
Article
An information theoretic a
pproach to detecting
spatially varying genes
Graphical abstract
Highlights
d Spatial organization can be formalized in information

theoretic terms

d Modern methods from deep learning enable efficient

estimation of spatial information

d Spatial information outperforms other methods at identifying

spatially varying genes

d Patterns of expression in renal cell carcinoma are revealed

using spatial information
Jones et al., 2023, Cell Reports Methods 3, 100507
June 26, 2023 ª 2023 The Authors.
https://doi.org/10.1016/j.crmeth.2023.100507
Authors

Daniel C. Jones, Patrick Danaher,

Youngmi Kim, Joseph M. Beechem,

Raphael Gottardo, Evan W. Newell

Correspondence
djones3@fredhutch.org (D.C.J.),
enewell@fredhutch.org (E.W.N.),
raphael.gottardo@chuv.ch (R.G.)

In brief

Quantifying the degree of spatial

organization in a biological signal is a key

building block of spatial transcriptomics

analysis. Jones et al. conceptualize this in

information theoretic terms, providing an

interpretable and accurate tool to reveal

spatial organization.
ll

mailto:djones3@fredhutch.org
mailto:enewell@fredhutch.org
mailto:raphael.gottardo@chuv.ch
https://doi.org/10.1016/j.crmeth.2023.100507
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2023.100507&domain=pdf


OPEN ACCESS

ll
Article

An information theoretic approach
to detecting spatially varying genes
Daniel C. Jones,1,7,* Patrick Danaher,2 Youngmi Kim,2 Joseph M. Beechem,2 Raphael Gottardo,1,3,4,5,6,*
and Evan W. Newell1,6,*
1Fred Hutchinson Cancer Center, Seattle, WA, USA
2NanoString Technologies, Inc., Seattle, WA, USA
3Biomedical Data Science Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
4Swiss Institute of Bioinformatics, Lausanne, Switzerland
5Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
6These authors contributed equally
7Lead contact
*Correspondence: djones3@fredhutch.org (D.C.J.), enewell@fredhutch.org (E.W.N.), raphael.gottardo@chuv.ch (R.G.)

https://doi.org/10.1016/j.crmeth.2023.100507
MOTIVATION Identifying genes with spatially coherent expression patterns is a key task in spatial tran-
scriptomics analysis. Previously proposed methods have various shortcomings, often failing to adequately
conceptualize the problem, making overly strong distributional assumptions, struggling to scale to the
rapidly increasing scale of the data, or failing to demonstrate any improvement over classical spatial statis-
tics methods.
SUMMARY
A key step in spatial transcriptomics is identifying genes with spatially varying expression patterns.We adopt
an information theoretic perspective to this problem by equating the degree of spatial coherence with the
Jensen-Shannon divergence between pairs of nearby cells and pairs of distant cells. To avoid the notoriously
difficult problem of estimating information theoretic divergences, we use modern approximation techniques
to implement a computationally efficient algorithm designed to scale with in situ spatial transcriptomics tech-
nologies. In addition to being highly scalable, we show that our method, whichwe call maximization of spatial
information (Maxspin), improves accuracy across several spatial transcriptomics platforms and a variety of
simulations when compared with a variety of state-of-the-art methods. To further demonstrate the method,
we generated in situ spatial transcriptomics data in a renal cell carcinoma sample using the CosMx Spatial
Molecular Imager and used Maxspin to reveal novel spatial patterns of tumor cell gene expression.
INTRODUCTION

The last several years have seen a slew of advancements in

spatially resolved transcriptomics,1,2 proteomics,3 and geno-

mics.4 These methods create an opportunity to develop a

deep understanding of the spatial organization of tissues at the

cellular level. When the expression of a large number of genes

is measured, a key consideration is identifying which genes

show signs of structured, non-random spatial organization.

Analogous to identifying differentially expressed genes, these

methods aim to identify spatially varying genes (SVGs).

Similar questions have been examined in geostatistics,

ecology, and demography for decades, so naturally, existing

spatial statistics methods have been put to use. Traditional

measures of spatial auto-correlation, the most common of

which are Moran’s I and Geary’s C,5 have numerous general
Cell
This is an open access article und
purpose implementations but have also been included in

spatial expression analysis toolkits like Squidpy6 and

MERINGUE.7

A number of methods have built more elaborate, special-pur-

pose models based on Gaussian processes with covariance

functions applied over spatial coordinates (‘‘kriging’’ in geosta-

tistics parlance), which have long been a standard tool in proba-

bilistic modeling of spatial data. SpatialDE8 tests for SVGs by

separately fitting a Gaussian process model and a regression

model excluding spatial covariance and comparing the two us-

ing a c2 test. SPARK9 elaborates on this primarily by using Pois-

son likelihood, which is a more natural model of count data, and

by testing models with ten different covariance functions to ac-

count for various potential patterns of spatial coherent expres-

sion. GPcounts10models counts using a negative binomial distri-

bution and tests for spatial coherence using a likelihood ratio test
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on the marginal likelihoods of models with and without the prior

Gaussian process.

Gaussian process models have many appealing properties,

but they also have one major shortcoming: exact inference is

Oðn3Þ, where here n is the number of cells or spots. This quickly

becomes problematic once n is larger than a few thousand.

Given the recent rapid progress in spatial assays, cubic time

inferencemarks amethod for rapid obsoletion. A recent method,

nnSVG,11 overcomes this problem by leveraging a modern

approximate inference scheme for Gaussian process models.

SPARK-X12 instead bypasses the issue by using an entirely

different model than SPARK, a null-hypothesis test on the Frobe-

nious inner product of the spatial coordinate covariance matrix

and one computed over a gene’s expression. When these are

highly non-independent, the inner product test statistic will be

large, yielding smaller p values. To consider various patterns of

spatial coherence, it runs this test on different transformations

of the coordinates.

Apart from the Gaussian process methods, trendsceek13 uses

amark-segregation test,which tests the statistical independence

of the distance between two cells and a gene’s expression in

both. If conditioning on thedistancedoes not alter thedistribution

over expression pairs, there is no detectable spatial coherence.

Independence is tested using summary statistics, and p values

are computed by shuffling expression values across spatial loca-

tions to compute an empirical null distribution. Sepal14 con-

structs a model simulating continuous time diffusion of expres-

sion across the spatial domain and measures spatial coherence

by the time required for the process to reach a homogeneous

state. SpaGFT15 uses the graph Fourier transform to decompose

an expression signal on a neighborhood graph into a frequency

domain, letting it test for significant lower frequency variations.

Finally, scGCO16 bins a gene’s expression using a Gaussian

mixturemodel, clusters cells using a hiddenMarkov random field

on the spatial neighborhood graph, and then tests for overrepre-

sentation of expression bins within cell clusters. Other methods

based on first clustering cells, such as SpaGCN17 and

STAMarker,18 are able to detect SVGs but only with respect to

specific domains and so are not directly comparable.

Giotto,19 in addition to interfacing with SpatialDE, trendsceek,

and SPARK, implements its own SVG test called binary spatial

extraction (BinSpect), which binarizes expression values using

either K-means clustering (BinSpect-kmeans) or threshold

ranking (BinSpect-rank) and runs a Fisher’s exact test using a

contingency table of values from neighboring cells. SpaGene20

also heuristically binarizes expression data but instead con-

siders the degree distribution for a subgraph of the k nearest

neighbor graph consisting of just high expression cells, oper-

ating under the principle that if high expression cells collocate,

we would expect an increase in higher degree nodes in this

graph when compared with a shuffled graph.

Existing methods often make either strong distribution as-

sumptions, discard information through binarization, or are high-

ly tuned in an ad hoc manner to specific types of patterns. In the

work presented here, we develop an entirely new approach to

measuring spatial coherence, adopting an information theoretic

perspective and building on recent advancements in approxi-

mating mutual information. Like trendsceek, our goal is to quan-
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tify the degree of statistical dependence between a pair of

expression values and their spatial vicinity, but rather than

running null hypothesis tests on summary statistics, we take a

more direct route by estimating the Jensen-Shannon (JS) diver-

gence between the two, computing a score analogous to mutual

information. Spatial coherence can then be neatly defined as

how much information gene expression values in the same

neighborhood share. In a spatially incoherent setting, this diver-

gence is low; nearby expression values share no more informa-

tion than randomly selected values. When expression is orga-

nized spatially, expression pairs become increasingly

predictable based on whether they are nearby or not, and this

divergence will be high.

Information theoretic divergences are appealing on theoretical

grounds, but their application is often fraught. Computingmutual

information directly necessitates a model of the joint probability

and, in the case of continuous domains, computing a multidi-

mensional integral. Recently, mutual information has gained re-

newed interest in the context of deep learning.21 Belghazi

et al.22 showed, in a method they call mutual information neural

estimation (MINE), how mutual information between to variables

X;Y can be estimated by training a neural network classifier to

distinguish pairs of observations (de facto draws from the joint

distribution PðX;YÞ) from pairs drawn from the marginal distribu-

tions PðXÞ;PðYÞ, which can be formed by shuffling observations.

Intuitively, the better the neural network is able to distinguish

observed pairs from shuffled pairs, the higher the mutual infor-

mation. This intuition is formalized by showing that the objective

function used to train the neural network forms a lower bound on

the mutual information.

In our method, Maxspin (a portmanteau of ‘‘maximization of

spatial information’’), we adopt an approach similar to MINE to

compute lower bounds on the JS divergence between pairs of

nearby and pairs of distant gene expression values. On a gene-

wise basis, we optimize a simple classifier to distinguish pairs of

expression value pairs chosen uniformly at random across

spatial locations from pairs chosen from nearby locations ac-

cording to a short random walk on the spatial neighborhood

graph (Figure 1A). Spatial coherence is scored as the degree

to which a classifier can recognize uniformly sampled pairs

from spatially proximate pairs, with an objective function that is

a lower bound on the JS divergence between the two distribu-

tions, representing a measure of spatial auto-information, which

we will refer to as simply ‘‘spatial information’’ here. This princi-

ple can be trivially generalized to consider the spatial information

between pairs of genes, quantifying the degree of spatial coex-

pression. Maxspin is available under an open source licence at

https://github.com/dcjones/maxspin.

RESULTS

We used two strategies to test the performance of Maxspin

compared with existing methods of detecting SVGs. First, we

developed a simulation framework in which a subset of genes

are simulated as having subtle spatial organization. Second,

we used three publicly available datasets generated using

different spatial transcriptomics technologies: 103 Visium,

NanoString CosMx Spatial Molecular Imager (SMI), and Vizgen

https://github.com/dcjones/maxspin
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Figure 1. Overview of the Maxspin algo-

rithm for detecting spatially varying genes

(A) The maximization of spatial information (Max-

spin) algorithm proposed here works by training a

simple classifier to distinguish between expres-

sion pairs sampled from nearby locations and

those chosen uniformly at random.

(B) If a gene displays spatial organization, there is a

distributional shift between the two sets of

sampled cell pairs. The classifier accuracy acts as

an approximation of the Kullback-Leibler diver-

gence between these distributions, which can be

interpreted as spatial information.

(C) The spatial information score computed

effectively quantifies the degree of spatial coher-

ence for each gene evaluated, here shown in a

Visium mouse brain dataset.
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MERFISH. The simulation has the advantage of known ground

truth.

For the real data, as a proxy for ground truth, we annotated

spatially varying clusters of cells or spots and called differential

expression between these using pairwise Wilcoxon signed-

rank tests and a Benjamini-Hochberg q value cutoff of 0.01.

This list no doubt omits some SVGs with spatial expression pat-

terns not conforming to the annotated regions, but we expect it

to contain the large majority of the most obvious examples, and

omissions should equally disadvantage each method and not a

priori bias the benchmark toward any particular method.

Because of the wide variety of settings, we adopt Moran’s I as

a baseline method and consider the degree to which a method

improves on (or falls below) its performance, as measured by

the area under the precision-recall curve (PR-AUC). Moran’s I

is simple, easy to interpret and implement, and has been a main-

stay of spatial statistics for 70 years. Thus, it is a meaningful hur-

dle that any specialty method for detecting SVGs should aim to

surpass.

GPcounts was excluded from these benchmarks. Though it

has a test of spatial coherence, it was designed for very small

numbers of cells and fails to scale to any of the datasets evalu-

ated here. We were also unable to run trendsceek as the soft-

ware is unmaintained and has been rendered unusable by library

incompatibilities.

Simulations
To explore a variety of scenarios with a known ground truth, we

simulated spatial expression data. The simulation assumes
Cell Re
some number of discrete cell types and

genes. Random expression values were

drawn from negative binomial distribu-

tions. For 7,000 of the 8,000 simulated

genes, this distribution is fixed across

cell type, and for the remaining 1,000 it

is perturbed, representing a ground-truth

subset of SVGs. To simulate the

spatial arrangement of cells, we devel-

oped a cellular Potts model23 in which

cells migrate and deform according to
an actin-inspired mechanism.24 Cells adhere to one another

with greater or lesser strength according to a random cell type

affinity matrix.

To consider conditions of more or less spatial coherence, we

initialized cell positions into highly ordered arrangements by as-

signing cell type according to sine waves varying across the

spatial dimensions, producing homogeneous clumps of cells.

Simulation parameters were then chosen so that cell arrange-

ments slowly grew more disordered with more iterations while

still displaying some patterning due to varying cell type adhe-

sions. Thus, running the simulation for a larger number of itera-

tions produces an arrangement of cells with spatial patterns

that are subtler but still present. We ran a variety of simulations

with 2,000 and 10,000 cells. Because SPARK and SpatialDE

are both Gaussian processmethods, the former withOðn3Þ infer-
ence and the latter limited by GPU memory, they were unable to

scale to the n = 10; 000 simulations.

Maxspin was found to outperform other methods by a large

margin in these simulations (Figures 2A and 2B). We varied pa-

rameters of the simulation, including setting the negative bino-

mial dispersion parameter r between 3 and 6, the number of

cell types between 2, 4, and 8, and the number of simulation it-

erations between 10, 100, and 1,000. These results hold up

across these different parameterizations (Figure 2C). SPARK

and nnSVG compete for second, but SPARK fails to scale to

10,000 cells, and SPARK-X shows wildly variable performance.

Geary’s C slightly improves on Moran’s I, perhaps due to more

subtle local variation, while all other methods consistently under-

perform Moran’s I.
ports Methods 3, 100507, June 26, 2023 3
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B Figure 2. Evaluation of the performance of

methods to detect spatially varying genes

using simulated data

(A and B) Spatial transcriptomics data were

simulated using a cellular Potts model for (A) 2,000

and (B) 10,000 cells, with expression drawn from a

negative binomial distribution that is perturbed

across cell types for the ground-truth spatially

varying genes. Methods were benchmarked by

computing the area under their precision-recall

curves and subtracting the value achieved by

Moran’s I.

(C) Performance is further broken down by various

parameterizations of the simulation. Across the

board, performance increases with lower disper-

sion and fewer simulation iterations (resulting in

simpler spatial distributions), with the number of

cell types playing a more ambiguous role.
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We additionally adapted simulations from Zhu et al.12 consist-

ing of cells distributed uniformly at random across a rectangle,

with a subset of SVGs that have modulated expression either

in a single vertical band region (‘‘streak’’) or a circular region

(‘‘hotspot’’), examples of which are shown in Figures S1C and

S1D. We generated a number of simulations by varying parame-

ters controlling mean expression, overdispersion, and effect

size. The cosine and Gaussian coordinate transformations

used by SPARK-X are well tuned to detect these particular sim-

ple spatial patterns, yet Maxspin achieves largely equivalent per-

formance without any specialty spatial kernels (Figures S1A and

S1B). As with the cellular Potts simulation, SPARK and nnSVG

compete for second place, Geary’s C slightly surpassesMoran’s

I, and all other methods underperform Moran’s I. We might

expect SpatialDE to perform similarly to the other Gaussian pro-

cess methods, but it once again assigns 0 p values to many ex-

amples, erasing any meaningful ordering.

Because most biological instances of spatially coherent

expression, especially at the cellular level, are so much more

complex, we believe that these streak and hotspot simulations

are less realistic than our cellular Potts model, yet they do offer

an important alternative perspective. SPARK-X does well here,

but considerably worse on the more sophisticated cellular Potts
4 Cell Reports Methods 3, 100507, June 26, 2023
model, with accuracy collapsing in some

cases of subtle spatial organization, while

Maxspin very consistently performs well

across all simulations.

Visium
We used human prefrontal cortex data

from Maynard et al.,25 generated on the

103 Visium platform. The expression of

21,151 genes was profiled in 12 samples.

Visium slides consist of a grid of 4,992

spots laid out in a hexagonal pattern. In

this dataset, between 3,460 and 4,789

spots were covered by the tissue sam-

ples. Comparedwith single-cell methods,

Visium spots are typically much more
deeply sequenced but are lower resolution, containing several

cells in most cases. To determine a ground-truth set of SVGs,

we used the authors’ annotation of cortical layers, calling differ-

ential expression between all pairs of adjacent layers, resulting in

7,775 SVGs on average.

Every method considered was able to scale to the Visium data

by virtue of having a strict maximum number of spots. In future

generations of the technology with more spots, this will become

more problematic for SPARK and SpatialDE, for which this data-

set pushes the limit on tractability. Overall, we demonstrate

consistently improved accuracy using Maxspin (Figure 3A).

Following Maxspin, the two Gaussian process methods

SpatialDE and nnSVG perform well, while SPARK-X was incon-

sistent, showing high accuracy for some of the 12 samples but

greatly diminished for others. SPARK and BinSpect offer only

very small improvements over Moran’s I, while Geary’s C and

SpaGene tend to underperform it. SpaGFT, Sepal, and scGCO

all performed very poorly with respective median D PR-AUC

values of �0.52, �0.49, and �0.42. They were excluded from

the plot for clarity. Sepal requires data on a regular grid, so we

were only able to run it on this benchmark. In Figure 1C, a

span of information scores computed by Maxspin is shown for

one sample in this dataset.
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Figure 3. Methods for detecting spatially varying genes were evaluated by calling differential expression between manually annotated re-

gions and treating this list as ground truth

(A–C) The area under the precision-recall curve (PR-AUC) was computed for each test, and the value achieved by Moran’s I was subtracted, producing D PR-

AUC, representing the improvement over this baseline method. Methods were evaluated in multiple datasets generated using (A) Visium, (B) CosMx, and (C)

MERFISH. Results for SpatialDE, scGCO, and SpaGFT in the CosMx benchmark were exceedingly low and so were excluded from these plots.

(D) Selected examples of disagreements between methods in the CosMx dataset.

(E) Median ranks (out of 960 genes) of negative control probes in the CosMx dataset, which should not be significantly expressed nor spatially coherent. Not

shown is scGCO, with a median rank of 308.
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MERFISH
A human lung cancer MERFISH dataset was taken from the

Vizgen MERFISH FFPE Human Immuno-oncology dataset,26

consisting of 500 genes measured across 270,968 cells.

With a deliberately selected panel of genes and a large

number of cells, many, if not all, genes will display some de-

gree of spatial organization. To construct a benchmark with

fewer and harder to detect SVGs, we downsampled counts

to 100 per cell and then split the data into regions along a

30 3 30 grid, retaining any region with at least 300 cells, re-

sulting in 508 regions. We jointly clustered cell types across

the full data, manually selecting clusters with obvious spatial

organization; we then called differential expression between

pairs of spatially organized clusters separately on each re-

gion. The result is a region-specific lists of SVGs. Each

method was then run on individual regions and compared

with these lists.
Maxspin has the highest median improvement over Moran’s I.

Consistent with other benchmarks, nnSVG performs well,

SPARK-X and SpatialDE are again seen to be somewhat incon-

sistent, and other methods underperform the baseline method,

Moran’s I. SpaGFT and scGCO performed very poorly, with

respective median D PR-AUC scores of�0.37 and�0.30. These

appear to fail in different ways: SpaGFT assigns very low p

values to genes with only a small number of counts, while scGCO

appears to assign a p value of roughly 0.5 to most genes.

We benchmarked using one additional MERFISH dataset,

profiling a mouse primary motor cortex dataset. This also showed

improvedperformance byMaxspin, though to a lesser degree due

to the simpler patterns of spatial organization (Figure S3).

CosMx SMI
CosMxSMI is a recently introduced platform fromNanoString for

spatial profiling of RNA and protein expression. We used CosMx
Cell Reports Methods 3, 100507, June 26, 2023 5
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data from He et al.27 to evaluate detection of SVGs. Expression

of 960 genes was measured across roughly 800,000 cells,

across 8 human non-small cell lung cancer samples. We relied

on the authors’ annotation of tissue microenvironments. We

tested individual fields of view for each sample, in part to create

a variety of scenarios but also to allow SPARK and SpatialDE to

be run on these data, as they ordinarily would struggle to scale to

this many cells. Our ground-truth set of SVGs consisted of any

gene that varied between any pair of microenvironments, which

was on average 419 per field of view.

Maxspin had consistently higher performance that competing

methods (Figure 3C). SPARK-X sometimes improved onMoran’s

I significantly, but as with the Visium data, it is inconsistent, pro-

ducing poor results on other samples. The remaining methods

showperformances close to or sometimes below that ofMoran’s

I. As with the MERFISH data, and in stark contrast to the Visium

data, SpatialDE showed poor performance, with a median D PR-

AUC of �0.197. Again, scGCO and SpaGFT also showed very

poor performance, with median D PR-AUC values of �0.298

and �0.134, respectively.

Figure 3D shows several examples of large disagreements be-

tweenmethods. Oftenmethodswill disagree on the relative signif-

icance of very small neighborhood of cells with elevated expres-

sion (e.g., CCL20), with Maxspin preferring patterns involving

more cells. The Gaussian process methods seem to occasionally

fail on examples with large unoccupied areas (e.g. OLFM4).

SPARK-X produces some unpredictable results, failing to identify

fairly obvious examples when they consist of sporadic small re-

gions spread throughout the sample (e.g., ITGA3, TPSB2).

The probe set includes 20 negative control probes, which we

expect to be unexpressed. Thus, any non-zero counts for probes

represents pure technical noise that should not be detected as

spatially varying. Figure 3E shows that while these are typically

ranked lowly by all methods, the median rank for Maxspin is

the lowest, with nnSVG very nearly tied.

In Figure S5, we show additional examples of spatial informa-

tion scores computed by Maxspin on small sections of one sam-

ple. The highest scoring genes are within tumor regions, which is

unsurprising given their specific spatial locality.

Spatially varying expression in renal cell carcinoma
We used Maxspin to investigate patterns of SVG expression in a

CosMx dataset of a human renal cell carcinoma (RCC) sample,

consisting of 178,410 cells and 993 genes, with an average of

222 counts per cell. The data involved both a large number of

cells, which many existing methods fail to scale to, and relatively

sparse counts, introducing uncertainty that many methods fail to

account for. Maxspin is well suited to this data, as it scales to

very large numbers of cells and is able to account for uncertainty

under a variety of distributional assumptions.

We first identified cell types using unsupervised clustering of

expression data alone. Count data were normalized using

Sanity28 and then clustered using Leiden.29 This produced 24

clusters, to which we assigned names by comparing average

expression across clusters, making use of an existing catalog

of human kidney cell types30 (Figure 4C).

Computing spatial information across all cells will often reca-

pitulate markers for known cell types. For example, the highest
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scoring gene in this dataset is the immunoglobulin gene

IGHG1, revealing populations of B cells that we could have anno-

tated by other means. To reveal more subtle spatial patterns, we

instead separately ran Maxspin on each cluster to discover pat-

terns of spatial variation that are less visible to standard clus-

tering methods. Many examples of spatially coherent intra-clus-

ter variations were found in the tumor cell clusters (Figure 4B).

Many of these genes have been studied in the context of RCC.

For example, GPX3, VIM, and IGFBP3 are known to be important

markers in clear cell RCC,31,32,33 but much less is known about

their patterns of spatial expression within the tumor. DUSP5,

which in varying contexts can act either as a tumor suppressor

or promoter,34 is seen to be highly expressed specifically in the

upper left tumor region. Curiously, the adjacent tumor region

shows distinctly high expression of the MT-RNR2 like-1 pseudo-

gene. MMP7 is upregulated along the tumor-stroma boundary,

consistent with its role in degrading extracellular matrix to facil-

itate tumor invasion.35

In non-tumor cell clusters, a number of interesting examples of

SVGs also emerge (Figure 4A). Tumor-associated macrophages

disproportionately show upregulation of SPP1 and downregula-

tion of CD163, consistent with prior findings.36,37 Along the tu-

mor-stroma boundary, extracellular matrix genes fibronectin

(FN1) and collagen type 4 alpha 1 (COL4A1) are highly expressed

in fibroblasts and endothelial cells, respectively. The transcrip-

tion factor X-box binding protein 1 (XBP1), which is involved in

plasma cell differentiation,38 shows spatially varying clusters of

high expression within one of the B cell clusters. Within an

epithelial cell cluster, SERPINA1 shows elevated expression sur-

rounding one of the tumor regions but not the others.

A gene’s disaggregated information score can be plotted as a

saliency map, which provides clear visual explanations for why a

gene scores highly. Examples of SVGs with a span of spatial in-

formation scores are shown in Figure S4. Not surprisingly, high

expression is typically a necessary condition for a high informa-

tion score, but it is not a sufficient condition, as some high

expression genes have relatively low spatial information.

The spatial auto-information score can be trivially generalized

to compute the spatial information between a pair of genes. Do-

ing this for allOðn2Þ pairs is typically intractable unless n is small,

but if we first filter to consider only genes with high auto-informa-

tion, this becomes a viable way to explore the spatial relation-

ships between genes, which avoids coercing cells into distinct

types or clusters where they might not always unambiguously fit.

We chose genes with a spatial information score above 20,

resulting in 48 genes, and then computed pairwise information

between these genes. Hierarchical clustering of this pairwise in-

formation matrix reveals specific relationships of spatial organi-

zation among these genes (Figure 4D). Twenty of the genes were

broadly tumor associated yet, as indicated by the structure of the

dendrogram, show varying patterns of expression within the

tumor. Outside of the tumor-associated group, we see some

predictable groupings, which we have broadly identified as B

cell/immunoglobulin, extracellular matrix, tubule, major histo-

compatibility complex (MHC), housekeeping, and long non-cod-

ing RNA (lncRNA). There is significant variation within these

groups, for example the MHC class I gene B2M is in the same

tree as four MHC class II genes, but at a much greater distance.
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Figure 4. Using Maxspin to analyze the spatial variation of gene expression in a human renal cell carcinoma sample assayed with CosMx

(A) Log expression of spatially varying genes detected in non-tumor cell types. Major tumor regions are indicated by outlines.

(B) Log expression of spatially varying genes detected in tumor cell types.

(C) Classification of cell types using an unsupervised, spatially unaware clustering.

(D) Hierarchical clustering of spatially varying genes using pairwise spatial information.
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XBP1 shows a highly distinct pattern of expression, with low

spatial information with any other of the genes. Taken together,

this gives a rough map of the spatial organization of a subset

of genes in this dataset.

Performance
To evaluate computational costs of themethods, we ran them on

simulated data with varying numbers of cells. Since these

methods test each gene individually, they all scale linearly with

the number of genes, and thus we kept the number of genes

fixed at 8,000.

The results of this benchmark are shown in Figure 5. SPARK

was by far the most computationally expensive method in

terms of time and memory. We ran benchmarks for SPARK

only out to 5,000 cells, as it became exceedingly time

consuming. Most methods scale roughly linearly with the num-

ber of cells. The exceptions are the Gaussian process methods

SPARK and SpatialDE. The one other Gaussian process

method, nnSVG, manages to achieve linear time inference

but was still the second slowest method. SpatialDE overtakes
nnSVG at 10,000 cells but is faster for fewer cells in part

because it runs on a GPU.

To avoid giving Maxspin any opportunity for unfair advantage,

we disabled convergence checks when optimizing and let it run

for the maximum number of iterations. As a result, the results re-

ported forMaxspin are strictly an upper bound on inference time.

Regardless, it significantly outperforms Gaussian process

methods, though it cannot match the performance of methods

like Moran’s I, with simple closed form computations.

SpatialDE and Maxspin differ from the other methods in that

they run on GPUs. Though it is possible to run Maxspin without

a GPU, it is not designed or optimized to do so. While not

advised, running Maxspin without a GPU is possible and is still

considerably faster than SPARK. GPU methods also have to

work within the constraints of GPU memory, which is typically

much more limited than systemmemory (e.g., 12 GB GPUmem-

ory vs. 64 GB system memory in the system we used for these

benchmarks). Maxspin is designed to split work up and run in

batches, avoiding an issue with memory constraints until spatial

transcriptomics technology scales to orders ofmagnitude larger.
Cell Reports Methods 3, 100507, June 26, 2023 7



Figure 5. Run time and system memory us-

age were measured for each method across

simulated datasets with varying numbers of

cells

Most methods scale linearly with the number of

cells, whereas SPARK and SpatialDE have observ-

able different trajectories, as they rely on Gaussian

process models with exact inference.
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SpatialDE, on the other hand, does rapidly run up against this

limitation. Indeed,memory usage is inherently higher in Gaussian

process inference, even when approximate inference methods

are used.

All benchmarks were performed using Nvidia GeForce 3080 Ti

GPU and AMD Ryzen 5950X CPU.

DISCUSSION

The spatial information score computed by Maxspin appears to

better capture spatially coherent expression patterns than exist-

ingmethods across various datasets and simulations.When pre-

senting the results asDPR-AUC values, quantifying the improve-

ment over Moran’s I, a simple and well-established definition of

spatial correlation, we see that specialized modern methods are

not always an improvement. Methods aimed at detecting SVGs

are sometimes guilty of disregarding decades of work in spatial

statistics and fail to demonstrate a consistent advantage.

Taking the benchmarking results together, we see some pat-

terns emerge. Methods that rely on binning or binarization of

expression data—SpaGene, scGCO, and BinSpect—clearly

discard some useful information and consistently underperform

Moran’s I. In the case of scGCO, this underperformance is dra-

matic, typically failing to detect any SVG that is not highly ex-

pressed, suggesting that binning is not the only issue. Uniquely

among the tested methods, scGCO tries to first cluster cells

into spatial domains and then use these domains to inform the

test of spatial organization. Other methods such as SpaGCN17

and STAMarker18 follow a similar approach, except they detect

SVGs specific to each of the identified spatial domains, which

is difficult to compare directly with the methods discussed

here. Conceivably, if the spatial domains are accurately identi-

fied and account for the bulk of spatial variation, this could be

a sensitive test. Yet, if spatial variation is not confined to disjoint

homogeneous domains and instead varies in a more complex

fashion, there is potentially much these methods would miss.

Gaussian process methods—SpatialDE, nnSVG, and

SPARK—often perform well. In the case of SpatialDE, it per-

formed very well on the Visium benchmark, and very poorly

elsewhere, producing a preponderance of 0 p values, which is

a numerical issue that could conceivably be fixed. SpaGFT takes

a unique approach by using the graph Fourier transform but

generally fares poorly, particularly, it seems, in low-expression

examples. SPARK, which uses exact inference, rapidly becomes

intractable for large numbers of cells. SpatialDE also fails to
8 Cell Reports Methods 3, 100507, June 26, 2023
scale, though it uses approximate infer-

ence. This leaves nnSVG as the clear state

of the art in Gaussian process-based tests.
However, each Gaussian process model lags behind Maxspin.

This is in part due toMaxspin fitting a discriminative model rather

than the generative models that the Gaussian process methods

involve. Weaker distributional assumptions are involved, making

it less prone to influence by small numbers of outlier cells.

SPARK-X is an appealing alternative that is highly efficient

and adept at detecting certain spatial patterns. The set of coor-

dinate transformation kernels it uses yields a test that is highly

sensitive to, for example, circular regions and bands that span

the sample, as demonstrated most distinctly in their simulation,

but also in the Visium and an MERFISH brain samples, which

have similar bands of distinct cell types. When spatial patterns

get more subtle and local, most clearly shown in the cellular

Potts simulation, it can entirely fail to detect them. Maxspin ex-

cels in this setting and also very nearly matches SPARK-X in

sensitivity to the very simple, broad patterns that SPARK-X is

specially tuned to.

Maxspin also offers improved explainability compared with

more opaque statistical models. Because the information score

is a sum across cells, the individual cell-level values can be visu-

alized, showing precisely which cells and regions contribute to a

high information score (Figure 6). No other method yet proposed

can be disaggregated in this way.

In our analysis of RCC using CosMx SMI, we demonstrated

how Maxspin can be used to uncover patterns of expression in

a high-dimensional yet relatively sparse dataset by scaling line-

arly with the number of cells and accounting for uncertainty in

expression estimates. Though we largely focused on auto-infor-

mation, pairwise information is a simple extension that allows

genes to be clustered into an atlas of similar and dissimilar

spatial patterns. As demonstrated by first clustering into cell

types and then computing spatial information, spatial analysis

often uncovers patterns of expression that traditional clustering

approaches are insensitive to. The clearest indication of this is

the several examples of spatially organized expression within

the tumor regions. This variation in expression resists explana-

tion by clustering into cell types and is revealed most clearly

by gene-level spatial analysis.

The principle presented here, using a discriminative model to

maximize a bound on JS divergence, has other potential uses

that we have yet to fully explore. An obvious extension is to

directly control for possible covariates by estimating a score

similar to conditionalmutual information. This is straightforwardly

achievable by fitting the model twice, once including expression

values and the covariate and again with just the covariate, and



Figure 6. Expression plotted alongside sa-

liency maps, which indicate the cell-level

classifier accuracy

High saliency corresponds to regions that

contribute most to the overall spatial information

score, typically by residing in a region of consis-

tently low or high expression. Saliency here is

defined as the accuracy with which a cell can be

classified in repeated shuffled versus non-shuffled

binary classification tasks.
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then subtracting the two. A less trivial extension is to use Max-

spin as an objective function in gating, clustering, or dimension-

ality reduction tasks. This adds a level of complexity because we

would be simultaneously optimizing a function to assign cells to

clusters (or to low-dimensional representations) and the discrim-

inative bound on spatial information, but this is not so different

from the setup in generative adversarial networks,39 which

have seen tremendous success despite there being a level of

trickiness training such models.

By framing spatial coherence as spatial information and devel-

oping the tools for practical inference, we have presented a prom-

ising new perspective on spatial expression analysis and have

taken the first step inexploring this ideabydemonstratinga simple

discriminativemodel that ismore efficient andmore accurate than

state-of-the-art Gaussian process models at identifying SVGs
Cell R
across many settings. Though not a

replacement in all cases for generative

probabilistic models, it is, in many cases, a

more accurate and efficient alternative that

is designed to scale with spatial transcrip-

tomics technology as it inevitably expands

to very large datasets in the coming years.

Limitations of the study
Ultimately, ‘‘spatial coherence’’ or

‘‘spatially varying’’ expression can be sub-

ject to definitional disagreement. There

may be different defensible answers to

what constitutes a meaningful pattern of

spatial organization. Other fields have

grappled with these issues long before

the recent relevance of spatial statistics

in genomics. For example, the question

of how best to measure segregation has

been debated for decades in spatial

demography.40 The benchmarks pre-

sented here all rely on calling differential

expression between identified transcrip-

tionally distinct regions. While unlikely to

capture all meaningful spatial variation, it

is an intuitive baseline that we expect cap-

tures the most significant variations that

should be uncontroversial as examples of

SVGs. Further, these results hold up in

our simulations in which the ground truth

is known. Yet, for any given method, it is
possible to design a benchmark that violates its assumptions

and results in poor performance.

Maxpsin is designed with the intention of being run on a GPU,

which adds some potential complication to using the software

when compared with, for example, computing Moran’s I. In a

setting in which a GPU is unavailable and a dataset is very large,

using Maxspin may be impractical. We hope the extensive

benchmarks here will provide some guidance on a suitable alter-

native. If efficiency is critical, our results show that one can do

much worse than Moran’s I.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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Figure 7. Cell positions and morphology are

simulated using a cellular Potts model

Cells are initially arranged by type (here indicated by

color) into highly ordered ‘‘blobs.’’ Letting the cells

migrate for an increasing number of iterations pro-

duces arrangements that are less globally ordered

but still governed by a pairwise cell type adhesion

matrix.
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METHOD DETAILS

Spatial auto-information
The concept of spatial auto-correlation has been studied for decades using metrics like Moran’s I.5 Our goal is to create a more gen-

eral and flexible notion spatial dependence by instead adopting an information theoretic perspective and considering auto-mutual

information.

We score the ‘‘spatial coherence’’ of a gene’s expression by approximating the spatial auto-mutual information over nearby

expression values. Let pðxÞ be the marginal expression distribution for the gene of interest, pNðx; x0Þ the joint distribution over pairs

of expression values occurring in the same spatial neighborhood. The spatial auto-mutual information is then

INðx; x0Þ : = DKLðpNðx; x0ÞkpðxÞpðx0ÞÞ (Equation 1)
Z Z

=

x x0

pNðx; x0Þlog pNðx; x0Þ
pðxÞpðx0Þdx

0dx (Equation 2)

where DKL is the Kullback-Leibler divergence.
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Similar to,42 we found that using Jensen-Shannon divergence in place of Kullback-Leibler divergence lead to somewhat better re-

sults. The resulting objective function can be thought of as a non-standard version of mutual information, which we refer to here sim-

ply as spatial information. It can also be rewritten as standard mutual information, though no longer between neighboring expression

values, but instead the mutual information between observed pairs of expression values and 0–1 binary variable z indicating whether

they have been shuffled or not. More formally, if we let ð~x; ~x0Þ be drawn from a mixture distribution zpNðx;x0Þ+ ð1 � zÞpðxÞpðx0Þ, then
the objective can be written as

DJSðpNðx; x0ÞkpðxÞpðx0ÞÞ = INðð~x; ~x0ÞkzÞ (Equation 3)

Both of these definitions hinge on how ‘‘spatial neighborhood’’ is defined. In the simplest form, we can consider two cells/spots

neighbors if they are within some distance e. If s; s0 ˛Rd are spatial coordinates corresponding to x;x0, respectively, we can margin-

alize out the spatial coordinates within the same neighborhood to arrive at a joint neighborhood expression distribution on fixed

radius neighborhoods

pNðx; x0Þ =

Z
s

Z
s0 ˛BeðsÞ

pðx; sÞpðx0; s0Þds0ds (Equation 4)

This can be generalized by defining soft neighborhoods using a joint distribution over pairs of spatial positions

pNðx; x0Þ =

Z
s

Z
s0

pðxjsÞpðx0js0ÞpNðs; s0Þds0ds (Equation 5)

where pNðs; s0Þ is chosen to assign higher probability to nearby coordinates. To recover Equation 4, we can make it a uniform distri-

bution over pairs within distance ε of each other.

A related notion of spatial mutual information occurs in Altieri, et al.43 There, spatial mutual information is defined simply as the

mutual information between a pair of observed values ðx; x0Þ and their spatial distance dðs;s0Þ, both of which are discretized in their

setting. This is seeminglymore straightforward as it avoids having to define a neighborhood distribution, but in a large dataset training

on all n2 pairs would be inefficient, and randomly sampled subsets of pairs will tend to be mostly distant. So in practice, this is poten-

tially harder to estimate. Furthermore, the precise distance between a pair of cell is unlikely to be meaningful when those cells are far

away from each other.

Another possible definition is to consider the mutual information between a single expression value and its entire spatial neighbor-

hood. This may enable the detection of more elaborate spatial patterns, but has practical issues. Neighborhoods could easily be

memorized by a model, overestimating mutual information, so the joint distribution would have to be very carefully modeled to avoid

overfitting. We would also have to aggregate information across every node’s neighborhood, using for example a graph neural

network,44 at every step of training and evaluation. The computational cost would thus limit how large of a neighborhood we could

consider.

Computing either the JS or KL divergence has twomajor hurdles in practical applications. First, it necessitates finding a reasonable

model for the joint and marginal probabilities. An overparameterized model for pNðx; x0Þ risks memorizing the data or otherwise

discovering spatial patterns that are too subtle to be meaningful, whereas an insufficiently expressive model will fail to find true pat-

terns. Second, evenwith a suitablemodel in hand, we still have to compute the integral in Equation 2. In this work, we sidestep both of

these issues by instead estimating a lower bound on the JS divergence using a simple discriminative model.

Approximating Jensen-Shannon divergence
A number of recent studies have focused on avoiding the problem of computing mutual information directly by deriving more trac-

table lower bounds.21 These formalize the intuition that the easier it is to distinguish random draws form the joint distribution from

random draws from the marginals, the higher the mutual information must be. Or, in the context of spatial transcriptomics: a gene’s

expression is spatially coherent if we can, with some reliability, predict whether a pair of expression values was drawn at uniform, or

drawn from nearby cells.

A number of bounds on different divergence measures have been derived (for a review and comparison, see Tsai, et al.45). For this

work, we found the bound on Jensen-Shannon divergence proposed by Nowozin, et al.46 to work well, which is equivalent to the

binary cross-entropy objective used by Brakel, et al.47 A Jensen-Shannon based variant of the standard mutual information can

be defined as the Jensen-Shannon divergence between pNðx; x0Þ and pðxÞpðx0Þ, and bounded below by

IJSðx; x0Þ = DJSðpNðx; x0ÞkpðxÞpðx0ÞÞ
Rmax

q
EpNð$;$Þ½ � sð � fqðx; x0ÞÞ� � Epð$Þpð$Þ½sðfqðx; x0ÞÞ� (Equation 6)

where sðxÞ : = logð1 + exp ðxÞÞ is the softplus function, and fq is a classifier function with parameters q. Both expectations are taken

over ðx; x0Þ with respect to either the joint neighborhood distribution or the product of the marginals.
e2 Cell Reports Methods 3, 100507, June 26, 2023
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Intuitively, we want to train fq to distinguish samples drawn from the same neighborhood, using pN, and pairs that are independent

draws from across the sample. The better it is able to distinguish these, the higher the lower bound on the Jensen-Shannon mutual

information. Thus, expression patterns are spatially coherent to the degree that we can learn a pattern in nearby pairs.

Assuming we can efficiently sample from p and pN, and fq is differentiable with respect to q, this objective can be easily optimized

using stochastic gradient descent, by drawing samples from the joint and marginals at each iteration, computing the objective in

Equation 6, and backpropagating gradients to update q.

Concretely, each step of the optimization algorithm proceeds as follows, where x = ðx1;.; xnÞ is a single gene’s expression

measured across n cells or spots, and s = ðs1;.; snÞ is their spatial positions.

I)ðrandomwalkkðiÞ fori = 1;.;nÞ 8 k-step random walk from each cell

x0)ðxI1 ;.; xIn Þ 8 Expression at neighboring cells
~x)shuffleðxÞ 8 Randomly shuffle values across cells
~x0)ð~xI1 ;.; ~xIn Þ. 8 Neighboring expression in shuffled data

d)ðksi � sIik2 fori = 1;.;nÞ 8 Euclidean distance of each random walk

q) q+gVq

 
�
Xn

i = 1
s
�� fq

�
xi; x

0
i ;di

�� � Xn

i = 1
s
�
fq
�
~xi; ~x

0
i ;di

��!

Here g is the step size. In practice we use the Adam48 optimizer, rather than a fixed step size.

Testing for statistical significance
Because Maxspin is based on attempting a binary classification between shuffled and non-shuffled, it is trivial to construct a null-

hypothesis statistical test in addition to quantifying spatial information. The natural null hypothesis is that the classifier can do no bet-

ter than random guessing, and thus the number of correctly classified examples k is drawn from a Binomialðn; 0:5Þ distribution. The p

value is then computed from the CDF of the Binomial distribution.

Most genes will either have low expression or display some level of spatial organization, if the spatial context examined large

enough. Because of this, examining spatial information will often be more informative than binarizing into SVG or non-SVG using

a null hypothesis test. This is doubly true for reasons of numerical precision: p values computed for highly spatially organized genes

will tend to saturate floating-point arithmetic and producemany zeros. As noted, SpatialDE, among other methods, suffered from this

phenomenon, reducing its performance in our benchmarks.

Choosing neighborhood joint distribution
The definition of ‘‘spatial neighborhood’’ is determined by the neighborhood joint distribution pN. Optimizing the Jensen-Shannon

lower bound using stochastic gradient descent necessitates a distribution that can be efficiently sampled from. In Equation 5 we

showed how joint neighborhood expression can be defined in terms of a joint distribution over pairs of positions pðs; s0Þ defining a

soft neighborhood, where s; s0 are spatial positions of cells.

InMaxspin, we use the distribution induced by considering randomwalks of a fixed length between s and s0. A neighborhood graph

can be formed by Delaunay triangulation, fixed distance neighborhoods, or according to a grid in the case of Visium data. From this

graph, a transitionmatrix is formedwhere each neighbor is visited with equal probability.We can then define the joint distribution over

positions as

pðs; s0Þ : = pkðs0jsÞpðsÞ
where pðsÞ is a uniform distribution over cell positions, and pkðs0jsÞ is the probability of starting at the cell at position s and arriving at

the cell at position s0 after k random steps.

Larger values of kwill consider a larger neighborhood, and thus bemore tuned to finding larger scale spatial patterns, and a small k

will be more tuned to finding small scale patterns. Throughout this paper we used k = 10, finding the results to be not particularly

sensitive to this parameter, so long as it was not very small (less than 3). The limiting stationary distribution is a uniform distribution

over pairs of nodes, so at a certain point performance will degrade if k is too large, but the computational burden of sampling such

long walks becomes an issue before that point.

This random walk distribution is largely equivalent to the p-step random walk kernel discussed by Smola, et al.,49 which is pro-

posed as a more practical alternative to their graph diffusion kernel.

It has yet to be established definitively whether definitions of spatial locality that are graph based, as used here, or distance based,

as used for most Gaussian process covariance functions, are a better fit for spatial transcriptomics in general. Graph based ap-

proaches are simpler though, since there is no need to try to calibrate the scale of the kernel function to the spatial coordinates which

come in a variety of units (pixels, grid indices, micrometers, etc). As with common distance based kernel functions, random walk

based kernels also emphasize nearness, as a walk between two distant cells is less probable.
Cell Reports Methods 3, 100507, June 26, 2023 e3
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Choosing a classifier
Bounding JS divergence using a classifier solves the issue of having tomodel the joint probability distribution. Classifier models, typi-

cally conceptualized as a distribution over labels conditioned on observations, are typically far easier to model than full generative

probabilistic models. Framing the problem as classification also presents an opportunity to remedy another major weakness of in-

formation theoretic methods: since divergence captures any non-independence relationship it can find relationships that are

spurious or uninteresting. In principle, any differentiable classifier can be used for fq, but too powerful a learner, like a deep neural

network, risks memorizing the data, or identifying patterns too subtle or elaborate to be of interest. In practice we need a learner

than is sufficiently weak, yet able to capture the kinds of patterns that are of potential scientific interest.

Since we are most often interested in the phenomenon of a gene being expressed similarly in spatial neighborhood, we use a sim-

ple classifier of the form

fws ;wd ;b;sðx; x0Þ : = wsjx + x0 + sj � wdjx � x0j+b (Equation 7)

We constrain the weightsws;wd ˛R+ to be positive using a softplus transformation. The intuition here is that we assign high scores

to node pairs that are similarly expressed (captured by the wdjx � x0j term) and both either unusually low or high (captured by the

wsjx + x0 + sj term). Dropping the positivity constraint would allow the detection of anti-correlation, which could potentially be of in-

terest, but more often we are interested in positive correlation, and restricting the signs of the weight slightly improves performance

for such cases.

We found this function family to be suitably general to discover simple patterns of low or high expression regions, but in other set-

tings where the goal is to findmore elaborate spatial patterns, the method can be trivially adapted by choosing amore powerful clas-

sifier. The risk of doing so is to overfit or memorize the data, but this can be further remedied with standard regularization techniques.

We further allow the classifier weight these scores according to the distance of the random walk, by passing the distance of the

random walk to classifier for both the neighborhood and uniform sampled pair. This allows it to discount long walks when the spatial

organization is very local. To do this we weight classifier scores by exp ð� d =aÞ, where d is the Euclidean distance of the walk, and a

is a parameter that is learned on a per-gene basis. The weighted classifier function then takes the form

fws ;wd ;b;s;aðx; x0;dÞ : = exp ð�d =aÞfws ;wd ;b;sðx; x0Þ (Equation 8)

Optimization is over the set of parameters q = ðws;wd;b;s;aÞ, each a real number.

Accounting for uncertainty in count data
Discrete and often sparse count data represents a noisy estimate of gene expression. Methods often fail to account for this source of

uncertainty resulting overconfident predictions. Instead of training on raw, or transformed count data, we instead resample expres-

sion values periodically during stochastic gradient descent, effectively optimizing an expectation over unobserved expression

values. This has the concrete effect of minimizing the possibility of overfitting.

