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Abstract: In this paper we consider an extension to the aggregation of the FGM mixed Erlang risks, proposed

by Cossette et al. [2], in which we introduce the Sarmanov distribution to model the dependence structure.

For our framework, we demonstrate that the aggregated risk belongs to the class of Erlang mixtures. Following

results from [27], [18], analytical expressions of the contribution of each individual risk to the economic capital

for the entire portfolio are derived under both the TVaR and the covariance capital allocation principle. By

analysing the commonly used dependence measures, we also show that the dependence structure is wide and

flexible. Numerical examples and simulation studies illustrate the tractability of our approach.

Key words: Risk aggregation; Sarmanov distribution; Mixed Erlang distribution; Dependence measures; Cap-
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1 Introduction

Analysis of aggregated risk is important for insurance business, it allows the insurers to assess and to monitor

their risks through the risk management framework. In the classical framework of independent and identically

distributed risks, explicit analytical formulas for quantities of interest including Value-at-Risk (VaR), Tail Value-

at-Risk (TVaR) or Stop-loss premium formula for the aggregated risk can be derived explicitly for few tractable

cases. For instance Willmot and Lin [27], Lee and Lin [18, 19] and Cossette et al. [2] have shown that this is

the case if we choose the mixed Erlang distribution as a model for claim sizes. One reason for the tractability

of the mixed Erlang distribution is the fact that the convolution of such risks is again mixed Erlang, see [16].

Since insurance data clearly shows that insurance risks are commonly dependent, in order to be able to get

closed-form formulas for quantities of interest, an important task is the adequate choice of the dependence

structure between the risks. Even for the simple case of the dependence specified by a log-normal framework

with stochastic volatility, as shown in the recent contributions [9, 13, 12] only asymptotic results can be derived.

With motivation from Cossette et al. [2] where the aggregation of FGM mixed Erlang risks is considered, in

this contribution we shall investigate the Sarmanov mixed Erlang risks. The Sarmanov distribution includes

the FGM distribution as a special case. One key advantage of the Sarmanov distribution is its flexibility; it

also allows to model highly dependent risks, see e.g., [17], [1]. The aim of this paper is to provide analytical

results and properties of the aggregated dependent risks with mixed Erlang marginals by using the Sarmanov

distribution as a model for the dependence structure. This model is promising in risk aggregation practice as

it satisfies the four desirable properties of a multivariate parametric model mentioned in Joe [15] p.84, namely

the interpretability property, the closure property, the flexibility and the wideness of the range of dependence,

and the representation of the distribution function (df) and the probability density function (pdf) in analytical

form.

The paper is organised as follows. In Section 2, we describe the background of the Sarmanov mixed Erlang

distribution by exploring some definitions and properties of the Sarmanov distribution as a model for the

dependence structure and the mixed Erlang distribution with a common scale parameter as a model for claim
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size distribution in insurance. In Section 3, we demonstrate that the distribution of the aggregated risk belongs

to the class of Erlang mixtures; numerical illustrations and simulation studies are performed to show the

robustness of the results. In Section 4, we derive explicit expressions for the allocated capital to each individual

risk Xi, i = 1, 2 under the TVaR and the covariance capital allocation rules. We present some useful results

and properties of the mixed Erlang distribution in Section 5. In Section 6, an extension of the results in the

bivariate case to the multivariate framework is presented with numerical examples. All the proofs are relegated

to Section 7. In the Appendix, the flexibility and the wideness of the dependence range of Sarmanov mixed

Erlang distributions are discussed by calculating commonly used dependence measures, namely Pearson’s

correlation coefficient, Sperman’s rho and Kendall’s tau.

2 Preliminaries

2.1 Sarmanov distribution

The Sarmanov distribution introduced in [25] has proved valuable in numerous insurance applications. For

instance Hernandez et al. [14] used the multivariate Sarmanov distribution to model the dependence structure

between risk profiles for the calculation of Bayes premiums in the collective risk model. The contribution [24]

fitted multivariate insurance count data using the Sarmanov distribution with Poisson-Beta marginals. As

shown in [30, 29] the Sarmanov distribution allows for tractable asymptotic formulas in the context of ruin

probabilities. Referring to [25] a bivariate risk (X1, X2) has the Sarmanov distribution with joint pdf h given

by

h(x1, x2) = f1(x1)f2(x2)
(

1 + α12φ1(x1)φ2(x2)
)
, α12 ∈ R, (2.1)

where fi is the pdf of Xi, i = 1, 2, and φ1, φ2 are two kernel functions, which are assumed to be bounded and

non-constant such that

E (φ1(X1)) = E (φ2(X2)) = 0, 1 + α12φ1(x1)φ2(x2) > 0 (2.2)

is valid. If φi(xi) = 1−2Fi(xi) with Fi the df of Xi, then h is the joint pdf of the FGM distribution introduced by

Morgenstern [21] for Cauchy marginals and developed by Gumbel [11] for exponential margins and generalized

by Farlie [10]. Lee [17] proposed some general methods for finding the kernel function φi(xi) with different

types of marginals. Yang and Hashorva [29] considered φi(xi) = gi(xi) − E(gi(Xi)). When gi(xi) = e−xi

the corresponding kernel function coincides with the one explored by Lee [17] for marginal distributions with

support in [0,∞). We have

φi(xi) = e−xi − E
(
e−Xi

)
= e−xi − Li(1), (2.3)

where Li(t) = E
(
e−tXi

)
, t > 0 is the Laplace transform of Xi. In the rest of the paper, we set

Li := Li(1), L
′

i := L
′

i(1).

The joint pdf h is thus given by

h(x1, x2) = f1(x1)f2(x2)

(
(1 + γ) + α12(e−x1−x2 − e−x1L2 − e−x2L1)

)
, γ = α12L1L2. (2.4)

Remarks 2.1 If (X1, X2) has a Sarmanov distribution with kernel functions given in (2.3), additionally if

Xi, i = 1, 2 follows a mixture of Gamma distributions where the mixture components share the same scale
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parameter βi ∈ (0,∞), then the joint df of (X1, X2) follows easily from integrating the pdf in (2.4). Specifically,

we have for H the joint df of (X1, X2)

H(x1, x2) = (1 + γ)F1(x1, β1)F2(x2, β2) + γF1(x1, β1 + 1)F2(x2, β2 + 1)

−γF1(x1, β1 + 1)F2(x2, β2)− γF1(x1, β1)F2(x2, β2 + 1), (2.5)

where Fi(xi, βi) =
∑∞
k=1 qkWk(xi, βi), i = 1, 2 with Wk(xi, βi) is the df of the Gamma distribution with scale

parameter βi and shape parameter k ∈ (0,∞) and qk is the mixing weight such that
∑∞
k=1 qk = 1.

Compared to the FGM distribution which has [−1/3, 1/3] as the range of Pearson’s correlation coefficient ρ12

the Sarmanov distribution has a wider range of ρ12, which is useful in the aggregation of strongly dependent

insurance risks. For the Sarmanov case we have the explicit formula for ρ12, namely

ρ12(X1, X2) =
α12ν1ν2

σ1σ2
, νi = E (Xiφi(Xi)) , σi =

√
V ar(Xi), i = 1, 2. (2.6)

In the particular case that the kernels are given by (2.3), for two positive Sarmanov risks with finite variances

the range of α12 is (see Lee [17])

−1

max{L1L2, (1− L1)(1− L2)}
6 α12 6

1

max{L1(1− L2), (1− L1)L2}
, (2.7)

where νi = −L′i−Liµi and µi = E (Xi) , i = 1, 2. Lee [17] extended the Sarmanov distribution to the multivariate

case by defining the joint pdf h of (X1, . . . , Xn) as

h(x) =

n∏
i=1

fi(xi)(1 +Rφ1,...,φn,Ωn
(x)), x := (x1, . . . , xn), (2.8)

where

Rφ1,...,φn,Ωn
(x) = 1 +

n−1∑
j1<

n∑
j2

αj1,j2φj1(xj1)φj2(xj2)

+

n−2∑
j1<

n−1∑
j2<

n∑
j3

αj1,j2,j3φj1(xj1)φj2(xj2)φj3(xj3) + . . .+ α1,2,...,n

n∏
i=1

φi(xi),

such that

1 +Rφ1,...,φn,Ωn(x) > 0 (2.9)

is fulfilled for all xi ∈ R with Ωn = {αj1,j2 , αj1,j2,j3 , . . . , α1,2,...,n} ∈ R. If the kernel functions are specified by

(2.3), then h is given by (set ∆(xi) := e−xi − Li)

h(x) =

n∏
i=1

fi(xi)

(
1 +

n−1∑
j1<

n∑
j2

αj1,j2∆(xj1)∆(xj2)

+

n−2∑
j1<

n−1∑
j2<

n∑
j3

αj1,j2,j3∆(xj1)∆(xj2)∆(xj3) + . . .+ α1,2,...,n

n∏
i=1

∆(xi)

)
. (2.10)

2.2 Mixed Erlang claim sizes

These last decades, modeling claim size in insurance with the mixed Erlang distribution with a common scale

parameter has been well developed. In risk theory, Dickson and Willmot [8] and Dickson [7] have explored an
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analytical form of the finite time ruin probability, using the mixed Erlang distribution as a claim size model.

