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Abstract
In this review, we discuss a paradigm whereby changes in the intragraft microenvironment
promote or sustain the development of chronic allograft rejection. A key feature of this model
involves changes in the microvasculature including a) endothelial cell (EC) destruction, and b) EC
proliferation, both of which result from alloimmune leukocyte- and/or alloantibody-induced
responses. These changes in the microvasculature likely create abnormal blood flow patterns and
thus promote local tissue hypoxia. Another feature of the chronic rejection microenvironment
involves the overexpression of vascular endothelial growth factor (VEGF). VEGF stimulates EC
activation and proliferation and it has potential to sustain inflammation via direct interactions with
leukocytes. In this manner, VEGF may promote ongoing tissue injury. Finally, we review how
these events can be targeted therapeutically using mTOR inhibitors. EC activation and
proliferation as well as VEGF-VEGFR interactions require PI-3K/Akt/mTOR intracellular
signaling. Thus, agents that inhibit this signaling pathway within the graft may also target the
progression of chronic rejection and thus promote long-term graft survival.
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Overview
A large body of literature indicates that pathological changes within the microvasculature
are characteristic of acute and chronic allograft rejection. Here, we will review recent
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concepts indicating that microvascular endothelial cells (EC) participate in all aspects of
rejection, from their initial encounter with leukocytes to the angiogenesis response that is
characteristic of the chronic inflammatory healing process. Endothelial cell (EC) activation
responses are initiated within allografts as a result of the biological effects of cytokines
released from resident macrophages in response to hypoxia and ischemia-reperfusion injury
[1]. Persistent EC activation occurs in association with chronic rejection, a cell-mediated
immune response characterized by repeated episodes of acute inflammation and associated
attempts at repair [2, 3]. These proinflammatory EC activation responses include the
induced expression of adhesion molecules, chemokines and MHC class I and II molecules
on the cell surface of donor graft EC [1, 4, 5]. Activated endothelial cells mediate the
recruitment and infiltration of leukocytes within the allograft tissue [1, 2, 6-8], promote
leukocyte activation directly and facilitate functional differentiation of transmigrating
leukocytes [9, 10]. This includes the reactivation of T cells to produce Th1 [11], Th2 [12], or
Th17 [13] cytokines and the ability of EC to mediate the differentiation of monocytes into
professional antigen presenting cells (APCs) [5, 14]. Collectively, these events create a
pathological microenvironment within the graft that we propose both initiates and sustains
the rejection process. Thus, targeting events within the microvasculature have potential to
inhibit the chronic rejection process. A discussion of the molecular basis for EC-dependent
recruitment and leukocyte activation has been recently reviewed in depth elsewhere [1, 7,
15] and is beyond the scope of this review. Here, we discuss other key aspects of the
microenvironment that are integral to chronic allograft rejection

The Initiation of the Pathological Intragraft Microenvironment
It is widely accepted that acute and chronic rejection is initiated and sustained by the
recipient’s immunological response to donor antigen, coordinated by CD4+ T cells and other
cell types including CD8+ T cells, B cells and macrophages [5, 16-18]. The alloimmune
response involves multiple cell types and complex issues including the expansion of effector
cells [19, 20], clonal size [21-23], the mode of allorecognition (“direct” or “indirect”
pathways) [16, 24-26], the development of alloantibody [27-30] and immunoregulation
[31-36]. However, donor-specific alloantibodies, cytokines as well as growth factors must
target the graft, and notably they must injure vascular EC in order to mediate graft
destruction. Alloimmune-dependent targeting of EC can cause direct injury to the graft and
result in local tissue hypoxia, but it can also promote EC activation and proliferation, which
is associated with leukocyte infiltration. We have recently proposed that initial ischemia-
reperfusion injury and the later immune response creates an intragraft microenvironment
that fosters the development of chronic allograft rejection [37, 38]. In this paradigm, three
major elements within the microenvironment contribute to the rejection process. The first is
direct injury to the graft EC that results from ischemia-reperfusion injury, cellular and
humoral alloimmune targeting. The second is EC proliferation that occurs as a characteristic
consequence of delayed type hypersensitivity [3], and is mediated by mononuclear cell
infiltrates and the production of local cytokines and growth factors. Both events (direct
targeting and EC proliferation) serve to create abnormal microvascular blood flow patterns
and thus, local tissue hypoxia [37, 39-41], and they precede endothelial-to-mesenchymal
transition (EndMT), whereby abnormal EC may dedifferentiate into fibroblasts [42, 43]. The
third key event is the overexpression of vascular endothelial growth factor (VEGF), which is
both pro-inflammatory and pro-angiogenic, and is thus a key molecule in the development
of the chronic rejection microenvironment. Below, we will focus on these three aspects of
this paradigm and we will discuss how inflammation results in angiogenesis, and how
VEGF plays a key role in the pathological intragraft microenvironment.
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Overlapping Nature of Angiogenesis and Chronic Inflammation in
Allografts

