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Abstract: Define a γ-reflected process Wγ(t) = YH(t)− γ infs∈[0,t] YH(s), t ≥ 0 with input process {YH(t), t ≥

0} which is a fractional Brownian motion with Hurst index H ∈ (0, 1) and a negative linear trend. In risk

theory Rγ(u) = u −Wγ(t), t ≥ 0 is referred to as the risk process with tax payments of a loss-carry-forward

type. For various risk processes numerous results are known for the approximation of the first and last passage

times to 0 (ruin times) when the initial reserve u goes to infinity. In this paper we show that for the γ-reflected

process the conditional (standardized) first and last passage times are jointly asymptotically Gaussian and

completely dependent. An important contribution of this paper is that it links ruin problems with extremes of

non-homogeneous Gaussian random fields defined by YH which are also investigated in this contribution.
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1 Introduction and Main Result

Let {XH(t), t ≥ 0} be a standard fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) meaning that

XH is a centered Gaussian process with covariance function

Cov(XH(t), XH(s)) =
1

2
(t2H + s2H− | t− s |2H), t, s ≥ 0.

We shall define the γ-reflected process with input process YH(t) = XH(t)− ct by

Wγ(t) = YH(t)− γ inf
s∈[0,t]

YH(s), t ≥ 0, (1)

where γ ∈ [0, 1] and c > 0 are two fixed constants.

Motivations for studying Wγ come from both risk and queuing theory. For instance, in queuing theory W1 is
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the so-called workload process (or queue length process), see e.g., Harrison (1985), Asmussen (1987), Zeevi and

Glynn (2000), Whitt (2002) and Awad and Glynn (2009) among many others. In advanced risk theory the

process Rγ(t) = u −Wγ(t), t ≥ 0, u ≥ 0 is referred to as the risk process with tax payments of a loss-carry-

forward type, see e.g., Asmussen and Albrecher (2010).

Recently Hashorva et al. (2013) studed the asymptotics of the probability P
{

supt∈[0,T ]Wγ(t) > u
}

as u→∞

for both T <∞ and T =∞. Continuing the investigation of the aforementioned paper in this contribution we

shall investigate the approximation of first and last passage times of Wγ . Specifically, define the first and last

passage times of Wγ to a constant threshold u > 0 by

τ1(u) = inf{t ≥ 0,Wγ(t) > u} and τ2(u) = sup{t ≥ 0,Wγ(t) > u}, (2)

respectively (here we use that inf{∅} = ∞). Further, define τ∗1 (u), τ∗2 (u), u > 0 in the same probability space

such that

(τ∗1 (u), τ∗2 (u))
d
= (τ1(u), τ2(u))

∣∣∣(τ1(u) <∞), (3)

where
d
= stands for equality of distribution functions.

The first and last passage times of Gaussian processes conditioned on that τ1(u) < ∞ are analysed in Hüsler

and Piterbarg (2008) and Hüsler and Zhang (2008) when γ = 0. Therein, the Guassian approximations of

both τ∗1 (u) and τ∗2 (u) are derived as u → ∞. The Gaussian approximation is not only of theoretical interest

but also important for statistical estimation. First passage times (sometimes called ruin times) are also studied

extensively in the framework of insurance risk processes, see the recent articles Griffin and Maller (2012), Griffin

(2013), Griffin et al. (2013), Dȩbicki et al. (2013) and the monographs Embrechts et al. (1997), Asmussen and

Albrecher (2010) for approximations of ruin times of various risk processes. In this framework, τ∗1 (u) can be

interpreted as the conditional ruin time of the fBm risk process with tax payments of a loss-carry-forward type.

With motivation from the aforementioned contributions, this paper is concerned with the Gaussian approxima-

tion of the random vector (τ∗1 (u), τ∗2 (u)), as u→∞. For the derivation of the tail asymptotics of supt∈[0,T ]Wγ(t)

Hashorva et al. (2013) showed that the investigation of the supremum of certain non-stationary Gaussian random

fields is crucial. One key merit of our problem of approximating the joint distribution function of (τ∗1 (u), τ∗2 (u))

is that it leads, as in the case of the analysis of the tail asymptotics of supt∈[0,T ]Wγ(t), to an interesting unsolved

problem of asymptotic theory of Gaussian random fields. Although the latter investigation was not initially in

the scope of this paper, the result derived in Theorem 2.1 is important for various theoretical questions. Next,

set

A(u) =
HH+1/2

(1−H)H+1/2cH+1
uH , and t̃0 =

H

c(1−H)

and denote by
d→ and

p→ the convergence in distribution and in probability, respectively. Further, let N be a