Recently, using the EM algorithm Lee and Lin [18] have fitted some common parametric distributions and

catastrophic loss data in the United States with the mixed Erlang distribution. Moreover, Lee and Lin [19]

have developed the multivariate mixed Erlang distribution to overcome some drawbacks of the copula approach.

Furthermore, Cossette et al. [2] have introduced a risk aggregation in the multivariate setup with mixed Erlang

marginals and the FGM copula to capture the dependence structure. As its name indicates, the mixed Erlang

distribution is constructed from the Erlang distribution which has the pdf

wk(x, β) =
βkxk−1e−βx

(k − 1)!
, x > 0, (2.11)

where k ∈ N∗ is the shape parameter and β > 0 is the scale parameter. Hence, the pdf of the mixed Erlang

distribution is defined as

f(x, β,Q˜ ) =

∞∑
k=1

qkwk(x, β), (2.12)

where Q˜ = (q1, q2, . . .) is a vector of non-negative weights satisfying
∑∞
k=1 qk = 1. In the following we write

X ∼ ME(β,Q˜ ) if X has pdf given by (2.12). By integrating the pdf in (2.12) the df F corresponding to f is

given by

F (x, β,Q˜ ) = 1− e−βx
∞∑
k=1

qk

k−1∑
j=0

(βx)j

j!
. (2.13)

As discussed in [27], [18], [19] and [2] one of the important advantages of employing the mixed Erlang distribution

in insurance loss modeling is the fact that many useful risk related quantities, such as moments and mean excess

function can be calculated explicitly by simple formulas. For instance, the quantile function (or VaR) of the

mixed Erlang distribution can be easily obtained given the tractable form of the df. From (2.13), at a confidence

level p ∈ (0, 1), the VaR of X, denoted by xp, is the solution of

e−βxp

∞∑
k=1

qk

k−1∑
j=0

(βxp)
j

j!
= 1− p, (2.14)

which can be solved numerically. Further, since for the mean excess function of X, we have (see [27], p.7)

E((X − d)|X > d) =

∑∞
k=0Q

∗
k

(βd)k

k!

β
∑∞
j=1Qj

(βd)j−1

(j−1)!

, d > 0, (2.15)

where Q∗k =
∑∞
j=k+1Qj with Qj =

∑∞
k=j qk∑∞
k=1 kqk

, then the TVaR of X at a confidence level p ∈ (0, 1) is given by

the following explicit formula

TV aRX(p) =

∑∞
k=0Q

∗
k

(βxp)k

k!

β
∑∞
j=1Qj

(βxp)j−1

(j−1)!

+ xp. (2.16)

Remark that above we assume that E(X) =
∑∞
k=1 kqk is finite. Additionally, the mixed Erlang distribution is

a tractable marginal distribution for the Sarmanov distribution. Next we present a result for the 2-dimensional

setup, see Section 6 for the same results in higher dimensions.

3 Aggregation of Sarmanov Mixed Erlang Risks

Let (X1, X2) have a bivariate Sarmanov risk with kernel functions φi(x) = e−xi − Li for i = 1, 2. We shall

assume that both X1 and X2 follow a mixed Erlang distribution, i.e.,

Xi ∼ME(βi, Q˜ i), i = 1, 2,
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where βi is the scale parameter, Q˜ i = (qi,1, qi,2, . . .) denotes the mixing probabilities. The joint distribution of

the random vector (X1, X2) will be referred to as a bivariate Sarmanov mixed Erlang (SmE) distribution and

we shall abbreviate this as (X1, X2) ∼ SME2(β, Q˜1, Q˜2) where β = (β1, β2). The dependence structure of the

bivariate random vector (X1, X2) can be analysed by calculating commonly used dependence measures such as

Pearson’s correlation coefficient or Kendall’s tau, see Appendix A. For given vectors of the mixing probabilities

V˜ i = (vi1, vi2, . . .), i = 1, 2 we define in the following π1{V˜ 1, V˜ 2} = 0 and for k > 1

πk{V˜ 1, V˜ 2} =

k−1∑
j=1

v1,jv2,k−j

The main result in this section is the derivation of the distribution of the aggregated risk S2 = X1 +X2.

Proposition 3.1 If (X1, X2) ∼ SME2(β, Q˜1, Q˜2) with β1 6 β2, then S2 ∼ ME(β2 + 1, P˜) where the mixing

weights pk are given by (set γ := α12L1L2, βi := βi/(βi + 1))

pk = (1 + γ)πk{Ψ˜1(Q˜1),Ψ˜2(Q˜2)}+ γπk{Ψ˜1(Θ˜1),Ψ˜2(Θ˜2)}

−γπk{Ψ˜1(Θ˜1),Ψ˜2(Q˜2)} − γπk{Ψ˜1(Q˜1),Ψ˜2(Θ˜2)}, (3.1)

where for i = 1, 2 the components of Θ˜ i = (θi,1, θi,2, . . .) are defined by θi,k =
qi,kβi

k∑∞
j=1 qi,jβi

j , whereas the compo-

nents of Ψ˜ i(Q˜ i) = (ψi,1, ψi,2, . . .) are ψi,k =
∑k
j=1 qi,j

(
k − 1

j − 1

)(
βi

β2+1

)j (
1− βi

β2+1

)k−j
.

Example 3.2 As an illustration, let

(X1, X2) ∼ SME2

(
β =

(
0.9

0.95

)
;Q˜1 = (0.4, 0.2, 0.3, 0.1);Q˜2 = (0.3, 0.5, 0.1, 0.1);α12 = 2.87

)
.

According to (2.12), one can write the pdf of X1 and X2 as follows

f1(x1) = 0.4w1(x1, 0.9) + 0.2w2(x1, 0.9) + 0.3w3(x1, 0.9) + 0.1w4(x1, 0.9)

f2(x2) = 0.3w1(x2, 0.95) + 0.5w2(x2, 0.95) + 0.1w3(x2, 0.95) + 0.1w4(x2, 0.95).

Following (2.4), the joint density of (X1, X2) is given by

h(x1, x2) = f1(x1)f2(x2)(1.22 + 2.87e−x1−x2 − 0.81e−x1 − 0.78e−x2).

Table 3.1 below presents the central moments of the marginals.

Mean Variance Skewness Kurtosis

X1 2.33 4.44 1.38 5.49

X2 2.11 3.10 1.49 6.12

Table 3.1: Central moments of X1 and X2.

It follows that the distribution of S2 is a mixed Erlang distribution with scale parameter βS2
= 1.95 and mixing

probabilities partially shown in 3.2. We notice that the higher the value of k is, the smaller the value of pk.
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k pk k pk k pk k pk k pk

1 0.0000 11 0.0664 21 0.0046 31 8.963E-05 41 9.294E-07

2 0.0675 12 0.0564 22 0.0033 32 5.803E-05 42 5.751E-07

3 0.0839 13 0.0465 23 0.0023 33 3.737E-05 43 3.547E-07

4 0.0645 14 0.0373 24 0.0016 34 2.393E-05 44 2.180E-07

5 0.0700 15 0.0292 25 0.0011 35 1.525E-05 45 1.336E-07

6 0.0740 16 0.0223 26 0.0007 36 9.668E-06 46 8.159E-08

7 0.0811 17 0.0168 27 0.0005 37 6.103E-06 47 4.970E-08

8 0.0840 18 0.0125 28 0.0003 38 3.835E-06 48 3.02E-08

9 0.0816 19 0.0091 29 0.0002 39 2.400E-06 49 1.828E-08

10 0.0753 20 0.0065 30 0.0001 40 1.496E-06 50 1.105E-08

Table 3.2: Mixing probabilities of the distribution of S2 = X1 +X2, with scale parameter βS2 = 1.95.