As discussed above, early ischemia-reperfusion as well as cellular and humoral targeting of
the graft EC results in profound injury to the microvasculature [15, 27, 38, 44, 45]. The loss
of microvascular integrity impairs the delivery of oxygen and nutrients to interstitial cells,
which in turn contributes to local tissue ischemia, and cell death (Figure 1 and [44, 46, 47]).
Indeed, the degree of injury and microvascular EC loss at early times post transplantation
has been reported to be predictive of the development of interstitial fibrosis, tubular atrophy
(IFTA) as well as later chronic rejection following kidney transplantation [48].
Pharmacologic therapy that augments protective signaling in EC and maintains
microvascular integrity at early times post transplantation has potential to improve long-term
graft survival [44, 49]. These studies suggest that the lack of early protective and/or
homeostatic repair responses within the capillary bed will be associated with the subsequent
development of chronic rejection [38].

However, inflammatory infiltrates also mediate a process of leukocyte-induced angiogenesis
[3, 50-52]. EC proliferation and the creation of new blood vessels is necessary for normal
wound healing and physiologic tissue repair following acute injury [3,53]. It has also been
found to be associated with many chronic inflammatory disease states [50, 51, 54] including
chronic allograft rejection [38, 45]. Importantly, the chronic inflammatory neoangiogenesis
response can result in a disorganized pattern of blood vessels [38, 41, 45, 55] that are
described to be irregular in size with chaotic branching patterns [39]. Thus, the response has
potential to create associated abnormalities in blood flow throughout the inflamed tissue [38,
39, 41]. Once present within allografts [41], we suggest that some areas of the graft may
have increased blood flow while other areas have sluggish blood flow that can result in
patchy areas of tissue hypoxia [38, 41]. Thus, once angiogenesis is present within a graft, it
is likely associated with local hypoxia and thus, it has high potential to support the
progression of tissue injury/disease, [3, 45, 50, 52, 53].

In the course of an immune inflammatory reaction, vascular repair processes are regulated
by the local expression and the relative balance and function of pro- and anti-angiogenesis
factors. Monocytes, which are characteristic of chronic inflammation, are well established to
mediate angiogenesis [56, 57]. The molecular basis for monocyte-EC interactions and the
resultant EC proliferative response is understood to involve the secretion of several pro-
angiogenic mediators including VEGF [57], TNF- [56], TGF- and nitric oxide [58, 59].
Some of these latter factors have been found to function in part by stimulating the
production of VEGF [56, 57]. Also, it has also been found that activated T cells are a major
source of angiogenesis factors, including VEGF [60, 61]. Collectively, these findings
support the hypothesis that VEGF is a key mediator of the inflammatory angiogenesis
reaction [45]. In addition, other factors, such as chemokines, that are produced in association
with inflammatory responses have the ability to regulate EC proliferation [62]. Thus, it is
not surprising that during chronic inflammation, EC proliferative responses and
angiogenesis are overlapping and interactive processes [3, 50, 52-54].

During inflammation, the excessive production of VEGF and related angiogenesis factors
occurs both temporally and spatially in association with leukocytic infiltrates [45, 55,
63-65]. EC proliferation and angiogenesis has been reported to occur within the intimal
proliferating lesion of allograft vasculopathy [66-68]. Aberrant angiogenesis has also been
observed in association with bronchiolitis obliterans, the pathophysiological correlate of
chronic lung rejection [41, 69]. Once EC proliferation occurs within an allograft, its effect
on blood flow patterns and local tissue hypoxia has potential to induce VEGF expression
and thus, the inflammatory angiogenesis response [38, 39, 41], and in turn, local tissue
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hypoxia results in an amplification of VEGF expression and the inflammatory angiogenesis
response. As such, over time, the angiogenesis response and VEGF expression provide
amplification loops to support an abnormal intragraft microenvironment that sustains the
progression of chronic allograft rejection [38, 39, 41, 45, 70, 71].

