jasmonic acid has been shown to be the master regulator of 156 

plant inducible resistance against chewing herbivores in many plants, including 157 

Arabidopsis (Howe, 2004; Howe and Jander, 2008). For the herbivore treatment, we 158 

chose the highly generalist herbivore Spodoptera littoralis (Lepidoptera, Noctuidae), 159 

and the cabbage family specialist herbivore Pieris brassicae (Lepidoptera, Pieridae). 160 

Eggs of S. littoralis were provided by Syngenta (Stein Switzerland) and first-instar 161 

larvae were obtained by placing eggs at 30°C during three days. First-instar larvae of 162 

P. brassicae were obtained from rearing insects on cabbage (Brassica oleracea) in 163 

controlled greenhouse conditions at the University of Lausanne.  164 

For all treatments, plants were enclosed in hermetic Plexiglas boxes (N = 7 165 

genotypes x 3 treatments x 2 herbivores x 3 plants = 63 plants). Treatments were 166 

performed as follow: 1) the control-treated plants were left without further treatment 167 

for three days; 2) the JA treatment included plants that were induced by putting three 168 

cotton buds in the box, each one spiked with 5 µL of Methyl Jasmonate (MeJA) 169 
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(Sigma-Aldrich CAS Nb 39924-52-2). JA treatment lasted 24h after which lids were 170 

opened allowing the evaporation of the JA left in the box. Finally, 3) plants were 171 

induced by placing 8-10 first-instar S. littoralis larvae per pot. Larvae were allowed 172 

to feed for three days prior to removal.  We used S. littoralis for the induction 173 

treatment as this herbivore was used to measure the induction of defence genes in 174 

selected accessions (see below).  175 

After the induction, plants were individually surrounded with 330 ml volume 176 

deli plastic cups with the bottom cut off, and 10 S. littoralis or 10 P. brassicae larvae 177 

were added to each plant (N = 30 larvae per herbivore, per genotype and per 178 

treatment). Cups were covered with fine-meshed nylon nets to prevent larvae from 179 

escaping, and larvae were allowed to feed for 7 days, after which, all surviving larvae 180 

were flash frozen in liquid nitrogen, oven-dried for 4 days at 50 °C and weighed.  181 

 182 

Glucosinolate and gene expression analyses 183 

For glucosinolate and gene analyses we planted 12 plants per genotype and 184 

after six weeks, half of the plants were induced with 10 S. littoralis caterpillars for 185 

three days as described above. At the end the induction treatment, 200 mg of fresh 186 

tissue per plant was ground with a homogenizer in 2 ml ice cold MeoH:water (70:30, 187 

v/v) with 25 µl of sinalbin 1.56 mmol as the internal standard. Samples were then 188 

incubated for 15 min at 80 °C in a block heater (Techne dri-block, Staffordshire, 189 

UK), centrifuged at 3500 x g for 10 min, and the supernatant was transferred to an 190 

appropriate vial for analysis. Glucosinolate identification and quantification was 191 

performed using an Acquity UPLC from Waters (Milford, MA, USA) interfaced to a 192 

Synapt G2 QTOF from Waters with electrospray ionization, using the separation and 193 

identification method as described in Glauser et al. (2012).  194 

For gene expression analyses, two leaves were sampled from half of the 195 

control and treated plants (n = 3), added together in one Eppendorf tube and flash 196 

frozen in liquid nitrogen. We selected three genes known to be induced after 197 

caterpillar attack in Col-0 (Reymond et al., 2000), including: 1) ALLENE OXIDE 198 

CYCLYSE2 (AOC2), a gene that catalyses an essential step in jasmonic acid 199 

biosynthesis; 2) VEGETATIVE STORAGE PROTEIN2 (VSP2), a highly inducible 200 

gene after herbivory or JA treatment; and 3) CYTOCHROME P450 79B3 201 

(CYP79B3), a gene involved in indole-glucosinolate biosynthesis. RNA extraction 202 

and qPCR analyses were done following standard protocols using the reference gene 203 
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At2g28390 (Arabidopsis SAND family protein) as described in Hilfiker et al. (2014). 204 