In order to validate our results, SmE risks have been simulated (see in Appendix B the details about the simulation

algorithm). In this respect, analytical and simulated results on the aggregated risk S2 = X1 +X2 are presented

and analysed. As displayed in Table 3.3, based on the VaR and TVaR risk measures the comparison of the

exact and the simulated values shows that our results are robust for different values of the tolerance level p.

Furthermore, it can be seen that VaR is more sensitive to the change of the tolerance level than TVaR.

Analytical formula Simulated Percentage difference (%)

p V aRS2
(p) TV aRS2

(p) V aRS2
(p) TV aRS2

(p) V aRS2
(p) TV aRS2

(p)

90.00 % 8.26 10.24 8.22 10.21 0.49 0.29

92.50 % 8.88 10.80 8.86 10.77 0.23 0.28

95.00 % 9.71 11.56 9.66 11.53 0.52 0.26

97.50 % 11.05 12.82 10.98 12.82 0.64 0.00

99.00 % 12.71 14.41 12.79 14.46 -0.63 -0.35

99.50 % 13.92 15.56 13.87 15.43 0.36 0.84

99.90 % 16.57 18.13 16.61 17.86 -0.24 1.51

99.99 % 20.15 21.62 19.42 20.79 3.62 3.84

Table 3.3: Exact and simulated values of VaR and TVaR of S2 = X1 +X2.

Similarly, by changing the level of the dependence between marginals which is described by α12 and for a tolerance

level of 99%, the comparison of the exact and the simulated values of VaR and TVaR is displayed in Table 3.4.

Note in passing that the maximum attainable value of α12, in our example, is 4.87 while the minimum is −1.91.
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Analytical formula Simulated Percentage difference (%)

α12 V aRS2
(0.99) TV aRS2

(0.99) V aRS2
(0.99) TV aRS2

(0.99) V aRS2
(0.99) TV aRS2

(0.99)

-1.91 12.24 13.92 12.26 13.91 -0.16 0.10

-0.87 12.35 14.04 12.38 14.03 -0.25 0.06

0 12.44 14.13 12.48 14.13 -0.31 0.03

0.87 12.53 14.22 12.57 14.22 -0.29 0.01

1.87 12.62 14.31 12.66 14.32 -0.33 -0.02

2.87 12.71 14.41 12.74 14.41 -0.24 -0.05

3.87 12.80 14.49 12.82 14.50 -0.14 -0.08

4.87 12.88 14.57 12.90 14.59 -0.14 -0.10

Table 3.4: Dependence level and sensitiveness of risk measures.

4 Capital Allocation

In this section, we derive analytical expressions for the amount of capital allocated to each individual risk

under the TVaR and the covariance principles. Evaluating the economic capital for the entire portfolio that an

insurance company needs to absorb large unexpected losses is of importance in enterprise risk management. In

this respect, the so-called capital allocation consists in determining the contribution of each individual risk to the

aggregate economic capital. This allows the insurance company to identify and to monitor efficiently their risks.

In the literature, many capital allocation techniques have been developed, see [4], [26], [20], [6] and references

therein. In practice, the TVaR and the covariance allocation principle are commonly used, since they take into

account the dependence structure between risks. More precisely, if Sn =
∑n
i=1Xi is the aggregate risk where

Xi is a continuous rv with finite mean that represents the individual risk, the amount of capital Ti allocated to

each risk Xi, for i = 1, . . . , n, is defined as ( for a tolerance level p ∈ (0, 1), denote Ti = TV aRp(Xi, Sn) under

the TVaR allocation principle, Ti = Kp(Xi, Sn) under the covariance allocation principle)

TV aRp(Xi, Sn) =
E(Xi1{Sn>V aRSn (p)})

1− p
, (4.1)

Kp(Xi, Sn) = E(Xi) +
Cov(Xi, Sn)

V ar(Sn)
(TV aRSn

(p)− E(Sn)), (4.2)

where we assume that Sn has finite and positive variance. We have

n∑
i=1

Ti =

n∑
i=1

TV aRp(Xi, Sn) =

n∑
i=1

Kp(Xi, Sn) = TV aRSn(p),

which means that for both allocation principle, based on TVaR as a risk measure, the capital required for

the entire portfolio is equal to the sum of the allocated capital of each risk within the portfolio. Given some

vector V˜ = (v1, v2, . . .) with non-negative components such that
∑∞
j=1 jvj < ∞ we define the new vector

G˜(V˜ ) = (g1, g2, . . .) where

gk =

 0 for k = 1
(k−1)vk−1∑∞

j=1 jvj
for k > 1.

For notational simplicity we shall also write in the following βi instead of βi/(βi + 1). Furthermore hereafter

the df of the pdf given in (2.11) will be denoted by Wk(·, β) with survival function W k(·, β).

We derive next an explicit form of TV aRp(Xi, S2) and Kp(Xi, S2), i = 1, 2, in the case of SmE type risks.
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Proposition 4.1 Let (X1, X2) ∼ SME2(β, Q˜1, Q˜2) with β1 6 β2, further let Θ˜ i and Ψ˜ i be defined as in

Proposition 3.1. If for i = 1, 2 both µi := 1
βi

∑∞
k=1 kqi,k and µ̃i := 1

βi+1

∑∞
k=1 kθi,k are finite, then for any

p ∈ (0, 1) the amount of capital allocated to each risk Xi, i = 1, 2, under the TVaR principle is

TV aRp(Xi, S2) =
1

1− p

∞∑
k=1

zikW k(V aRS2
(p), β2 + 1), (4.3)

where γ = α12L1L2,

zi,k = (1 + γ)µiπk{Ψ˜ i(G˜ i(Q˜ i)),Ψ˜ j(Q˜ j)}+ γµ̃iπk{Ψ˜ i(G˜ i(Θ˜ i)),Ψ˜ j(Θ˜ j)}
−γµ̃iπk{Ψ˜ i(G˜ i(Θ˜ i)),Ψ˜ j(Q˜ j)} − γµiπk{Ψ˜ i(G˜ i(Q˜ i)),Ψ˜ j(Θ˜ j)}, i 6= j,

and the contribution of each risk Xi, i = 1, 2 to the economic capital of the entire portfolio, under the covariance

principle, is given by

Kp(Xi, S2) =

∞∑
k=1

Li,k
β2 + 1

,

where

Li,k = kψi,k + εi,j

(
P ∗k ((β2 + 1)V aRS2(p))k

ϕk!
+ (β2 + 1)V aRS2

(p)− kpk

)
, i 6= j,

with

εi,j =

∑∞
m=1(m2 +m)ψim − (

∑∞
m=1mψim)2∑∞

m=1(m2 +m)pm − (
∑∞
m=1mpm)2

+

(
α12(β2 + 1)2∑∞

m=1(m2 +m)pm − (
∑∞
m=1mpm)2

)

×

(
1

βi + 1

∞∑
m=1

mqi,mβi
m − 1

βi

∞∑
m=1

qi,mβi
m
∞∑
m=1

mqi,m

)

×

(
1

βj + 1

∞∑
m=1

mqj,mβj
m − 1

βj

∞∑
m=1

qj,mβj
m
∞∑
m=1

mqj,m

)
, (4.4)

ϕ =

∞∑
j=1

Pj((β2 + 1)V aRS2(p))j−1

(j − 1)!
, P ∗k =

∞∑
j=k

Pj , Pj =

∑∞
k=j pk∑∞
k=1 kpk

and pk is given in (3.1).

Example 4.2 In this example, we consider the same marginals and dependence parameters as in Example

3.2. For different level of the dependence between X1 and X2, which is described by α12, TVaRs have been

calculated on the aggregated risk S2 = X1 +X2 at a tolerance level p = 99%. Furthermore, the allocated capital

to each risk Xi, i = 1, 2, under the TVaR and the covariance capital allocation principle are also evaluated.

Table 4.1 demonstrates that risk measures on the aggregated risk are sensitive to the level of dependence between

individual risks. Actually, due to the relationship between dependence level and the diversification effect, the

more X1 and X2 are dependent, the more the portfolio is risky, hence more capital is needed to cover the risks.

In this respect, more capital is allocated to risk X1 compared to the amount allocated to risk X2 under the TVaR

and the covariance principle.
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α12 TV aRS2
(0.99) TV aR0.99(X1, S2) TV aR0.99(X2, S2) K0.99(X1, S2) K0.99(X2, S2)

-1.91 13.92 7.70 6.22 7.69 6.23

-0.87 14.04 7.74 6.30 7.73 6.31

0 14.13 7.77 6.36 7.75 6.38

0.87 14.22 7.80 6.42 7.78 6.44

1.87 14.31 7.84 6.47 7.81 6.50

2.87 14.41 7.87 6.54 7.84 6.57

3.87 14.49 7.90 6.59 7.87 6.62

4.87 14.57 7.93 6.64 7.89 6.68

Table 4.1: Analytical formula: dependence level, TVaR and allocated capital to each risk Xi, i = 1, 2, under

the TVaR and the covariance capital allocation principle.

5 Auxiliary Results

One of the main features of the mixed Erlang distribution is that its pdf can be used to derive some results in

an analytical way. In this respect, this section presents some useful properties of the mixed Erlang distribution.

Lemma 5.1 If X is a random variable from the mixed Erlang distribution with pdf g(x, β,Q˜ ), then gθ(x, β +

1,Θ˜) =
e−xg(x,β,Q˜)

L , with L = E
(
e−X

)
, is again a pdf of the mixed Erlang distribution with mixing probabilities

Θ˜ = (θ1, θ2, . . .) and scale parameter β + 1 and we have

gθ(x, β + 1,Θ˜) =

∞∑
k=1

θkwk(x, β + 1),

where θk = qkβ
k∑∞

j=1 qjβ
j with β = β

β+1 .

The result presented in the next two lemmas can be found in Section 2.2 of [28], and Section 7.2 of [18],

respectively.

Lemma 5.2 If X ∼ME(β1, Q˜ ) , then for any positive constant β2 ≥ β1 we have

X ∼ME(β2, Ψ˜(Q˜ )),

where the mixing probabilities Ψ˜(Q˜ ) = (ψ1, ψ2, . . .) and its individual components are given by

ψk =

k∑
i=1

qi

(
k − 1

i− 1

)(
β1

β2

)i(
1− β1

β2

)k−i
, k ≥ 1.

Lemma 5.3 Let X1, X2 be two independent random variables. If Xi ∼ ME(βi, Q˜ i), i = 1, 2, then S2 =

X1 +X2 ∼ME(β,Π˜{Q˜1, Q˜2}), provided that β1 = β2 = β with

πl{Q˜1, Q˜2} =

{
0 for l = 1∑l−1

j=1 q1,j q2,l−j for l > 1.

Remarks 5.4 According to [3] (Remark 2.1), the results in Lemma 5.3 can be extended to Sn =
∑n
i=1Xi,

as long as Xi, . . . , Xn are independent, Xi ∼ ME(βi, Q˜ i) and βi = β for i = 1, . . . , n. Specifically, Sn ∼
ME(β,Π˜{Q˜1, . . . , Q˜n}) where the individual mixing probabilities can be evaluated iteratively as follows

πl{Q˜1, . . . , Q˜n+1} =

{
0 for l = 1, . . . , n∑l−1

j=n πj{Q˜1, . . . , Q˜n} qn+1,l−j for l = n+ 1, n+ 2, . . . .
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6 Multivariate SmE Risks

In this section, we assume that the joint distribution of the random vector (X1, . . . , Xn) will be referred to as

a multivariate SmE distribution and we shall abbreviate this as (X1, . . . , Xn) ∼ SMEn(β, Q˜1, . . . , Q˜n) where

β = (β1, . . . , βn) with Xi ∼ME(βi, Q˜ i), i = 1, . . . , n. Furthermore, we shall set

f̃i(xi) := e−xifi(xi).

6.1 Distribution of Sn

By decomposing the joint pdf of (X1, . . . , Xn) in (2.10) and using some rules of integration, we show in the next

proposition that the distribution of Sn =
∑n
i=1Xi belongs to the class of Erlang mixtures.

Proposition 6.1 If (X1, . . . , Xn) ∼ SMEn(β, Q˜1, . . . , Q˜n) with βi 6 βn, for i = 1, . . . , n − 1, then Sn ∼
ME(βn + 1, P˜). The components of P˜ = (p1, p2, . . .) are given by

pk =
(

1 +
∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3 + . . .+ (−1)nα1,2,...,n

n∏
i=1

Li
)
π(k)

+
∑
j1

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3 + . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
π

(k)
j1

+
∑
j1

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4 + . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)
π

(k)
j1,j2

+
∑
j1

∑
j2

∑
j3

(
αj1,j2,j3 −

∑
j4

αj1,j2,j3,j4Lj4 +
∑
j4

∑
j5

αj1,j2,j3,j4,j5Lj4Lj5

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1,j2}

Li

)
π

(k)
j1,j2,j3

+ . . .+
∑
j1

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1

− α1,2,...,nLjn

)
π

(k)
j1,...,jn−1

+ α1,2,...,nπ
(k)
1,...,n, (6.1)

where

π(k) = πk{Ψ˜1(Q˜1), . . . ,Ψ˜n(Q˜n)},

π
(k)
j1

= Lj1πk{Ψ˜ j1(Θ˜ j1),Ψ˜ j2(Q˜ j2), . . . ,Ψ˜n(Q˜n)},

π
(k)
j1,j2

= Lj1Lj2πk{Ψ˜ j1(Θ˜ j1),Ψ˜ j2(Θ˜ j2),Ψ˜ j3(Q˜ j3) . . . ,Ψ˜n(Q˜n)},

π
(k)
j1,j2,j3

= Lj1Lj2Lj3πk{Ψ˜ j1(Θ˜ j1),Ψ˜ j2(Θ˜ j2),Ψ˜ j3(Θ˜ j3) . . . ,Ψ˜n(Q˜n)},

π
(k)
j1,...,jn−1

= Lj1 · · · Ljn−1πk{Ψ˜ j1(Θ˜ j1), . . . ,Ψ˜ jn−1(Θ˜ jn−1),Ψ˜ jn(Q˜ jn)},

π
(k)
1,...,n = L1 · · · Lnπk{Ψ˜1(Θ˜1), . . . ,Ψ˜n(Θ˜n)},

with C = {1, . . . , n}, j1 ∈ C, j2 ∈ C\{j1}, j3 ∈ C\{j1, j2}, . . . , jn ∈ C\{j1, . . . , jn−1}.

Example 6.2 Let (X1, X2, X3) ∼ SME3(β, Q˜1, Q˜2, Q˜3) with βi 6 β3, i = 1, 2 then S3 ∼ME(β3 + 1, P˜) where

the components of P˜ = (p1, p2, . . .) are given by (with C = {1, 2, 3})

pk = (1 +
∑
j1

∑
j2

αj1,j2Lj1Lj2 − α1,2,3

3∏
i=1

Li)π(k)

+
∑
j1

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3 + α1,2,3

∏
i∈C\{j1}

Li

)
π

(k)
j1
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+
∑
j1

∑
j2

(
αj1,j2 − α1,2,3Lj3

)
π

(k)
j1,j2

+ α1,2,3π
(k)
1,2,3

= (1 + α1,2L1L2 + α1,3L1L3 + α2,3L2L3 − α1,2,3L1L2L3)πk{Ψ˜1(Q˜1),Ψ˜2(Q˜2),Ψ˜3(Q˜3)}

+(−α1,2L2 − α1,3L3 + α1,2,3L2L3)L1πk{Ψ˜1(Θ˜1),Ψ˜2(Q˜2),Ψ˜3(Q˜3)}

+(−α1,2L1 − α2,3L3 + α1,2,3L1L3)L2πk{Ψ˜1(Q˜1),Ψ˜2(Θ˜2),Ψ˜3(Q˜3)}

+(−α1,3L1 − α2,3L2 + α1,2,3L1L2)L3πk{Ψ˜1(Q˜1),Ψ˜2(Q˜2),Ψ˜3(Θ˜3)}

+(α1,3 − α1,2,3L2)L1L3πk{Ψ˜1(Θ˜1),Ψ˜2(Q˜2),Ψ˜3(Θ˜3)}

+(α2,3 − α1,2,3L1)L2L3πk{Ψ˜1(Q˜1),Ψ˜1(Θ˜1),Ψ˜3(Θ˜3)}

+(α1,2 − α1,2,3L3)L1L2πk{Ψ˜1(Θ˜1),Ψ˜2(Θ˜2),Ψ˜3(Q˜3)}

+α1,2,3L1L2L3πk{Ψ˜1(Θ˜1),Ψ˜2(Θ˜2),Ψ˜3(Θ˜3)}.

