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Abstract: In this paper we consider an extension to the aggregation of the FGM mixed Erlang risks, proposed
by Cossette et al. [2], in which we introduce the Sarmanov distribution to model the dependence structure.
For our framework, we demonstrate that the aggregated risk belongs to the class of Erlang mixtures. Following
results from [27], [18], analytical expressions of the contribution of each individual risk to the economic capital
for the entire portfolio are derived under both the TVaR and the covariance capital allocation principle. By
analysing the commonly used dependence measures, we also show that the dependence structure is wide and
flexible. Numerical examples and simulation studies illustrate the tractability of our approach.

Key words: Risk aggregation; Sarmanov distribution; Mixed Erlang distribution; Dependence measures; Cap-

ital allocation.

1 Introduction

Analysis of aggregated risk is important for insurance business, it allows the insurers to assess and to monitor
their risks through the risk management framework. In the classical framework of independent and identically
distributed risks, explicit analytical formulas for quantities of interest including Value-at-Risk (VaR), Tail Value-
at-Risk (TVaR) or Stop-loss premium formula for the aggregated risk can be derived explicitly for few tractable
cases. For instance Willmot and Lin [27], Lee and Lin [18, 19] and Cossette et al. [2] have shown that this is
the case if we choose the mixed Erlang distribution as a model for claim sizes. One reason for the tractability
of the mixed Erlang distribution is the fact that the convolution of such risks is again mixed Erlang, see [16].
Since insurance data clearly shows that insurance risks are commonly dependent, in order to be able to get
closed-form formulas for quantities of interest, an important task is the adequate choice of the dependence
structure between the risks. Even for the simple case of the dependence specified by a log-normal framework
with stochastic volatility, as shown in the recent contributions [9, 13, 12] only asymptotic results can be derived.
With motivation from Cossette et al. [2] where the aggregation of FGM mixed Erlang risks is considered, in
this contribution we shall investigate the Sarmanov mixed Erlang risks. The Sarmanov distribution includes
the FGM distribution as a special case. One key advantage of the Sarmanov distribution is its flexibility; it
also allows to model highly dependent risks, see e.g., [17], [1]. The aim of this paper is to provide analytical
results and properties of the aggregated dependent risks with mixed Erlang marginals by using the Sarmanov
distribution as a model for the dependence structure. This model is promising in risk aggregation practice as
it satisfies the four desirable properties of a multivariate parametric model mentioned in Joe [15] p.84, namely
the interpretability property, the closure property, the flexibility and the wideness of the range of dependence,
and the representation of the distribution function (df) and the probability density function (pdf) in analytical
form.

The paper is organised as follows. In Section 2, we describe the background of the Sarmanov mixed Erlang
distribution by exploring some definitions and properties of the Sarmanov distribution as a model for the

dependence structure and the mixed Erlang distribution with a common scale parameter as a model for claim
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size distribution in insurance. In Section 3, we demonstrate that the distribution of the aggregated risk belongs
to the class of Erlang mixtures; numerical illustrations and simulation studies are performed to show the
robustness of the results. In Section 4, we derive explicit expressions for the allocated capital to each individual
risk X;,7 = 1,2 under the TVaR and the covariance capital allocation rules. We present some useful results
and properties of the mixed Erlang distribution in Section 5. In Section 6, an extension of the results in the
bivariate case to the multivariate framework is presented with numerical examples. All the proofs are relegated
to Section 7. In the Appendix, the flexibility and the wideness of the dependence range of Sarmanov mixed
Erlang distributions are discussed by calculating commonly used dependence measures, namely Pearson’s

correlation coefficient, Sperman’s rho and Kendall’s tau.

2 Preliminaries

2.1 Sarmanov distribution

The Sarmanov distribution introduced in [25] has proved valuable in numerous insurance applications. For
instance Hernandez et al. [14] used the multivariate Sarmanov distribution to model the dependence structure
between risk profiles for the calculation of Bayes premiums in the collective risk model. The contribution [24]
fitted multivariate insurance count data using the Sarmanov distribution with Poisson-Beta marginals. As
shown in [30, 29] the Sarmanov distribution allows for tractable asymptotic formulas in the context of ruin
probabilities. Referring to [25] a bivariate risk (X7, X2) has the Sarmanov distribution with joint pdf h given
by

h(xl,xg) = fl(xl)fz(l‘g)(l + 0612(;51(331)(;52(332)), a2 € R, (21)

where f; is the pdf of X;,i = 1,2, and ¢1, ¢ are two kernel functions, which are assumed to be bounded and

non-constant such that

E(¢1(X1)) = E(¢2(X2)) =0, 1+ arzdi(z1)g2(22) 20 (2.2)

is valid. If ¢;(z;) = 1—2F;(x;) with F; the df of X;, then A is the joint pdf of the FGM distribution introduced by
Morgenstern [21] for Cauchy marginals and developed by Gumbel [11] for exponential margins and generalized
by Farlie [10]. Lee [17] proposed some general methods for finding the kernel function ¢;(x;) with different
types of marginals. Yang and Hashorva [29] considered ¢;(z;) = gi(x;) — E(g:(X;)). When g;(z;) = e
the corresponding kernel function coincides with the one explored by Lee [17] for marginal distributions with

support in [0, 00). We have
pi(z;) =e " —E (e ) = e " — Ly(1), (2.3)

where £;(t) = E (e7*%i) ;¢ > 0 is the Laplace transform of X;. In the rest of the paper, we set

The joint pdf h is thus given by
h(zi,z2) = fi(z1)fa(xe) ((1 +9) +ap(e”™ 72— Ly — emﬁl)), v =a12L1L5. (2.4)

Remarks 2.1 If (X1, X2) has a Sarmanov distribution with kernel functions given in (2.3), additionally if

Xt = 1,2 follows a mizture of Gamma distributions where the mizture components share the same scale



parameter B; € (0,00), then the joint df of (X1, X2) follows easily from integrating the pdf in (2.4). Specifically,
we have for H the joint df of (X1, X>)

H(xy,22) = (14+7)Fi(z1, B1)Fa(x2, B2) + vFi(21, 1 + 1) Fo(x2, B2 + 1)
—yF1 (21, B1 + 1) Fa(x2, B2) — vFi (21, B1) Fa(w2, B2 + 1), (2.5)

where F;(z;, 8:;) = > pey aWi(24, 8i), 1 = 1,2 with Wy(x;, B;) is the df of the Gamma distribution with scale

parameter B; and shape parameter k € (0,00) and gy is the mizing weight such that 2211 q. = 1.

Compared to the FGM distribution which has [—1/3,1/3] as the range of Pearson’s correlation coefficient p1a
the Sarmanov distribution has a wider range of p15, which is useful in the aggregation of strongly dependent

insurance risks. For the Sarmanov case we have the explicit formula for p;2, namely

Q1212

p12(X1, Xa) = “ors | VT E(Xi¢i(X3)), o0i=+Var(X;), i=1,2. (2.6)
In the particular case that the kernels are given by (2.3), for two positive Sarmanov risks with finite variances
the range of ayo is (see Lee [17])
-1 <ogs < 1
max{L1Ls, (1 — L£1)(1 = L2)} 7 " max{£,(1 - L), (1 — £1)La}’

(2.7)

where v; = =L —L;p; and p; = E (X;),i = 1, 2. Lee [17] extended the Sarmanov distribution to the multivariate
case by defining the joint pdf h of (X1,...,X,,) as

n

hz) = [[fi@)1+ R, 0,0,(@), @:=(r1,... 20), (2.8)
=1
where
n—1 n
Roypnn@) = 1+ Y ay 5o (@5,)05,(2),)
J1< J2
n—2n—1 n n
+ Z Z Z i ja.ga P (le)¢j2 (sz)(bja (ij) T to2n H bi(wi),
J1< j2< Js =1
such that
1+ Ry, g,.0.,() =0 (2.9)

.....