With count data, we can either assume counts represent an unconfounded measurement of absolute expression, or we can as-

sume that the total counts per cell/spot represent a confounding variable and instead deal in proportional expression (e.g. ‘‘tran-

scripts per million’’). In the former case, we adopt a Gamma-Poisson model, and train on values sampled from the posterior Gamma

distribution at each iteration. When treating data proportionally, we adopt a Dirichlet-Multinomial model and train on samples drawn

from the posterior Dirichlet distribution.

The same approach can be used with a more sophisticated probabilistic model, by running Maxspin on samples drawn from its

posterior. We took this approach in our analysis of the CosMx RCC data. Posterior inference done by Sanity28 provides posterior

means and standard deviations. We used these values to sample expression values from a normal distribution when running Max-

spin. In the future, other types of models can be used to handle isoform- or allele-specific expression by accounting for uncertainty

over read assignment.

Improving performance in sparse data by binning
When expression for a gene is very sparse, training can be inefficient, because it relies on the relatively small proportion of random

walks between cells with nonzero expression. To remedy this, we bin data at multiple resolutions, and train jointly on the original data

and the binned data.

Binning is nontrivial because if bins end up with differing numbers of cells, it can introduce subtle statistical dependencies which

can falsely manifest as positive spatial information scores, even if normalizing for cell count. To overcome this, we spatially bin data

using a modified kd-tree. For n cells/spots and a specified bin size k, we first discard a random nmodk cells to ensure the data can be

exactly binned.We then recursively split along alternating axes, ensuring at each split that both partitions can be divided exactly by k,

until we reach partitions of size k. The result is spatially arranged bins eachwith exactly k cells. By default we include binned data with

bin sizes k = 4;8; 16 when training. Of course, the result of binning is fewer bins than there were cells, so when training upweight the

objective function for each binning by
ffiffiffi
k

p
. Weighting offers a trade-off. More highly weighted large bins will make the method more

sensitive to broad but sparse patterns, but somewhat less sensitive to very small scale patterns.
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Interpreting the spatial information score
The spatial information score computed byMaxspin is a value si ˛ ½0;1� for each gene i quantifying the accuracy of predicting whether

a pair of cells was sampled from a random walk in its neighborhood or uniformly at random. Though its interpretation may not be

immediately obvious, it has some advantages over correlations or p values computed by other methods.

Most critically, unlike every other method considered, the score is computed on a per-cell basis. The score for a gene i is simply the

sum of the scores for each cell j. That is, si =
P
j

sij. Because of this, it is trivial to determine why a gene was assigned a high score,

whereas with every other existing method, some deeper analysis has to be performed. In some instances, taking the mean might be

more appropriate, but by default we do not try to control for the number of cells. A spatially coherent pattern involving more cells will

score higher than a similar pattern involving fewer.

These per-cell scores do have a simple interpretation as the log-probability assigned to the true labels in the classified pairs,

normalized to a baseline of a random guessing. To see this we simply have to rewrite the objective function. First consider the objec-

tive function

sij = Eðxn ;x0nÞ;ðxf ;x0fÞ
�� s

�� fq
�
xn; x

0
n

�� � s
�
fq
�
xf ; x

0
f

���
where s is the softplus function, and the expectation is taken over the random walk distribution ðxn; x0nÞ � pNð$; $Þ as well as the uni-

form sampling distribution ðxf ;x0f Þ � pð $Þpð $Þ, with the mnemonic n for near and f for far. This can be rewritten in terms of the sigmoid

function sðxÞ = 1=ð1 + exp ð� xÞÞ.
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If we interpret sðfqð $ÞÞ as the probability assigned by the classifier, we can see that this spatial information score is simply the log

probability of assigning true labels to both the near and far examples. Each cell’s score is then a score in ð � N;0:0�.
Random guessing would result in a baseline score of logð0:5 $0:5Þz � 1:38, so scores in practice are in ½logð0:25Þ;0�, only occa-

sionally lying slightly below due to numerical imprecision. Maxspin further normalizes these by shifting and and scaling these to lie in

½0;1�, allowing them to be loosely interpreted similarly to correlations, though typically much smaller, since the classifier rarely ap-

proaches perfect accuracy. Summing across cells we then have per-gene scores si than lie in ½0;n�, and can be divided by n if so

desired.

Hierarchical clustering with pairwise spatial information
Pairwise information scores were computed and hierarchical clustering was run with with complete linkage. Pairwise information,

unlike distance larger for more closely related genes. To use with hierarchical clustering, which assumes pairwise distances, pairwise

information Iij is first symmetrized as ~Iij = ðIij + IjiÞ=2) to reduce numerical inaccuracy, then transformed into a distance as

Dij =
1

ð1+~IijÞs

where s is a constant controlling the relative scaling, which we set to s = 0:5.

Saliency maps
Our spatial information score, which captures the aggregate classifier performance, can be disaggregated to cell-level scores which

can be used to determine which regions are spatial coherent. The resulting images are analogous to saliency maps proposed by Si-

monyan et al.50 to visualize which regions of an image contribute disproportionately in convolutional neural network classifiers. Both

here and in that work, saliency maps provide an explanation to go along with the prediction, which can be useful for diagnosis, or in

the future, perhaps for clustering and other spatial analysis tasks.

Figure 6 shown examples of spatially varying genes detected in the CosMx RCC dataset and their accompanying saliency maps.

Simulation of cell positions and morphology
Our Cellular Potts model simulates cell position and morphology, with cell migrating for some number of iterations. More iterations

will tend to produce less simplistic spatial patterns, white retaining a non-random configuration due to random pairwise cell type

adherence. Figure 7 shows an example of the same simulation being run increasing numbers of iterations.

The simulations taken from SPARK-X are comparatively much simpler, with fixed, simple patterns of spatial variation (Figures S1C

and S1D).

Implementation
The method in implemented in Python using jax51 and flax,52 and built on data structures from squidpy.6
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QUANTIFICATION AND STATISTICAL ANALYSIS

Constructing ground truth spatially varying gene sets
Across the benchmarks we used the same strategy to construct a set of high confidence spatially varying genes to use as a proxy for

ground truth. In each dataset we annotated distinct spatial regions and then did pairwise differential expression tests between re-

gions using the Wilcoxon signed rank test. p-values were adjusted using the Benjamini-Hochberg procedure. We then selected

genes with adjusted p values below 0.01. This analysis was performed in R, using Seurat.41

Evaluating method performance
Methods approach the problem of discovering spatially varying genes differently. Some methods produce p values, but others pos-

terior probabilities or autocorrelation scores. Therefore we do not seek to evaluate how well calibrated p values or posterior proba-

bilities are, and instead performed an analysis based on rank. Regardless of how the method approaches the problem, it ought to be

able to rank genes so that the most those with the most spatially organized expression come out on top.

Statistical analysis for the benchmark comparisons between methods was based on area under the precision recall curve (PR-

AUC). Since performance varied dramatically between benchmarks, we normalized these scores by subtracting the PR-AUC score

of Moran’s I, which we consider a reasonable default method for spatial autocorrelation, producing a summary score we call D PR-

AUC, measuring to what degree a method under- or overperforms Moran’s I.
e6 Cell Reports Methods 3, 100507, June 26, 2023
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