Overexpression of Vascular Endothelial Growth Factor (VEGF): A Key
Intragraft Pathological Feature of Allograft Rejection

The major stimulus for VEGF expression is hypoxia [39, 70, 71],but it can be induced by
several cytokines, including IL-1, TNF, and IL-6 [56, 72, 73]. In addition, the ligation of
CD40 on EC and monocytes by CD154 (CD40 ligand, expressed by activated platelets and
T cells) is potent to induce VEGF expression [61, 74]. Since many of these VEGF-inducing
factors are present within allografts at different times post transplantation, it is not surprising
that VEGF-dependent biological responses are a characteristic feature of the pathological
intragraft microenvironment. For instance, as discussed above, during rejection local tissue
hypoxia may induce the overexpression of VEGF (illustrated in Figure 1). In addition,
VEGF is delivered into the local intragraft microenvironment by inflammatory infiltrates
indicating a high likelihood that it will be associated with the rejection process. Indeed,
VEGF is not only expressed, but it has emerged as a key mediator of both acute and chronic
allograft rejection [45, 65, 75]. Once, present within the graft microenvironment, VEGF
classically functions as an angiogenesis factor [45, 46, 76], but increasing evidence suggests
that it may also act as a potent proinflammatory cytokine [45, 77, 78]. To this end, VEGF
may be functional to mediate the progression of chronic disease [45, 50, 51, 63, 69, 79-81].

VEGF functions as a proinflammatory cytokine in part related to its ability to induce the
expression of adhesion molecules and chemokines in EC [63, 77, 82, 83] and also to its
function as a direct leukocyte chemoattractant [63, 78, 81, 84]. The VEGF receptors Flt-1
(VEGF receptor 1) and neuropilin-1 are expressed by human monocytes and APCs [78, 79,
85], and VEGF-VEGFR interactions function to elicit monocyte activation responses as well
as chemotactic activity [78, 79]. In addition, several recent studies have indicated that T cell
subsets express Flt-1, KDR (VEGF receptor 2) and neuropilin-1 [80, 84, 86, 87], and VEGF-
VEGFR interactions promote lymphocyte chemotaxis in vitro and in vivo [63, 80, 81, 84].
In models of acute rejection, antibodies to VEGF or to Flt-1 and KDR prolong graft survival
[63, 88]. In models of chronic rejection, the overexpression of VEGF within cardiac
allografts mobilizes bone marrow derived monocyte/macrophages and accelerates the
development of allograft vasculopathy [89]. In humanized SCID mouse models, blockade of
VEGF or VEGFR’s inhibits the development of acute rejection as well as the development
of allograft vasculopathy [63, 80, 81]. In part these effects of VEGF-VEGFR blockade have
been reported to be associated with the inhibition of the intragraft accumulation of T cells
[80, 81]. Interestingly, VEGFR-expressing T cells have been found to accumulate within
rejecting human allografts in vivo [80, 81], suggesting that locally expressed VEGF within
allografts may interact with VEGFRs expressed on subsets of effector T cells to facilitate
lymphocyte chemotaxis. Consistent with this possibility, anti-VEGF and anti-KDR inhibit
the transmigration of CD4+ and CD8+ T cells across activated EC in vitro. These
observations demonstrate that once VEGF is overexpressed within an allograft, the
microenvironment promotes inflammation, chronic rejection and allograft vasculopathy
[89].

Indeed, consistent with this model, Pilmore et al [65] observed that VEGF expression was
most striking in association with CD68+ monocyte/macrophage infiltrates within the
interstitium of human renal allografts. Torry et al [75] found that the expression of VEGF
was confined to areas with monocyte/macrophage infiltrates in cardiac allografts, and we
observed that its expression was prominent in association with inflammatory cell infiltrates
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[64]. In addition, we have found that high levels of intragraft VEGF correlated with the
development of both acute and chronic cardiac allograft rejection, and that persistent
expression identified patients who were at high risk for the development of cardiac allograft
vasculopathy/chronic rejection [64]. Levels of VEGF may also increase significantly in the
serum and urine of patients with cardiac and renal allograft rejection [90, 91], and human
recipients of transplants with genotypes encoding high VEGF production are at increased
risk for the development of allograft rejection [92, 93]. Taken together, these observations
support the hypothesis that VEGF is mechanistic to elicit events that sustain the pathological
intragraft microenvironment.