Primer efficiencies (E) were assessed by a five-step dilution regression. The 205 

expression level of a target gene (TG) was normalized to the reference gene (RG) 206 

and calculated as Normalized Relative Quantity (NRQ) as follows: 207 

NRQ=ECtRG/ECtTG. 208 

 209 

Statistical analyses 210 

We analysed the effect of the genotypes, the induction treatment, and the two 211 

herbivore species using a full-factorial three-way ANOVA. Secondly, to test for 212 

trade-offs between constitutive and inducibility of resistance, we regressed the 213 

inducibility (i.e. the difference in mean larval mass values for each genotype between 214 

control and induced plants) against the genotype mean of that trait in the control 215 

treatment (i.e. the constitutive level). As we regressed a variable against a difference 216 

that includes the same variable (i.e. inducibility of resistance = induced plants – 217 

control plants), the errors in the two axes are not independent, and thus there is a 218 

possibility of obtaining spurious correlations from these analyses (Morris et al., 219 

2006). Therefore, to evaluate the significance of these correlations, we employed the 220 

Monte Carlo simulation procedure proposed by Morris et al. (2006) using MATLAB 221 

(Version 7.5.0.342 – R2007b, MathWorks Inc., USA). 222 

Glucosinolate data were analysed with a three-way permutation ANOVA 223 

using the package LmPerm in R (Wheeler, 2010), because we could not reach 224 

normality of the errors, and included genotype, herbivore treatment, and compound 225 

identity as main effects.  226 

 227 

Results 228 

 229 

Selection of Arabidopsis accessions with contrasting constitutive defences 230 

 To investigate genotypic variation in constitutive versus inducible resistance 231 

we selected seven accessions of Arabidopsis, based on the expression of 16 genes 232 

known to be related to defence against chewing herbivores (Reymond et al., 2004); 233 

Supplementary Material Table S1). For each individual gene, 34 accessions for 234 

which whole-genome expression data were available (see methods) were ranked 235 

based on the constitutive expression of defence genes. The computation of the 236 

average constitutive expression across all genes provided a list of seven accessions 237 
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(Table S2), including HR-5, Kindalville-0 (Kin-0), Niederzenz-1 (Nd-1), Columbia-0 238 

(Col-0), Moscow-0 (Ms-0), C-24, and Shahdara (Sha). 239 

 240 

Induction experiment  241 

In accordance with classic predictions, we found an overall effect of previous 242 

induction on resistance (Figure 1, Table 1). Particularly, larvae of both species grew 243 

22% and 14% less (for S. littoralis  and  P. brassicae, respectively) on plants that 244 

were previously induced by S. littoralis (Figure 1, Table 1), and to a lesser extent on 245 

plants that were induced with JA (17% and 10%, respectively, see no effect of 246 

treatment by species interaction in Table 1). Overall, we found strong variation in 247 

resistance across accessions (Table 1) and strong specificity in resistance across 248 

accessions (see significant genotype by species interaction in Table 1).  249 

Across seven accessions of Arabidopsis we found a negative genetic 250 

correlation between the constitutive resistance and the inducibility of resistance, 251 

particularly for the generalist herbivore S. littoralis (Figure 2, for S. littoralis, larval 252 

induction, r = -0.94, p = 0.02; and JA induction, r = -0.94, p = 0.01; and for P. 253 

brassicae, larval induction, r = -0.82, p = 0.09; and JA induction, r = -0.08, p = 0.74). 254 

For S. littoralis, the ranking of inducibility from high-induced susceptibility to high-255 

induced resistance for both the larval and jasmonate induction was:  C-24, HR-5, 256 

Sha, Col-0, Kin-0, Ms-0, and Nd-1. In other words, Nd-1 showed the largest 257 

inducibility of resistance, whereas C-24 had the smallest. Interestingly, we observed 258 

in some instances that larvae were larger on induced plants than on uninduced ones 259 

(Table S3). This was the case for S. littoralis feeding on HR-5 and C-24 after 260 

treatment with JA, and for P. brassicae feeding on Sha and C-24, after herbivory.   261 

We next assessed whether natural variation in gene expression could directly 262 

influence resistance. We therefore regressed the average expression values of 8 genes 263 

related to glucosinolate production, and 8 genes including JA marker genes and JA 264 

biosynthesis in Arabidopsis (Table S2) against the larval weight of the generalist S. 265 

littoralis on each genotype (Table S3). We only used S. littoralis data for this 266 

analysis since only generalist herbivores should be affected by glucosinolates in 267 

plants. Additionally, we only used the control treatment as gene expression was 268 

measured on undamaged plants. We found that the constitutive expression of 269 

glucosinolate biosynthesis-related genes negatively predicted larval weight gain 270 

