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1. Ultrasound elastography

Ultrasound (US) elastography noninvasively measures tissue
stiffness tissue by inducing and measuring tissue deformation
[1]. Stiffness is the tendency of tissue to resist deformation induced
by an applied force and is assessed by Young’s elasticity modulus,
defined as:

E ¼ s=e

where s is the stress (Pa), corresponding to the normalized force,
and e is the strain (unitless), corresponding to the deformation of
the tissue due to an applied force. This US technique was first
introduced in the early 1990s with in vitro experiments [2], then
gradually expanded into clinical practice for diagnostic and
sometimes prognostic purposes in the fields of senology,
hepatology, thyroid disease, prostate disease and musculoskeletal
conditions [3,4].

Since 1990, different ultrasound elastography (UE) techniques
have been used:

Strain imaging, which reveals physical tissue displacement, is
estimated by axial deformation parallel to the externally applied
force exerted on the body surface using the ultrasound probe
(Fig. 1a). This method provides a qualitative evaluation of stiffness
[5]. Two approaches for strain imaging using ultrasound techni-
ques were developed: strain elastography (SE) and acoustic
radiation force impulse (ARFI) strain imaging. For strain elasto-
graphy, tissue displacement is generated by manual external
compression with an ultrasound transducer [2] or by an internal
physiologic (cardiovascular) motion to assess deeper organs
[6]. For ARFI imaging, the force is produced by acoustic ‘‘pushing
pulse’’. Different methods exist to measure displacement, such as
radiofrequency echo correlation-based tracking or Doppler pro-
cessing [7]. As the manual or physiological stresses are not
quantifiable, the measured strain provides a qualitative assess-
ment of the stiffness, or a pseudo-quantitative measure (strain
ratio) represented on a color map called an elastogram.

Shear wave imaging uses dynamic stress to generate a shear
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A B S T R A C T

Ultrasound elastography is a recently developed method for accurate measurement of soft tissue

stiffness in addition to the clinician’s subjective evaluation. The present review briefly describes the

ultrasound elastography techniques and outlines clinical applications for tendon, muscle, nerve, skin and

other soft tissues of the hand and upper limb. Strain elastography provides a qualitative evaluation of the

stiffness, and shear-wave elastography generates quantitative elastograms superimposed on a B-mode

image. The stiffness in degenerative tendinopathy and/or tendon injury was significantly lower than in a

normal tendon in several studies. Elastography is also a reliable method to evaluate functional muscle

activity, compared to conventional surface electromyography. The median nerve is consistently stiffer in

patients with carpal tunnel syndrome than in healthy subjects, on whatever ultrasound elastography

technique. Elastography distinguishes normal skin from scars and can be used to evaluate scar severity

and treatment. Elastography has huge clinical applications in musculoskeletal tissues. Continued

development of systems and increased training of clinicians will expand our knowledge of elastography

and its clinical applications in the future.
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erformed with the FibroScan1 machine (Echosens, Paris, France),
omposed of a vibration-controlled probe [8]. Secondly, ARFI
Acuson S2000; Siemens Medical Solutions, Berlin, Germany) can
e used, a portion of its longitudinal waves being converted to

shear waves perpendicular to the longitudinal waves [9]. On the
hypothesis of an isotropic, homogeneous, incompressible medium,
shear wave velocity (SWV) is measured and converted to Young’s
modulus (E) using the equation: E = 3 r c2 where r is the density

ig. 1. Ultrasound elastography: strain elastography (a) and shear wave elastography (b). The colored region represents the 2D quantitative elastogram superimposed on a B-

ode image with a color scale (see top right). The software allowed us to measure the mean stiffness (Young’s modulus, in kPa) value and the shear wave velocity (m.s�1) of

he flexor pollicis longus (asterisk) inside a circular region of interest (ROI), (c).
ig. 2. Shear wave elastography of human flexor pollicis longus tendon in physiological conditions at rest (210.1 kPa, 8.4 m.s�1) (a), active flexion (490 kPa, 12.7 m.s�1) (b)

nd passive extension (486.6 kPa, 12.7 m.s�1) (c). Patient with anterior interosseous nerve palsy (second row). Shear wave velocity (SWV) and stiffness does not increase

etween the rest position (175.7 kPa, 7.7 m.s�1) (d) and active flexion (172.5 kPa, 7.6 m.s�1) (e). Hyperintensity in flexor pollicis longus and pronator quadratus muscles

arrow) are revealed on 3 T MRI (f). Patient with tendon rupture after repair of the flexor digitorum profundus of the index (third row). Re-tear is difficult to identify in B-mode

g) proximal to the tear. Stiffness maps show lower values for the flexor digitorum profundus of the index (66.1 kPa, 4.7 m.s�1) (h) compared to the flexor digitorum

uperficialis of the index (378.5 kPa, 11.2 m.s�1) (i).
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and c the shear wave velocity. Thirdly, in 2D shear wave
elastography, acoustic radiation force is also used (Fig. 1b), with
the Aixplorer ultrasound system (Supersonic Imagine, Aix-en-
Provence, France): multiple focal zones are stimulated and this
creates a nearly cylindrical shear wave cone [10], enabling real-
time 2D monitoring of shear waves and generating quantitative
elastograms superimposed on a B-mode image (Fig. 1c).

2. Elastography and tendons

Tendon tear and histological modifications (e.g., disintegration
of collagen fibers or mucoid degeneration) in degenerative
tendinopathy are expected to lead to a localized decrease in
tendon stiffness [11] and can be detected by UE earlier than by
conventional ultrasonography (US) [12]. Decreased stiffness in
degenerative tendinopathy and/or tendon injury compared to
healthy tendon were demonstrated in several studies [12–16] but,
in some cases of tendinopathy (long head of the biceps tendon), UE
analysis provided conflicting results [17]. Despite the differing
data, shear wave elastography (SWE) seems to be a reproducible
technique to evaluate tendon elasticity, with low inter-observer
differences [18,19].

SWV in human hand tendons in physiologic in vivo conditions
(Figs. 2a, 2b, 2c) was analyzed in various studies [20]. Experimental
studies using porcine flexor tendons demonstrated that the
stiffness of a partially torn tendon is lower in the vicinity of the
injury and is dependent on the size of the tear [21]. Moreover, the
stiffness of a tendon damaged by collagenase solution was
significantly lower than in a normal tendon [22]. Fluid accumula-
tion and hematoma associated with acute tear appear as signal

void areas on SWE [13,15]. After flexor tendon repair, re-tear can be
much more difficult to assess in B-mode. SWE of the flexor tendon
proximal to the lesion systematically demonstrated a significant
lower SWV compared to the healthy side (Figs. 2g, 2h, 2i). Injured
flexor hand tendons after surgical repair showed impaired regional
elasticity and appeared locally stiffer than the healthy side on SWE.
The clinical significance of these findings was that the tendon
would glide less in the rigid local zone, and authors advocated
focusing rehabilitation on these stiffer zones, to improve gliding
[20].

Turkay et al. [13] compared SWE acquisitions performed on
40 patients suffering from De Quervain tenosynovitis, versus
40 healthy volunteers. Young’s modulus values in healthy tendons
of the first extensor compartment were 69.17 � 22.45 kPa whereas
pathologic tendons showed lower values of 29.75 � 8.02 kPa.

Medial and lateral epicondylitis were analyzed in several
studies, all suggesting that pathological tendons are softer than
healthy tendons [14,16,23–25]. Park et al. [25] concluded that UE
was more accurate than US by 7.1% for epicondylitis diagnosis,
sensitivity and specificity being 96% and 89%, respectively.
Moreover, SWV increased after conservative treatment in patients
with lateral epicondylitis [14]. The combined modalities of UE and
B-mode ultrasonography showed significant improvement in
agreement between imaging and histologic results compared with
each modality alone [16] in common flexor tendinopathy at the
medial side of the elbow.

In a recent systematic review of rotator cuff tears [26], SWE was
successfully used to identify the location and degree of supraspi-
natus tendon tear, improving the value of ultrasound. Patients with
rotator cuff tears had a lower mean SWV values in muscle and
Fig. 3. Intraoperative photographs of transfer of the extensor indicis proprius to the extensor pollicis longus using ultrasound shear wave elastography (a). Differences in

stiffness values at the various stages of surgery were obtained from rest (b) to active extension during the tendon transfer (c) and at rest after tendon transfer (d).
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endon under active conditions. The intraclass correlation coeffi-
ient was excellent (0.96). Supraspinatus tendon stiffness in-
reased between 8 days and 24 weeks after repair [26].

. Elastography and muscles

With Young’s modulus ranging from 5 to 40 kPa at rest and up
o 300 kPa during passive stretching or active contraction, SWE is a
alidated method to assess muscle stiffness [27,28]. Reliability for
easuring muscle stiffness was demonstrated for several muscle

roups, including lower limb, trunk and upper limb muscles,
ncluding the intrinsic muscles of the hand [29,30]. Furthermore,
tudies suggested using SWE to monitor muscle activity or muscle
orce and to demonstrate contraction of accessory muscles
29,31]. SWE was also found to be a reliable method to evaluate
unctional muscle activity compared to the physiological activity
ecorded with conventional surface electromyography [32]. SWV
n muscle seems to be influenced by gender, age and dominance
32,33]. Moreover, studies highlighted the importance of probe
rientation, as stiffness is lower with a perpendicular than a
arallel orientation to the muscle fibers [34,35]. This result shows
he anisotropic behavior of the skeletal muscle. Parallel probe
rientation is more valid and reliable for SWV measurement.

Increased stiffness values, related to muscle spasticity, were
hown in patients with neuromuscular diseases such as cerebral
alsy [36], Duchenne muscular dystrophy [37] in passive state,
arkinson’s disease or neonatal brachial plexus palsy [38]. SWE
rovides an additional objective tool for spasticity evaluation,
argeting the right skeletal muscle in a spastic upper limb [39], and

could be helpful to assess results of botulinum toxin injection [40]
or surgery.

Li et al. performed SWE of the thenar muscle in hemiplegic
patients. The plegic side showed lower stiffness than the healthy
side. Changes in muscle stiffness over follow-up could be used as
an objective assessment of rehabilitation [41].

In 2017, Lamouille et al. reported assessment of in vivo muscle
tension during transfer of the extensor indicis proprius to the
extensor pollicis longus (Fig. 3). SWE measurements were
obtained at different stages of surgery, including at rest before
tendon transfer, during active extension and at rest after transfer.
Results showed differences in stiffness values at the various stages
of the procedure, providing new insights to improve treatment
[42].

Due to the frequency of degenerative rotator cuff lesions,
shoulder muscles are the most widely analyzed structures in the
upper limb. In non-pathologic shoulders, SWE supraspinatus
muscle values gradually decreased with increasing passive
abduction of the shoulder. In large to massive tears, supraspinatus
stiffness did not vary from adduction to abduction [43]. After
surgical rotator cuff repair, the contractile behavior of the
supraspinatus muscle increased from 6 weeks to 3 months after
surgery and stiffness reached a steady state after 3 months.
Opposite variation was found for deltoid muscle activity, which
reached the same level as healthy muscle after 6 months [44]. This
phenomenon is explained by a compensatory role of the deltoid in
rotator cuff injury. In addition to human muscles, SWE was used to
characterize muscle stiffness in small rodents to monitor the effect
of treatment [45].
ig. 4. Decompression of the ulnar nerve at the elbow with subcutaneous transposition and anterior stabilization with a fascial sling (a). Boxplot of ulnar nerve stiffness (kPa)

 08 and 1208 elbow flexion on the operated (red) and non-operated side (blue) (b). Elastogram of the ulnar nerve after anterior transposition at rest (c) and in 1208 elbow

exion (d).
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4. Elastography and nerves

For many years, electroneuromyography (ENMG) was the main
diagnostic tool for peripheral neuropathy. The, B-mode ultrasound
image and doppler examination were found to be of interest in
carpal tunnel syndrome (CTS) diagnosis showing 1) greater nerve
cross-sectional area proximal to the region where the nerve is
compressed, 2) reduced nerve mobility, 3) modified structural
properties with variation in echogenicity, and 4) increased
vascularity of nerve. SWE in addition to B-mode ultrasound is
reliable for diagnosing entrapment neuropathy, with the advan-
tages of being noninvasive, accessible and fast. Most upper-limb
nerve SWE studies were performed on the median nerve for CTS.
Authors demonstrated that long-term edema or high carpal tunnel
pressure could lead to increase median nerve stiffness [46]. The
reliability and feasibility of stiffness measurement on SWE in
subjects with healthy median nerve (N = 40) showed excellent
inter- and intra-observer agreement (0.852–0.930), and no
difference between bilateral forearm measurements [47]. Atten-
tion must be paid to limb positioning during SWE measurement, as
it directly affects nerve tension and stiffness [48]. A meta-analysis
of 17 studies using sonoelastography to image the median nerve at
the wrist (N = 1401 wrists) confirmed that the nerve is consis-
tently stiffer in patients with CTS than healthy subjects, whatever
the ultrasound elastography technique [49]. Moreover, studies
successively identified nerve disease severity through different
stages [50,51]. Thus, SWE enabled classification of CTS as
effectively as gold-standard electrodiagnosis, with cases stratified
as mild, moderate or severe based on median nerve stiffness. This
was not achievable using B-mode US alone. Both median nerve
cross-sectional area at the wrist and shear wave velocity were
reduced 1 week after surgical carpal tunnel release, reflecting
nerve recovery [52]. However, cut-off values for CTS diagnosis
differ between authors, varying from 40.4 kPa to 79 kPa
[46,53]. Also, Sugiyama et al. [54] proposed SWE as a noninvasive
objective quantitative evaluation test for median nerve follow-up
after volar locking plate osteosynthesis of distal radius fracture,
helping to decide on timing for material removal and neurolysis.

For ulnar neuropathy at the elbow and in Guyon’s canal, SWE is
a new reliable method to support diagnosis [55,56]. Ulnar nerve
stiffness Young’s modulus >61 kPa and stiffness ratios of the ulnar
tunnel to the distal arm and to the mid-arm of 1.68 and 1.75,
respectively, provided 100% specificity and sensitivity for detec-
tion of ulnar neuropathy at the elbow [55]. Also, SWE can be used
to differentiate ulnar neuropathy in the ulnar tunnel from
asymptomatic ulnar nerve with medial epicondylitis and healthy
uncompressed ulnar nerve [57]. Patients with unilateral ulnar
tunnel syndrome showed greater cross-sectional area and stiffness
in the affected side for all positions: 458extension, 908 flexion and
in maximum flexion of the elbow [58]. In patients with ulnar nerve
decompression associated with anterior transposition, postopera-
tive ulnar nerve stiffness increased with elbow joint extension
(Fig. 4). However, on the non-operated side, ulnar nerve stiffness
increased with elbow flexion [59].

Recently, SWE was used before ultrasound-guided perineural
hydrodissection to identify the level of stiffness of the scar
surrounding the radial nerve in two cases of radial nerve palsy after
humeral shaft fracture [60].

systemic inflammation, lipodermatosclerosis or risk of ulceration
[62], but it may also find applications in esthetic medicine.

SWE distinguishes normal skin from scars and could be used to
evaluate scar severity, which could be important for patient care
and treatment. Additionally, intra- and inter-observer reliability
were excellent, even when performed by a novice clinician versus
an experienced sonographer. A direct linear relationship was
established between scar thickness, scar pliability and SWV
[63]. Likewise, SWE was used to quantify keloid response to
treatment after intralesional corticosteroid injection [64], with no
significant difference in thickness between normal skin and
treated keloids. SWE values of treated keloids were significantly
lower but still higher than normal skin.

Conservative treatment of fingertip amputation using occlusive
dressings can lead to soft tissue regeneration. Ultrasonography and
SWE were performed on regenerated fingertips [65]. Compared to
uninjured fingers, there were no differences in pulp thickness, but
vascularization and stiffness were both significantly greater after
fingertip regeneration.

SWE is also an objective tool to assess skin elasticity after flap
reconstruction. In our clinic, we used UE to measure the stiffness of
the skin of the hand after fascia superficialis flap surgery following
a severe hand trauma (Fig. 5). To our knowledge, this is the first
reported case. To date, a single study conducted by a team of plastic
surgeons focused on elastography applied to this field [66]. They
used SWE on subcutaneous fat after deep inferior epigastric
perforator (DIEP) flap and found a positive correlation between flap
Fig. 5. Temporoparietal fascial free flap (a) for coverage of a large defect in the dorsal

aspect of the hand (b). Combination of Matriderm1 and skin graft. Clinical outcome

at 6 months postoperatively (c, d). Similar skin shear wave velocity and elasticity

observed in the pathologic (e) and contralateral sides (f): respectively, 17.3 kPa,

2.4 m.s�1, and 16.8 kPa, 2.4 m.s�1.
5. Elastography and skin

The use of high-frequency ultrasonographic transducers has
made elastographic assessment of the skin possible [61]. Most of
the previous studies using elastography for skin evaluation
included patients with cancer, connective tissue disease, chronic
5
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eight and fat tissue stiffness. This result is particularly relevant
ecause fat induration and necrosis are common complications
fter breast reconstruction with DIEP flaps but are currently only
valuated clinically.