N(0, 1) random variable. Our principal result is the following theorem:
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Theorem 1.1 Let the γ-reflected process {Wγ(t), t ≥ 0} be given as in (1) with γ ∈ (0, 1), and let τ∗1 (u), τ∗2 (u)

be defined as in (3). Then, as u→∞(
τ∗1 (u)− t̃0u

A(u)
,
τ∗2 (u)− t̃0u

A(u)

)
d→ (N ,N ). (4)

Remarks: a) The joint convergence in (4) implies (τ∗2 (u)− τ∗1 (u))/A(u)
p→ 0 as u→∞.

b) For any u ≥ 0 P {τ1(u) <∞} = 1 when γ = 1 (cf. Duncan and Jin (2008)), which is the reason of considering

only the case that γ ∈ (0, 1). Under the latter assumption on γ we have further that P
{
τ2(u) <∞

∣∣τ1(u) <∞
}

=

1, which follows from the fact that limt→∞Wγ(t) = −∞ almost surely since in view of Remark 5 in Kozachenko

et al. (2011)

lim
t→∞

sups∈[0,t]|XH(s)|
t

= 0, ∀H ∈ (0, 1).

c) It is surprising that the Gaussian approximation of the conditional first and last passage times does not

involve the reflection constant γ.

Organisation of the rest of the paper: In the next section we present a key result on the supremum of some

Gaussian random fields defined by YH and then display the proof of Theorem 1.1. Section 3 is dedicated to

the proof of Theorem 2.1. A variant of Piterbarg Lemma suitable for Gaussian random fields is presented in

Appendix.

2 Further Results and Proof of Theorem 1.1

Following the idea of Hüsler and Piterbarg (1999, 2008), and as discussed in Hashorva et al. (2013) it is

convenient to introduce the following family of Gaussian random fields:

Yu(s, t) :=
XH(ut)− γXH(us)

(1 + ct− cγs)uH
, s, t ≥ 0.

The variance function of {Yu(s, t), s, t ≥ 0} is given by

V 2
Y (s, t) =

(1− γ)t2H + (γ2 − γ)s2H + γ(t− s)2H

(1 + ct− cγs)2
, s, t ≥ 0. (5)

Moreover, on the set {(s, t) : 0 ≤ s ≤ t <∞} it attains its maximum at the unique point (0, t̃0) with t̃0 = H
c(1−H)

and further

VY (0, t̃0) =
HH(1−H)1−H

cH
.

By changing time t = t′u, s = s′u and noting that the distribution of Yu does not depend on u, we obtain

P {τ1(u) <∞} = P {∃t ∈ [0,∞) such that Wγ(t) > u}

= P
{
∃t′ ∈ [0,∞) such that Yu(s′, t′) > u1−H for some s′ ∈ [0, t′]

}
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= P
{
∃t ∈ [0,∞) such that Y (s, t) > u1−H for some s ∈ [0, t]

}
,

where

Y (s, t) :=
XH(t)− γXH(s)

1 + c(t− γs)
, s, t ≥ 0. (6)

In order to complete the proof of Theorem 1.1 we need to know the tail asymptotic behaviour of the supremum

of the Gaussian random field Y over a region which might depend on u. Therefore, we shall investigate first

the tail asymptotic behaviour of the supremum of certain non-stationary Gaussian random fields (including Y

as a special case) over a region depending on u in Theorem 2.1 followed then by the proof of Theorem 1.1.

Hereafter, we assume that all considered Gaussian random fields (or processes) have almost surely continuous

sample paths. We need to introduce some more notation starting with the well-known Pickands constant Hα

given by

Hα := lim
T→∞

1

T
Hα[0, T ], α ∈ (0, 2],

where

Hα[0, T ] = E

(
exp

(
sup
t∈[0,T ]

(√
2Bα(t)− tα

)))
∈ (0,∞), T ∈ (0,∞),

with {Bα(t), t ≥ 0} a fBm with Hurst index α/2 ∈ (0, 1]. It is known that H1 = 1 and H2 = 1/
√
π, see

Pickands (1969), Albin (1990), Piterbarg (1996), Dȩbicki (2002), Debicki et al. (2004), Mandjes (2007), Dȩbicki

and Mandjes (2011), Dieker and Yakir (2013) for various properties of Pickands constant and its generalizations.

Next we introduce another constant, usually referred to as Piterbarg constant, given by

Paα := lim
S→∞

Paα[0, S], α ∈ (0, 2], a > 0,

where

Paα[S, T ] = E

(
exp

(
sup

t∈[S,T ]

(√
2Bα(t)− (1 + a)|t|α

)))
∈ (0,∞), S < T.