(Figure 3, n = 7, r = 0.80, p = 0.03). This was not true when regressing the average 271 
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expression of genes related to JA signalling and production (n = 7, r = 0.07, p = 272 

0.87). To test whether or not results for the glucosinolate genes were spurious due to 273 

random gene sampling, we performed a permutation analysis using the 10’000 274 

averages of 10 randomly selected genes from the whole pool of 22’759 genes present 275 

in Arabidopsis. As shown in Figure S1, our data indicate that the glucosinolate result 276 

is well below the 0.1, and the 0.05 probabilities when compared to correlations with 277 

random genes, indicating that the S. littoralis result cannot be obtained from random 278 

gene sampling of defence genes. 279 

 280 

Glucosinolate and gene expression analyses 281 

 Because we observed a negative relationship between constitutive and 282 

inducible resistance (particularly against S. littoralis), we next sought defence 283 

mechanisms behind the observed trade-off and measured glucosinolates and gene 284 

expression of Col-0, HR-0, Ms-0, Nd-1. Our initial results from the resistance 285 

experiment indicated that Col-0 and HR-5 showed little or none induced resistance, 286 

Ms-0 showed intermediate levels of induced resistance, and ND-1 showed the 287 

highest levels of induced resistance (Figure 2A). We therefore predicted that 288 

glucosinolate and gene expression profiles would mimic the larval resistance results, 289 

and Nd-1 would show the highest induction of defensive metabolites and genes 290 

related to defence induction, and Col-0 and HR-5 the lowest (Figure 4A).  291 

 Glucosinolate analyses yielded 14 individual glucosinolate compounds, all 292 

showing different overall levels (Table S4, see compound effect in Table 2) and 293 

different inducibilities after herbivore attack (see treatment by compound effect in 294 

Table 2), overall, with herbivore treatment increasing average glucosinolate levels by 295 

27% compared to control plants (see treatment effect in Table 2). Accessions showed 296 

little variation in total amount of glucosinolates, and only Nd-1 and Col-0 showed 297 

variation in glucosinolate induction after herbivore attack (Figure 4B, Table S4, and 298 

see treatment by genotype interaction in Table 2). Strikingly, some glucosinolates 299 

were almost exclusively found in a single accession (Table S4). 300 

 Expression analyses of selected insect-inducible genes showed strong 301 

induction after S. littoralis treatment (Figure 4C-E, and Table 3). VSP2 had the 302 

highest inducibility, with 14-fold induction overall (Figure 4E), compared to 2.6-fold 303 

and 1.55-fold for AOC2 and CYP79B3 (Figures 4C, and 4D, respectively). We also 304 

found strong genotype effect, and genotype by treatment effect for inducibility of 305 
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genes (Table 3). For VSP2, Col-0 and Nd-1 showed the strongest induction, MS-0 306 

showed average induction and HR-5 the lowest induction after herbivore attack. 307 

However, AOC2 was strongly induced in Col-0, moderately in both HR-5 and Nd-1, 308 

but not in Ms-0. Finally, CYP79B3 was only induced in Col-0 (Figure 4D). Since this 309 

enzyme is involved in the synthesis of indole-glucosinolates (Halkier and 310 

Gershenzon, 2006), and its expression correlates with accumulation of glucosinolates 311 

in Col-0 (Schweizer et al., 2013), it was interesting to see that levels of the main 312 

indole-glucosinolates I3M, and to a lesser extent 1MOI3M, increased in Col-0 after 313 

herbivory (Table S4). Additionally, both compounds were also induced in Nd-1 and 314 

I3M was higher in Ms-0 without the respective changes in CYP79B3 expression. 315 

Thus, our data show that there is not a consistent correlation between inducibility of 316 

resistance, accumulation of glucosinolates and defence gene induction between 317 

accessions, as it was predicted by the model in Figure 4A. 318 

 319 

Discussion 320 

 We found that overall inducible resistance against herbivores in Arabidopsis 321 

is underlined by strong genotypic variation, in which accessions that have high 322 

constitutive resistance are weak inducer, whereas accessions that have low 323 

constitutive resistance are strong inducers. This pattern generates the predicted trade-324 

off between constitutive and inducible resistance in plants. Interestingly, despite the 325 

fact that basal expression of genes related to glucosinolate biosynthesis also predicts 326 

the observed resistance to herbivory, we found that constitutive and induced 327 

glucosinolate levels and defence gene induction only partially relate to the observed 328 

resistance. This suggests that plant defence allocation strategies goes beyond the 329 

individual molecules or genes but stands on a complex network of interactions. 330 