(2.3), then h is given by (set A(x;) :== e % — L;)

h(z) = Hfi(ffz‘)<1+Zzajl,jzﬁ(ffjl)ﬁ(%)

n—2n—1 n

33 g s A ) A, Aeg) + .+ a1 _HlA<m>. (2.10)

J1< j2< Js

2.2 Mixed Erlang claim sizes

These last decades, modeling claim size in insurance with the mixed Erlang distribution with a common scale

parameter has been well developed. In risk theory, Dickson and Willmot [8] and Dickson [7] have explored an



analytical form of the finite time ruin probability, using the mixed Erlang distribution as a claim size model.
Recently, using the EM algorithm Lee and Lin [18] have fitted some common parametric distributions and
catastrophic loss data in the United States with the mixed Erlang distribution. Moreover, Lee and Lin [19]
have developed the multivariate mixed Erlang distribution to overcome some drawbacks of the copula approach.
Furthermore, Cossette et al. [2] have introduced a risk aggregation in the multivariate setup with mixed Erlang
marginals and the FGM copula to capture the dependence structure. As its name indicates, the mixed Erlang
distribution is constructed from the Erlang distribution which has the pdf

ko k—1_,—Bz
ante ) = LEE

where k € N* is the shape parameter and S > 0 is the scale parameter. Hence, the pdf of the mixed Erlang

x>0, (2.11)

distribution is defined as
(z,8,Q Z%wk z, ), (2.12)

where @ = (q1,42,-..) is a vector of non-negative weights satisfying 2211 qr = 1. In the following we write
X ~ ME(B,Q) if X has pdf given by (2.12). By integrating the pdf in (2.12) the df F' corresponding to f is
given by

k—l
F(@,8,Q) =1- e quk (2.13)
=0

As discussed in [27], [18], [19] and [2] one of the important advantages of employing the mixed Erlang distribution
in insurance loss modeling is the fact that many useful risk related quantities, such as moments and mean excess
function can be calculated explicitly by simple formulas. For instance, the quantile function (or VaR) of the
mixed Erlang distribution can be easily obtained given the tractable form of the df. From (2.13), at a confidence

level p € (0,1), the VaR of X, denoted by x,, is the solution of

k—1
ey 1)
§=0
which can be solved numerically. Further, since for the mean excess function of X, we have (see [27], p.7)
00 % (Bd)F
Yo @
d)i—17
B35 Qs %

where Qf = Z;‘;,H_l Q; with Q; = %o’; quk then the TVaR of X at a confidence level p € (0,1) is given by

E(X — d)|X > d) = d>0, (2.15)

the following explicit formula

k
>Rl QiR
Brp)i—1
/BZ] 1 Q]( Jp)1)|
Remark that above we assume that E(X) = Y7 w1 kqr is finite. Additionally, the mixed Erlang distribution is

TVaRx(p) = + zp. (2.16)

a tractable marginal distribution for the Sarmanov distribution. Next we present a result for the 2-dimensional

setup, see Section 6 for the same results in higher dimensions.

3 Aggregation of Sarmanov Mixed Erlang Risks

Let (X7, X5) have a bivariate Sarmanov risk with kernel functions ¢;(x) = e=* — L; for ¢ = 1,2. We shall

assume that both X; and X5 follow a mixed Erlang distribution, i.e.,

XzNME(Bl7Ql)7 i:1a25



where ; is the scale parameter, Qz = (¢i,1,¢i,2,--.) denotes the mixing probabilities. The joint distribution of
the random vector (X7, X5) will be referred to as a bivariate Sarmanov mixed Erlang (SmE) distribution and
we shall abbreviate this as (X1, X2) ~ SM E2(8, @1, Q2) where 8 = (01, 82). The dependence structure of the
bivariate random vector (X7, X2) can be analysed by calculating commonly used dependence measures such as
Pearson’s correlation coefficient or Kendall’s tau, see Appendix A. For given vectors of the mixing probabilities
Vi = (vi1,vi2,...),i = 1,2 we define in the following m1{V1,V2} =0 and for k > 1

k—1

m{V1,Va} = Z V1,jV2 k—j

j=1
The main result in this section is the derivation of the distribution of the aggregated risk Sy = X7 + Xo.

Proposition 3.1 If (X1, Xa) ~ SME2(B,Q1,Q2) with p1 < B2, then Sz ~ ME(B2 + 1, P) where the mizing
weights py, are given by (set vy := a1oL1Ls, Bi := Bi/(Bi +1))

pe = (1+9)m{¥1(Q1), Y2(Q2)} +ymi{¥1(01), ¥2(02)}
—me{¥1(01), Y2(Q2)} — yme{¥1(Q1), ¥2(O2)}, (3.1)
where for i = 1,2 the components of ©; = (0;1,0;2,...) are defined by 0; ), = —4ikBi_uhereas the compo-

—,
22521 4i,5Bi

k—1 N\ J CN\k—J
nents of Vi(Qi) = (Yi1,%iz2,...) are Pip = Z?Zl g ( , 1) (ﬁfjr ) (1 - ﬁfj_l> :
j—

Example 3.2 As an illustration, let

0.9

(X1, X2) ~ SME, (ﬁ = <0.95

) ;Q1 = (0.4,0.2,0.3,0.1); Q2 = (0.3,0.5,0.1,0.1); a1 = 2.87).

According to (2.12), one can write the pdf of X1 and X5 as follows

filz1) = 0.4wi(x1,0.9) + 0.2ws(x1,0.9) + 0.3wz(21,0.9) + 0.1wy (21, 0.9)
fo (.Z’Q) = 0.3w; (332, 095) + 0.5ws (332, 095) + 0.111}3(332, 095) + 0.111}4(332, 095)

Following (2.4), the joint density of (X1, X2) is given by
h(z1,z2) = fi(x1) fa(w2)(1.22 + 2.87e™ 71772 — 0.81e™ " — 0.78¢™"2).

Table 3.1 below presents the central moments of the marginals.

Mean | Variance | Skewness | Kurtosis
X1 | 2.33 444 1.38 5.49
Xy | 2.11 3.10 1.49 6.12

Table 3.1: Central moments of X; and Xs.

It follows that the distribution of Sa is a mized Erlang distribution with scale parameter Bs, = 1.95 and mizing

probabilities partially shown in 3.2. We notice that the higher the value of k is, the smaller the value of py.



k Dk k Dk k Dk k Pk k Dk

1 0.0000 || 11 | 0.0664 || 21 | 0.0046 || 31 | 8.963E-05 || 41 | 9.294E-07
2 | 0.0675 || 12 | 0.0564 || 22 | 0.0033 || 32 | 5.803E-05 || 42 | 5.751E-07
3 | 0.0839 || 13 | 0.0465 || 23 | 0.0023 || 33 | 3.737TE-05 || 43 | 3.547E-07
4 100645 141 00373 24| 0.0016 || 34| 2.393E-05 || 44 | 2.180E-07
5 1 0.0700 || 15| 0.0292 || 25 | 0.0011 || 35 | 1.525E-05 || 45 | 1.336E-07
6 | 0.0740 || 16 | 0.0223 || 26 | 0.0007 || 36 | 9.668E-06 || 46 | 8.159FE-08
71 0.0811 || 17| 0.0168 || 27 | 0.0005 || 37 | 6.103E-06 || 47 | 4.970E-08
8 | 0.0840 || 18 | 0.0125 || 28 | 0.0003 || 38 | 3.835E-06 || 48 | 3.02E-08

9 | 0.0816 || 19 | 0.0091 || 29 | 0.0002 || 39 | 2.400E-06 || 49 | 1.828F-08
10 | 0.0753 || 20 | 0.0065 || 30 | 0.0001 || 40 | 1.496E-06 || 50 | 1.105FE-08

Table 3.2: Mixing probabilities of the distribution of S; = X; + X, with scale parameter s, = 1.95.