6.2 Capital allocation

The following propositions provide analytical formulas for the allocated capital to each individual risk Xm,

m = 1, . . . , n, under the TVaR and the covariance rules.

Proposition 6.3 Let (X1, . . . , Xn) ∼ SMEn(β, Q˜1, . . . , Q˜n) with βm 6 βn, for m = 1, . . . , n − 1. Provided

that both µm = 1
βm

∑∞
k=1 kqm,k and µ̃m = 1

βm+1

∑∞
k=1 kθmk, m = 1, . . . , n are finite , then for m = 1, . . . , n

and p ∈ (0, 1) the amount of capital allocated to each risk Xm under the TVaR principle is given by (set

C := {1, . . . , n})

TV aRp(Xm, Sn) =
1

1− p

∞∑
k=1

zm,kW k(V aRSn(p), βn + 1),

where

zm,k =

(
1 +

∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3 + . . .+ (−1)nα1,2,...,n

n∏
i=1

Li

)
µmπ̃

(k)

+
∑
j1 6=m

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3 + . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
µmπ̃

(k)
j1

+

(
−
∑
j2 6=m

αm,j2Lj2 +
∑
j2 6=m

∑
j3 6=m

αm,j2,j3Lj2Lj3 + . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{m}

Li

)
µ̃mπ̃

(k)
m

+
∑
j1 6=m

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4 + . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)
µmπ̃

(k)
j1,j2

+
∑
j2 6=m

(
αm,j2 −

∑
j3 6=m

αm,j2,j3Lj3 +
∑
j3 6=m

∑
j4 6=m

αm,j2,j3,j4Lj3Lj4 + . . .+ (−1)nα1,2,...,n

∏
i∈C\{m,j2}

Li

)
µ̃mπ̃

(k)
m,j2

+ . . .+
∑
j1 6=m

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1

− α1,2,...,nLm

)
µmπ̃

(k)
j1,...,jn−1

+
∑
j2 6=m

. . .
∑

jn−1 6=m

(
αm,j2,...,jn−1

− α1,2,...,nLjn 6=m

)
µ̃mπ̃

(k)
m,j2,...,jn−1

+ α1,2,...,nπ̃
(k)
1,...,n, (6.2)

where

π̃(k) = πk{Ψ˜m(G˜m(Q˜m),Ψ˜1(Q˜1), . . . ,Ψ˜n(Q˜n)},

π̃
(k)
j1

= Lj1πk{Ψ˜m(G˜m(Q˜m),Ψ˜ j1(Θ˜ j1), . . . ,Ψ˜n(Q˜n)},
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π̃
(k)
m = Lmπk{Ψ˜m(G˜m(Θ˜m), . . . ,Ψ˜n(Q˜n)},

π̃
(k)
j1,j2

= Lj1Lj2πk{Ψ˜m(G˜m(Q˜m),Ψ˜ j1(Θ˜ j1),Ψ˜ j2(Θ˜ j2), . . . ,Ψ˜n(Q˜n)},

π̃
(k)
m,j2

= LmLj2πk{Ψ˜m(G˜m(Θ˜m),Ψ˜ j2(Θ˜ j2), . . . ,Ψ˜n(Q˜n)},

π̃
(k)
j1,...,jn−1

= Lj1 · · ·Ljn−1πk{Ψ˜m(G˜m(Q˜m),Ψ˜ j1(Θ˜ j1) . . . ,Ψ˜n(Θ˜ jn−1)},

π̃
(k)
m,j2,...,jn−1

= LmLj2 · · ·Ljn−1
πk{Ψ˜m(G˜m(Θ˜m),Ψ˜ j2(Θ˜ j2) . . . ,Ψ˜ jn−1

(Θ˜ jn−1
),Ψ˜ jn(Q˜ jn)}

π̃
(k)
1,...,n = LmL1· · ·Lnπk{Ψ˜m(G˜m(Θ˜m),Ψ˜ j2(Θ˜ j2), . . . ,Ψ˜n(Θ˜ jn}.

Proposition 6.4 Let βm 6 βn,m ≤ n − 1, and consider (X1, . . . , Xn) ∼ SMEn(β, Q˜1, . . . , Q˜n). If Sn has a

finite and positive variance, then for any index m ≤ n and p ∈ (0, 1) we have

Kp(Xm, Sn) =

∞∑
k=1

Lm,k
βn + 1

,

where Kp is defined in (4.2),

Lm,k = kψm,k + εm,j

(
P ∗k ((βn + 1)V aRSn(p))k

ϕk!
+ (βn + 1)V aRSn

(p)− kpk

)
, m 6= j,

with

εm,j =

∑∞
s=1(s2 + s)ψm,s − (

∑∞
s=1 sψ

2
m,s)∑∞

s=1(s2 + s)ps − (
∑∞
s=1 sps)

2
+

n∑
j=1

(
αmj(βn + 1)2∑∞

s=1(s2 + s)ps − (
∑∞
s=1 sps)

2

)
(

1

βm + 1

∞∑
s=1

sqm,sβ
s

m −
∞∑
s=1

qm,sβ
s

m

1

βm

∞∑
s=1

sqm,s

)(
1

βj + 1

∞∑
s=1

sqj,sβ
s

j −
∞∑
s=1

qj,sβ
s

j

1

βj

∞∑
s=1

sqj,s

)
,

ϕ =

∞∑
s=1

Ps((βn + 1)V aRSn
(p))s−1

(s− 1)!
, P ∗k =

∞∑
s=k

Ps, Ps =

∑∞
k=s ps∑∞
s=1 sps

and ps is given in (6.1).

Proof. The proof is similar to the bivariate case and is therefore omitted.

6.3 Trivariate SmE risks: numerical illustrations

Let (X1, X2, X3) have a trivariate SmE risk, with α12 = 2.03, α13 = 3.62, α23 = −1.54 and α123 = −1.03 the

dependence parameters. The parameters have been chosen so that the condition in (2.9) is fullfilled. Assume

β = (0.75, 0.9, 0.95), Q˜1 = (0.2, 0.6, 0.2), Q˜2 = (0.4, 0.3, 0.1, 0.2) and Q˜3 = (0.6, 0.1, 0.2, 0.1). In view of (2.10)

the joint pdf of (X1, X2, X3) are given by

h(x) =

3∏
i=1

fi(xi)
(

2.03(e−x1 − 0.21)(e−x2 − 0.28) + 3.62(e−x1 − 0.21)(e−x3 − 0.34)

−1.54(e−x2 − 0.28)(e−x3 − 0.34)− 1.03(e−x1 − 0.21)(e−x2 − 0.28)(e−x3 − 0.34)
)
.

In light of Proposition 6.1, S3 = X1 + X2 + X3 follows the mixed Erlang distribution with scale parameter

βS3
= 1.95 and mixing probabilities P˜ = (p1, p2, . . .), the first 60 values of P˜ are given in Table 6.1.
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k pk k pk k pk k pk k pk k pk

1 0.0000 11 0.0670 21 0.0256 31 0.0022 41 8.729E-05 51 2.150E-06

2 0.0000 12 0.0676 22 0.0211 32 0.0017 42 5.751E-05 52 1.458E-06

3 0.0121 13 0.0662 23 0.0172 33 0.0012 43 4.289E-05 53 9.857E-07

4 0.0295 14 0.0631 24 0.0138 34 0.0009 44 2.988E-05 54 6.648E-07

5 0.0366 15 0.0588 25 0.0109 35 0.0006 45 2.019E-05 55 4.472E-07

6 0.0409 16 0.0536 26 0.0086 36 0.0005 46 9.869E-06 56 3.001E-07

7 0.0466 17 0.0478 27 0.0067 37 0.0003 47 9.612E-06 57 2.010E-07

8 0.0533 18 0.0419 28 0.0051 38 0.0002 48 4.635E-06 58 1.343E-07

9 0.0596 19 0.0361 29 0.0039 39 0.0002 49 4.513E-06 59 8.950E-08

10 0.0643 20 0.0307 30 0.0030 40 0.0001 50 3.161E-06 60 5.795E-08

Table 6.1: Mixing probabilities of the distribution of S3 = X1 +X2 +X3, with scale parameter βS3 = 1.95.

For different tolerance level p, Table 6.2 shows the TVaR of S3 = X1 + X2 + X3 and the allocated capital to

each risk under the covariance and the TVaR capital allocation rules.

p TV aRS3
(p) TV aRp(X1, S3) TV aRp(X2, S3) TV aRp(X3, S3) Kp(X1, S3) Kp(X2, S3) Kp(X1, S3)

90.0 % 14.16 5.53 4.73 3.90 5.56 4.70 3.90

92.5 % 14.84 5.79 4.96 4.09 5.84 4.93 4.07

95.0 % 15.77 6.13 5.29 4.35 6.20 5.23 4.34

97.5 % 17.29 6.70 5.82 4.77 6.82 5.72 4.75

99.0 % 19.20 7.45 6.47 5.28 7.58 6.35 5.27

99.5 % 20.58 8.01 6.94 5.63 8.13 6.80 5.65

Table 6.2: Exact values: TVaR of S3 = X1 + X2 + X3 and allocated capital to each risk Xi, i = 1, 2, 3, under

the TVaR and the covariance capital allocation principle.

7 Proofs

Proof of Proposition 3.1 The pdf f of S2 is given in terms of the joint pdf of (X1, X2) as follows

fS2
(s) =

∫ s

0

h(y, s− y)dy.

Taking (2.1) into account the pdf of S2 becomes

fS2
(s) = (1 + α12L1L2)

∫ s

0

f1(y)f2(s− y)dy + α12

∫ s

0

e−yf1(y)e−(s−y)f2(s− y)dy

−α12L2

∫ s

0

e−yf1(y)f2(s− y)dy − α12L1

∫ s

0

e−(s−y)f2(s− y)f1(y)dy.

Let A(s), B(s), C(s), D(s) be the four terms of the expression of fS2(s) respectively. According to Lemma 5.2,

A(s) = (1 + α12L1L2)

∫ s

0

fψ1 (s, β2 + 1,Ψ˜1(Q˜1))fψ2 (s− y, β2 + 1,Ψ˜2(Q˜2))dy

and from Lemma 5.3, A(s) can be expressed as a pdf of the mixed Erlang distribution as follows

A(s) = (1 + α12L1L2)

∞∑
k=1

πk(Ψ˜1(Q˜1),Ψ˜2(Q˜2))wk(s, β2 + 1).
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In view of Lemma 5.1 and Lemma 5.2, the expression of B(s) becomes

B(s) = α12

∫ s

0

L1f
θ
1 (s, β1 + 1,Θ˜1)L2f

θ
2 (s− y, β2 + 1,Θ˜2)dy

= α12L1L2

∫ s

0

fψ1 (s, β2 + 1,Ψ˜1(Θ˜1))fψ2 (s− y, β2 + 1,Ψ˜2(Θ˜2))dy.

From Lemma 5.3 one can write B(s) as

B(s) = α12L1L2

∞∑
k=1

πk(Ψ˜1(Θ˜1),Ψ˜2(Θ˜2))wk(s, β2 + 1),

which is again a pdf of some mixed Erlang distribution. Similarly to B(s), using Lemma 5.1, 5.2 and Lemma

5.3 one can express C(s) and D(s) as pdfs of mixed Erlang distribution as follows

C(s) = α12L1L2

∞∑
k=1

πk(Ψ˜1(Θ˜1),Ψ˜2(Q˜2))wk(s, β2 + 1),

D(s) = α12L1L2

∞∑
k=1

πk(Ψ˜1(Q˜1),Ψ˜2(Θ˜2)wk(s, β2 + 1),

hence the claim follows. �

Proof of Proposition 4.1 For j 6= i, we have

E(Xi1{S2=s}) =

∫ s

0

yh(y, s− y)dy

= (1 + α12LiLj)
∫ s

0

yfi(y)fj(s− y)dy + α12

∫ s

0

ye−yfi(y)e−(s−y)fj(s− y)dy

−α12Lj
∫ s

0

ye−yfi(y)fj(s− y)dy − α12Li
∫ s

0

yfi(y)e−(s−y)fj(s− y)dy.

Let A(s), B(s), C(s), D(s) be the four terms of the expression of E(Xi1{S2=s}) respectively. In light of [2]

Lemma 2.5, if Xi ∼ME(βi, Q˜ i) then
xifi(xi,βi,Q˜i)

E(Xi)
can be expressed as a pdf of mixed Erlang distribution with

mixing probabilities G˜ i(Q˜ i) = (g1, g2, . . .) where the k-th individual mixing probability is given by

gk =

 0 for k = 1
(k−1)qi,k−1∑k−1

j=1 jqi,j
for k > 1.

(7.1)

If we set µi := E(Xi) = 1
βi

∑∞
k=1 kqik, γ := α12L1L2, then using (7.1), Lemma 5.1, 5.2 and 5.3, one can write

A(s) as

A(s) = (1 + γ)µi

∞∑
k=1

πk{Ψ˜ i(G˜ i(Q˜ i)),Ψ˜ j(Q˜ j)}wk(s, β2 + 1).

Setting µ̃i := 1
βi+1

∑∞
k=1 kθik, in light of (7.1), Lemma 5.1, 5.2 and 5.3, similarly to A(s), we get the expression

of the last three terms of E(Xi1{S2=s}) as follows

B(s) = γµ̃i
∑∞
k=1 πk{Ψ˜ i(G˜ i(Θ˜ i)),Ψ˜ j(Θ˜ j)}wk(s, β2 + 1),

C(s) = −γµ̃i
∑∞
k=1 πk{Ψ˜ i(G˜ i(Θ˜ i)),Ψ˜ j(Q˜ j)}wk(s, β2 + 1),

D(s) = −γµi
∑∞
k=1 πk{Ψ˜ i(G˜ i(Q˜ i)),Ψ˜ j(Θ˜ j)}wk(s, β2 + 1).

Hence, in view of (4.1)

TV aRp(Xi, S2) =
1

1− p

∞∑
k=1

zi,kW k(V aRS2(p), β2 + 1),
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where zik is given in (4.3). Next, by Lemma 5.2, since β1 6 β2 we obtain

E(Xi) =
1

β2 + 1

∞∑
k=1

kψi,k,

V ar(Xi) =
1

(β2 + 1)2

( ∞∑
m=1

(m2 +m)ψi,m −

( ∞∑
m=1

mψi,m

)2)
.

In light of (A.1), we know that for i 6= j

Cov(Xi, Xj) = α12

(
1

βi + 1

∞∑
m=1

mqi,mβi
m −

∞∑
m=1

qi,mβi
m 1

βi

∞∑
m=1

mqi,m

)
(

1

βj + 1

∞∑
s=1

sqj,sβj
s −

∞∑
s=1

qj,sβj
s 1

βj

∞∑
s=1

sqj,s

)
,

Furthermore, Proposition 3.1 and (2.16) yield

E(S2) =
1

β2 + 1

∞∑
k=1

kpk, V ar(S2) =
1

(β2 + 1)2

( ∞∑
m=1

(m2 +m)pm −
( ∞∑
m=1

mpm

)2
)
,

TV aRS2
(p) =

1

(β2 + 1)ϕ

∞∑
k=0

P ∗k ((β2 + 1)V aRS2
(p))k

k!
+ V aRS2

(p).

where

ϕ =

∞∑
j=1

Pj((β2 + 1)V aRS2(l))j−1

(j − 1)!
, P ∗k =

∞∑
j=k

Pj , Pj =

∑∞
k=j pk∑∞
k=1 kpk

, and pk is given in (3.1).

Setting Li,k := kψi,k + εi,j

(
P∗k ((β2+1)V aRS2

(p))k

ϕk! + (β2 + 1)V aRS2
(p) − kpk

)
and plugging the value of E(Xi),

V ar(Xi), Cov(Xi, Xj), V ar(S2), TV aRS2
(p) and E(S2) in (4.2), we obtain the desired result for Kp(Xi, S2)

where εi,j is given in (4.4). �

Proof of Lemma 5.1 We have

gθ(x, β + 1,Θ˜) =
e−xg(x, β,Q˜ )

L

=

∞∑
k=1

qk
βkxk−1e−βx

(k − 1)!

e−x

L

=

∞∑
k=1

qk

(
β
β+1

)k
∑∞
j=1 qj

(
β
β+1

)jwk(x, β + 1)

=

∞∑
k=1

θkwk(x, β + 1).

�

Proof of Proposition 6.1 By definition

fSn
(s) =

∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

h(x1, x2, . . . , s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1. (7.2)

For C = {1, . . . , n}, if we decompose the pdf h in (2.10), we obtain

h(x) =

(
1 +

∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3 + . . .+ (−1)nα1,2,...,n

n∏
i=1

Li

)
n∏
i=1

fi(xi)
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+
∑
j1

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3 + . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
f̃j1(xj1)

∏
i∈C\{j1}

fi(xi)

+
∑
j1

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4 + . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)

f̃j1(xj1)f̃j2(xj2)
∏

i∈C\{j1,j2}

fi(xi)

+
∑
j1

∑
j2

∑
j3

(
αj1,j2,j3 −

∑
j4

αj1,j2,j3,j4Lj4 +
∑
j4

∑
j5

αj1,j2,j3,j4,j5Lj4Lj5

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1,j2}

Li

)
f̃j1(xj1)f̃j2(xj2)f̃j3(xj3)

∏
i∈C\{j1,j2,j3}

fi(xi)

+ . . .+
∑
j1

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1

− α1,2,...,nLjn

)
f̃j1(xj1)× . . .× f̃jn−1

(xjn−1
)fjn(xjn)

+α1,2,...,n

n∏
i=1

f̃i(xi), (7.3)

where j1 ∈ C, j2 ∈ C\{j1}, j3 ∈ C\{j1, j2}, . . . , jn ∈ C\{j1, . . . , jn−1}. Hence, using (7.3), one can express (7.2)

as follows

fSn(s) =

(
1 +

∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3 + . . .+ (−1)nα1,2,...,n

n∏
i=1

Li

)
∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

n−1∏
i=1

fi(xi)fn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+
∑
j1

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3 + . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

f̃j1(xj1)
∏

i∈C\{j1}

fi(xi)fn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+
∑
j1

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4 + . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)
∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

f̃j1(xj1)f̃j2(xj2)
∏

i∈C\{j1,j2}

fi(xi)fn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+
∑
j1

∑
j2

∑
j3

(
αj1,j2,j3 −

∑
j4

αj1,j2,j3,j4Lj4 +
∑
j4

∑
j5

αj1,j2,j3,j4,j5Lj4Lj5

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1,j2}

Li

)
∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

f̃j1(xj1)f̃j2(xj2)f̃j3(xj3)
∏

i∈C\{j1,j2,j3}

fi(xi)fn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+ . . .+
∑
j1

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1 − α1,2,...,nLjn

)∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

f̃1(x1)× . . .× f̃jn−1(xjn−1)fjn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+α1,2,...,n

∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

n−1∏
i=1

f̃i(xi)f̃n(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1.

It can be seen that the pdf of Sn is a sum of convolutions of mixed Erlang distributions. Thus, as in the case of
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S2, Sn follows a mixed Erlang distribution with scale parameter βn+1 and mixing probabilities P˜ = (p1, p2, . . .),

we write Sn ∼ME(βn + 1, P˜). For k ∈ N∗, the k-th component pk of P˜ is given in (6.1). �

Proof of Proposition 6.3 In view of (4.1) we need to evaluate

E(Xm1{Sn=s}) =

∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

xmh(x1, x2, . . . , s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1. (7.4)

If we decompose xmh(x), we have

xmh(x) =

(
1 +

∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3 + . . .+ (−1)nα1,2,...,n

n∏
i=1

Li

)
(
xmfm(xm)

∏
i 6=m

fi(xi)

)

+
∑
j1 6=m

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3 + . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
(
xmfm(xm)f̃j1(xj1)

∏
i∈C\{m,j1}

fi(xi)

)

+

(
−
∑
j2 6=m

αm,j2Lj2 +
∑
j2 6=m

∑
j3 6=m

αm,j2,j3Lj2Lj3 + . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{m}

Li

)
(
xmf̃m(xm)

∏
i∈C\{m}

fi(xi)

)

+
∑
j1 6=m

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4 + . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)
(
xmfm(xm)f̃j1(xj1)f̃j2(xj2)

∏
i∈C\{j1,j2,m}

fi(xi)

)

+
∑
j2 6=m

(
αm,j2 −

∑
j3 6=m

αm,j2,j3Lj3 +
∑
j3 6=m

∑
j4 6=m

αm,j2,j3,j4Lj3Lj4 + . . .+ (−1)nα1,2,...,n

∏
i∈C\{m,j2}

Li

)
(
xmf̃m(xm)f̃j2(xj2)

∏
i∈C\{m,j2}

fi(xi)

)

+ . . .+
∑
j1 6=m

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1 − α1,2,...,nLm

)(
xmfm(xm)

n∏
k=1,jk 6=m

f̃jk(xjk)

)

+
∑
j2 6=m

. . .
∑

jn−1 6=m

(
αm,j2,...,jn−1

− α1,2,...,nLjn 6=m

)(
xmf̃m(xm)fjn(xjn)

n−1∏
k=1,jk 6=m

f̃jk(xjk)

)
+α1,2,...,nxmf̃m(xm)

∏
i6=m

f̃i(xi). (7.5)

Plugging (7.5) in (7.4) and using (7.1), Lemma 5.1, 5.2, and 5.3, similarly to the bivariate case one may express

(7.4) as follows

E(Xm1{Sn=s}) =

∞∑
k=1

zm,kW k(V aRSn
(p), βn + 1),

where zm,k is given in (6.2). Hence, the proof follows easily. �
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Appendices

Appendix A Dependence Measures

Pearson’s correlation coefficient has been widely used as a measure of the dependence between two random

variables (rv) X1 and X2. In this respect, the concept of dependence is assumed to be the linear relationship

between the two rv. However, in practice the dependence structure is not always linear hence is why the concept

of concordance has been introduced, see e.g., [22], [20] or [5]. By definition, a rv X1 is concordant with a rv

X2 if they tend to vary together. The two measures of association of X1 and X2, namely Spearman’s rho and

Kendall’s tau are based on this concept. Probabilistically speaking, if (Y1, Y2) and (Z1, Z2) are independent

copies of the pair of continuous random variables (X1, X2), then Kendall’s tau is defined as

τ(X1, X2) = P{(X1 − Y1)(X2 − Y2) > 0} − P{(X1 − Y1)(X2 − Y2) < 0},

and Spearman’s rho is defined as

ρS(X1, X2) = 3{P[(X1 − Y1)(X2 − Z2) > 0]− P[(X1 − Y1)(X2 − Z2) < 0]},

where Y1 and Z2 are independent. If (X1, X2) ∼ SME2(β, Q˜1, Q˜2) and further Xi, i = 1, 2 has finite mean,

then we have:

1. Pearson’s correlation coefficient:

If we set ηik := 1
βi+1

∑∞
k=1 kqi,kβ

k

i and Γik :=
∑∞
k=1 qi,kβ

k

i µi for i = 1, 2, then by (2.6) Pearson’s

correlation coefficient of the bivariate SmE risks has an explicit form as

ρ12(X1, X2) =
α12(η1,k − Γ1,k)(η2,k − Γ2,k)

σ1σ2
, (A.1)

where µi is the expected value of Xi, i = 1, 2 and σi is its standard deviation.

Remarks A.1 According to (2.7), the maximal value of Pearson’s correlation coefficient of the bivariate

SmE risks can be written as follows

ρmax12 (X1, X2) =
(η1,k − Γ1,k)(η2,k − Γ2,k)

max{L1(1− L2), (1− L1)L2}σ1σ2
(A.2)

and its minimal value can be expressed as

ρmin12 (X1, X2) =
−(η1,k − Γ1,k)(η2,k − Γ2,k)

max{L1L2, (1− L1)(1− L2)}σ1σ2
. (A.3)

In the following example, we show that the SmE distribution is flexible as a model for dependent risks.