Below we discuss the possible causes and consequences of the observed results.  331 

 332 

Specificity of induction of defences and herbivore responses 333 

 The seminal book on plant defence induction by Karban and Baldwin (1997) 334 

has paved the way to the general wisdom that plants, under herbivore attack, are able 335 

to increase their basal levels of defences to a higher level. Whereas the ability to 336 

increase resistance only after attack has undoubtedly clear benefits in term of costs 337 

(Karban et al., 1997), several drawbacks still impair a full grasp on the phenomenon, 338 
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including high specificity on the induction/response, and strong genotypic variation 339 

in induction.   340 

First, as we show here, there is high level of specificity on both sides, in 341 

which either the induction agent (an insect or a phytohormone in our case) can result 342 

in different inducibilities, and the response of the herbivore is species specific.  343 

Indeed, plant induction of defences is driven by the complex chemistry of plant-344 

herbivore interaction (Halitschke et al., 2003; Walling, 2000), which takes into 345 

account the counter-response of the herbivore (Felton and Eichenseer, 2000; Karban 346 

and Agrawal, 2002), and surely goes beyond simple application of jasmonic acid to 347 

the plant (but see e.g. Rasmann et al., 2012). Therefore, only by studying the effect 348 

of several inducing agents can we generalize on the existing patterns. Next, we show 349 

that specialist herbivores such as P. brassicae are less affected by previous plant 350 

induction than the generalist herbivore S. littoralis, and this seems to be a general 351 

rule in plant-insect interaction studies (Ali and Agrawal, 2012). Whether variation in 352 

induced resistance and subsequent formation of trade-offs is mainly generated by 353 

generalist herbivores is an enticing questions, and to our view merits further studies.   354 

Second, this is not the first example of genotypes becoming more susceptible 355 

to herbivores after induction. Indeed, induced susceptibility is more common than we 356 

might expect (Karban and Baldwin, 1997), and it has been suggested that defence 357 

suppression could even benefit the plant rather than the herbivore (Kahl et al., 2000). 358 

Although there is generally still little evidence for it, other studies show that plants 359 

decrease their defences (Bede et al., 2006; Kahl et al., 2000; Lawrence et al., 2008), 360 

and become more susceptible to attacks by herbivores after previous attacks by other 361 

species of herbivores (Poelman et al., 2008; Sarmento et al., 2011; Sauge et al., 362 

2006). Mechanisms behind induced susceptibility might include trade-offs between 363 

defence types against different herbivore species (via so-called antagonistic cross-364 

talk between signalling pathways involved in plant defence (Thaler, 1999), even 365 

within the same species (Bruessow et al., 2010). It is therefore possible that the 366 

physiological (and evolutionary) constraints generating the trade-offs between 367 

constitutive and inducibility of resistance might also be behind patterns of induced 368 

susceptibility, and future work with Arabidopsis in this regard might answer this 369 

question.  370 

 371 

Genetic correlations among resistance strategies 372 
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 By measuring caterpillar growth on undamaged and previously damaged 373 

plants, we found a negative genetic correlation between constitutive resistance and 374 

inducibility of resistance. Thus, Arabidopsis accessions appear to have a maximal 375 

potential for resistance, and this is either allocated constitutively (i.e. always 376 

present), following herbivore attack, or in equal balance between the two. Such 377 

trade-offs between constitutive and induced responses suggests that the expression of 378 

resistance traits in plants is costly or otherwise constrained, or that there is simply no 379 

benefit in to additional resistance beyond a particular threshold level (Agrawal et al., 380 

2010). Similar patterns in deployment strategies of defence were previously observed 381 

within genotypes (Rasmann et al., 2011), or across species of plants (Kempel et al., 382 

2011; Moreira et al., 2014). Nevertheless, others have failed to observe trade-offs 383 

between constitutive defences and inducibility, at least across species (Rasmann and 384 

Agrawal, 2011). Such discrepancies in the experimental observations are difficult to 385 

explain as long as we lack a mechanistic understanding of how trade-offs arise, 386 

particularly at the gene level (Agrawal et al., 2010). As mentioned above, variable 387 

production of defences can be triggered by insect-derived elicitors (Halitschke et al., 388 