The Mammalian Target of Rapamycin (mTOR) Signaling Pathway In
Vascular Endothelial Cells

Activation of mTOR plays a central role in EC activation, survival and proliferation [94-97].
Indeed, targeting mTOR in EC with rapamycin is well established to inhibit EC survival, to
reduce angiogenesis in experimental models [94, 96] and to delay wound healing in vivo
[98, 99]. Targeting mTOR also reduces leukocyte-induced angiogenesis in association with
inflammation [45, 97]. In this next section, we focus our discussion on how the mTOR
signaling pathway functions to promote the activation, survival and proliferation of graft
vascular EC. mTOR inhibitors represent the first-in-kind anti-EC therapeutics that are used
in clinical practice following transplantation. Here, we show how they target the
maintenance and progression of the chronic rejection intragraft microenvironment
(illustrated in Figure 1 and Figure 2).

mTOR is a serine/threonine kinase present in two distinct protein complexes [100]. mTOR
complex-1 (mTORC1) is composed of mTOR, regulatory-associated protein of mTOR
(raptor) and mammalian lethal with SEC13 protein 8 (mLST8) [101, 102], and functions to
couple signals generated from growth factors, cytokines, nutrients and amino acids to cell
growth and proliferation [103]. mTORC2 is composed of mTOR, rapamycin-insensitive
companion of mTOR (rictor), mLST8, proline-rich protein 5 (Protor) and mitogen-activated
protein kinase-associated protein 1 (mSin1) [104, 105], and it functions to phosphorylate
and activate AGC kinase family members such as Akt, SGK and PKC [106, 107].

Receptor mediated signals initially lead to the activation of the phosphoinositide-3 kinase
(PI-3K)/Akt and the Raf/MEK/MAPK signaling pathways, which phosphorylate and
inactivate TSC2 [108, 109], resulting in the activation of the small GTPase Rheb, which in
turn, directly activates mTORC1 [110, 111]. In addition, growth factors can increase
mTORC1 activity through TSC2-independent mechanisms, including a pathway that
involves Akt-dependent phosphorylation of PRAS40, which removes the inhibitory effect of
TSC on mTORC1 activity [112]. In response to upstream stimuli, mTORC1 ultimately
regulates cell growth, proliferation and protein synthesis through the phosphorylation of two
well-characterized substrates 4E-BP1 and S6K1 [113].

In contrast, little is known about the upstream regulation of mTORC2 assembly and
activation [114]. To date, it has been reported that growth factors activate mTORC2 in a
PI-3K dependent manner through a mechanism that involves the association of mTORC2 to
ribosomes [115, 116]. It is however well established that mTORC2 mediates Akt activity,
which in turn activates mTORC1. This signaling response, via mTORC1, can also initiate a
feedback loop to regulate mTORC2 activity through interactions with rictor [114]. Thus,
mTOR kinase activity is closely interrelated with the activity of the Akt kinase and crosstalk
between both mTOR complexes (see Figure 2).
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mTOR Signaling and The Pathological Intragraft Environment
As discussed above, the expression of VEGF within allografts has potential to promote and
sustain a microenvironment that fosters the development of chronic rejection. To this end,
both mTORC1 and mTORC2 are signaling intermediaries between inflammation and the
production of VEGF. For instance, the ligation of CD40 on EC by CD154 stimulates VEGF
transcriptional activation in an mTORC2-dependent manner [74]. In addition, VEGF is
secreted at high levels in cells with increased mTORC1 activity [117]. At the molecular
level, mTORC1 enhances the expression of HIF-1 , a transcription factor that is known to
induce the expression of VEGF ([118] and Figure 2). HIF-1 activity is also induced by
hypoxia, suggesting several mechanisms whereby VEGF expression will be induced by
cytokines and/or hypoxia in vivo within allografts.

mTOR inhibitors are also potent to target EC activation and proliferative responses, key
features of chronic rejection. The molecular mechanisms implicated in the inhibition of EC
proliferation by rapamycin have only been partially characterized, but include a reduction in
cyclin D1 expression as well as inhibition of Akt-induced responses [95, 119]. Akt is an
evolutionarily conserved serine/threonine kinase, which is well known to mediate cell
survival and resistance to apoptosis [107, 120]. Three different Akt isoforms are present in
mammals and they share ~80% homology in amino acid sequence. Activation of Akt
requires phosphorylation of the Thr308 and Ser473 amino acid residues by PDK1 and
mTORC2 respectively [106]. Following activation, the Akt kinase regulates numerous
signals including mTORC1 that result in cell survival or the inhibition of apoptosis. For
example, Akt-activity induces the phosphorylation of BAD, which prevents its binding to
pro-apoptotic Bcl-XL [121]. Also, Akt-mediated phosphorylation of the forkhead family of
transcription factors including Foxo1 and Foxo3a mediates their sequestration in the
cytoplasm, which prevents the induction of pro-apoptotic genes by these factors [122]. The
proliferative effects of Akt are mediated by p21, p27 and cyclin D1 expression as well as
through several additional effects that result from mTORC1 activation [123].