Example A.2 Extremal dependence

In this example, we analyse the bounds of Pearson’s correlation coefficient of a bivariate mixed Erlang

distribution with marginals which share the same scale parameter and consist of 9 Erlang components. The

mixture parameters are summarized in Table A.1. Figure A.1 presents the lower and the upper bound of

Pearson’s correlation coefficient as a function of the common scale parameter β. We can see that ρmax12 and

ρmin12 tend to reach the extremal dependence case which correspond to values of 1 and −1 respectively. The

strongest negative correlation ρmin12 = −0.87545 is attained for β = 21.5723 while the value of β = 153.0315

yields the maximal positive correlation ρmax12 = 0.96871. Hence, not only is the range of the dependence
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flexible but also wide. Moreover, the simulated values of ρmax12 and ρmin12 , presented in dotted red lines in

Figure A.1, correspond well with the exact values, this demonstrates again the robustness of our results.

Figure A.1: ρmax12 and ρmin12 as a function the common scale parameter β.

X1 X2

k q1,k k q2,k

1 0.5270 1 0.5050

40 0.0005 8 0.0150

50 0.0020 30 0.0105

75 0.0010 50 0.0020

150 0.0015 70 0.0015

345 0.0005 95 0.0010

902 0.0050 850 0.0055

970 0.4375 995 0.1050

993 0.0250 1000 0.3545

Table A.1: Mixture parameters of marginals.

2. Spearman’s Rho: Spearman’s rho of the bivariate SmE risks can be expressed explicitly as follows

ρS(X1, X2) = 3(1 + γ) + 6α12[2ζ1ζ2 − L1ζ2 − L2ζ1]− 3, (A.4)

where ζi =
∑∞
k=1 qi,kβi

k∑∞
m=1

∑k−1
j=0 qi,m

(
j +m− 1

m− 1

)
βm
i (βi+1)j

(2β+1)m+j , for i = 1, 2.

3. Kendall’s Tau: Kendall’s tau of the bivariate SmE is given by the following closed formula

τ(X1, X2) = 4 [(1 + γ)12(ρS(X1, X2) + 3) + α12τ1 − α12L2τ2 − α12L1τ3]− 1, (A.5)
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where ρS(X1, X2) is Spearman’s rho,

τ1 = (1 + γ)Z1Z2 + α12T1T2 − α12L1Z1T2 − α12L2Z2T1,

τ2 =
1

2
(1 + γ)Z1 + α12T1ζ2 − α12L1Z1ζ2 −

1

2
α12L2T1,

τ3 =
1

2
(1 + γ)Z2 + α12ζ1T2 − α12L2ζ1Z2 −

1

2
α12L1T2,

with

Zi =
∑∞
k=1 qi,k

∑∞
m=1

∑k−1
j=0 qi,m

(
j +m− 1

m− 1

)(
βi

2βi+1

)m+j

, for i = 1, 2,

Ti =
∑∞
k=1 qi,kβi

k∑∞
m=1

∑k−1
j=0 qi,m

(
j +m− 1

m− 1

)
βm
i (βi+2)j

(2βi+2)m+j , for i = 1, 2.

Appendix B Simulation of SmE risks

In simulation, in order to remove the dependence between two risks X1 and X2, the Rosenblatt transform

introduced by Rosenblatt [23] is widely used. In fact, to simulate X2 this approach consists in using the

conditional quantile function of X2 given the value of X1. Hence, the conditional df of X2 is found accordingly.

The following lemma yields how this can be done for the case of the bivariate SmE distribution.

Lemma B.1 Let (X1, X2) ∼ SME2(β, Q˜1, Q˜2), for a given value of X1 the conditional df of X2 is described

as follows

F2|1(x2|x1) = λF2(x2, β2, Q˜2) + α12∆1

∞∑
k=1

q2,kβ
k

2Wk(x2, β2 + 1), (B.1)

where

λ = 1 + α12L2(L1 − e−x1), ∆1 = (e−x1 − L1).

Proof. For a given value of X1, one can define the conditional distribution function of X2 as

F2|1(x2|x1) =

∫ x2

0
h(x1, s)ds

f1(x1)
.

According to (2.1)

h(x1, s) = (1 + α12L1L2)f1(x1)f2(s) + α12e
−x1f1(x1)e−sf2(s)

−α12L2e
−x1f1(x1)f2(s)− α12L1e

−sf2(s)f1(x1)

= (1 + α12L1L2 − α12L2e
−x1)f1(x1)f2(s)

+α12(e−x1 − L1)f1(x1)e−sf2(s).

Setting

λ := 1 + α12L2(L1 − e−x1) and ∆1 := e−x1 − L1,

the expression of h(x1, s) becomes

h(x1, s) = λf1(x1)f2(s) + α12∆1f1(x1)e−sf2(s).

Hence

F2|1(x2|x1) =

∫ x2

0
λf1(x1)f2(s) + α12∆1f1(x1)e−sf2(s)ds

f1(x1)
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= λ

∫ x2

0

f2(s)ds+ α12∆1

∫ x2

0

e−sf2(s)ds

= λF2(x2, β2, Q˜2) + α12∆1

∫ x2

0

e−s
∞∑
k=1

q2k
βk2

(k − 1)!
sk−1e−β2sds

= λF2(x2, β2, Q˜2) + α12∆1

∞∑
k=1

q2k

(
β2

β2 + 1

)k
Wk(x2, β2 + 1).

The inverse of F2|1 can be computed numerically and as a result the Rosenblatt transform can be implemented

efficiently. The simulation algorithm can be summarised as follows:

1. simulate two independent rv u1 and u2 uniformly distributed

2. simulate X1 using the inverse transform: x1 = F−1
1 (u1)

3. simulate X2 using the Rosenblatt transform: x2 = F−1
2|1 (u2|x1)

4. simulate the aggregate rv S2 = X1 +X2.

Remarks B.2 The result in Lemma B.1 can be generalized for the multivariate case. Specifically, if (X1, . . . , Xn)

has a multivariate SmE distribution with Xi ∼ ME(βi, Q˜ i), i = 1, . . . , n, for given values of X1, . . . , Xn−1 one

can express the conditional distribution of Xn as follows (set C := {1, . . . , n})

Fn|1,...,n−1(xn|x1, . . . , xn−1) = λFn(xn, βn, Q˜n) + ∆

∞∑
k=1

qn,kβ
k

nWk(xn, βn + 1),

where

λ =
1

D(x1, . . . , xn−1)

{
(1 + γ) +

∑
j1 6=n

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
e−xj1

+
∑
j1 6=n

∑
j2 6=n

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)
e−xj1−xj2

+ . . .+ (α1,2,...,n−1 − α1,2,...,nLn)e−x1−...−xn−1

}
,

∆ =
1

D(x1, . . . , xn−1)

{(
−
∑
j2 6=n

αj2,nLj2 +
∑
j2 6=n

∑
j3 6=n

αj2,j3,nLj2Lj3 + . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{n}

Li
)

+
∑
j2 6=n

(
αj2,n −

∑
j3 6=n

αj2,j3,nLj3 +
∑
j3 6=n

∑
j4 6=n

αj2,j3,j4,nLj3Lj4 + . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,n}

Li

)
e−xj2

+ . . .+
∑
j1 6=n

∑
j2 6=n

. . .
∑

jn−1 6=n

(
αj1,...,jn−1

− α1,...,nLl,l∈C\{j1...,jn−1}

)
e−xj1

−...−xjn−2 + α1,2,...,ne
−x1 − . . .− xn−1

}
,

with

D(x1, . . . , xn−1) =

(
1 +

∑
j1 6=n

∑
j2 6=n

αj1,j2(e−xj1 − Lj1)(e−xj2 − Lj2)
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+
∑
j1 6=n

∑
j2 6=n

∑
j3 6=n

αj1,j2,j3(e−xj1 − Lj1)(e−xj2 − Lj2)(e−xj3 − Lj3) + . . .+ α1,2,...,n−1

n−1∏
i=1

(e−xi − Li)

)
,

γ =
∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3 + . . .+ (−1)nα1,2,...,n

n∏
i=1

Li,

j1 ∈ C, j2 ∈ C\{j1}, j3 ∈ C\{j1, j2}, . . . , jn ∈ C\{j1, . . . , jn−1}.
Similarily to the simulation of two dependent SmE risks, one can simulate n dependent SmE risks iteratively.
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