2003), plant hormones (Harfouche et al., 2006), herbivore-induced volatile organic 389 

compounds (Ton et al., 2007), or indeed, differential constitutive levels of gene 390 

expression (Ahmad et al., 2011) 391 

Additionally, differential investment in plant defence deployment could arise 392 

from different herbivore pressures across the effective niche distribution of the 393 

species. For instance, we have recently shown that Vicia sepium plants at high 394 

elevation have lower basal levels of volatile organic compounds production but are 395 

more inducible than their conspecifics at lower elevation. This pattern of defence 396 

deployment goes hand-in-hand with lower herbivore pressure and lower abundance 397 

of predatory ants at high elevation (Rasmann et al., 2014). We thus suggest that the 398 

observed pattern in Arabidopsis accessions is generated both by the physiological 399 

constrains of the plant (i.e. some genotypes are simply at the maximum level of 400 

resistance and thus could not be induced even more as was shown in Córdova-401 

Campos et al. (2012)), and the different selection pressures at different locations 402 

where the accessions originated.  403 

 404 

Genotype – phenotype correlations  405 



 14 

 Contrary to our expectations, we did not observe a consistent correlation 406 

between the phenotypic response (i.e. herbivore growth), glucosinolate production 407 

and defence gene induction. For instance, although the increasing induction of VSP2 408 

between HR-5, Ms-0 and Nd-1 was correlated with the inducibility of resistance 409 

results (as predicted in Figure 4A), Col-0 displayed the strongest induction of 410 

defence genes and it displayed a high constitutive defence. Similarly, accumulation 411 

of glucosinolates after S. littoralis feeding was not higher in Nd-1 than Col-0, despite 412 

their different inducibility of resistance. In addition, the constitutive expression level 413 

of glucosinolate biosynthesis genes was negatively correlated with larval weight, 414 

although this was not true for glucosinolate levels, implying another level of 415 

complexity. In a related study with Arabidopsis, Ahmad et al. (2011) showed that a 416 

high induction of the defence gene PR1 was correlated with a reduced bacterial 417 

infection in different accessions.  418 

 Clearly, more work is needed to better understand these discrepancies. For 419 

example, the apparent absence of correlation between total glucosinolates levels and 420 

inducibility of resistance might be explained by the fact that different accessions 421 

contain specific glucosinolates. These molecules may have different deterrent 422 

properties, and a careful examination of the contribution of each glucosinolate 423 

compound to defence will be needed. Furthermore, we restricted our investigation to 424 

genes of the jasmonate pathway and to glucosinolates, which are established 425 

components of defence against herbivory. Nevertheless, additional factors may 426 

contribute to the inducibility of resistance, such as priming (Ahmad et al., 2011; van 427 

Hulten et al., 2006), epigenetic modifications (Rasmann et al., 2012), or post-428 

transcriptional effects (Gfeller et al., 2011; Savchenko et al., 2013). A study with a 429 

larger number of accessions and defence traits might be needed to explain the 430 

mechanistic aspects of the trade-off between constitutive and induced defences. 431 
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Tables and Figures 

 

Table 1. Three-way ANOVA for assessing the effect of the seven Arabidopsis 

accessions, the induction treatment (with S. littoralis or with methyl jasmonate), on 

the growth the two herbivore species (S. littoralis and P. brassicae).  

Factor df F ratio P value 

Genotypes (G) 6 5.646 <.0001 

Treatments (T) 2 3.999 0.022 

G*T 12 1.400 0.183 

Species (S) 1 261.774 <.0001 

G*S 6 3.354 0.005 

T*S 2 0.214 0.807 

G*T*S 12 1.327 0.220 

Residuals 82   
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Table 2. Three-way permutation ANOVA table for individual glucosinolate levels 

across four Arabidopsis accessions. Plants were either left undamaged or induced 

with S. littoralis caterpillars for three days (i.e. treatment effect).  

Factor Df Iter P value 

Genotype (G) 3 51 1 

Treatment (T) 1 3985 0.024 

G*T 3 3026 0.032 

Compound (C) 13 5000 < 0.0001 

G*C 39 5000 <0.0001 

T*C 13 5000 0.025 

G*T*C 39 5000 0.004 

Residuals 560   
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Table 3. Three-way permutation ANOVA table for individual gene expression levels 

across four Arabidopsis accessions. Plants were either left undamaged or induced 

with S. littoralis caterpillars for three days (i.e. treatment effect).  

