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Abstract1

Hydrogeological flow and transport strongly depend on the connectivity of subsurface prop-2

erties. Uncertainty concerning the underlying geological setting, due to a lack of field data3

and prior knowledge, calls for an evaluation of alternative geological conceptual models. To4

reduce the computational costs associated with inversions (parameter estimation for a given5

conceptual model), it is beneficial to rank and discard unlikely conceptual models prior to6

inversion. Here, we demonstrate an approach based on a quantitative comparison of ground-7

penetrating radar (GPR) sections obtained from field data with corresponding simulation8

results arising from various geological scenarios. The comparison is based on three global9

distance measures related to wavelet decomposition, multiple-point histograms, and connec-10

tivity that capture geometrical characteristics of geophysical reflection images. Using field11

data from the Tagliamento braided river system, Italy, we demonstrate that seven out of12

nine considered geological scenarios can be discarded as they produce GPR sections that are13

incompatible with those observed in the field. The retained scenarios reproduce important14

features such as cross-stratified deposits and irregular property interfaces. The most conve-15

nient distance measure of those considered is the one based on wavelet-decomposition. Direct16

analysis of the distances is the most intuitive and fastest way to compare scenarios.17
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1 Introduction18

Reliable predictions of groundwater flow and contaminant transport require adequate charac-19

terization of subsurface properties and their connectivity (e.g., Gómez-Hernández and Wen,20

1998; Zinn and Harvey, 2003). In this regard, limited number of data and knowledge of21

the field site implies that multiple geological conceptual models must be initially consid-22

ered. That is to say models with different geometrical characteristics of the deposits, such as23

channels, lenses or layers. A general approach to compare alternative geological conceptual24

models is to perform Bayesian model selection based on field data acquisition and inversion.25

It aims at estimating the Bayes factors, that is, the ratios of the estimated evidences (i.e.,26

the integral of the likelihood over the prior probability density function) for the considered27

scenarios (Kass and Raftery, 1995; Schöniger et al., 2014). However, reliable evidence esti-28

mators are costly because they necessitate a very large number of numerical evaluations of29

property models. As a result, modelers often assume a single conceptual model (Ferré, 2017)30

on which they perform inversion on the distribution of physical properties such as hydraulic31

conductivity, porosity or storativity (Carrera and Neuman, 1986; Højberg and Refsgaard,32

2005; Eaton, 2006) for a given geological conceptual model. The main risks associated with33

such a practice is underestimation of uncertainty and biased parameter distributions and34

predictions. There is, thus, a need for efficient, albeit more approximate, ways to compare35

alternative geological scenarios without resorting to formal evidence computations.36

37

To enable comparison of geological conceptual models using a reduced number of costly38

forward simulations, Park et al. (2013) draw property models from each of the considered39

scenarios and calculate their data response. They then use multi-dimensional scaling (MDS)40

to reduce dimensionality, followed by adaptive kernel smoothing to estimate the probability41

of each scenario by comparing its distance to the reference data. Sometimes, it can be benefi-42

cial to base such comparisons on data types other than classical hydrogeological data (Huber43

and Huggenberger, 2016). Non-invasive geophysical data, for example, can provide substan-44

tial information about connectivity, structure dimensions and orientations, and thus might45

help to reduce geological conceptual model uncertainty. Notably, geophysical images reflect46

the sensitivity of the employed method to subsurface property variations. Thus, they can47

provide information about length scales and orientation characteristics of significant prop-48

erty boundaries. The wide range of available geophysical techniques offer flexibility to adjust49

resolution or depth of investigation, and to maximize the sensitivity to subsurface properties50

of interest (Hubbard and Rubin, 2005). For instance, comparisons of seismic images (Scheidt51

et al., 2015) or of electric resistivity tomography (ERT) images (Hermans et al., 2015) offer52

possibilities to falsify scenarios or reduce conceptual model uncertainty.53

54

Possibly the simplest way to quantitatively compare geophysical images is to use a dis-55

tance based on pixelwise (one-to-one) local comparison (Hermans et al., 2015). However, by56
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using a local comparison, the probability of sharing a majority of similar pixel values and57

thus to observe small distances is quite low. So, when the main interest lies in the comparison58

of patterns and not the specific locations of property values, approaches relying on global59

geometrical characteristics are better suited. Approaches to sort and classify images in this60

way has been widely studied in the field of image processing (Smeulders et al., 2000). Among61

many alternatives, those based on discrete wavelet transforms have proven efficient to iden-62

tify the images that are the closest in a large database. Suzuki and Caers (2008) and Scheidt63

and Caers (2009) use a distance based on wavelet decomposition (Mallat, 1989) of geological64

realizations for different scenarios to represent spatial uncertainty. Scheidt et al. (2015) fur-65

ther apply this type of metric on seismic images to update probabilities of alternative prior66

scenarios. Nevertheless, distances based on wavelet decomposition rely on the comparison of67

coefficient histograms, which might hide spatial characteristics such as pattern connectivity.68

It is, thus, important to also consider other distances, for instance, based on multiple-point69

histogram (Boisvert et al., 2010) or connectivity analysis (Renard and Allard, 2013; Meer-70

schman et al., 2013), that allow quantitative comparison of the global spatial characteristics71

of interest obtained from field data with those obtained from synthetic modeling based on72

various scenarios.73

74

So far and to the best of our knowledge, quantitative approaches to reduce conceptual ge-75

ological model uncertainty using image comparisons did not consider multiple distance types76

and there has been no such application to GPR data. Traditionally, GPR data are interpreted77

qualitatively and its quantitative integration in subsurface modeling is largely unexplored. In78

the continuity of previous related works (Park et al., 2013; Pirot et al., 2014; Scheidt et al.,79