In order to validate our results, SmE risks have been simulated (see in Appendiz B the details about the simulation
algorithm). In this respect, analytical and simulated results on the aggregated risk So = X1 + Xo are presented
and analysed. As displayed in Table 3.3, based on the VaR and TVaR risk measures the comparison of the
exact and the simulated values shows that our results are robust for different values of the tolerance level p.

Furthermore, it can be seen that VaR is more sensitive to the change of the tolerance level than TVaR.

Analytical formula Sitmulated Percentage difference (%)

D VaRs,(p) | TVaRs,(p) || VaRs,(p) | TVaRs,(p) || VaRs,(p) | TVaRs,(p)
90.00 % 8.26 10.24 8.22 10.21 0.49 0.29
92.50 % 8.88 10.80 8.86 10.77 0.23 0.28
95.00 % 9.71 11.56 9.66 11.53 0.52 0.26
97.50 % 11.05 12.82 10.98 12.82 0.64 0.00
99.00 % 12.71 14.41 12.79 14.46 -0.63 -0.85
99.50 % 15.92 15.56 13.87 15.43 0.56 0.84
99.90 % 16.57 18.13 16.61 17.86 -0.24 1.51
99.99 % 20.15 21.62 19.42 20.79 3.62 3.84

Table 3.3: Exact and simulated values of VaR and TVaR of So = X; + Xs.

Similarly, by changing the level of the dependence between marginals which is described by a2 and for a tolerance
level of 99%, the comparison of the exact and the simulated values of VaR and TVaR is displayed in Table 3.4.

Note in passing that the mazimum attainable value of a2, in our example, is 4.87 while the minimum is —1.91.



Analytical formula Simulated Percentage difference (%)

12 VaRs,(0.99) | TVaRs,(0.99) || VaRs,(0.99) | TVaRs,(0.99) || VaRs,(0.99) | TVaRg,(0.99)
-1.91 12.2/ 15.92 12.26 18.91 -0.16 0.10
-0.87 12.85 14.04 12.38 14.03 -0.25 0.06

0 12.44 14.13 12.48 1/.18 -0.51 0.03
0.87 12.53 14.22 12.57 14.22 -0.29 0.01
1.87 12.62 14.81 12.66 14.32 -0.83 -0.02
2.87 12.71 14.41 12.7) 14.41 0.2} -0.05
3.87 12.80 14.49 12.82 14.50 -0.14 -0.08
4.87 12.88 14.57 12.90 14.59 -0.14 -0.10

Table 3.4: Dependence level and sensitiveness of risk measures.

4 Capital Allocation

In this section, we derive analytical expressions for the amount of capital allocated to each individual risk
under the TVaR and the covariance principles. Evaluating the economic capital for the entire portfolio that an
insurance company needs to absorb large unexpected losses is of importance in enterprise risk management. In
this respect, the so-called capital allocation consists in determining the contribution of each individual risk to the
aggregate economic capital. This allows the insurance company to identify and to monitor efficiently their risks.
In the literature, many capital allocation techniques have been developed, see [4], [26], [20], [6] and references
therein. In practice, the TVaR and the covariance allocation principle are commonly used, since they take into
account the dependence structure between risks. More precisely, if S,, = Z?:l X; is the aggregate risk where
X is a continuous rv with finite mean that represents the individual risk, the amount of capital T; allocated to
each risk X;, for i = 1,...,n, is defined as ( for a tolerance level p € (0, 1), denote T; = TVaR,(X;, S,) under
the TVaR allocation principle, T; = K,(X;, S,,) under the covariance allocation principle)

E(X;1ys, >VaRgn (p)})

TVaR,(X;,S,) = -

Cov(X;,Sy)

KP(Xi’ S’ﬂ) = E(Xl) + VCLT(Sn)

(TVaRs, (p) —E(Sn)), (4.2)

where we assume that S;, has finite and positive variance. We have

zn:T ZTVaR (Xi, Sn) ZK (Xi, Sn) =TVaRs, (p),

i=1
which means that for both allocation principle, based on TVaR as a risk measure, the capital required for
the entire portfolio is equal to the sum of the allocated capital of each risk within the portfolio. Given some
vector V' = (v1,ve,...) with non-negative components such that Z;i1 Jjv; < oo we define the new vector
G(V) = (91, 92, - - .) where
0 for k=1

9k =\ (k=Dvr_s
S o, for k> 1.

For notational simplicity we shall also write in the following f3; instead of 3;/(3; + 1). Furthermore hereafter
the df of the pdf given in (2.11) will be denoted by Wj (-, 3) with survival function W(-, 3).
We derive next an explicit form of TVaR,(X;, S2) and K,(X;, S2),% = 1,2, in the case of SmE type risks.



Proposition 4.1 Let (X1,X5) ~ SMEQ(ﬁ7Q1,Q2) with B < Ba, further let ©; and V¥; be defined as in
Proposition 3.1.  If for i = 1,2 both p; = éZZ’;l kg and fi; = ﬁzl?;l k0 1 are finite, then for any
€ (0,1) the amount of capital allocated to each risk X;,i = 1,2, under the TVaR principle is

TVCLR;,,(XZ', Sa) = ﬁ Z Zika(VaRSQ (p), B2 + 1), (4.3)
k=1
where v = a12L1 L,
ziig = (L+Npime{¥i(Gi(Q:)), ¥i(Q5)} + viim{¥i(Gi(©:)), ¥;(0;)}

—viim{Vi(Gi(©:)), ¥i(Q))} — vpimi{¥i(Gi(Q4)), ¥;(9;)}, i # J,

and the contribution of each risk X;,1 = 1,2 to the economic capital of the entire portfolio, under the covariance

principle, is given by

XZv SQ
where
X k
Lig = ks + ey <P (B %“352 O 1 (3, + )VaRs, () - m) i,
with
o = S (M2 A+ M) — (e M )? n a12(B2 +1)?
" 2omer (M +m)pm — (32— mpm)? o=t (M2 +m)pp — (320 mpim)?

- S -
X (ﬁz — mZ:1 mgimfBi — G mZ:1 Gi,m Bi mZ:l mqi,m>
1 o 1S e &
) <5j +1 mZ:1 majmpPy - — B mZ::l j.mBj mZ:1 mqj,m> ; (4.4)

oo 1 o0 00
z:: (B2 + 1j ‘1611])%52( p))’ R ;Pj, P, = % and py is given in (3.1).