 

Factor Df Iter P value 

Genotype (G) 3 5000 < 0.0001 

Treatment (T) 1 5000 < 0.0001 

G*T 3 5000 < 0.0001 

Genes (Gn) 2 5000 < 0.0001 

G*Gn 6 5000 < 0.0001 

T*Gn 2 5000 < 0.0001 

G*T*Gn 6 5000 < 0.0001 

Residuals 48   
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Figure legends 

 

Figure 1. Induced resistance against chewing herbivores. Shown are means (± SE) of 

P. brassicae (open bars) and S. littoralis (shaded bars) larval mass on Arabidopsis 

plants that were either left untouched (control), previously induced with S. littoralis 

caterpillar or previously induced with methyl jasmonate (JA).  Shown is the average 

of resistance across seven Arabidopsis accessions. Different letters above bars means 

difference after post-hoc Tukey test, p < 0.05. 

 

Figure 2. Trade-off between constitutive and inducibility of resistance. Shown are 

means of A) S. littoralis and B) P. brassicae larval mass when feeding on seven 

Arabidopsis accessions. Plants were either left undamaged (constitutive) or 

previously induced by herbivores (open circles, dotted lines), or induced with methyl 

jasmonate (black dots, solid lines). Inducibility is the average difference of larval 

weight between induced and constitutive conditions, therefore a negative value 

means induced resistance, and the lowest values indicate the highest induction of 

resistance. Lines indicate significant correlation, p < 0.05. Legend besides open 

circles or inside black circles indicate accessions’ names: N = Nd-1, M = Ms-0, K = 

Kin-0, S = Sha, Co = Col-0, H = HR-5, and C = C-24.  

 

Figure 3. Relationship between constitutive gene expression and resistance against 

chewing herbivores. Shown is the genotypic relationship across seven Arabidopsis 

accessions of resistance against S. littoralis larvae and average gene expression of 8 

genes related to glucosinolate production (p < 0.05). 

 

Figure 4. Defence induction across accessions. A) shows the predicted defence 

induction of four Arabidopsis accessions based on the resistance bioassay in Figure 

2A, in which Nd-1 should have the highest inducibility, HR-5 and Col-0 should have 

the lowest inducibility, and Ms-0 should have intermediate levels of inducibility. B) 

show the mean (± SE) levels of constitutive (open bars) and induced (black bars) 

production of glucosinolates, and  C) – E) show the relative expression of AOC2, 

CYP79B3, and VSP2, respectively. Induction was performed with S. littoralis 

caterpillars.  Values (± SE) are the average of three technical replicates. 
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Supplementary information 

 

Table S1. Genes known to be inducible after chewing herbivore attack in Arabidopsis. 
Those genes were used for the classification of 34 Arabidopsis accessions based on 
constitutive gene expression levels, and the selection of the seven accessions used for 
the experiments.  
 

Function AGI Short Description (TAIR10) 

Glucosinolates At4g39950 CYP79B2 (cytochrome P450) 

 At1g74100 SOT16 (sulfotransferase) 

 At5g60890 MYB34 (transcription factor) 

 At3g16390 NSP3 (nitrile specifier protein 3) 

 At1g52030 MBP2 (myrosinase-binding protein) 

 At2g39330 Jacalin lectin family protein, myrosinase-associated protein 

 At3g16470 Jacalin lectin family protein, myrosinase-associated protein 

 At1g54000 GDSL-like lipase, myrosinase-associated protein 

JA synthesis and 
signalling 

At1g17420 LOX3 (lipoxygenase) 

 At1g72520 LOX4 (lipoxygenase) 

 At5g07010 ST2A (hydroxyjasmonate sulfotransferase) 

 At5g13220 JAZ10 (jasmonate-ZIM-domain protein) 

JA marker At5g44420 PDF1.2 (low-molecular-weight cysteine-rich 77) 

 At1g12240 Vacuolar invertase betaFruct4 

 At2g24850 TAT3 (tyrosine aminotransferase 3); transaminase 

 At5g24420 Glucosamine/galactosamine-6-phosphate isomerase-related 

 
  



 
Table S2. Constitutive expression of genes involved in glucosinolate biosynthesis and 
regulation, and in jasmonate biosynthesis, signaling, and response, for seven 
Arabidopsis accessions.  
 
Type AGI ID C-24 Kin-0 SH HR-5 Col-0 ND-1 Ms-0 

Glucosinolates At4g39950 254.77 635.1 524.33 371.7 285.2 242.6 201.5 

 
At1g74100 704.87 706.67 1017.97 632.4 450.37 681.07 492 

 
At5g60890 212.67 169.9 203.87 264.6 226.37 143.7 120.7 

 
At3g16390  2087.93 1667.5 1149.27 747.6 1601.1 1325.47 970.5 

 
At1g52030  12.33 28.83 309.37 24.3 28.63 40.3 49.6 

 
At2g39330 15.23 20.57 15.37 7.2 16.43 10.83 20.9 

 
At3g16470 808.47 582.3 819.9 1048.4 632.03 725.13 358.3 

 At1g54000  2079.9 1536.83 1370.87 1780.7 1459.83 1096.13 860.1 

JA synthesis At1g17420 55.43 19.1 36.73 23.9 42.43 45.87 29.5 

 
At1g72520 10.73 8.97 29.23 13.3 14.03 13.43 6.2 

 
At5g07010 12.3 12.5 12.83 11.1 6.07 9.93 22 

 
At5g13220 69.63 86.2 58.57 91.1 54.2 64 50.6 

JA marker At5g44420 9.07 3.17 15.17 28.5 15 8.23 2 

 
At1g12240 659.97 944.67 659.53 931.9 811.13 684.23 444.3 

 
At2g24850 28.4 20.43 18.57 27.8 24.6 20.43 25.6 

 
At5g24420 94.47 104.1 222.87 153.4 141.03 323.43 196.1 

Average  541 483 447 406 435 397 283 
 

 

  



 
Table S3. Constitutive (control treatment) and induced (S. littoralis and MeJA 
treatment) resistance of seven A. thaliana accessions against the specialist caterpillar 
P. brassicae, and the generalist caterpillar S. littoralis. Data represent averages (± SE) 
caterpillar dry weight. 
 
Induction treatment Accession P. brassicae (mg) S. littoralis (mg) 
Control C-24 0.899 +/- 0.024 0.199 +/- 0.026 
 Col-0 0.594 +/- 0.029 0.26 +/- 0.013 
 HR-5 0.826 +/- 0.086 0.254 +/- 0.01 
 Kin-0 0.725 +/- 0.03 0.235 +/- 0.01 
 Moscow-0 0.922 +/- 0.026 0.42 +/- 0.017 
 ND-1 0.784 +/- 0.024 0.582 +/- 0.057 
 SH 0.573 +/- 0.065 0.211 +/- 0.006 
S. littoralis C-24 0.794 +/- 0.045 0.201 +/- 0.023 
 Col-0 0.427 +/- 0.034 0.234 +/- 0.011 
 HR-5 0.482 +/- 0.053 0.233 +/- 0.005 
 Kin-0 0.714 +/- 0.05 0.157 +/- 0.014 
 Moscow-0 0.681 +/- 0.034 0.322 +/- 0.028 
 ND-1 0.636 +/- 0.022 0.359 +/- 0.014 
 SH 0.808 +/- 0.037 0.175 +/- 0.015 
MeJA C-24 0.971 +/- 0.016 0.272 +/- 0.03 
 Col-0 0.619 +/- 0.066 0.257 +/- 0.013 
 HR-5 0.628 +/- 0.021 0.284 +/- 0.041 
 Kin-0 0.376 +/- 0.061 0.178 +/- 0.003 
 Moscow-0 0.869 +/- 0.043 0.265 +/- 0.023 
 ND-1 0.744 +/- 0.034 0.335 +/- 0.03 
 SH 0.605 +/- 0.01 0.209 +/- 0.006 
 
  



Table S4. Glucosinolate levels in four Arabidopsis accessions 

 Col-0   HR-5   Ms-0   Nd-1   

Glucosinolate Control Induced Control Induced Control Induced Control Induced 

2-propenyl 0 +/- 0 0 +/- 0 0.017 +/- 0.006 0.024 +/- 0.004 0.839 +/- 0.244 0.743 +/- 0.140 0.005 +/- 0.001 0.005 +/- 0.003 

3-hydroxypropyl 0.001 +/- 0.001 0 +/- 0 0.275 +/- 0.172 0.088 +/- 0.083 0 +/- 0 0.001 +/- 0.001 0.871 +/- 0.113 1.191 +/- 0.209 

7-methylthioheptyl 
(7MTH) 

0.026 +/- 0.002 0.027 +/- 0.001 0.050 +/- 0.011 0.059 +/- 0.012 0.025 +/- 0.003 0.033 +/- 0.010 0.020 +/- 0.002 0.023 +/- 0.002 