Many of these observations suggest that Akt is implicated in EC responses pertinent to the
development of the chronic rejection [45, 97]. In addition, it is important to note that Akt is
also functional in EC-dependent mechanisms of proinflammation. For instance, TNF -
induced expression of the chemokine MCP-1 is reduced by pharmacological inhibitors of
PI-3K/Akt signaling [124]. Also, Akt-mediated signals induce the expression of the T cell
chemoattractant chemokine IP-10 (also called CXCL10) in EC [83]. Collectively, these
reports suggest that targeting Akt/mTOR signals in EC has potential to inhibit activation
responses, including chemokine expression and the inducible expression of VEGF, and to
inhibit EC proliferative responses.

Targeting mTOR signaling: Therapeutic Considerations
Cellular rejection is associated with cytokine- and growth factor-mediated responses in EC
that include activation of the mTOR signaling pathway [1, 97, 98]. In addition humoral
immune responses characterized by the production of donor specific alloantibodies
contribute to vascular injury and chronic rejection by inducing EC activation and
proliferation [27, 125]. The basis for alloantibody-mediated responses in EC is an area of
current research [27], but recent studies indicate that binding is associated with the
activation of mTOR [125]. We suggest that this response relates to physiological induction
of protective genes, but as discussed above, it also results in the induction of
proinflammatory chemokines as well as VEGF that together serve to enhance alloimmune-
dependent injury to the graft (Figure 1). Thus, it is possible that mTOR signaling inhibitors
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have potential to attenuate intracellular cascades within the graft, so that the EC response is
limited and/or that the EC phenotype remains quiescent.

Rapamycin and its pharmacological analogues, collectively called rapalogs, are currently
used therapeutically following transplantation [97-99] as well as in other disease states [100,
103] to inhibit the mTOR signaling pathway in multiple cell types. The effect of rapalogs on
the inhibition of chronic rejection has been evaluated in different experimental models
[126]. In addition, following heart transplantation in humans, evidence suggests that the
addition of rapalogs to the immunosuppression regimen reduces the development of
allograft vasculopathy [127, 128]. Interestingly, rapalogs not only limit the development of
allograft vasculopathy but also reduce the progression of established lesions. While these
reports are encouraging, some experimental studies have demonstrated that blocking mTOR
with rapalogs might be suboptimal in the targeting of activation responses. First, rapalogs
have no direct effect on mTORC2, which mediates VEGF expression [74]. Second, rapalogs
only partially inhibit mTORC1 activity resulting in limited inhibition of EC proliferation
[129]. Since the induced expression of VEGF is proposed to central to the chronic rejection
miroenvironment, more efficient targeting of both mTORC2 and mTORC1 might be of
theoretical benefit to prevent the progression of chronic rejection.

Rapamycin binds to FKBP-12 to form a complex with the FRB domain of mTOR, resulting
in inhibition of activation [100]. This complex inhibits mTORC1, but it has no direct effect
on mTORC2, presumably because the FRB domain of mTOR is not accessible to the
rapamycin-FKBP-12 complex. Nevertheless, in some cell types, including EC, prolonged
treatment with rapamycin also blocks mTORC2 activity by inhibiting the de novo formation
of the complex [95]. We suggest that this effect might in part be related to the ability of high
intracellular concentrations of rapamycin to saturate the binding of mTOR, such that less is
available for assembly as mTORC2 [95, 97]. Alternatively, conformational changes may
inhibit mTORC2 activity. Nevertheless, this effect of rapamycin results in an inhibition of
the activity of the Akt kinase, which is the downstream effector of mTORC2 activity [95,
107, 130].