Example 4.2 In this example, we consider the same marginals and dependence parameters as in Example
3.2. For different level of the dependence between X, and Xs, which is described by a12, TVaRs have been
calculated on the aggregated risk So = X1 + X5 at a tolerance level p = 99%. Furthermore, the allocated capital
to each risk X;,i = 1,2, under the TVaR and the covariance capital allocation principle are also evaluated.
Table 4.1 demonstrates that risk measures on the aggregated risk are sensitive to the level of dependence between
individual risks. Actually, due to the relationship between dependence level and the diversification effect, the
more X1 and Xo are dependent, the more the portfolio is risky, hence more capital is needed to cover the risks.
In this respect, more capital is allocated to risk X1 compared to the amount allocated to risk Xo under the TVaR

and the covariance principle.



a1z || TVaRs,(0.99) || TVaRgeo(X1,S2) | TVaRe.oo(Xa,S2) || Kooe(X1,9) | Kooo(Xa,Ss)
-1.91 13.92 7.70 6.22 7.69 6.23
-0.87 14.04 7.74 6.30 7.73 6.31

0 14.13 777 6.36 775 6.38
0.87 14.22 7.80 6.42 7.78 6.44
1.87 14.31 7.84 6.47 7.81 6.50
2.87 14.41 7.87 6.5/ 7.84 6.57
3.87 14.49 7.90 6.59 7.87 6.62
4.87 14.57 7.93 6.6/ 7.89 6.68

Table 4.1: Analytical formula: dependence level, TVaR and allocated capital to each risk X;,7 = 1,2, under

the TVaR and the covariance capital allocation principle.

5 Auxiliary Results

One of the main features of the mixed Erlang distribution is that its pdf can be used to derive some results in

an analytical way. In this respect, this section presents some useful properties of the mixed Erlang distribution.

Lemma 5.1 If X is a random variable from the mized Erlang distribution with pdf g(z,3,Q), then ¢°(x, 8 +

e 7g(.6.Q) -
1,0) = %, with L=FE (e_X), is again a pdf of the mized Erlang distribution with mixing probabilities

O = (01,02,...) and scale parameter 5+ 1 and we have

9@, 8+1,0) =) Opwp(z, f+1),

k=1
Qkﬁk7‘
521 95 !

with f = 8

where 0, = 7T

The result presented in the next two lemmas can be found in Section 2.2 of [28], and Section 7.2 of [18],

respectively.
Lemma 5.2 If X ~ ME(f4, Q) , then for any positive constant By > 1 we have
X ~ ME(627 g(@))a

where the mizing probabilities U(Q) = (11,2, ...) and its individual components are given by

: =1\ (B Bi\*
“—§qi<i_1>(ﬂz) (1-%) et

Lemma 5.3 Let X1, X5 be two independent random variables. If X; ~ ME(ﬂi,Ql),z = 1,2, then Sy =
X1+ Xo ~ ME(B,11{Q1,Q2}), provided that $1 = 2 = 3 with

0 for 1=1
Zl];ll Q1 Qou—j for 1>1.
Remarks 5.4 According to [3] (Remark 2.1), the results in Lemma 5.3 can be extended to S, = > .| X;,
as long as X;,..., X, are independent, X; ~ ME(BZ-,Qi) and B; = B fori = 1,...,n. Specifically, S, ~
ME(B,1{Q1,...,Qn}) where the individual mizing probabilities can be evaluated iteratively as follows

Wl{@l,gz} {

0 for I=1,....n

T{Q1, .., Qui1} = _
@ S A Qi Qu) Gurriy for I=mt L2
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6 Multivariate SmE Risks

In this section, we assume that the joint distribution of the random vector (Xi,...,X,) will be referred to as
a multivariate SmE distribution and we shall abbreviate this as (X1,...,X,) ~ SME, (83, Q1. 7Qn) where
B = (Br,...,0n) with X; ~ ME(B;,Q;),i = 1,...,n. Furthermore, we shall set

fl(l’l) = 67m1f1(l‘1)

6.1 Distribution of S,

By decomposing the joint pdf of (X1,...,X,) in (2.10) and using some rules of integration, we show in the next

proposition that the distribution of S,, = > | X; belongs to the class of Erlang mixtures.

Proposition 6.1 If (Xi,...,X;) ~ SME,(B,Q1,...,Qn) with B; < Bn, fori =1,....,n —1, then S, ~
ME(B, +1,P). The components of P = (p1,p2,...) are given by

P = (1 + Z Z @y, L5 Lj, Z Z Z i arjs Ljr Lo Ljs + - (—D"a12,..n H Ei)ﬁ(k)
J1 o J2 i=1

Jji1 J2 Js
k

+Z< Zajmzﬁjz +ZZO‘J1,JM3 32 Ljg ..+ (-1 ay 1,2,...,n H ﬁ) )

J1 Jj2 J3 i€C\{j1}

k

+ZZ<O‘J&J2 Zah 2J2 Js‘C’Js +ZZO‘J1 2J2,J3,J4 J% J4 t..+ ( 1)na172 »»»»» n H L ) ;1?]2

J1 o J2 3 Ja i€C\{j1,j2}
+ Z Z Z (%1 NENE Z 1 jajsgaLia + Z Z i jasjasgaris LiaLjs

Ji1 J2 73 Ja  Js

" —(k
+o A+ (=D)"Mag H ﬁi) 7?5‘1?]‘273‘3
1€C\{j1,42}

—(k —(k
FoEY DY <aj17j27---aj711 - a1727~~-7n£jn>ﬂ-§1?...,jn1 +ong T, (6.1)

Jj1 o J2 Jn—1
where
(k) =m{ U1 (Ql) . (Qn)}
T = L 25,(05), U5 Qi) -+, Ta(@n)},
ﬁg—lf’)ﬁ:ﬁjlﬁpﬂk{‘pjl( ’1) 2( jz) jB(QJS)" ¥n (Qn)}
T e = L L Ly mi{ 25, (95,), U5, (87,), Wi (€,) -, W(@n) )
=Ly Ly Y5, (05,), -, 1(@j71,1),~jn(g2jn)},
A = Lo Lam{01(©1), . Wa()),

with C' = {1a s 7n}7 jl € Can € C\{jl}7j3 € O\{j1>j2},' . aj’n € C\{jla s 7jn71}~

Example 6.2 Let (X1, Xo, X3) ~ SMEg(ﬂ,Ql,QQ,Qg) with B; < B3,i=1,2 then S3 ~ ME(f3 + 1, P) where
the components of P = (p1,p2,...) are given by (with C = {1,2,3})

b = 1+ZZO‘J17J2 J1 J2 a123H‘C )

Jj1 J2

+Z< Zajl,jz»cjg + Zzahdzﬂz‘cjzﬁjs + Q123 H L )
J1

Jj2  Js i€O\{j1}
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—(k)
+ E E :(aal g2 = 1,2, sﬁm) T, T Q1237123

Jj1 J2

= (I+aialilo+a13L1L3 + ag3Lloly — a123L1L2L3)m{W1(Q1), Y2(Q2), ¥3(Q3)}
+(—a12Ls — a13L3 + 1,2 3L2L3) L1 {¥1(01), Y2(Q2), ¥3(Q3)}
a12L1 — az3L3 + 12 3L1L3) Lom{¥1(Q1), ¥2(02), ¥3(Q3)}
)

(-
+(=
(ma13Ly —az3Lls + a1 23L1 L) Lymp{¥1(Q1), ¥2(Q2), ¥3(O3)}
(
(

+

H(a1,3 — a1,23L2) L1 L3me{¥1(01), Y2(Q2), ¥5(03)}

)

)

), ¥
Qg3 — a1,23L1) LoLlym{¥1(Q1), Y1

), ¥

), ¥

+ ( (©1), ¥3(03)}
+(a1,2 — a123L3) L1 Lomp{¥1(01), ¥2(O2), ¥3(Q3)}
ta1,23L1 Lo Lamp{V1(01), ¥2(O2), ¥3(03)}-

6.2 Capital allocation

The following propositions provide analytical formulas for the allocated capital to each individual risk X,,,

m =1,...,n, under the TVaR and the covariance rules.

Proposition 6.3 Let (X1,...,Xn) ~ SME,(B,Q1,...,Qn) with By < B, form =1,...,n — 1. Provided
that both p,, = ﬁ%ﬂ Sorey kqmk and iy, = ﬁ Yopeq ki, m = 1,...,n are finite , then form =1,...,n
and p € (0,1) the amount of capital allocated to each risk X,, under the TVaR principle is given by (set

C:={1,...,n})

1 «— —
TVaR, (X, Sn) = =7 > zmiWi(VaRs, (p), Bn + 1),
k=1

where
Zmk = (1 + Zzah J2~ g1 J2 Zzzah NED J3£J1£]2£J3 +. ( ) a1,2,..., H‘C )/“Lmﬂ— g
Ji J2 i J2 Js i=1
k
+ Z ( Zah J2'CJ2 + Zzah 1J2,33 J2 Js +...F (_1)n+1a1,2 ,,,,, n H Li >/Jm7T](1)
Ji#m J2 Js i€C\{j1}
+( Z oo Ljy + Z Z U ja,jsLjaLjs + -+ (*1)n+1 1,2,...m H Li )ﬂmfr(k)
J2F#m J2F#m jzFm i€eC\{m}
~(k
+ Z Z<aj1’]2 Zaﬂlvﬂﬂ?’ﬁh + Zzahdzusm gsLja +o + (—1)”051,27__,71 H Li) MTnF§1?j2
Ji#Em j2 Js  Ja 1€C\{j1,j2}
~ ~(k
+ (amﬂé = misList Y, D WmpgsiLis LA (D 1 ] ﬂi)” T
J2F#m Js#m Js#m jaFm i€C\{m,j2}
~ (k
Y Yy ( . cm)um“
n#EmM j2 Jn—1
~ ~(k ~(k
+ Z Z (Oém,jz’--~,jn1 - a1,2,‘..,n£jn;£m> /lmﬂf(n,)j%m_’jn_l + a1’2w"n71'§,')”7n, (6,2)
J2FmM Jn—1#m
where

ﬁ(k)_ﬂk{\llm(Gm(Qm) \Ijl(Ql) T "(Qn)}
7 = £ U (G (@), W, (€51) -+ U (@)},
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o) = LonTi{ (G (Om). - U (@)}

A = L4, Lo Y (G (@) U1 (©1,), W5 (85,), - U (@)},

7 = Lo Con(Gon(Om), W (€)W (@)},

A =L Ly Y (G (@) 1 (0,) . W(O, ),

A i = Ll Ly U (G (O), U0 (95) - 5, (9, 1,), 5, (Q4.)}

A = Lolre Lo { U (G (), U5, (©,), -, U (O, ).

Proposition 6.4 Let B, < fBp,m < n—1, and consider (Xi,...,X,) ~ SME,(B,Q1,...,Qn). If Sy, has a
finite and positive variance, then for any index m < n and p € (0,1) we have

o0

Ly,
Kp(vasn) = u

where K, is defined in (4.2),

Py ((Bn +1)VaRs, (p))*

Lm,k’ = kwm,k’ + Em,j < + (ﬁn + 1)V(1Rsn (p) - kpk)v m 7é .ja

k!
with
e . _ Z:il(SQ + S)wm,s - (Zs 1 Sw + zn: am] (ﬁn + 1)2
™ S (T4 5)ps — (Dot ope)? A\ Sy (57 + ) — (e ops)?
1 = - —s 1
(6771 ¥+ 1 s:z:ls%n,sﬁm - ;CIm,sﬂmﬁim ; SQm,s> <6] + 1 Z QJ sﬁ qu sﬂg B] ; s%’,s)a

and ps is given in (6.1).

oo (o) o0
Py Bn+1 VaRs, )" . YD
P =3P, P, ==
¥ = ; S — 1) ) k Z ER) s Z:il SPs

Proof. The proof is similar to the bivariate case and is therefore omitted.

6.3 Trivariate SmE risks: numerical illustrations

Let (X1, Xa, X3) have a trivariate SmE risk, with aja = 2.03, a3 = 3.62, asz = —1.54 and ay23 = —1.03 the
dependence parameters. The parameters have been chosen so that the condition in (2.9) is fullfilled. Assume
B = (0.75,0.9,0.95), @1 = (0.2,0.6,0.2), Q2 = (0.4,0.3,0.1,0.2) and Q3 = (0.6,0.1,0.2,0.1). In view of (2.10)
the joint pdf of (X1, X5, X3) are given by

3

hx) = []fi(x) (2.03(e—$1 —0.21) (e~ — 0.28) + 3.62(e~"* — 0.21)(e** — 0.34)

i=1

—1.54(e™"* — 0.28)(e™"* — 0.34) — 1.03(e %1 — 0.21)(e~*2 — 0.28)(e % — 0.34)).

In light of Proposition 6.1, S5 = X; + X5 + X3 follows the mixed Erlang distribution with scale parameter
Bs, = 1.95 and mixing probabilities P = (p1, pa, .. .), the first 60 values of P are given in Table 6.1.
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k Dk k Dk k Dk k Pk k Pk k Dk

1 | 0.0000 || 11 | 0.0670 || 21 | 0.0256 || 31 | 0.0022 || 41 | 8.729E-05 || 51 | 2.150E-06
2 | 0.0000 || 12 | 0.0676 || 22 | 0.0211 || 32 | 0.0017 || 42 | 5.751E-05 || 52 | 1.458E-06
3 | 0.0121 13 | 0.0662 || 23 | 0.0172 || 33 | 0.0012 || 43 | 4.289E-05 || 53 | 9.857E-07
4 | 0.0295 || 14 | 0.0631 || 24 | 0.0138 || 34 | 0.0009 || 44 | 2.988E-05 || 54 | 6.648E-07
5 | 0.0366 || 15 | 0.0588 || 25 | 0.0109 || 35 | 0.0006 || 45 | 2.019E-05 || 55 | 4.472E-07
6 | 0.0409 || 16 | 0.0536 || 26 | 0.0086 || 36 | 0.0005 || 46 | 9.869E-06 || 56 | 3.001E-07
7 | 0.0466 || 17 | 0.0478 || 27 | 0.0067 || 37 | 0.0003 || 47 | 9.612E-06 || 57 | 2.010E-07
8 | 0.0533 || 18 | 0.0419 || 28 | 0.0051 || 38 | 0.0002 || 48 | 4.635E-06 || 58 | 1.343E-07
9 | 0.0596 || 19 | 0.0361 || 29 | 0.0039 || 39 | 0.0002 || 49 | 4.513E-06 || 59 | 8.950E-08
10 | 0.0643 || 20 | 0.0307 || 30 | 0.0030 || 40 | 0.0001 || 50 | 3.161E-06 || 60 | 5.795E-08

Table 6.1: Mixing probabilities of the distribution of S5 = X; + X2 + X3, with scale parameter Ss, = 1.95.

For different tolerance level p, Table 6.2 shows the TVaR of S3 = X; + X5 + X3 and the allocated capital to

each risk under the covariance and the TVaR capital allocation rules.

P TVaRs,(p) || TVaR,(X1,Ss) | TVaR,(Xa,85) | TVaR,(Xs,Ss) || Kp(X1,S5) | Kp(X2,S3) | Kp(X1,S5)
90.0 % 14.16 5.53 473 3.90 5.56 4.70 3.90
92.5 % 14.84 5.79 4.96 4.09 5.84 493 4.07
95.0 % 15.77 6.13 5.29 4.35 6.20 5.23 4.34
97.5 % 17.29 6.70 5.82 4.77 6.82 5.72 4.75
99.0 % 19.20 7.45 6.47 5.28 7.58 6.35 5.27
99.5 % 20.58 8.01 6.94 5.63 8.13 6.80 5.65

Table 6.2: Exact values: TVaR of S3 = X7 + X5 + X3 and allocated capital to each risk X;,7 = 1,2, 3, under

the TVaR and the covariance capital allocation principle.

7 Proofs

PROOF OF PROPOSITION 3.1 The pdf f of Sy is given in terms of the joint pdf of (X7, X5) as follows

foa(s) = / “hiy,s — y)dy.

Taking (2.1) into account the pdf of Ss becomes

fs:(s) = (1+a12L1Ls) /OS fi(y) fa(s —y)dy + aia /S eV fi(y)e” Y fa(s — y)dy

0

—a12Ls /O eV f1(y) fa(s — y)dy — araly / e~ fy(s — y) f1(y)dy.

0

Let A(s), B(s),C(s), D(s) be the four terms of the expression of fg,(s) respectively. According to Lemma 5.2,
A(s) = (14 aizlaa) [ 11(s,8 + LU QU)K (5 — v, 62 + 1, Ba(Qa))dy
0

and from Lemma 5.3, A(s) can be expressed as a pdf of the mixed Erlang distribution as follows

A(s) = (1 4+ a12£1L2) Zﬂk(\lh(ggﬂ, Vo (Q2))wi(s, B2 + 1).
k=1
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In view of Lemma 5.1 and Lemma 5.2, the expression of B(s) becomes

B(s)

o / L1ff(s. 1+ 1,01)Lafl(s — y, o+ 1,02)dy

2L L / F(5 Ba + 101 (O0) £ (5 — v Ba + 1, U(©2))dy.

From Lemma 5.3 one can write B(s) as

B(s) = ar2LiLo ) mi(W1(©1), Ua(2))wi(s, B2 + 1),
k=1

which is again a pdf of some mixed Erlang distribution. Similarly to B(s), using Lemma 5.1, 5.2 and Lemma

5.3 one can express C(s) and D(s) as pdfs of mixed Erlang distribution as follows

C(s) = a12L1 z:zzm 1(81), ¥2(Q2))wi(s, B2 + 1),

k=1

D(s) = 041251/3227% 1(@1), ¥2(02)wi(s, B2 + 1),
k=1

hence the claim follows. O

PROOF OF PROPOSITION 4.1 For j # i, we have

E(XiLig,_}) / yh(y, s — y)dy
0

(1+ a12L:L;) /0 yfi() f(s — y)dy + o2 /0 ye Y fi(y)e TV fi(s — y)dy

—anl; [ ye Vfi(y)fi(s —y)dy — anli [ yfi(y)e 7Y fi(s — y)dy.
0 0

Let A(s), B(s),C(s), D(s) be the four terms of the expression of E(X;1g,—s) respectively.  In light of [2]
@i fi(®i,8:,Qi)
Lemma 2.5, if X; ~ ME(S;, Qz) then —Ex) - can be expressed as a pdf of mixed Erlang distribution with
mixing probabilities G(Q:) = (g1, g2, - . .) where the k-th individual mixing probability is given by
0 for k=1

Ik = (k—=1)qi,x—1 f 1
=T or k> 1.

(7.1)

If we set p,; := E(X;) = l% > rey kqik, v := a12L1 Lo, then using (7.1), Lemma 5.1, 5.2 and 5.3, one can write
A(s) as

A(s) = L+ Y mr{Ti(Gi(Q0)), U5(Q)) Ywi(s, B2 + 1)
k=1

Setting fi; := ﬁ > ey kBik, in light of (7.1), Lemma 5.1, 5.2 and 5.3, similarly to A(s), we get the expression
of the last three terms of E(X;1g,—s}) as follows

B(s) = viti y_pey 7 { ¥i(Gi(©1)), ¥;(0;) Jww (s, B2 + 1),
C(s) = =yiti yopey Te{ Wi(Gi(©4)), ¥j(Q)) Ywi(s, B2 + 1),
D(s) = —ypi Y pey T {Wi(Gi(Qi)), ¥5(9;) Ywi (s, B2 + 1).

Hence, in view of (4.1)

I &<
TVaR,(Xi,S2) = T > zxWi(VaRs,(p), B2 + 1),
k=1
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where z;;, is given in (4.3). Next, by Lemma 5.2, since 8; < (2 we obtain

1 o0
E(X;) = 511 I;kwi,lw

Var(X;) = m (Z (m? + m)Yi m — (Z mz/JZ-,m) )

m=1 m=1

In light of (A.1), we know that for i # j
I —m o am o
Cov(Xi, Xj) = ana| 7—= Y mGimbBi — > GimBi = > Mlim
Bi +1 m=1 m=1 51 m=1
; i SQj,stS - i Qj.sﬁijsi i 5¢j5,s |
Bj +1 s=1 s=1 / 5] s=1
Furthermore, Proposition 3.1 and (2.16) yield

oo 1 o0
E(S En kapk7 Var(Ss) = W(Z(m +m)p (Zmpm) ),

m=1

oo

P:((B2+1) VG’RS2( )"
TVaRg, + VaRs,(p).
s, (D) ﬁ2 eV ];) s. (p)
where
io: 52 + 1 VCLR52 (l)) -1 pr— ip, P = M and py s given in (3 1)
j=1 G -1 St j=k T Xk

* k
Setting L; j := ki + €. P’“((&HL‘Z?RS“" (p)) + (B2 + 1)VaRs,(p) — kpr | and plugging the value of E(Xj;),

Var(X;), Cov(X;, X;), Var(S2), TVaRs,(p) and E(S2) in (4.2), we obtain the desired result for K,(X;,S2)
where ¢; ; is given in (4.4). O
PRrROOF OF LEMMA 5.1 We have

e g(x,8,Q)

L
Bk k—1 —,81 —x

:qu —1)! T

k
> R (%)
= 7
k=130500 45 (%)

= Zkak(at,ﬁ +1).

k=1

9 (z,8+1,0)

wk(xaﬂ + 1)

PROOF OF PROPOSITION 6.1 By definition

s s—x1 S—T1—...—Tp_2
/ / / h(zy,xo,...,8— X1 — ... — Tp_1)dTp_1 . ..dxodx]. (7.2)
o Jo 0

For C = {1,...,n}, if we decompose the pdf h in (2.10), we obtain

h(‘”) = (1 + Z Z aj17j2£j1£j2 - Z Z Z aj17j27j3£j1£j2‘cj3 +..F (71)710[1727.”7” H ﬁl) H f1($
i=1 i=1

Jji1 o J2 Ji J2 Js
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+Z< Za31]2£72+ZZaJ1J233 Jz ]3+"'+(_1)n+1 yeeesT H £>f]1 w]l H filws)
J1

j2  Js3 i€C\{j1} i€C\{j1}

+ Z Z <O‘]17J2 Z Xy ja,js Ljs + Z Z Wy jo,gsrjaLisLia + oo+ (=) 12, H Ei)

Jji o Jj2 Jz  Jja 1€C\{Jj1,j2}

fjl (le)sz (sz) H fz(xz)

i€C\{j1.J2}

+§ :E :E :(aj17j27j3 E Qs jagsrjaLia + E E Qs jngssiaris LiaLis

Ji J2  Js Jja  Js

+...t (_1)n+1a1)2’m7n H El) fijl (le)sz(xh)fja(xh) H fl(‘rl)

i€C\{j1,42} i€C\{j1,42,J3}

R ) P (ajl,jz,...,jnl - Ofl,z,u.,nﬁjn>ﬂ'1 (@,) oo X iy () F (25,)

Ji o J2 Jn—1
+tai2,...n Hfz(ﬂ?z), (7.3)
i=1

where j1 € C,j2 € C\{j1},js € C\{Jj1,72}s---,7n € C\{Jj1,- .., dn—1}. Hence, using (7.3), one can express (7.2)

as follows

s, (S = (1 + Z Za]hjz J1 J2 Z Z ZO‘]17J2,]3£J1‘CJ2‘CJ3 +- "oy 12500M HE )

J1 J2 J1 J2 Js

s s—T1 §—T1—...—Tp_g N1
/ / / H fz fn 8—3?1 —xnfl)dl'nfl...d.%‘zdl‘l
0 JO 0
Z( Zah 2L +ZZO‘]17J2 i L2 Lis +'”+(71)n+1a172 ----- n H El)

Jj2 s i€eC\{s1}
S—T1—...—Tp_2
/ / / fj1 zj,) H file)fn(s —x1 — ... — Tp_1)dTp_1 .. .dradx;
i€C\{j1}
+ Z Z (O‘h 2 Z Wy iz ja s + Z Z Yy jagasja Lja Lju -+ (1) 12, H Ei)
Jj1 o J2 Jz  Ja 1€C\{Jj1,j2}

/0 A /(: o 'fjl(le)f'jZ(xj2) H fi(xi)fn(s_xl _~~~_mn71)dxnfl~~~dx2dx1

1€C\{j1,52}

+§ :E :E :(ahy]zds E :a]uﬂz VED J4LJ4+§ E :O‘Jldz J3,J4,75 J4E]o

Ji1 J2 73 Ja  Js

+o (D) arg H Q)

i€C\{j1,j2}

/0/0_1.../0_1_'_”72&(%1)&2(@2)]23(%3) T i@ fals 21— o — 2nr)dwns ..

1€C\{Jj1,J2,73}

s ps—x1 S—T1—...—Tm—2
j j j 0o JO 0

Ji J2 In—1
fl(xl) . X fgn 1(I']n 1)fjn( — T — ...*In_l)dl’n_l...dIQddjl
S$—x1 S—T1—...—Tp_2 n—1 B ~
+a1 2ot / / / H fl(xz)fn(s — T — ... = xn—l)dl‘n—l PN dedxl.
i=1

It can be seen that the pdf of S, is a sum of convolutions of mixed Erlang distributions. Thus, as in the case of



17

Sa, S, follows a mixed Erlang distribution with scale parameter (3, +1 and mixing probabilities P = (p1, p2, .. .),
we write S, ~ ME(B, + 1, P). For k € N*, the k-th component pj, of P is given in (6.1). O

PROOF OF PROPOSITION 6.3 In view of (4.1) we need to evaluate

s s—x1 S—XT1—...—Tp—2
E(Xmlis,—s) :/ / / Tmh(z1,22,...,8— 21— ... — Tp_1)dTp_1...dxodr,. (7.4)
o Jo 0

If we decompose z,h(x), we have

Tmh(x) =

(14—22%1732 J1 ]2 Zzzah ]233£J1£]2£]3+ 041,2, ,7LH£>

Ji J2 Ji J2  Js

<55mfm(xm) H .fz(zl))

+ Z ( Za]lvhﬁh + ZzaﬁJ%h J2 ]3 +.oo+ (_1)n+1a1721-~v” H EZ)

Ji#Em Jj2  Js i€eC\{j1}

(xmfm(xm)fjl (le) H fl(x1)>

i€C\{m,j1}

+ <_ Z amaj2£j2 + Z Z O‘m,jz,jsﬁjzﬂjs .t (_1)n+1a1,2,...,n H Ez)

J2#m J2F#m jaEm i€C\{m}
(:rmfm zm) [ file )
i€C\{m}
+ Z Z (a]h]z Z i ja,ja Ljs + Z Z Wi gz g, jaLjaLin + -+ (=1) 12,0 H Ei)
JjiFm j2 Js  Ja i€C\{j1,42}

<-T'mf'm(xm)fj1 (le)f‘ﬁ (z]é) H fi(xl)>

i€C\{j1,j2,m}

+ Z (a’mdz - Z am,jz,j3£j3 + Z Z am7j27j37j4£j3£j4 +.o.+ (_1)na1,27~-.,n H El)

JeFM Js#m JzFEm jaFEm 1€C\{m,jz2}
(xmfm(xm)sz (xjé) H fl($1)>
i€C\{m,ja}
+...+ Z Z N Z (ajl-,jQ ’’’’’ 1 a12...., n£m> (fEmfm(CL'm) H f“ (xjk)>
JiFEm j2 Jn—1 k=1,jk#m
n—1
+ Z Z (am Goyeegn_1 — 1,2, nﬁjn;ém> (xmfm(l'm)fjn (xjn) H fjk (lec))
JeFM  Jjn—1Fm k=1,jp#m
+a1,2 ..... nxmfm(xm) H fz(xz) (75)
i#=m

Plugging (7.5) in (7.4) and using (7.1), Lemma 5.1, 5.2, and 5.3, similarly to the bivariate case one may express
(7.4) as follows

o0
E(Xmls,—s}) = Y 2msWir(VaRs, (p), B + 1),
k=1

where z,, 1, is given in (6.2). Hence, the proof follows easily. O
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Appendices

Appendix A Dependence Measures

Pearson’s correlation coefficient has been widely used as a measure of the dependence between two random
variables (rv) X; and Xs. In this respect, the concept of dependence is assumed to be the linear relationship
between the two rv. However, in practice the dependence structure is not always linear hence is why the concept
of concordance has been introduced, see e.g., [22], [20] or [5]. By definition, a rv X; is concordant with a rv
Xy if they tend to vary together. The two measures of association of X; and X5, namely Spearman’s rho and
Kendall’s tau are based on this concept. Probabilistically speaking, if (Y7,Y2) and (Z1, Z2) are independent

copies of the pair of continuous random variables (X1, X5), then Kendall’s tau is defined as
T(X1, X2) =P{(X; —Y1)(X2 — Y2) > 0} — P{(X; — Y1)(X2 — Y3) < 0},
and Spearman’s rho is defined as
ps(X1, Xp) = 3{P[(X1 — Y1)(X2 = Z2) > 0] = P[(X; — Y1)(X2 — Z3) < 0]},

where Y7 and Z, are independent. If (X7, X2) ~ SMEg(ﬁ,Ql,QQ) and further X;,7 = 1,2 has finite mean,

then we have:

1. Pearson’s correlation coefficient:
If we set n;, = ﬁzzozl qukﬁf and Ty == Y 0, qiﬁfui for ¢ = 1,2, then by (2.6) Pearson’s

correlation coefficient of the bivariate SmE risks has an explicit form as

-T -T
p1a(Xi. Xp) = ar2(nie — Tuk) (2,5 2,k), (A1)

0102

where p; is the expected value of X;,7 = 1,2 and o; is its standard deviation.

Remarks A.1 According to (2.7), the mazimal value of Pearson’s correlation coefficient of the bivariate

SmE risks can be written as follows

(ke = T1k) (2,0 — o)
max X X — ) ) ) i A_.2
P15 (X1, Xa) max{L1(1 - L3),(1 = L1)L2}o109 .

and its minimal value can be expressed as

4 —(mx —Tie)(m2p —Tog)
min — . ’ ; 7 : A
iy (X1, Xa) max{L1Ls, (1 — L1)(1 — L2)}0102 A

In the following example, we show that the SmE distribution is flexible as a model for dependent risks.