It is also known that

Pa1 = 1 +
1

a
and Pa2 =

1

2

(
1 +

√
1 +

1

a

)
(7)

see e.g., Dȩbicki and Mandjes (2003) and Dȩbicki and Tabís (2011). As it will be seen in Theorem 2.1 below

both Pickands and Piterbarg constants are important for our study. We denote by Φ(·) the standard normal

distribution (of a N(0, 1) random variable), and further set Ψ(·) := 1− Φ(·).

In the following we investigate the tail asymptotic behaviour of the supremum of non-stationary Gaussian

random fields over a region which is depend on u. Our next result is of interest on its own, and furthermore is

the key to the proof of Theorem 1.1.
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Theorem 2.1 Let S, T be two positive constants, and let {X(s, t), (s, t) ∈ [0, S]× [0, T ]} be a centered Gaussian

random field, with standard deviation function σ(·, ·) and correlation function r(·, ·, ·, ·). Assume that σ(·, ·)

attains its maximum on [0, S]× [0, T ] at the unique point (0, t0), with t0 ∈ (0, T ), and further

σ(s, t) = 1− b1sβ(1 + o(1))− b2|t− t0|2(1 + o(1))− b3s|t− t0|(1 + o(1)) (8)

as (s, t) → (0, t0) for some constants β ∈ (1, 2), and bi > 0, i = 1, 2, b3 ∈ R satisfying b2 + b3/2 > 0. Suppose

further that

r(s, s′, t, t′) = 1− (a1|s− s′|β + a2|t− t′|β)(1 + o(1)) as (s, t), (s′, t′)→ (0, t0) (9)

for some constants ai > 0, i = 1, 2. Then, for any x ∈ R

P

{
sup

(s,t)∈∆̃1
x(u)

X(s, t) > u

}
=

√
π

b2
a

1
β

2 P
b1/a1
β Hβu

2
β−1Ψ(u)Φ(

√
2b2x)(1 + o(1)) (10)

P

{
sup

(s,t)∈∆̃2
x(u)

X(s, t) > u

}
=

√
π

b2
a

1
β

2 P
b1/a1
β Hβu

2
β−1Ψ(u)Ψ(

√
2b2x)(1 + o(1)) (11)

as u→∞, where δ1(u) = (lnu/u)
2
β , δ2(u) = lnu/u and

∆̃1
x(u) = [0, δ1(u)]× [t0 − δ2(u), t0 + xu−1], ∆̃2

x(u) = [0, δ1(u)]× [t0 + xu−1, t0 + δ2(u)]. (12)

Remarks 2.2 a) If β ∈ (0, 1), then (8) becomes

σ(s, t) = 1− b1sβ(1 + o(1))− b2|t− t0|2(1 + o(1)) as (s, t)→ (0, t0). (13)

We mention that in this case both (10) and (11) are still valid.

b) It can be shown along the proof of Theorem 2.1 that if x = x(u) satisfies the following two conditions

lim
u→∞

x(u) =∞, x(u) = o(uε) as u→∞, for any ε > 0, (14)

then (10) still holds with Φ(
√

2b2x) replaced by 1. Similarly, if x = −x(u) with x(u) satisfying (14), then (11)

holds with Ψ(
√

2b2x) replaced by 1.

Proof of Theorem 1.1 Define

T1(u) = inf{t ≥ 0 : Y (s, t) > u1−H for some s ∈ [0, t]}

and

T2(u) = sup{t ≥ 0 : Y (s, t) > u1−H for some s ∈ [0, t]}.
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Clearly τi(u)
d
= uTi(u), i = 1, 2, with

d
= denoting equivalence in distribution. Consider first the approximation

of τ1(u). For any x ∈ R and u > 0 we have

P
{
τ1(u)− t̃0u

A(u)
≤ x

∣∣∣τ1(u) <∞
}

= P
{
T1(u) ≤ t̃0 + xA(u)u−1

∣∣∣T1(u) <∞
}

=
P
{

sup0≤s≤t≤t̃0+xA(u)u−1 Y (s, t) > u1−H
}

P {τ1(u) <∞}
.

In view of Hashorva et al. (2013) for any H, γ ∈ (0, 1)

P {τ1(u) <∞} = P
{

sup
t≥0

Wγ(t) > u

}
=WH(u)Ψ

(
cHu1−H

HH(1−H)1−H

)
(1 + o(1)) as u→∞, (15)

where

WH(u) = 2
1
2−

1
2H

√
π√

H(1−H)
H2HP

1−γ
γ

2H

(
cHu1−H

HH(1−H)1−H

)(1/H−1)

.

Next, we focus on the analysis of P
{

sup0≤s≤t≤t̃0+xA(u)u−1 Y (s, t) > u1−H
}

. By Bonforroni’s inequality

p3(u) ≤ P

{
sup

0≤s≤t≤t̃0+xA(u)u−1

Y (s, t) > u1−H

}
≤ p1(u) + p2(u) + p3(u), (16)

where pi(u), i = 1, 2, 3, are defined in (17), (21) and (22) below. In the following, we shall give the asymptotics

of p3(u) as u → ∞, and give bounds for both p1(u) and p2(u) for u large, assuring that they are relatively

negligible.

We first consider bounds for p1(u) and p2(u). Since on the set {(s, t) : 0 ≤ s ≤ t < ∞} the maximum of the

variance function V 2
Y (s, t) is attained uniquely at (0, t̃0), we obtain from the Borell-TIS inequality (e.g., Adler

and Taylor (2007)) that for any constant K ≥ 2t̃0, there exist constants ρ > 0 small enough and θ ∈ (0, 1) such

that, for u sufficiently large

p1(u) := P

 sup
0≤s≤t≤K

s∈[ρ,K] or t∈[0,t̃0−ρ]

Y (s, t) > u1−H

 ≤ exp

(
− (u1−H − d)2

2θV 2
Y (0, t̃0)

)
, (17)

with d = E
(
sup0≤s≤t≤K Y (s, t)

)
<∞. If follows that

1− VY (s, t)

VY (0, t̃0)
=


c2(1−H)3

2H (t̃0 − t)2(1 + o(1)) + (γ−γ2)(1−H)2Hc2H

2H2H s2H(1 + o(1)), H ≤ 1/2,

c2(1−H)3

2H (t̃0 − t+ γs)2(1 + o(1)) + (γ−γ2)(1−H)2Hc2H

2H2H s2H(1 + o(1)), H > 1/2
(18)

as (s, t)→ (0, t̃0) and further the correlation function of Y satisfies

1− Cov
(
Y (s, t)

VY (s, t)
,
Y (s′, t′)

VY (s′, t′)

)
=

1

2t̃2H0

(
| t− t′ |2H +γ2 | s− s′ |2H

)
(1 + o(1)) (19)

as (s, t), (s′, t′)→ (0, t̃0). In addition, for the chosen ρ > 0 small enough there exists some C > 0 such that for

any (s, t), (s′, t′) ∈ [0, ρ]× [t̃0 − ρ, t̃0 + ρ]

E (Y (s, t)− Y (s′, t′))
2 ≤ C(|t− t′|2H + |s− s′|2H). (20)
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Next, let

A =
H1/2

c(1−H)3/2
, ũ =

u1−H

VY (0, t̃0)
.

In the light of (18) and (20), by the Piterbarg inequality (see Theorem 8.1 in Piterbarg (1996) or Theorem 8.1

in Piterbarg (2001)) for all u sufficiently large

p2(u) := P

 sup
(s,t)∈[0,ρ]×[t̃0−ρ,t̃0+xA(u)u−1]

s∈[δ̃1(ũ),ρ] or t∈[t̃0−ρ,t̃0−δ̃2(ũ)]

Y (s, t) > u1−H

 ≤ C1 u
2(1−H)
H exp

(
− u2(1−H)

2V 2
Y (0, t̃0)

− C2(lnu)2

)
(21)

for some positive constants Ci, i = 1, 2, where δ̃1(ũ) = (ln ũ/ũ)1/H , δ̃2(ũ) = ln ũ/ũ. Further, we have

p3(u) := P

{
sup

(s,t)∈[0,δ̃1(ũ)]×[t̃0−δ̃2(ũ),t̃0+xA(u)u−1]

Y (s, t) > u1−H

}
= P

 sup
(s,t)∈∆̂1

Ax(ũ)

Y (s, t)

VY (0, t̃0)
> ũ

 , (22)

where ∆̂1
Ax(ũ) = [0, δ̃1(ũ)]× [t̃0 − δ̃2(ũ), t̃0 +Axũ−1]. Utilizing (18) and (19) we obtain from Theorem 2.1 that

P

 sup
(s,t)∈∆̂1

Ax(ũ)

Y (s, t)

VY (0, t̃0)
> ũ

 = H2HP
1−γ
γ

2H 2−
1

2H

√
2πA

c(1−H)

H
Ψ(ũ)ũ

1
H−1Φ(x)(1 + o(1)) (23)

as u→∞. Consequently, we conclude from (16)-(17), (21)-(23) that

P

{
sup

0≤s≤t≤t̃0+xA(u)u−1

Y (s, t) > u1−H

}
= H2HP

1−γ
γ

2H 2−
1

2H

√
2πA

c(1−H)

H
Ψ(ũ)ũ

1
H−1Φ(x)(1 + o(1))

as u→∞, and thus in the light of (15)

lim
u→∞

sup
x∈R

∣∣∣∣P{τ1(u)− t̃0u
A(u)

≤ x
∣∣∣τ1(u) <∞

}
− Φ(x)

∣∣∣∣ = 0.

Using similar arguments, we conclude by the properties of the random field Y and (11) that

P

{
sup

t≥t̃0+xA(u)u−1,s∈[0,t]

Y (s, t) > u1−H

}
= H2HP

1−γ
γ

2H 2−
1

2H

√
2πA

c(1−H)

H
Ψ(ũ)ũ

1
H−1Ψ(x)(1 + o(1))

as u→∞, where we used the fact that for any large enough integer K > t̃0

P
{

sup
0≤s≤t<∞

Y (s, t) > u1−H
}

= P
{

sup
0≤s≤t<K

Y (s, t) > u1−H
}

(1 + o(1)) as u→∞,

see Hashorva et al. (2013). Therefore

P
{
τ2(u)− t̃0u

A(u)
≤ x

∣∣∣τ1(u) <∞
}

= 1− P
{
τ2(u)− t̃0u

A(u)
≥ x

∣∣∣τ1(u) <∞
}

= 1− P
{
T2(u) ≥ t̃0 + xA(u)u−1

∣∣∣T1(u) <∞
}

= 1−
P
{

supt≥t̃0+xA(u)u−1,s∈[0,t] Y (s, t) > u1−H
}

P {τ1(u) <∞}
→ Φ(x) as u→∞

for any x ∈ R. Hence the proof follows by a direct application of Lemma 2.3 below. �

7



Lemma 2.3 Let (Zu1, Zu2), u > 0 be a bivariate random sequence such that Zu2 ≥ Zu1 almost surely for all

large u. If the following convergence in distribution

Zui
d→ Z as u→∞

holds for i = 1, 2 with Z a non-degenerate random variable, then we have the joint convergence in distribution

(Zu1, Zu2)
d→ (Z,Z) as u→∞. (24)

Proof: Let x, y be any two continuous points of the distribution function P {Z ≤ t} , t ∈ R. It is sufficient to

show that

lim
u→∞

P {Zu1 ≤ x, Zu2 ≤ y} = P {Z ≤ min(x, y)} .

In fact, if x ≥ y by the assumption that Zu2 ≥ Zu1 holds for all large u we have

P {Zu1 ≤ x, Zu2 ≤ y} = P {Zu2 ≤ y} → P {Z ≤ y} as u→∞.

Further, if x ≤ y

P {Zu1 ≤ x, Zu2 ≤ y} = P {Zu1 ≤ x} − P {Zu1 ≤ x, Zu2 > y}

≥ P {Zu1 ≤ x} − P {Zu1 ≤ y, Zu2 > y}

= P {Zu1 ≤ x} −
(
P {Zu2 > y} − P {Zu1 > y}

)
→ P {Z ≤ x} as u→∞

and

P {Zu1 ≤ x, Zu2 ≤ y} ≤ P {Zu1 ≤ x} → P {Z ≤ x} as u→∞

hold, hence the claim follows. �

3 Proof of Theorem 2.1

Proof of Theorem 2.1 We present only the proof of (10) with x ≥ 0, since the other cases can be dealt with

using the same argumentations. For simplicity we shall assume that a1 = a2 = 1; the general case follows by a

time scaling.

Since our approach is asymptotic in natural and that δ1(u) and δ2(u) both converge to 0 as u tends to infinity,

the properties (8) and (9) are the only necessary properties of the Gaussian random field X needed for the

asymptotics (which can be seen from the proof below). Therefore, we conclude that

P

{
sup

(s,t)∈∆̃1
x(u)

X(s, t) > u

}
= P

{
sup

(s,t)∈∆̃1
x(u)

ξ̃(s, t) > u

}
(1 + o(1)) =: π(u)(1 + o(1)) as u→∞,

8



with {ξ̃(s, t), s, t ≥ 0} any Gaussian random field possessing the properties (8) and (9). Particularly, we set

ξ̃(s, t) =
ξ(s, t)

(1 + b1sβ)(1 + b2|t− t0|2 + b3|t− t0|s)
, s, t ≥ 0,

with {ξ(s, t), s, t ≥ 0} a centered Gaussian random field with covariance function

rξ(s, t) = exp(−sβ − tβ), s, t ≥ 0.

