

Aline Fuchs¹, Monia Guidi^{1,2}, Eric Giannoni³, Thierry Buclin¹, Nicolas Widmer¹, Chantal Csajka^{1,2}

¹Division of Clinical Pharmacology, Service of Biomedicine, Department of Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, ²School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland, ³Service of Neonatology, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland

Population pharmacokinetic study of gentamicin in newborn infants : a retrospective analysis in a large cohort

OBJECTIVES

- investigate clinical То and demographic factors influencing gentamicin pharmacokinetics in a large cohort of unselected newborns.
- To derive optimal regimen to achieve optimal therapeutic targets of 8 mg/L for peak and under 1mg/L for trough

METHODS

- A total of 3039 gentamicin serum concentrations were collected in 994 preterm and 455 term newborns treated at the University Hospital Center of Lausanne between December 2006 and October 2011.
 - Nonlinear mixed effect modeling (NONMEM[®]) was used to develop a population pharmacokinetic model describing gentamicin disposition in this population.
- Continuous covariates were body weight (BW), gestational age (GA), postnatal age (PNA), postmenstrual age (PMA defined as the sum of PNA and GA).
- Categorical covariates were sex, cotreatment with furosemide (FURO), dopamine (DOPA) and indometacin (INDO),

concentrations.

RESULTS

presence of patent ductus arteriosous (PDA) and concomitant ventilation (invasive (IV) and non-invasive (NIV)).

Data

Concentrations measured at peak and at about 12 hours after the last dose represent 42% and 40% of the measurements, respectively. Most measurements (86%) were performed after the first administration and only 3% of concentrations were available beyond 72 hours of treatment.

Characteristics	Value	Parameters	Estimate	SE(%)	IIV(%)	SE(
Dose (mg/kg)	2.9 (1.0-20.2) ^a					(/	
BW (g)	2170 (440-5510) ^a	θ _{CL} (L/h)	0.095	1	25	10	
GA (wk)	34.0 (24.2-42.1) ^a	θ_{BWCL}	0.75	-			
PNA (d)	1 (0-94) ^a	θ_{GACI}	2.034	4			
PMA (wk)	34.4 (24.2-42.4) ^a		0.036	20			
Male	834 (57.5) ^b	ADDADA	-0.096	37			
IV	301 (20.8) ^b	A	-0 318	<u>4</u> 3			
NIV	861 (59.4) ^b		0.010	то 2	10	ΛΛ	
PDA	153 (10.6) ^b	O _{VC} (L)	0.900	3	10	44	
Furosemide	5 (0.3) ^b	Θ_{BWVc}	1	-			
Dopamine	136 (9.4) ^b	θ_{GAVc}	-0.519	15			
Indometacin	27 (1.9) ^b	θ_{DOPAVc}	0.098	29			
a median (range)		θ ₀ (L/h)	0.086	32			
b count (%)		θ_{v_n} (L)	0.261	16			
Characteristics of t	he patients	-νρ (-)	••				
		Correlation CL-V _c (%)	87	21			
		Additive residual error (mg/L)	0.199	17			
		Proportional residual error (%)	17	5			
		Final population pharmacokinetic parameter estimates of gentamicin in neonates					

Structural and error model

- A two-compartment model best characterized gentamicin pharmacokinetics. Average clearance (CL) was 0.095 L/h (CV 25%), central volume of distribution (V_c) 0.960 L (CV 18%), intercompartmental clearance (Q) 0.086 L/h and peripheral volume of distribution (V_p) 0.261 L.
- A mixed error model was used to describe intra-patient variability, where additive and proportional residual error were 0.199 mg/L and 17% respectively.
- A correlation of 87% was found between clearance and central volume of distribution.

	Population means					
Parameters	Estimate	SE(%)	IIV(%)	SE(%)		
θ _{CL} (L/h)	0.095	1	25	10		
θ_{BWCL}	0.75	-				
θ_{GACL}	2.034	4				
θριαςι	0.036	20				

Covariate model

- BW on CL and V_c (following allometric equations) with a power of 0.75 and 1 respectively) was the covariate that markedly improved the description of the data. This factor explained 57% of the variability in CL and 76% in V_c .
- Further covariates were GA and PNA on CL (increasing CL by 6% per week and 3.5% per day respectively) and GA on V_c (decreasing V_c) by 1.5% per week).
- Co-administration of dopamine reduced CL by 10% and increased V_c by 10%.
- CL was reduced by 32% in presence of furosemide. Although not significant, indometacin reduced CL by 12%.

6.15 (Cl_{80%}: 3.61-9.78) Median C_{1h} (mg/L)

Model equations

concentrations Gentamicin versus time plots with population prediction (solid line) and the 80% prediction interval (dotted lines) for a first dose.

Simulation

Contact Aline Fuchs

confirms that based simulation Model infants higher preterm need dose, superior to 4 mg/kg, and extended

 $TVV_{C} = \theta_{V_{C}} \times \left(\frac{BW}{2170}\right) \times \left[1 + \theta_{GAV_{C}} \times \left(\frac{GA - 34}{34}\right)\right] \times \left(1 + \theta_{DOPAV_{C}}\right)$

interval dosage regimen to achieve adequate concentration.

e-mail: aline.fuchs@chuv.ch

DISCUSSION-CONCLUSION

- To our knowledge, this study is the largest population pharmacokinetic analysis of gentamicin in a cohort of unselected neonates.
- Gentamicin shows a two-compartment kinetics in the newborns where size (represented by BW as a surrogate) and maturation (represented by GA and PNA) are the most important covariates influencing individual pharmacokinetic parameters.
- Dopamine and furosemide were also found to have a relevant effect. Probably, dopamine is an indicator of bad general state associated with diminished clearance (cardiovascular instability, a diminished renal blood flow and increase of the vascular resistance).
- Even if PMA predicts gentamicin clearance, separating the two distinct covariates GA and PNA better fits the data than PMA alone.
- The model will serve to elaborate a Bayesian tool for gentamicin dosage individualization in newborns (http://www.ezechiel.ch/).