Example A.2 FExtremal dependence
In this example, we analyse the bounds of Pearson’s correlation coefficient of a bivariate mized Erlang
distribution with marginals which share the same scale parameter and consist of 9 Erlang components. The

mixzture parameters are summarized in Table A.1. Figure A.1 presents the lower and the upper bound of

Pearson’s correlation coefficient as a function of the common scale parameter 5. We can see that p{5** and

Py
strongest negative correlation pJs™ = —0.87545 is attained for B = 21.5723 while the value of 3 = 153.0315

yields the maximal positive correlation p75** = 0.96871. Hence, not only is the range of the dependence

™ tend to reach the extremal dependence case which correspond to values of 1 and —1 respectively. The



flexible but also wide. Moreover, the simulated values of p

max

min
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152 and p7y'™, presented in dotted red lines in

Figure A.1, correspond well with the exact values, this demonstrates again the robustness of our results.
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Figure A.1: p3%® and pi" as a function the common scale parameter 3.

X1 X5

k q1.k k q2.k

0.5270 0.5050
40 | 0.0005 8 0.0150
50 | 0.0020 30 0.0105
75 | 0.0010 50 0.0020
150 | 0.0015 70 0.0015
345 1 0.0005 95 0.0010
902 | 0.0050 850 | 0.0055
970 | 0.4375 995 | 0.1050
993 | 0.0250 || 1000 | 0.3545

Table A.1: Mixture parameters of marginals.

2000

2. Spearman’s Rho: Spearman’s rho of the bivariate SmE risks can be expressed explicitly as follows

ps(X1,X2) =3(1+ ) + 6012[2¢1 (2 — L1 — L2(1] — 3,

) OO fori=1,2.

—k _
where §; =300 GkBi Doy Zfzé Qi,m <

3. Kendall’s Tau: Kendall’s tau of the bivariate SmE is given by the following closed formula

J+m-—1
-1

CEESVERER

T(Xl,XQ) =4 [(1 + ’)’)12(p5(X1,X2) + 3) —+ Q1271 — 0412,627'2 — 012517'3} — ].,

(A4)



where pg(X1, X2) is Spearman’s rho,

1= (1+79)Z122 + a12Th Ty — 12 L1 2112 — araLa ZoTh,
1 1
Ty = 5(1 +7)Z1 + a12T1Ce — a12£121C2 — 50412E2T1,
1 1
T3 = 5(1 +79)Z2 + 1201 Te — 12L2C1 Z2 — §a12£1T2’
with

k—1 j + m — 1 . m-+j .
Zi = Y201 ik Yo 520 Gim < : ) (7)) fori=12,
m —

e’} —k o) k—1 J+m_1 mn ,i+2j .
Ti=3 k1 dikBi Dopmes ijo Qi,m ( 1 ) 7(62‘Bi(52)m)ﬂ, fori=1,2.

Appendix B  Simulation of SmE risks
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In simulation, in order to remove the dependence between two risks X; and X5, the Rosenblatt transform

introduced by Rosenblatt [23] is widely used. In fact, to simulate X5 this approach consists in using the

conditional quantile function of X5 given the value of X;. Hence, the conditional df of X5 is found accordingly.

The following lemma yields how this can be done for the case of the bivariate SmE distribution.

Lemma B.1 Let (X1, X5) ~ SMEQ(,@,Ql,QQ), for a given value of Xy the conditional df of Xo is described

as follows
o~k
Fyjy(wa]ar) = APy (w2, B2, Q2) + 01281 Y g2 kBo Wi (w2, B2 + 1),
k=1

where
A=1 + a12£2(£1 — 67$1), Al = (€7z1 - ﬁl)

Proof. For a given value of X7, one can define the conditional distribution function of X5 as
I3 h(zy, 8)ds

Fyy(xa|z) = 00—~
o1 (z2|r1) A
According to (2.1)

h(z1,s) = (1+2liLls) fr(z1) f2(s) + arze”™ fi(z1)e™ fa(s)
—onaLoe” ™ fi(w1) f2(s) — onalie™” fo(s) fi(21)
= (I+a12l1Le —araloe™ ") f1(x1) f2(s)
+aia(e”™™ — L) fi(z1)e”* fa(s).
Setting
Ai=14 a12Lo(Ly — e_“) and Ay :=e " — L4,

the expression of h(x1,s) becomes
h(z1,s) = AMf1(w1) fa(s) + a2 fi(w1)e”® fa(s).

Hence

Io2 Mi(@1) fa(s) + crz Ay fi(z)e™* fa(s)ds
fi(z1)

Fz\l(xz\wl) =

(B.1)
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= )\/0 2f2(5)d5+0412A1/0 2ff*sfz(s)dé’

zo 00 k
= )‘FQ(xQ, Ba, QQ) + a0 / e ® Z Q2K (k; ﬂ21)' sF—le=025 g
0 =1 — !

oo k
APy (22, B2, Q2) + 01281 > ok ( ) Wi (22, B2 +1).
k=1

2
B2 +1
The inverse of F|; can be computed numerically and as a result the Rosenblatt transform can be implemented
efficiently. The simulation algorithm can be summarised as follows:

1. simulate two independent rv u; and ws uniformly distributed

2. simulate X7 using the inverse transform: z; = Ffl(ul)

3. simulate X5 using the Rosenblatt transform: zo = F;lll (ug|xq)

4. simulate the aggregate rv So = X1 + Xo.

Remarks B.2 The result in Lemma B.1 can be generalized for the multivariate case. Specifically, if (X1, ..., Xn)
has a multivariate SmE distribution with X; ~ M E(j;, QZ),Z =1,...,n, for given values of X1,...,X,_1 one
can express the conditional distribution of X, as follows (set C :={1,...,n})

s —k
Fn|1,“.,n71(xn|xla---7xn—l) = AFn(xna/Bnagn)+AZQn7kﬁan(xnvﬁn+1>7
k=1
where
1
A= o1+ + Z _Zaj1»j2£j2 + ZZO‘J'LJEJSLJQ‘CJE
D(l‘l,...,l‘n_l) ! X X -
Ji#n J2 J2  Js
+o A ()" g g H Li) e "

i€C\{j1}

+ E , E :(aﬁ 2 E Qjy s Lis + E ,E :0411 d2rsriaLis Lia

Ji#n jo#n Jz  Ja

+.o+ (71)”‘051,2,...,71 H £1> e~ Ti1 %2

i€C\{j1,j2}

—T1— ..~ Tp—
+.. o+ (2. n-1 — 12, nLy)e” ™ not }7

1
8= D(:mscl{( Za” nLjs + Z ZajZ,]S; J2 Js+~-~+(_1>n+1al,2w~7” H Ei)

J2#n J2#n jzF#En ieC\{n}
+> <O‘jz,n = ey + D D el Lyt (D [] Ei) e~ "
J2#n Js#n Js#n jaFn i€C\{Jj1,n}

—Tj, == —
-+ E E E <0‘J1,-~, al,.».,nﬁz,Zec\{jl...,jn1}>€ n 2o e ~~$n—1},

Ji#EnjeF#n  Jn-17n

with

D(frl; cee axn—l) = <1 + Z Z Qjy 52 (eimh - ‘le)(eiwjz - L]é)

Ji#n ja#n
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n—1

+ Z Z Z O‘jhjfz,js(eimh - £j1)(671j2 - Ejz)(eimjg' - Lj:s) too o n H(eizi - L)

J1#n jaF#n ja#n i=1

o= Z Zaj17j2‘cj1£j2 - Z Z Zaj17j2,j3£j1£j2£j3 +o.F (_1)na1,27m,n Hci’
i=1

J1 2 Ji J2 Js

J1 € Cj2 € C\{j1},73 € O\{j1,J2}s - dn € C\{J1, .-, Jn—1}-

Similarily to the simulation of two dependent SmE risks, one can simulate n dependent SmE risks iteratively.
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