2015; Hermans et al., 2015), we propose to extend such approaches to GPR reflection sections,80

using different distance measures of global geometrical characteristics. The three types of dis-81

tances considered herein for the comparison of GPR reflection sections are based on 1) wavelet82

decomposition, 2) multiple-point histogram and 3) connectivity functions. In addition, the83

computed distances are analyzed and interpreted with a simple intuitive approach and with84

a more complex formal approach based on dimensionality reduction and mapping techniques.85

86

The objectives of this work are i) to demonstrate how a simple but robust method enables87

the comparison of global characteristics of GPR reflection sections obtained from field data88

processing with those obtained from GPR reflection sections simulated from different scenario89

realizations; ii) to verify that GPR reflection sections can be used to reduce geological con-90

ceptual model uncertainty; iii) to investigate the relative strengths of three different distance91

measures for GPR data; and iv) to present follow-up strategies depending on the closeness or92

remoteness of simulated sections with reference sections obtained from field measurements.93

To illustrate the proposed method, we consider GPR profiles acquired on the riverbed of94

the Tagliamento River, Northeast Italy (Huber, 2015). We consider three different geological95

conceptual models; each one of them being sub-divided in three sets of parameters (scenar-96
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ios). For each of the nine resulting scenarios, 20 stochastic aquifer realizations are used as97

inputs for GPR simulations. The distances are used to produce a first ranking and to falsify98

unlikely scenarios. A dimension reduction technique called multi-dimensional scaling (MDS)99

followed by kernel smoothing are then used to estimate scenario probabilities.100

101

The paper is organized as follows. Section 2 describes the distance measures consid-102

ered and how they can be used to update scenario probabilities. Section 3 presents a field-103

demonstration using GPR sections simulated from realizations of different geological concep-104

tual geological models of the Tagliamento site (subsection 3.1). This section continues with105

the presentation of the migrated field GPR data and its processing steps (subsection 3.2),106

and ends with the simulation of migrated GPR profiles (subsection 3.3). Section 4 displays107

the results, which are further discussed in Section 5. Conclusions are given in Section 6.108

2 Distances between geophysical images and estimation109

of scenario probabilities110

In this section, we briefly review three distance measures that can be used to compare global111

geometrical characteristics of geophysical images. We then describe how approximate scenario112

probabilities can be obtained from field and simulated data through MDS and adaptive kernel113

smoothing (Park et al., 2013).114

2.1 Wavelet decomposition115

One way to extract global characteristics of an image is wavelet decomposition (Mallat, 1989).116

We consider in our work the same decomposition as Scheidt et al. (2015). Two geophysical117

images i1 and i2 are decomposed in two levels by a “Haar” wavelet (Haar, 1910), which118

produces a series of coefficients (horizontal, vertical, diagonal and approximation) for each119

level. At each level, the histogram of each coefficient is discretized into bins b ∈ 1 . . . B, using120

the same binning for both images. For each level m ∈ 1 . . .M and each coefficient c ∈ 1 . . . C,121

a distance dJS between the two images is computed based on the Jensen-Shannon divergence122

between the probability distributions Pm,c
1 and Pm,c

2 derived from these histograms:123

dJS(i1, i2,m, c) =
dKL(P

m,c
1 ,

Pm,c
1 +Pm,c

2

2
) + dKL(P

m,c
2 ,

Pm,c
1 +Pm,c

2

2
)

2
, (1)

where dKL(P,Q) is the Kullback-Leibler divergence between discrete probability distributions124

P and Q computed as dKL(P,Q) =
B∑
b=1

P (b) log Q(b)
P (b)

(Kullback and Leibler, 1951). Then, the125
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corresponding wavelet-based distance Dw(i1, i2) is:126

Dw(i1, i2) =
M∑
m=1

C∑
c=1

dJS(i1, i2,m, c)

M × C
. (2)

2.2 Multiple-point histogram127

Another way to quantify global spatial characteristics of an image is to define a summary128

statistic describing its multiple-point histogram (Boisvert et al., 2010). In multiple-point129

statistics (MPS), a pattern is usually defined as a set of values associated with relative co-130

ordinates that define a spatial configuration. Two patterns are distinct when the values are131

different at one of the relative coordinates. The multiple-point histogram (MPH) of an im-132

age is defined for a given spatial configuration, also called search window, as the occurrence133

list of distinct patterns. Here we use the Impala (Straubhaar et al., 2013) software to com-134

pute multiple-point histograms from categorical geophysical images. Note, however, that135

the measure can be adapted to deal with continuous geophysical images (see Section 5.2).136

Multiple-point histograms are computed at M multigrid levels m, to account for patterns at,137

relatively speaking, small, intermediate and large scales (Tran, 1994). A multigrid is practi-138

cal to account for larger scale structures while keeping the pattern geometry and, thus, the139

computing time reasonable. Each histogram is limited to the O most frequent patterns o. By140

denoting f o,mi the frequency of pattern o at level m in image i, the multiple-point histogram141

based distance Dmph between image i1 and image i2 is defined as:142

Dmph(i1, i2) =
M∑
m=1

O∑
o=1

|f o,mi1 − f
o,m
i2
| × (f o,mi1 + f o,mi2 )

2×M ×O
. (3)

2.3 Connectivity measure143

The final measure that we consider to quantify global characteristics of an image is connectiv-144

ity (Renard and Allard, 2013). Indeed, subsurface property connectivity dictates subsurface145

flow paths and transport. Here we consider categorical geophysical images, but note, that the146

measure can be adapted to deal with continuous geophysical images (Pirot et al., 2014). We147

consider connectivity as the probability that two pixels belonging to the same class (a range148

of values) are connected, as a function of the distance and direction, similarly to the defini-149

tion of a directional semi-variogram (Matheron, 1963). By denoting C(i, a, l) the connectivity150

measure of a discrete image i along axis a ∈ 1 . . . A for a distance lag l ∈ 1 . . . L, the connec-151

tivity distance Dc(i1, i2) between discrete images i1 and i2 can be computed (Meerschman152

et al., 2013) as153

Dc(i1, i2) =
A∑
a=1

L∑
l=1

|C(i1, a, l)− C(i2, a, l)|
A× L

. (4)
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2.4 Estimation of scenario probabilities154

To assess the probability of a scenario given a geophysical section, we follow the approach by155

Park et al. (2013). Given a distance metric D and an ensemble of I images i, the distance156

between all pairs ij, ik of images define a dissimilarity matrix δjk = D(ij, ik). Multidimen-157

sional scaling (MDS, Cox and Cox, 2000) is a method to represent the images as points in158

a low dimensional space, usually Euclidean. While principal component analysis (PCA) re-159

quires point coordinates, MDS can be used on data for which only the relative distances are160

known. This lower dimensional space is searched, such that the distances djk between the161

points are as close as possible to the original dissimilarity matrix δjk. MDS allows to map162

images in space, as points, for instance in 2D if using the two main dimensions. Now, we163

consider reference points related to reference images and a cloud of points related to images164

derived from a scenario. We can approximate the density of the cloud at any location of165

the low dimensional space, using adaptive kernel smoothing (Ebeling et al., 2006). For each166

scenario s, the density at one or several reference points (in the low dimensional space) can be167

computed as a scalar ρs. The updated probability P of scenario s can then be approximated168

as P (s) = ρ(s)∑
s ρ(s)

. These updated probabilities are relative to the ensemble of considered169

scenarios, with P (s) the probability that an image generated from scenario s is the closest170

to the reference image.171

3 Field application and GPR modeling172

A pre-requisite to compare field and simulated data (Figure 1) is to apply equivalent data173

processing (Hermans et al., 2015), but this is rarely sufficient because actual field conditions174

always differ from numerical implementations. Indeed, results obtained from the processing175

of geophysical data are prone to errors (e.g., Linde, 2014) related to field data acquisition,176

simplifications in physical modeling or consequences of numerical modeling such as numerical177

and geometrical approximations. For instance, seismic or GPR geophysical images obtained178

from field data might include false discontinuities and their interpretation in terms of con-179

tinuous connected structures or interface delineation necessitates expert knowledge. On the180

contrary, seismic or GPR geophysical images obtained from forward modeling, might repro-181

duce property (dis)continuities too well and appear too clean to be representative of what182

would be expected for real data. To further reduce the remaining gaps between the results183

obtained from field data and from synthetic scenarios, it is necessary to include fit for purpose184

filtering (Green et al., 1988; Panagiotakis et al., 2011) such that geophysical sections are not185

dominated by details/aspects that we do not seek to reproduce.186

3.1 Study site and geological conceptual models187

The study site considered is a portion of a sandy-gravel aquifer located near the city of Fl-188

agogna, Italy, within a portion of the active bed of the gravelly braided Tagliamento river189
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Study site

Geophysical field
measurements

Design of alternative
conceptual models

Field data
processing

Geophysical data
simulation & processing

Reference
geophysical images

Computation of distances and scenario probabilities

Reduction of conceptual uncertainty

X X

Geological field data
& analogs analyses

Simulated
geophysical images

Figure 1: Overview of the workflow to reduce geological conceptual model uncertainty. On
the left, the path of arrows represents field data processing; on the right, the three vertical
arrow paths represents the workflow for three distinct scenarios; at the bottom, a red cross
illustrates scenario falsification and a green mark indicates scenario compatibility.

(Figure 2). The Tagliamento river flows in the Friuli Venezia Giulia region, northeastern190

Italy, from the Carnian Alps to the Adriatic Sea. As the Tagliamento river is one of the191

few remaining large semi-natural rivers in the Alps (Ward et al., 1999) it was chosen as a192

study site to characterize the link between the topography of the active river bed and subsur-193

face properties (Huber and Huggenberger, 2015). GPR data acquisitions and interpretations194

allowed to improve the characterization of scours and to model them (Huber et al., 2016).195

In addition to improving the understanding of deposition and erosion processes (Huber and196

Huggenberger, 2016), this work inspired modelers to develop new methods, such as a pseudo-197

genetic approach to produce heterogeneous models of braided-river aquifers (Pirot et al.,198

2015).199

200

Assuming a braided-river type of aquifer, we wish to investigate which geological concep-201

tual model is best suited to represent the porosity field. To this end, we consider subsets of202

reflection GPR sections in the saturated zone. Indeed, below the water table, GPR responses203

are strongly dependent on the porosity variations in the subsurface (Daniels, 2004). We204

consider three different types of conceptual models of porosity , similar to those considered205

by Pirot et al. (2015) in their assessment of the impact of geological conceptual models on206
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Figure 2: Site location in Italy (map from http://www.pedagogie.ac-aix-marseille.fr/
jcms/c_67064/en/cartotheque); position of the GPR profiles over an aerial photograph of
the Tagliamento river, south east of Flagogna (Google maps satellite image).

contaminant transport. Each type of geological conceptual porosity model is sub-divided into207

three sets of parameter values (scenarios) with geometrical features (patterns) that present208

different length scales (Figure 3). Here we further assume that the braided-river aquifer is209

composed of three structural elements: gray gravel (GG), bimodal (BM) and open-framework210

(OW) deposits. Each distinguishable geobody or sedimentary deposit is a assigned a ran-211

domly drawn value from the porosity distribution, related to its structural element (Jussel212

et al., 1994), as described in Table 1. The models are characterized by a horizontal discretiza-213

tion of 0.25m and a vertical discretization of 0.01m.214

215

Table 1: Probability density function (pdf) properties of the porosity for each structural
element (from Jussel et al., 1994).

Structural Element Pdf Law Porosity Mean (%) Porosity Standard Deviation (%)
GG normal 20.1 1.4
BM normal 18.8 3.9
OW normal 34.9 1.4

The first geological geological conceptual model is represented by realizations from a216

pseudo-genetic (PG) algorithm (Pirot et al., 2015), which mimics deposition and erosion217

steps by stacking successive simulated topographies, and by imitating sandy-gravel material218

8
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Figure 3: Example porosity sections for different geological scenarios that are to be compared
to (a) a reference GPR reflection section processed from field data (REF01); (b), (c) & (d)
porosity sections from pseudo-genetic model realizations for parameter sets PG1, PG2 & PG3,
respectively; (e), (f) & (g) porosity sections from truncated multi-Gaussian model realizations
for parameter sets MG1, MG2 & MG3, respectively; (h), (i) & (j) porosity sections from
object-based model realizations for parameter sets OB1, OB2 & OB3, respectively.

transport and deposition. Here, the main layers are populated with GG elements and the219

resulting cross-stratified deposits by successive BM and OW elements. A second geological220

geological conceptual model is a truncated multi-Gaussian (MG) model (Emery and Lan-221

tuéjoul, 2006), in which the locations above the highest threshold are populated with OW222

elements, the location between the two thresholds are defined as BM elements, and the re-223

maining matrix is populated with GG elements. The third geological geological conceptual224

model is an object-based (OB) model (Huber et al., 2016) mathematically defined as a com-225

pound marked Strauss process. The OB simulates the formation of spoon-shaped structures226

on the river bed and the subsequent deposition of sediments over the whole river bed. The227

spoon-shaped structures are modeled by truncated ellipsoids with an internal OW–BM cross-228

bedding and the sediments deposited on the river bed by horizontal layers of GG (e.g., Beres229

et al., 1999; Huggenberger and Regli, 2006). The parameters underlying each scenario are230

summarized in Table 2; they were chosen to approximate the dimensions of scours that were231

estimated from field observations and from interpretations of migrated GPR sections.232
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Table 2: Parameter choices for each scenario grouped by type of geological conceptual model.

Scenario Example Parameters
Scalability Scalability Aggradation Number of Deposition
Width Depth Range (m) Iterations Intensity

PG1 Figure 3b 1 1 [0.05 ; 0.125] 8 5
PG2 Figure 3c 1/2 1.6 [0.05 ; 0.125] 8 5
PG3 Figure 3d 1/3 1 [0.2 ; 0.25] 6 3.5

Variogram Horizontal Vertical OW element BM element
Model Range (m) Range (m) Proportion Proportion

MG1 Figure 3e exponential 50 3 25% 25%
MG2 Figure 3f exponential 25 0.5 25% 25%
MG3 Figure 3g exponential 70 5 25% 25%

Width Width/height Layer Poisson Horizontal Strauss process
Range (m) Ratio Process (λ) β γ

OB1 Figure 3h [10 ; 20] [11 ; 18] 0.1 10−3 0.5
OB2 Figure 3i [22 ; 33] [11 ; 18] 0.1 5 10−4 1
OB3 Figure 3j [35 ; 53] [11 ; 18] 0.1 2.5 10−4 1

3.2 GPR data acquisition and processing233

The reflections in the processed and migrated GPR sections provide indirect information234

about characteristic geometric features. Such sections are used herein to compare, based235

on various global distance measures, different types of geological conceptual models. Five236

GPR profiles (REF01 to REF05) were acquired on the Tagliamento riverbed, orthogonally237

to the main flow direction. REF01 section is used for comparison with simulated data, while238

REF02 to REF05 are used to assess on-site data variability. The GPR data were acquired239

with a PulseEkko Pro GPR system (Sensors & Software Inc., Mississauga, Canada) using240

100 MHz antennas and a measurement spacing of 0.25 m. A common mid-point (CMP) was241

performed to estimate the mean GPR velocity. The data processing steps are described in242

Table 3 and they were carried out with the RGPR package (Huber and Hans, 2017). The243

migrated section corresponding to the REF01 profile is presented in Figure 3a.244

The processed migrated sections are thresholded into binary images to focus on the pre-245

dominant aspects of the reflections. The amplitude of the processed GPR reflection section246

is similar throughout the image after applying the automatic gain control. Consequently, at247

all interfaces where porosity changes, the signal amplitude is similar, independently of the248

porosity contrast. We consider the first (negative) and last (positive) quartiles of the signal249

amplitude in the section. We retain the last quartile of the reflections (positive amplitude)250

to define Class 1. Tests (not shown) indicated that it was not necessary to retain the first251

quartile (negative amplitude) to define another class, as the corresponding class would have252

almost the same geometrical characteristics as those of Class 1. Therefore, we use amplitudes253

below the 75th percentile to define Class 2 (Figure 5a).254
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Table 3: Processing steps applied to field GPR reflection data.

Step Description
1 DC-shift
2 time zero correction
3 dewow to remove the low frequency trend in the signal
4 band pass filter to remove noise (7 < signal < 200 MHz, defined as a stepwise linear

function between, 5,10,170 & 250 MHz)
5 power gain & exponential gain (α = 1) to correct for geometric spreading and attenuation

depth (Kruse and Jol, 2003; Grimm et al., 2006)
6 dewow to correct for the deviation from zero that is reinforced by the power and exponential

gains
7 topographic Kirchhoff migration with a constant velocity vel = 100m/µs
8 1D vertical Gaussian (standard deviation σ = 2.5 cm) low-pass filter to lightly smooth the

migrated image and get rid of persisting high frequency noise
9 automatic gain control to balance signal amplitudes (standard deviation of the Gaussian

filter σ = 0.45m, power used to compute the p-norm p = 2 & r = 1/p; see Rajagopalan
and Milligan, 1994, for more details)

Figure 4: (a) Processed and migrated GPR reflection section from field data (REF01); (b),
(c) & (d) GPR reflection sections simulated from pseudo-genetic porosity model realizations
for parameter sets PG1, PG2 & PG3, respectively; (e), (f) & (g) GPR reflection sections
simulated from truncated multi-Gaussian porosity model realizations for parameter sets MG1,
MG2 & MG3, respectively; (h), (i) & (j) GPR reflection sections simulated from object-based
porosity model realizations for parameter sets OB1, OB2 & OB3, respectively.

3.3 From aquifer porosity models to GPR reflection sections255

In order to estimate the distances of each scenario realization to the reference GPR sections256

REF01, GPR reflection sections are simulated from the corresponding 2D porosity sections.257

11



The processing steps are:258

1. Realization of a facies/porosity model according to a geological conceptual model (sce-259

nario) as described in Section 3.1.260

2. Porosity fields are converted into electrical property fields and velocity fields using261

the model by Pride (1994). The petrophysical parameters (cementation index m, and262

dielectric constant of solid grains κs) are calibrated, such that the mean velocity of the263

corresponding porosity field is the same as the one used for the field data migration264

(vel = 100m/µs).265

3. Construction of a perfectly migrated GPR section (following the method developed by266

Irving et al., 2010) by convolution of the propagated wavelet with a Primary Reflec-267

tivity Section. The propagated wavelet is estimated from field data processing step 5268

(according to the method by Schmelzbach and Huber, 2015). The Primary Reflectivity269

Section is derived from the previously obtained velocity model. A simple Gaussian270

horizontal filter is applied on the convolution result, to account for the Fresnel zone271

and whose width is determined by the dominant signal wavelength.272

4. To mimic the effect of a constant velocity migration, the GPR reflection section gener-273

ated with the actual velocities predicted from a porosity model is converted in the time274

domain before being back transformed into the depth domain using the same mean275

velocity as the one used in the migration of the field data (vel = 100m/µs), and finally276

re-interpolated over a regular grid on the vertical axis.277

5. 1D vertical Gaussian filter to slightly smooth the propagated wavelet with the same278

parameter as the one applied in the processing of the field data.279

6. Automatic gain control to balance signal amplitudes with the same parameters as the280

one applied in the processing of the field data.281

The resulting synthetic GPR sections (Figures 4b-j) are thresholded into binary images in282

the same way as the field data. The binary images resulting from the porosity images in283

Figures 3b-j are given in Figures 5b-j.284

4 Results285

For each of the three types of geological conceptual models and each of the three correspond-286

ing parameter sets (i.e., the nine considered scenarios), we generated 20 porosity realizations.287

This means, that a total of 180 binary images were available for comparison with the bi-288

nary reference section REF01 (Figure 5a). Wavelet-based, multiple-point histogram, and289

connectivity distance measures were computed between all possible pairs of field and syn-290

thetic binary images as follows. The wavelet-based distance uses B = 50 bins and M = 2291
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Figure 5: Images obtained after thresholding the example sections represented in Figure 4.
(a) The binary geophysical image obtained from field data; (b), (c) & (d) binary geophysical
images obtained from pseudo-genetic porosity model realizations for parameter sets PG1,
PG2 & PG3, respectively; (e), (f) & (g) binary geophysical images simulated from truncated
multi-Gaussian porosity model realizations for parameter sets MG1, MG2 & MG3, respec-
tively; (h), (i) & (j) binary geophysical images simulated from object-based porosity model
realizations for parameter sets OB1, OB2 & OB3, respectively.

(multi-grid) levels. The MPH-based distance relies on a 5× 5 pixels search-window, M = 3292

multi-grid-levels and on the O = 30 most frequent patterns. The connectivity-based distance293

is defined for A = 2 directions (section length axis x or section depth axis z); the investigated294

distances are limited to half the model dimensions, depending on the axis, and the number295

of lags is set to L = 25. For each distance type, the distance values are normalized by their296

maximum.297

298

The distances obtained between all binary images and the Tagliamento reference section299

REF01 are displayed and grouped for each distance type by geological scenario (Figure 6).300

To indicate the internal variability of the distances between the actual field data, the dis-301

tances between binary reference section REF01 and other binary reference sections (REF02302

to REF05) are gathered in a group denoted “REF”. An acceptance threshold is defined by303

multiplying by 1.2 the maximum REF distance value. This subjectively-chosen acceptance304

threshold is used to select realizations whose distances to REF01 is similar to those of the305
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reference sections.306

Figure 6: Distance to Tagliamento reference section REF01; plots grouped by scenario for (a)
wavelet-based distance, (b) MPH-based distance and (c) connectivity-based distance. REF
denotes distances for other binary reference sections (REF02-REF05) with respect to REF01
and the red line corresponds to the acceptance threshold.

307

The distances between the primary reference and the scenarios PG2, MG1, MG2, and308

MG3 are the smallest for the wavelet-based and MPH-based distances. For PG2, the values309

are close to those of the REF distances, while the MG1, MG2, and MG3 ensembles have310

mean values that are lower (MG2) or slightly higher (MG1 and MG3) than the acceptance311

threshold. The connectivity-based distance values are more scattered within each scenario,312

but most of the PG1, PG2, PG3, and all but one of the MG2 realizations are below the ac-313

ceptance threshold. The OB1, OB2, and OB3 scenarios are the furthest from the acceptance314

thresholds for all distance measures considered.315

316

To better understand the generally-better performance of the PG-family as judged by317

the connectivity-based distance, we present connectivity functions in Figure 7 for some of318

the sections displayed in Figure 5. For the Class 1 components, the horizontal connectivity319

function (Figure 7a) is best reproduced by PG2, while the connectivity is overestimated320

for MG2 (by ≈ 0.08) and severely overestimated for OB1 (by 0.1 to 0.5). The vertical321

connectivity function (Fig. 7b) is best reproduced by MG2, while it is slightly too high for322

PG2 (at most ≈ 0.05 between 0.4 m and 0.9 m) and far too high for OB1 (by 0.1 to 0.2). For323

the horizontal and vertical connectivity functions of the Class 2 components (Figure 7c-d),324

MG2 is found to reproduce them the best, while the connectivity is slightly lower for PG2325

(by ≈ −0.02) and much too small for the OB1 scenario (up to -0.2).326

327

To highlight the relationships between the distance types, we display three scatter plots328

(Figure 8). A piecewise linear correlation between wavelet-based and multiple-point his-329

togram distances is clearly visible in Figure 8a, in which a first segment corresponds to the330

PG and MG scenarios and a second to the OB scenarios. It also shows the ability of wavelet-331

based and multiple-point histogram distances to distinguish between the different conceptual332
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Figure 7: Example of connectivity functions for a selection of binary geophysical images
(REF01, PG2 sim, MG2 sim & OB1 sim from Figure 5); (a) horizontal connectivity func-
tions for Class 1 (white) components; (b) horizontal connectivity functions for Class 1 (white)
components; (c) horizontal connectivity functions for Class 2 (gray) components; (d) hori-
zontal connectivity functions for Class 2 (gray) components.

models and some scenarios that cluster in different groups. A log-linear relationship with a333

low correlation between the connectivity- and the wavelet-based distances is visible in Fig-334

ure 8b. A piecewise and scattered log-linear relationship between the connectivity- and the335

MPH-based distances is visible in Figure 8c, in which the first segment corresponds to the336

PG and MG scenarios and a second to the OB scenarios.337

338

Figure 8: Distance to Tagliamento reference section REF01 visualized as scatter plots
grouped by scenario: (a) MPH-based distance as a function of wavelet-based distance; (b)
connectivity-based distance as a function of wavelet-based distance; (c) connectivity-based
distance as a function of MPH-based distance. REF denotes other binary images processed
from additional GPR profiles (REF02-REF05) acquired at the study site and the red line
corresponds to the acceptance threshold.

For each distance measure considered, the distances for all pairs of images are used to esti-339

mate the density of each scenario in the low dimensional space obtained by MDS. To estimate340
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the updated probability of each scenario (Table 4), we limit the number of dimensions used341

such that 95% of the information is recovered. To achieve this, the two first MDS dimensions342

are sufficient for the wavelet-based distance, 14 are necessary for the multiple-point-based343

distance, and three are enough for the connectivity-based distance. For each distance, the es-344

timated probability for a given scenario is proportional to the density of the cloud composed345

by the scenario realizations at the location of the reference section REF01 in the MDS space.346

It informs about the probability that a realization from a scenario is closer to the reference347

section REF01 relative to the considered scenarios. Considering the wavelet-based distance,348

with an estimated probability of 85.9%, PG2 is the most probable scenario and MG1 is the349

second most likely one (14.1%). For the multiple-point histogram distance, PG2 is by far350

the most probable scenario (99.9%). For the case of the connectivity-based distance, MG2351

is judged more likely (47.9%) than PG2 (33.6%) followed by PG1 (12.7 %), because it has352

fewer high and also the smallest distance value. If we average the probabilities over the types353

of distances considered, the scenarios that produce realizations that are the closest to the354

Tagliamento reference section REF01 is PG2, followed by MG2.355

Table 4: Estimated scenario probabilities (%) computed for each type of distance by adaptive
kernel smoothing on MDS representations of the simulated and reference sections; values
smaller than 0.1% are not displayed; for each type of distance (row) the probabilities sums
to 100%.

Scenarios
Distance Based on PG1 PG2 PG3 MG1 MG2 MG3 OB1 OB2 OB3
Wavelet Decomposition - 85.9 - 14.1 - - - - -
Multiple-Point Histogram - 99.9 - - - - 0.1 - -
Connectivity Function 12.7 33.6 5.5 - 47.9 - 0.3 - -
Average 4.2 73.1 1.8 4.7 16.0 - 0.1 - -

5 Discussion356

5.1 Geological scenario falsification at the Tagliamento study site357

By using three different distance metrics quantifying the agreement between field and simu-358

lated GPR sections, we reduce geological conceptual model uncertainty at the Tagliamento359

site. The direct analysis of the distances (Figures 6 and 8) and the estimated probabilities for360

each type of distance (Table 4) led to similar conclusions. For the nine scenarios considered,361

two are judged significantly more suitable than the others: the PG2 scenario is the most suit-362

able (its realizations are the closest to the Tagliamento reference section REF01), followed363

by the MG2 scenario. For both the wavelet-based and multiple-point histogram distances,364

PG2 is the most probable scenario. In the case of the connectivity-based distance, MG2 is365

judged the most probable scenario, followed by PG2.366

367
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To understand these rankings, let us consider the binary reference section (Figure 5a).368

It reveals that: i) Class 1 components (main reflectors) have very small, small, intermediate369

and long length scales; ii) Class 1 components are sub-horizontal, and smaller components370

might present a stronger dip; iii) the interface between Class 1 and Class 2 components is371

irregular; iv) Class 2 components form a connected matrix. For the PG2 scenario realizations372

(Figure 5c), characteristic (i), (ii) & (iv) are present, but the interfaces are smooth. For MG2373

scenario realizations (Figure 5f), characteristic (i), (iii) & (iv) are present, but the Class 1374

components are too horizontal. The fact that scenarios PG2 and MG2 realizations fulfill375

three of these four visual criteria might explain the acceptable distance of their realizations376

to the Tagliamento reference section REF01. For the OB3 scenario realizations, none of the377

four criteria is fulfilled, which results in high values for all types of distance measures. From378

these results, it seems that the representation of cross-stratified deposits, interface roughness,379

and partially disconnected interfaces are important to reproduce reflection GPR sections at380

the Tagliamento site.381

382

None of the proposed OB scenarios match the Tagliamento reference section REF01. We383

see two main possible explanations: 1) the geometrical parameters of this conceptual model384

were not well chosen, that is, the size of the scours and the layer thickness might be too large,385

the density of scours too small, the inner structure of the scours (i.e. inside the truncated386

semi-ellipsoids) have too thick deposits, when compared to the PG scenarios; or 2) this con-387

ceptual model is inherently unsuitable for this site (e.g., interfaces at porosity changes are388

too clean, without any contour irregularities or apparent roughness when compared to MG389

scenarios). This discussion also highlights that identifying the main characteristics present in390

the reference images and analyzing their absence or presence in images derived from various391

scenarios may help to propose new conceptual models or scenarios. This suggests a possible392

iterative process in which initial results are used to guide improvements in the conceptual393

models considered.394

395

5.2 Comparison of distance measures396

We now interpret our results to identify which distance-types are the most suitable. We397

observe a piecewise linear relationship between the wavelet-based distance and MPH-based398

distance (Figure 8a). Since there is less overlap between scenarios along the wavelet-based399

distance axis (Figure 8a-b), we conclude that it is more suitable than the MPH-distance to400

rank geological conceptual models and, to a lesser extent, their most appropriate parame-401

ters. However, the MPH-based distance is also able to classify models according to their402

geological conceptual model and scenarios (Figure 8a and c), but it performs less well than403

the wavelet-based distance to distinguish scenario PG3 from OB scenarios. This distance404

appears to better account for local structures (similar patterns between PG and OB) while405
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the wavelet-based distance better accounts for global structures (different shapes: truncated406

ellipsoids versus the structures of PG models). Indeed, MPS algorithms often have difficul-407

ties in reproducing large scale connectivity even when using multi-grid levels (Strebelle, 2002;408

Mariethoz et al., 2010; Rongier et al., 2013).409

410

The connectivity-based distances differ the most from the other distances and they dis-411

play a weak log-linear relationship with the wavelet-based distances. They are effective in412

rejecting the MG1, MG3 and all OB scenarios. The connectivity-based distance clearly sep-413

arate the OB models from the other model classes (as shown by Figures 6c and 8b-d) as the414

reflectors (Class 1) in the OB models are much too connected in length. A corollary of this415

is that the background Class 2 is less connected (see Figure 7).416

417

Overall, the results suggest that the wavelet-based distance provides the best ability for418

scenario differentiation. The connectivity-based distance is also interesting because it adds419

information and helps refining the scenario selection. Moreover, the connectivity-based dis-420

tance is particularly interesting if the final application includes transport simulations, whose421

outcome strongly depends on property connectivity. We also would like to point to previous422

work (Pirot et al., 2014), which showed that the MPH-based distance is more sensitive to the423

sign of property contrasts while wavelet-based distance is more sensitive to the magnitude of424

property contrasts. Other fit-for-purpose distances could be considered and global integrative425

distances, i.e. that combine multiple global distance types could also be useful.426

427

5.3 Influence of ranking method and parameter choices428

We have seen that scenario falsification can be performed either by direct analysis of the dis-429

tances or by estimation of updated probabilities per scenario using MDS followed by adaptive430

kernel smoothing. On the one hand, direct analysis of distances requires several reference431

images to define a reasonable acceptance threshold. On the other hand, the estimations of432

updated probabilities per scenario necessitate the computation of distances for all pairs of433

images within the ensemble composed of reference and simulated images. Since this cost434

increases as the square of the number of images, this can become computationally very de-435

manding. Furthermore, rankings and falsifications based directly on distances of scenario436

probability estimations are relative to the ensemble of considered scenarios. In addition,437

small distances do not imply that the scenario sections are “surrounding” or “containing” the438

reference section in a space mapping the sections (see Figure 9).439

Each type of distance requires specific parameter choices. Wavelet-based distances are pa-440

rameterized by the type of wavelet used (Haar in our case), by the number of decomposition441

levels (two here) and by the number of bins (50 here). We tested (not shown) the sensitivity442

to different wavelets (e.g., Daubechies, Coiflets, Symlets, Mexican Hat) and obtained similar443
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Figure 9: Mapping of the simulated and reference sections in the two first dimensions of the
MDS space; (a) for the wavelet-based distance; (b) for the multiple-point based distance; (c)
for the connectivity-based distance.

results. MPH-based distances are parameterized by the pattern size and geometry (5×5 pix-444

els window), the number of multigrid levels (three) and the number of most frequent patterns445

(30). A number of three (Zhang et al., 2006; Straubhaar et al., 2011, 2013) or four (Strebelle,446

2002; dell’Arciprete et al., 2012) multigrid levels is commonly chosen to generate realizations447

with tree- or list-based MPS algorithms to capture patterns at multiple scales. The pattern448

geometry is a basic square which does not favor any anisotropy. The pattern size is kept449

relatively small to ensure the possibility to encounter similar patterns between images. A450

smaller pattern size (3× 3 pixels window) was tested, but led to similar results. The number451

of most-frequent patterns is limited to 30 to avoid the comparison of single occurrences that452

are present only in one of the images. Increasing the number of most-frequent patterns would453

increase unnecessarily all distances. Decreasing the number of most-frequent patterns would454

reduce the distances between images. Connectivity-based distances are parameterized by in-455

vestigated directions and lag width, similarly to the computations of semi-variograms. Here456

we did not vary these parameters, because the connectivity functions (Figure 7) appears to457

be well defined.458

459

5.4 Perspectives460

In the presented case-study, we threshold the reflection GPR sections as part of the data461

processing (to focus on the main aspects of the reflectors) and limit our comparison to binary462

geophysical images. One could also apply the proposed methodology to continuous images.463

It would then be straightforward to compute a distance based on wavelet decomposition.464

However, multiple-point histograms and connectivity functions as defined in Section 2 are465

applicable to discrete domain images only. One solution is to threshold the continuous im-466

ages, as we did here, in a reasonable number of classes, to retrieve and compare the most467
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important features from the images. Of course, this implies some qualitative assessment of468

which features are the most important ones, depending on the target of modeling. Another469

possibility is to adapt the definition of the multiple-point histogram and of the connectivity470

functions, such that they can be applied to continuous images. For instance, we could rely471

on the definition of distances between continuous patterns (Mariethoz et al., 2010) and on472

the identification of pattern clusters to build a multiple-point histogram between continuous473

images; the pattern clusters could be referred to as the histogram bins, and a pattern could be474

assigned to the closest bin/cluster; it would though depend on the number of clusters and how475

they are identified. Regarding the connectivity-based distance, the simplest option would be476

to define the connectivity as a function of the threshold (Meerschman et al., 2013; Renard477

and Allard, 2013), as the probability that two pixels are both above or both below a threshold.478

479

While migrated GPR sections obtained from field data are somehow affected by 3D geolog-480

ical heterogeneities, the simulation of GPR reflection sections is performed from 2D porosity481

sections and does not account for 3D effects. The binary thresholding is a way to focus on482

the reflections of interest and to reduce the impact caused by the inherent limitations of the483

forward modeling, such as considering 3D effects negligible, grid resolution, different coupling484

effect at the surface, non-horizontal antennae at all times due to small changes in topogra-485

phy, approximations of the propagated wave, estimation of the attenuation with depth, etc.486

A consequence is that we loose some information about porosity contrasts. Here, it allows487

to simulate GPR reflection sections very efficiently, and thus to perform conceptual model488

uncertainty reduction. A way to account for 3D effects would be to perform full-waveform489

GPR modeling over 3D porosity models. It would tremendously increase the computational490

requirements, and consequently would make conceptual model selection and falsification very491

costly. However, characterizing the effects of such model simplifications could improve (quan-492

titatively) our understanding of GPR modeling errors and allows us to mitigate potential bias493

effects.494

6 Conclusions495

We have demonstrated how global distances (defined from wavelet decomposition, multiple-496

point histograms and connectivity analysis) between geophysical images allowed us to falsify497

seven out of nine considered geological scenarios at the Tagliamento site. By considering498

GPR sections from the Tagliamento aquifer, we find that cross-stratified deposits and irregu-499

lar property interfaces are important features to reproduce. An underlying assumption of this500

work is that the results obtained by model comparison with geophysical data are informative501

for subsurface flow and transport. This assertion should be tested by tracer tests, that are,502

up to date, not available at the Tagliamento site. We have found that scenario falsification503

can be performed either by direct analysis of the distances or by estimation of updated prob-504

abilities. Direct analysis is faster, more intuitive and rely on the definition of a subjective505
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acceptance threshold that is informed by the magnitude of distances computed between sev-506

eral reference sections. Computation of scenario probabilities using MDS to map geophysical507

images as points in a lower dimensional space, followed by adaptive kernel smoothing to es-508

timate scenario probabilities, is more advanced and requires more computing resources. The509

use of distance comparisons in geophysics also serves to select new parameter sets or to pro-510

pose new geological conceptual models, in order to further close the gap between simulated511

sections obtained from an initial set of scenarios and the reference sections. This approach512

can be used for any type of geophysical images, as long as the geophysical modeling and513

processing step can be simulated in an effective and trustworthy way. The most convenient514

distance of those considered is the wavelet-based distance, which is the fastest to compute515

and it offers the best clustering of scenarios. The connectivity-based distance add further516

independent information and should be considered if structure connectivity is expected to517

have an impact on the prediction variables of interest. This work proposes a way forward518

to use uninterpreted GPR data, in contrast to hand-drawn geological deposit interpretation,519

for quantitative subsurface characterization.520
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