. Elastography and other indications in the hand and upper
xtremity

Extrapolating results from the above-mentioned tissues sug-
ested that UE could be a useful way to assess ligament health and
ntegrity. SWV in the ulnar collateral ligament of the elbow on the
ominant side was lower in baseball pitchers at midseason
67]. This functional decline in the ulnar collateral ligament was
robably associated with structural modification. Another study
sed SWE to quantify the central band stiffness of the interosseous
embrane in forearms placed in different positions of pronation-

upination [68]. Stiffness measurements were reproducible
etween examiners. The authors concluded that elastography
ould help guide diagnosis and therapy in interosseous membrane

To date, measurement methods for acute compartment syndrome
are invasive and clinical diagnosis may be challenging. According to
Zhang et al. [70], muscle stiffness indirectly reflects intra-compart-
mental pressure, and SWE may be a noninvasive quantitative
diagnostic tool in compartment syndrome. In a short study [70],
muscle stiffness was significantly greater than on the unaffected side
in 4 patients with acute compartment syndrome, but more data are
needed before a quantitative cut-off can be established. Chronic
compartment syndrome can also be explored using SWE (Fig. 6).

In the oncological field, stiffness values are greater for
malignant lesions (breast, thyroid, prostate, skin, lymph node)
than for benign masses [71–74]. SWE shows higher sensitivity and
specificity than traditional B-mode US imaging to identify
malignant lesions [72] and can avoid risky invasive procedures
such as biopsies. Musculoskeletal tumors encompass a vast array
of distinct tumor types, the majority of which are benign.
Malignant musculoskeletal tumors may express a wider range
of stiffness values, due to their more heterogeneous structure
compared to benign lesions [75]. However, with only a few studies

ig. 6. Patient with chronic compartmental syndrome of the right forearm confirmed on intracompartmental pressure monitoring (Compass1). B-mode of the transverse/

xial image of the right forearm (a). Shear wave elastography measurement of the antebrachial fascia showed stiffness of 36.7 kPa at rest (b), increasing to 85.6 kPa (b) and

89.4 kPa (c) after 10 min and 20 minutes’ muscle contraction exercise, respectively. Then, the patient stopped, because of pain and tingling in the fingers (d).
esions.
B-mode US imaging for diagnosis of trigger finger showed A1

ulley thickening. Additional UE acquisitions showed A1 pulley
tiffness. These two parameters tend to be alleviated by
orticosteroid injection, and are thus contributive for treatment
ollow-up [69].
6

on this topic [75–79], no clear correlation emerged between
stiffness and malignancy in musculoskeletal tumors [75–77].

In a recent retrospective study [80], the combination of
elastography with 2D imaging and color flow imaging achieved
excellent diagnostic accuracy for schwannoma in patients with
soft-tissue masses in the limb.
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Finally, elastography can be also used for vessel stiffness
evaluation. For example, SWE can distinguish between acute and
chronic clots by characterizing tissue stiffness in deep vein
thrombosis. It was also demonstrated that variation in stiffness
in brachial arteries was significantly less in patients with known
cardiovascular disease than in healthy controls. This could be an
early sign of atherosclerosis [81].

7. Conclusion

Ultrasound elastography is an accessible non-invasive imaging
modality that can be used to measure stiffness in a variety of soft
tissues. With the growing interest in developing new elastography
applications in the hand and upper extremity, technical limitations
concerning reproducibility and repeatability should be kept in
mind. This technique has a promising future, but a significant
amount of work remains to be done. Protocols must be
standardized, as joint positioning affects SWV measurement in
the surrounding soft tissue. In addition, the selection of regions of
interest (ROI) is operator-dependent and may introduce variabili-
ty. Also, several commercial systems exist, using different probes
with different frequency ranges, which can impact SWV values.

Strain elastography provides only qualitative values of stiffness
and the external force is difficult to reproduce or is variable over
time, and artifacts are liable to be generated. SWE takes a simplistic
view of soft-tissue mechanical properties as being isotropic,
homogeneous, linear elastic and incompressible, to facilitate the
process of imaging, whereas tissues are in fact anisotropic,
heterogeneous, viscoelastic, and skeletal muscle, for example, is
compressible when associated vascular and lymphatic compo-
nents are taken into account.

Despite these limitations, UE demonstrated important corre-
lations with diffuse and focal disease states in multiple soft tissues
of the upper limb. UE should have huge clinical applications in
musculoskeletal tissues. Continued development of systems and
increased training in UE will expand our knowledge of elasto-
graphy and its clinical applications in the future.
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