Since β < 2, for any positive constants S1, S2, we can divide the intervals [0, δ1(u)] and [t0 − δ2(u), t0 + xu−1]

into several sub-intervals of length S1u
−2/β and S2u

−2/β , respectively. Specifically, let for S1, S2 > 0

4i0 = u−
2
β [0, Si], 4ik = u−

2
β [kSi, (k + 1)Si], k ∈ Z, i = 1, 2.

Let further for any u > 0

h1(u) = bS−1
1 (lnu)

2
β c+ 1, h2(u) = bS−1

2 (lnu)u
2
β−1c+ 1, i = 1, 2, h2,x(u) = bS−1

2 xu
2
β−1c+ 1.

Here b·c denotes the ceiling function. Applying Bonferroni’s inequality we obtain

π(u) ≤
h1(u)∑
k1=0

h2,x(u)∑
k2=−h2(u)

P

 sup
(s,t)∈41

k1
×(t0+42

k2
)

ξ̃(s, t) > u


=

h2,x(u)∑
k2=−h2(u)

P

 sup
(s,t)∈41

0×(t0+42
k2

)

ξ̃(s, t) > u

+

h1(u)∑
k1=1

h2,x(u)∑
k2=−h2(u)

P

 sup
(s,t)∈41

k1
×(t0+42

k2
)

ξ̃(s, t) > u


=: I1,x(u) + I2,x(u)

and

π(u) ≥
h2,x(u)−1∑

k2=−h2(u)+1

P

 sup
(s,t)∈41

0×(t0+42
k2

)

ξ̃(s, t) > u


−

∑
−h2(u)+1≤i<j≤h2,x(u)−1

P

{
sup

(s,t)∈41
0×(t0+42

i )

ξ̃(s, t) > u, sup
(s,t)∈41

0×(t0+42
j )

ξ̃(s, t) > u

}
=: J1,x(u)− J2,x(u).

Next we derive the required asymptotic bounds of I1,x(u) and J1,x(u), and show that

I2,x(u) = J2,x(u)(1 + o(1)) = o(I1,x(u)) = o(J1,x(u)) as u→∞, Si →∞, i = 1, 2. (25)

Assuming further that b3 > 0, we have

J1,x(u) ≥
h2,x(u)−1∑
k2=0

P

 sup
(s,t)∈41

0×42
k2

ξ(s, t)

1 + b1sβ
> u(1 + b2((k2 + 1)S2u

− 2
β )2 + b3((k2 + 1)S2u

− 2
β )(S1u

− 2
β ))


+

−1∑
k2=−h2(u)+1

P

 sup
(s,t)∈41

0×42
k2

ξ(s, t)

1 + b1sβ
> u(1 + b2(−k2S2u

− 2
β )2 + b3(−k2S2u

− 2
β )(S1u

− 2
β ))


9



=: J1,1,x(u) + J1,2,x(u).

In view of Lemma 4.1 in Appendix

J1,1,x(u) = Pb1β [0, S1]Hβ [0, S2]
1√
2πu

h2,x(u)−1∑
k2=0

1

1 + b2((k2 + 1)S2u
− 2
β )2 + b3((k2 + 1)S2u

− 2
β )(S1u

− 2
β )

× exp

(
−u

2(1 + b2((k2 + 1)S2u
− 2
β )2 + b3((k2 + 1)S2u

− 2
β )(S1u

− 2
β ))2

2

)
(1 + o(1))

= Pb1β [0, S1]Hβ [0, S2]Ψ(u)

×
h2,x(u)−1∑
k2=0

exp
(
−b2((k2 + 1)S2u

1− 2
β )2 − b3u2((k2 + 1)S2u

− 2
β )(S1u

− 2
β )
)

(1 + o(1))

= Pb1β [0, S1]
Hβ [0, S2]

S2
Ψ(u)u

2
β−1

∫ x

0

e−b2y
2

dy(1 + o(1)) (26)

as u→∞, where in the last equation we utilised the facts that

h2,x(u)→∞, h2,x(u)S2u
1− 2

β → x, u2(h2,x(u)S2u
− 2
β )(S1u

− 2
β )→ 0

as u→∞. Similarly

J1,2,x(u) = Pb1β [0, S1]
Hβ [0, S2]

S2
Ψ(u)u

2
β−1

∫ 0

−∞
e−b2y

2

dy(1 + o(1)) (27)

as u→∞. Therefore we conclude that

J1,x(u) ≥ Pb1β [0, S1]
Hβ [0, S2]

S2
Ψ(u)u

2
β−1

∫ x

−∞
e−b2y

2

dy(1 + o(1)) as u→∞. (28)

Using similar arguments we further obtain that

I1,x(u) ≤
h2,x(u)−1∑
k2=0

P

 sup
(s,t)∈41

0×42
k2

ξ(s, t)

1 + b1sβ
> u(1 + b2(k2S2u

− 2
β )2)


+

−1∑
k2=−h2(u)

P

 sup
(s,t)∈41

0×42
k2

ξ(s, t)

1 + b1sβ
> u(1 + b2(−(k2 + 1)S2u

− 2
β )2)


= Pb1β [0, S1]

Hβ [0, S2]

S2
Ψ(u)u

2
β−1

∫ x

−∞
e−b2y

2

dy(1 + o(1)) (29)

as u→∞. Next we verify (25). Specifically

I2,x(u) ≤
h1(u)∑
k1=1

h2,x(u)∑
k2=0

P

 sup
(s,t)∈41

k1
×42

k2

ξ(s, t) > u(1 + b1(k1S1u
− 2
β )β + b2(k2S2u

− 2
β )2)


+

h1(u)∑
k1=1

−1∑
k2=−h2(u)

P

 sup
(s,t)∈41

k1
×42

k2

ξ(s, t) > u(1 + b1(k1S1u
− 2
β )β + b2(−(k2 + 1)S2u

− 2
β )2)

 .

Similar argumentations as in (28) yield

I2,x(u) ≤ Hβ [0, S1]Hβ [0, S2]Ψ(u)(S−1
2 u

2
β−1)

∫ x

−∞
e−b2y

2

dy

h1(u)∑
k1=1

exp
(
−b1(k1S1)β

)
(1 + o(1)) (30)
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as u→∞. Further, we write

J2,x(u) =
∑

−h2(u)+1≤i<j≤h2,x(u)−1

P

{
sup

(s,t)∈41
0×(t0+42

i )

ξ̃(s, t) > u, sup
(s,t)∈41

0×(t0+42
j )

ξ̃(s, t) > u

}
=: Σ1,x(u) + Σ2,x(u),

where Σ1,x(u) is the sum over indexes j = i+ 1, and Σ2,x(u) is the sum over indexes j > i+ 1. Let

B(i, S2, u) = u(1 + b2(|i|S2u
− 2
β )2), i ∈ Z, S2 > 0, u > 0.

It follows that

Σ1,x(u) ≤
h2,x(u)−1∑
i=−1

P

{
sup

(s,t)∈41
0×42

i

ξ(s, t)

1 + b1sβ
> B(0, S2, u), sup

(s,t)∈41
0×42

i+1

ξ(s, t)

1 + b1sβ
> B(0, S2, u)

}

+

−2∑
i=−h2(u)+1

P

{
sup

(s,t)∈41
0×42

i

ξ(s, t)

1 + b1sβ
> B(i+ 2, S2, u), sup

(s,t)∈41
0×42

i+1

ξ(s, t)

1 + b1sβ
> B(i+ 2, S2, u)

}

and, for any i, j ∈ Z

P

{
sup

(s,t)∈41
0×42

i

ξ(s, t)

1 + b1sβ
> B(j, S2, u), sup

(s,t)∈41
0×42

i+1

ξ(s, t)

1 + b1sβ
> B(j, S2, u)

}

= P

{
sup

(s,t)∈41
0×42

0

ξ(s, t)

1 + b1sβ
> B(j, S2, u)

}
+ P

{
sup

(s,t)∈41
0×42

1

ξ(s, t)

1 + b1sβ
> B(j, S2, u)

}

−P

{
sup

(s,t)∈41
0×(42

0∪42
1)

ξ(s, t)

1 + b1sβ
> B(j, S2, u)

}
.

Therefore, analogous to the derivation of (28), we obtain

lim sup
u→∞

Σ1,x(u)

Ψ(u)u
2
β−1

≤ Pb1β [0, S1]
2Hβ [0, S2]−Hβ [0, 2S2]

S2

(
x+

∫ 0

−∞
e−b2y

2

dy

)
. (31)

Further, for any u > 0

Σ2,x(u) ≤
h2,x(u)−1∑
i=−1

∑
j≥2

P

{
sup

(s,t)∈41
0×42

0

ξ(s, t) > u, sup
(s,t)∈41

0×42
j

ξ(s, t) > u

}

+

−2∑
i=−h2(u)+1

∑
j≥2

P

{
sup

(s,t)∈41
0×42

0

ξ(s, t) > B(i+ 1, S2, u), sup
(s,t)∈41

0×42
j

ξ(s, t) > u

}

≤
h2,x(u)−1∑
i=−1

∑
j≥2

P

 sup
(s,t)∈41

0×42
0

(s′,t′)∈41
0×42

j

ζ(s, t, s′, t′) > 2u


+

−2∑
i=−h2(u)+1

∑
j≥2

P

 sup
(s,t)∈41

0×42
0

(s′,t′)∈41
0×42

j

ζ(s, t, s′, t′) > B(i+ 1, S2, u) + u

 ,

where

ζ(s, t, s′, t′) = ξ(s, t) + ξ(s′, t′), s, s′, t, t′ ≥ 0.

11



It is easy to check that, for u sufficiently large

2 ≤ E
(
(ζ(s, t, s′, t′))2

)
= 4− 2(1− r(|s− s′|, |t− t′|)) ≤ 4− ((j − 1)S2)βu−2

for any (s, t) ∈ 41
0 ×42

0, (s
′, t′) ∈ 41

0 ×42
j . Borrowing the arguments of the proof of Lemma 6.3 in Piterbarg

(1996) we conclude that

lim sup
u→∞

Σ2,x(u)

Ψ(u)u
2
β−1

≤ C x (Hβ [0, S1])2S2

∑
j≥1

exp

(
−1

8
(jS2)β

)
(32)

for some positive constant C. Hence the claim follows from (25–32) when b3 > 0 by letting S2, S1 →∞. When

b3 < 0, the same results can be obtained using similar arguments as above and the fact that

1− σ(s, t) ≥ b1sβ(1 + o(1)) +

(
b2 +

b3
2

)
|t− t0|2(1 + o(1))

as (s, t)→ (0, t0) which is utilised for verifying (25), and thus the proof is complete. �

4 Appendix: Piterbarg Lemma for Gaussian Random Fields

In order to find the asymptotics of supremum of centered non-smooth Gaussian processes two crucial results are

important, namely the Pickands Lemma and the Piterbarg Lemma. Although for experts in this field the results

are well-known, we would like to briefly mention them. Let {X(t), t ≥ 0} be a centered stationary Gaussian

process with a.s. continuous sample paths and correlation function r(t) which satisfies r(t) = 1 − tα(1 + o(1))

as t→ 0 with α ∈ (0, 2] and r(t) < 1 for all t > 0. In the seminal paper Pickands (1969) it was shown that for

any T ∈ (0,∞)

P

{
sup
t∈[0,T ]

X(t) > u

}
= HαTu

2
αΨ(u)(1 + o(1)) as u→∞. (33)

The proof of (33) strongly relies on Pickands Lemma which says that

P

 sup
t∈[0,u−

2
α T ]

X(t) > u

 = Hα[0, T ]Ψ(u)(1 + o(1)) as u→∞. (34)

In the seminal contribution Piterbarg (1972) V.I. Piterbarg rigorously proved (33) and then extended (34) to a

result which we refer to as Piterbarg Lemma, namely for any constant b > 0

P

 sup
t∈[0,u−

2
α T ]

X(t)

1 + btα
> u

 = Pbα[0, T ]Ψ(u)(1 + o(1)) as u→∞.

Our next result is a variant of Piterbarg Lemma for two-dimensional case. We omit its proof since it follows

with exactly the same arguments as that of Lemma 6.1 in Piterbarg (1996).
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Lemma 4.1 Let {ξ(s, t), s, t ≥ 0} be a centered Gaussian random field with covariance function

rξ(s, t) = exp(−sα1 − tα2), s, t ≥ 0, with α1, α2 ∈ (0, 2].

Let further S, T1, T2 be three constants such that S > 0 and T1 < T2. Then, for any constants b1 ≥ 0, b2 > 0,

and any positive function g(u), u ≥ 0 satisfying limu→∞ g(u)/u = 1, we have

P

 sup

(s,t)∈[0,u
− 2
α1 S]×[u

− 2
α2 T1,u

− 2
α2 T2]

ξ(s, t)

(1 + b1sα1)(1 + b2tα2)
> g(u)

 = Pb1α1
[0, S]Pb2α2

[T1, T2]Ψ(g(u))(1 + o(1)) (35)

as u→∞.

Remark 4.2 In the last formula we identify Pb1α1
[0, S] to be Hα1

[0, S] when b1 = 0.
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[15] Griffin, P.S., 2013. Convolution equivalent Lévy processes and first passage times. The Annals of Applied

Probability, in press.

[16] Griffin, P.S., Maller, R.A., 2012. Path decomposition of ruinous behaviour for a general Lévy insurance
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