8-methylthiooctyl (8MTO) 0.064 +/- 0.005 0.051 +/- 0.004 0.177 +/- 0.017 0.188 +/- 0.037 0.216 +/- 0.042 0.194 +/- 0.019 0.130 +/- 0.016 0.150 +/- 0.018 

glucobrassicanapin 0 +/- 0 0 +/- 0 0.033 +/- 0.011 0.041 +/- 0.008 0 +/- 0 0.006 +/- 0.006 0 +/- 0 0 +/- 0 

glucobrassicin (I3M) 0.181 +/- 0.027 0.586 +/- 0.163 0.154 +/- 0.017 0.203 +/- 0.015 0.117 +/- 0.025 0.226 +/- 0.030 0.228 +/- 0.027 0.424 +/- 0.080 

glucoerucin (4MTB) 0.190 +/- 0.026 0.132 +/- 0.019 0.003 +/- 0.002 0.004 +/- 0.002 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 

glucohirsutin (8MSOO) 0.116 +/- 0.017 0.106 +/- 0.010 0.334 +/- 0.040 0.344 +/- 0.055 0.534 +/- 0.128 0.397 +/- 0.041 0.272 +/- 0.058 0.311 +/- 0.070 

glucoiberin (3MSOP) 0.103 +/- 0.014 0.161 +/- 0.022 0.023 +/- 0.014 0.028 +/- 0.028 0.034 +/- 0.008 0.032 +/- 0.006 0.122 +/- 0.017 0.187 +/- 0.032 

gluconapin 0.001 +/- 0.001 0 +/- 0 0.344 +/- 0.117 0.449 +/- 0.099 0.029 +/- 0.006 0.094 +/- 0.068 0 +/- 0 0 +/- 0 

glucoraphanin (4MSOB) 0.715 +/- 0.1 1.200 +/- 0.172 0.008 +/- 0.004 0.008 +/- 0.002 0 +/- 0 0.001 +/- 0.001 0.020 +/- 0.002 0.025 +/- 0.004 

glucotropeolin 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 0 +/- 0 

methoxyglucobrassicin  
(4MOI3M) 

0.019 +/- 0.001 0.025 +/- 0.003 0.015 +/- 0.001 0.016 +/- 0.001 0.020 +/- 0.002 0.020 +/- 0.001 0.012 +/- 0 0.015 +/- 0.001 

neoglucobrassicin 
(1MOI3M) 

0.003 +/- 0.002 0.039 +/- 0.010 0 +/- 0 0 +/- 0 0.004 +/- 0.003 0.011 +/- 0.002 0 +/- 0 0 +/- 0 

progoitrin isomer 0 +/- 0 0 +/- 0 0.097 +/- 0.032 0.130 +/- 0.028 0 +/- 0 0.045 +/- 0.045 0 +/- 0 0 +/- 0 

progoitrin 0.001 +/- 0.001 0 +/- 0 0.302 +/- 0.101 0.405 +/- 0.088 0 +/- 0 0.143 +/- 0.143 0 +/- 0 0 +/- 0 



TOTAL 1.420 +/- 0.197 2.327 +/- 0.404 1.832 +/- 0.545 1.987 +/- 0.462 1.818 +/- 0.461 1.946 +/- 0.513 1.680 +/- 0.236 2.331 +/- 0.419 

Values (µmol/g FW) are the mean (±SE) of 6 measurements 

  



Table S5. List of primers used in this study 

AOC2 (At3g25770) Fwd 5'-CACGTCCCAGAGAAGAAAGG-3' 
   Rev 3'-CGAGGAACGAATCCTCGTAA-3' 
 
CYP79B3 (At2g22330) Fwd 5'-CTTTGCTTACCGCTGATGAA-3' 
   Rev 5'-GCGTTTGA TGGGTTGTCTG-3' 
 
VSP2 (At5g24770) Fwd 5'-GGTGCCCGCAAATTGCAAAGACTA-3' 
   Rev 5'-GGTTGATGCTCCGGTCCCTAACCA-3' 
 
SAND (At2g28390) Fwd 5'-AACTCTATGCAGCATTTGATCCACT-3' 
   Rev 5'-TGATTGCATATCTTTATCGCCATC-3' 
 



 
 
 
 

 

 

Figure S1. Selection of random genes. Shown is the histogram of correlations 
between the average of 10 randomly selected genes and the constitutive resistance 
agaisnt S. littoralis across seven Arabidopsis accessions. Solid line indicate the 
correlation coefficient for the 8 genes related to glucosinolate producion. Dotted lines 
represent the 10% and 5% quantile for the 10000 correlations using random gene 
selection.   
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