A new class of drugs have been recently developed that block the mTOR kinase domain by
acting as ATP-competitive inhibitors [129, 131]. Compared to rapalogs, ATP-competitive
inhibitors of mTOR target both mTORC1 and mTORC2. Initial studies have demonstrated
that their ability to inhibit EC proliferation and survival are greater than raplogs [131], and
they also inhibit VEGF production more effectively. These differences indicate that ATP-
competitive inhibitors of mTOR have promise as novel therapeutics in the future.

Finally, it is important to note that mTOR is integral to a complex of signaling networks and
crosstalk among signaling cascades. Therefore, agents that inhibit mTOR activity also
influence other signaling pathways that are involved in cell proliferation and survival [100,
107]. For instance, the inhibition of mTOR by rapalogs or ATP-competitive inhibitors
induces the activation of the MEK/MAPK signaling pathway [131]. As MEK/MAPK
generates proliferative and survival signals it is likely that co-incident activation of these this
pathway by mTOR inhibitors limits their biological effects. Thus, in the future it is possible
that the combination of classes of mTOR inhibitors with MEK inhibitors may be therapeutic
to target intracellular signals more efficiently than either treatment alone [131].

Summary and Conclusion
In this review, we have defined EC-based events such as those mediated by cellular and
humoral immunity that contribute to chronic rejection. Once EC are injured, changes in the
microcirculation result in local areas of tissue hypoxia within the graft. In addition,
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cytokines and growth factors within the microenvironment stimulate EC activation, which
sustains the inflammatory reaction further amplifying the local injury response. EC
proliferation and angiogenesis may also lead to abnormal blood flow patterns within the
graft to create local tissue ischemia, which serves to sustain the progression of chronic
rejection. Ee propose that local tissue hypoxia together with the overexpression of VEGF
and VEGF-VEGFR interactions are central determinants of chronic rejection. Since
activation of the mTOR/Akt signaling pathway plays a central role in the EC activation and
proliferation in response to cellular and alloimmune targeting, it is possible that the use of
rapalogs will inhibit intragraft EC-dependent events pertinent to the progression of chronic
rejection. Overall, this review provides insight into the intragraft microenvironment as a
novel paradigm that highlights mechanisms of chronic rejection. We suggest that this
paradigm also has potential to identify areas for future therapeutic intervention to inhibit
chronic rejection and promote long-term survival following transplantation.
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Figure 1. Cartoon illustrating the interplay between alloimmunity, the intragraft
microvasculature and chronic allograft rejection
Following transplantation, early alloimmune inflammatory targeting of the donor graft
vascular endothelium results in the destruction of microvessels and local tissue hypoxia and
injury. In addition, inflammatory responses may also stimulate endothelial cell (EC)
activation and proliferation, and a leukocyte-induced angiogenesis reaction. In part, this
response results from the delivery of cytokines and pro-angiogenic factors including
Vascular Endothelial Growth Factor (VEGF) into the graft by infiltrating leukocytes The
pathological leukocyte-induced EC proliferation results in changes in the microvasculature,
including the formation of abnormal networks of capillaries and chaotic or sluggish blood
flow patterns that have also been shown to result in local tissue hypoxia. Thus, local tissue
hypoxia, and hypoxia-inducible genes (such as VEGF) may sustain ongoing tissue damage.
We thus propose that the pathological intragraft microenvironment that sustains chronic
rejection results from both acute targeting of EC, as well as from EC proliferation/
angiogenesis.
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Figure 2. Cartoon illustrating mTOR signaling pathway that may function to mediate the
pathological inflammatory microenvironment
During allograft rejection, alloantibodies, inflammatory cytokines and growth factors
mediate activation of the mTOR signaling pathway. Assembly of the mTORC2 complex
facilitates the phosphorylation and activation of Akt, which alone is sufficient to mediate EC
activation responses and the transcriptional activation of VEGF. pAkt is well established to
facilitate cell survival responses but also mediates growth, proliferation and migration and
protein synthesis via mTORC1-dependent responses including two substrates S6K1 and
4EBP1. In EC these events are critical for proliferation and the neoangiogenesis reaction.
mTORC1-mediated signals also enhance the expression of HIF-1 (a hypoxia response
transcription factor), which induces the expression of VEGF. These signals are regulated by
cell intrinsic proteins including PRAS40 and Deptor, and can be targeted therapeutically by
rapalogs.

Dormond et al. Page 17

Hum Immunol. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text


	Serveur Académique Lausannois SERVAL serval.unil.ch
	Author Manuscript
	Faculty of Biology and Medicine Publication
	Published in final edited form as:

