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The use of Bayesian Networks and simulation methods to identify the variables impacting 1 

the value of evidence assessed under activity level propositions in stabbing cases 2 

1. Introduction 3 

Technical analytical developments have made it possible to analyse very low amounts of DNA. 4 

The drawback of this progress is that evaluation of the results has become increasingly complex 5 

when activity level propositions are taken into account. Indeed, low quantity DNA traces can be 6 

the result of a secondary transfer or even a tertiary transfer. Variables related to transfer, 7 

persistence and recovery are becoming increasingly important considerations in evidence 8 

evaluation, as the relevant question arising in Court is no longer “who is the source of this DNA?” 9 

but rather “how did this DNA get there?” [1-2]. These considerations were at the basis of the 10 

ENFSI guideline for evidence reporting [3] and the advice given to DNA reporting officers to 11 

systematically report trace DNA evidence considering activity level propositions adopting a 12 

likelihood ratio (LR) approach. This article is focused on how to interpret traces with small 13 

amounts of DNA, typically found following the touching of an object. This is not a simple task as 14 

it requires the probabilistic consideration of multiples variables such as transfer, persistence, 15 

recovery and background level of DNA. Many experts face practical difficulties when assessing 16 

these variables due to the perception that every case has a unique set of circumstances and 17 

numerical assignations are critically dependent on the specificities of the case. Biedermann et al. 18 

[4] explained further why forensic scientists may struggle with these assessments. A common 19 

argument put forward is: “because each case has its own feature, the use of numerical values from 20 

experimental studies performed under controlled (laboratory) conditions cannot be used for 21 

evaluation in real life case”. Besides, experiments can only cover a limited number of options for 22 

any particular variable, so it is difficult to envisage experiments taking into account all possible 23 

variations. However, although each case may have different data for these variables, this does not 24 

mean that the LR would be affected by all possible variations of these variables. Identifying the 25 

variables that impact on the LR will help forensic scientists to focus on a limited number of 26 

variables of interest in order to limit time and cost of the required data acquisition. The key task 27 

that will be explored in this paper is to identify the variables that have a significant impact on the 28 

weight to be assigned to the DNA findings. 29 

The objective of this paper is to present a methodology to support forensic scientists in the 30 

evaluation of their results given activity level propositions. This study will show how to identify 31 
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the variables impacting on the LR taking advantage of simulation methods. The purpose is to show 32 

how to reduce the number of variables that require consideration. Once this is done then this 33 

provides a focus for further data collections which can be used to inform distributions that can be 34 

used for evaluative court-going purposes. 35 

Taylor et al. [5] built a Bayesian Network (BN) [6] allowing the transfer mechanisms to be 36 

considered. They offer a way to compute the LR associated with the DNA findings considering 37 

activity level propositions. However, in order to be used in casework, the BN nodes need to be 38 

quantified by probabilities, also informed with adequate data. The number of variables in the BN 39 

from [5] is large and a case-specific data acquisition to inform the parameters on all of them would 40 

be out of reach. This paper provides a method on how to identify the key variables that truly impact 41 

on the LR by performing simulations based on the BN. It is an extension of the simulation approach 42 

adopted by Taylor et al. [7] on body fluids attribution. Because the BN construction in [5] is the 43 

basis of the present contribution, the reader is advised to refer to it as we will not fully describe 44 

here its construction. In this paper, we will limit the description of the BN to the few modifications 45 

that we have introduced, the BN parametrisation and the simulations techniques that we will use. 46 

To illustrate this method, the scenario of a stabbing attack with a knife is used. It can be 47 

summarized as follows: A victim is found dead in his flat following a stabbing incident carried out 48 

by an offender using a knife. The exact day of the stabbing is uncertain. At the crime scene, a knife 49 

is recovered and believed to be the attacker’s weapon. The knife had been properly secured. It is 50 

believed by the investigators, in line with pathologist’s assessment, that the stabbing occurred 51 

about 2 days (± 0.5 day) before the discovery of the crime scene. 52 

 Based on the elements of the investigation, not related to DNA evidence, a person of interest (POI) 53 

is arrested and suspected to be the offender who stabbed the victim. Two days after the reporting 54 

of the incident, a DNA swab is taken from the unstained smooth plastic handle of the knife with a 55 

view to detect potential trace DNA left by the offender. 56 

The prosecution’s proposition (denoted Hp) is that the POI was the person who used the knife to 57 

stab the victim. 58 

In this paper, to gain some generalisation, two options are studied to reflect upon the defence point 59 

of view (denoted Hd1 and Hd2 respectively): 60 

– In the first defence proposition, Hd1, the possibility of a secondary transfer is explicitly considered. 61 

The POI claims that, he shook hands with an unknown person, probably few hours before the 62 
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stabbing, and it is that unknown person who is the real offender (who will be called alternative 63 

offender AO). 64 

– In the second defence proposition, Hd2, it is alleged that the POI didn’t stab the victim, but 65 

someone else unrelated to him did it (AO). In addition, the POI denies any prior encounter with 66 

either the victim, the knife or the AO. This represents a situation in which the POI is claiming no 67 

direct link with the offence.  68 

 69 

Exploring these two defence’s propositions will allow to show that, depending on the propositions 70 

of interest, the variables that have the strongest impact on the LR might be different. 71 

 72 

The above-described circumstances provide the elements of what we will call the “initial case”. 73 

Again, with a view to explore further that this specific set of circumstances, we will develop two 74 

additional cases. The first will adopt circumstances favouring the transfer of the POI’s DNA (a 75 

“high transfer case”). The second adopts circumstances that are less favourable to the transfer of 76 

POI’s DNA (an “low transfer case”). These sets of circumstances are further described in section 77 

2.4. 78 

 79 

2. Methodology 80 

The methodology adopted for this research is decomposed into several stages. First, we 81 

constructed a Bayesian network (BN) allowing a scientist to assess DNA findings associated with 82 

the stabbing attack scenario (including the possibility to change the defence proposition). The 83 

construction is mainly based on Taylor et al. [5] but has been adapted in order to carry out 84 

simulations. Then the conditional probability tables (CPTs) for each node of the network have 85 

been informed based on the data available from the literature. The parameters have been modelled 86 

in a way to (a) allow a Bayesian update in the light of new data and (b) to reflect when applicable 87 

the fact that the amount of data may be sparse or limited. 88 

As such the constructed BN can be used to compute a likelihood ratio for a given case as done in 89 

[5]. However, we would like to go further by exploring impact and limitations of data on the LR 90 

values. A similar approach was adopted by [7]. This will be done using simulations resampling 91 

from the underpinning distributions used to inform the CPTs. The sampling will be carefully 92 

chosen by exploring one variable after the other. That is done in order to identify which variable 93 

(or node in the BN) has the most significant impact on the variations observed on the LRs. The 94 
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isolation of the variables that have the most bearing on the variation of the LR from one simulation 95 

to the other is important to inform a data acquisition strategy. As it will transpire later, the 96 

developed BN has multiple variables and forensic laboratories will certainly not be able to 97 

systematically investigate the underpinning data for all of them. We will show that this simulation 98 

methodology allows us to successfully identify the key variables that should be the focus of future 99 

data acquisition. Such methods have already been applied successfully in areas such as DNA and 100 

fibres [8, 9]. Here, it is proposed to adopt such techniques to establish a baseline to inform future 101 

data acquisition campaigns. 102 

In the next section, we will firstly present the development of the Bayesian network on the basis 103 

of what we call the “initial case”. It will be used as the starting point from which all simulations 104 

will be carried out. Then, the method used to perform the simulations, from this “initial case”, will 105 

be presented. 106 

2.1. The Bayesian network, the underpinning data to inform the CPTs and variable instantiations for 107 

the “initial” case 108 

In this section, we present the BN, its variables, their states and the data used to inform the CPTs. 109 

In addition, we will use this BN with specific variable instantiations representing the circumstances 110 

of a case. We have called it the “initial case”. Initially, it is given this set of circumstances that we 111 

will explore how the variables of the BN impact on the LR values. The other two cases (high 112 

transfer and low transfer) will be dealt with in a second step of the study. 113 

The Object-Oriented Bayesian Network (OOBN), illustrated in Figure 8 of Taylor et al. [5] is 114 

reproduced here in Figure 1 and will be used in our study. It was adapted to be easily used in 115 

simulations.  116 
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 117 

Figure 1: Bayesian network used to evaluate the findings under activity level propositions involving primary vs secondary transfer 118 
events adapted from [5]. 119 
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Each TP block contains variables involved in transfer and persistence event, more specifically: 120 

 Block TP1 contains variables involved in the transfer and persistence of POI’s DNA 121 

from POI’s hand to the knife handle that occurs during the stabbing.  122 

 Block TP2 contains variables involved in the transfer and persistence of POI’s DNA 123 

from POI’s hand to AO’s hand that occurs during the handshake. 124 

 Block TP3 contains variables involved in the transfer and persistence of POI’s DNA 125 

from AO’s hand to the knife handle that occurs during the stabbing. 126 

 Block TP4 contains variables involved in the transfer and persistence of AO’s DNA 127 

from AO’s hand to the knife handle that occurs during the stabbing. 128 

Variables included in each block called TP (for Transfer Persistence), M (for matching) and R 129 

(for recovery) are described in Table 1. The BN has been developed using Hugin Researcher 130 

(version 8.6, www.hugin.com). 131 

  132 

Block Variable 

Block TP 

Proportion of Contact 

Transfer proportion 

Nature of surface (for both target and shedding 

surface) 

Type of Contact 

Environment 

Days 

Decay factor of the loss of DNA (node named 

‘alpha2’), function of Environment. 

Block M Match Probability 

Block R 

Sampling efficiency 

The proportion of area sampled 

Extraction efficiency 

Table 1: Variables taken into account in the blocks of the BN described in Figure 1. 133 

 134 

Regarding the states of the variables, they can be instantiated depending on the case information 135 

available. 136 

Table 2 details the states for each variable according to the case circumstances of the “initial 137 

case” and the type of sampling used by the laboratory. 138 

 139 
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Variable 
Possible 

states 

Instantiated state 

for “initial case” 

Explanation  

for the choice of the instantiated state 

Nature of target 

surface 

Hand 

Smooth 

Rough 

Smooth 
TP1-TP3-TP4: The surface of the knife handle is 

smooth. 

Hand TP2: It’s a handshake 

Nature of shedding 

surface 

Hand 

Smooth 

Rough 

Hand 
TP1-TP2-TP3-TP4: The hand is the primary source of 

DNA 

Vigour of contact 

Passive 

Pressure 

Friction 

Friction 
TP1-TP3-TP4: It is assumed that type of contact is 

friction when you stab a person. 

Pressure 
TP2: It is assumed that the type of contact is pressure 

when you shake hands. 

Environment 
Favourable 

Poor 

Favourable 

TP1-TP3-TP4: The target surface is the knife. It is 

assumed that the knife being kept in a paper bag by the 

crime scene investigators shortly after it was seized. 

The environment (the paper bag) is considered 

favourable in the sense that DNA will be preserved. 

Poor 

TP2: The intermediate surface is a hand. It is assumed 

that this surface can be considered as an unfavourable 

environment because of the high risk of contact with 

other surfaces, resulting in a loss of DNA. 

Sampling device 
Tapelift 

Swab 
Swab A swab was used to take samples from the knife 

Table 2: Variables with their associated states and the instantiated state corresponding to the circumstances of 140 
the “initial case”. 141 

 142 

Table 3 presents the non-instantiated variables and the data that will be used to inform their 143 

CPTs.  144 

Variable Data informing the variable 

Days Data 1 

Proportion of area sampled Data 2 

Transfer proportion 

Data 3 

Sampling efficiency 

Extraction efficiency 

DNA quantity on hands 

Background 

Table 3: Non-instantiated variables and corresponding data used to inform their CPTs. 145 

The data that will be used to inform their CPTs are referred to as Data 1 to Data 3 are detailed 146 

hereinafter. 147 

 148 
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The outcomes of the DNA analysis are set in two variables that gives the amount of DNA in 149 

ng, respectively for the POI and for not POI (Table 4). 150 

Variable Possible states (ng) 

Results DNA 

POI 

interval node; 

0 to 0.1 in steps of 0.01 

0.1 to 1 in steps of 0.1 

1 to 5 in steps of 0.5 

5 to 10 in steps of 1 

10 to 25 in steps of 5 

25 to 1000 

1000 to inf 

Results DNA 

not POI 

interval node; 

0 to 0.1 in steps of 0.01 

0.1 to 1 in steps of 0.1 

1 to 5 in steps of 0.5 

5 to 10 in steps of 1 

10 to 25 in steps of 5 

25 to 1000 

1000 to inf 

Table 4: Possible results for the amount of DNA in ng respectively for POI and not POI. 151 

 152 

2.2. Representing our lack of knowledge in the BN 153 

Within the nodes in the BN there is uncertainty as to what the state of nature was in any 154 

particular instance. This can be thought of as comprising two distinct parts, the uncertainty 155 

surrounding the state that applies to a specific case, and the uncertainty surrounding the 156 

suitability of our data to model the world. The node ‘DNA on hands’ is a good example to 157 

further explain this idea.  158 

In the stabbing scenario being considered there is uncertainty surrounding the amount of DNA 159 

on the hands of the POI (or AO) and we deal with this in the BN by treating the ‘DNA on hands’ 160 

node as a distribution that is meant to reflect our uncertainty through the amount of DNA that 161 

the general population will possess on their hands. This distribution reflects our prior belief on 162 

the amount of DNA that the suspect (or AO) had on their hands at the time of the offence. 163 

Within the BN architecture the POI and AO have separate ‘DNA on hands’ nodes to reflect the 164 

fact that they are different people and can have different amounts of DNA on their hands (the 165 

posterior distribution of which would be obtained after instantiation of case information).  In 166 

order to model the distribution of DNA on hands in the population, we must take a sample from 167 

the population and measure the amount of DNA on peoples’ hands. The second component of 168 
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our uncertainty is then how representative our sample is of the general population. It is only 169 

this second component of uncertainty that will benefit from additional research and sampling 170 

i.e. will potentially reduce the sensitivity of the LR to the data underlying these nodes. Consider 171 

a scenario where the results have very little power to distinguish between the propositions (and 172 

hence a LR close to one would be obtained). If this is due to the shape of the distributions used 173 

to model the population (and not how representative the sample is of the general population), 174 

then no amount of additional sampling will help to increase discrimination. 175 

In our sampling schemes (which we list below) there are different aspects of case information 176 

and experimental data that we focus on during our simulations that represent both aspects of 177 

uncertainty. 178 

 179 

Data 1: Days 180 

To account for the uncertainty on the number of days between the stabbing and the crime scene 181 

attendance, and the number of days (or hours) between the stabbing and the alleged handshake, 182 

the variable “Days” is modelled by a Gamma distribution Ga(α, ß) that has been discretized on 183 

a range of possibilities (from 0 to 31 days). The choice for a Gamma distribution allowed to 184 

easily model events from 0 to infinity. The parameters α and ß (shape and rate) are calculated 185 

using [10] based on a mean and a variance (set by the circumstances) (Table 5). The variance 186 

is set to 0.5 in order to account for an uncertainty of about two days maximum. Note that in [5] 187 

we modelled the persistence of DNA (or the reduction of the amount of DNA over time) using 188 

an exponential decay curve set by a variable called ‘alpha2’. The parameter of the decay curve 189 

depends on the state of the variable “Environment” (either ‘poor’ or ‘favourable’) and is based 190 

on [Raymond et al, 2009]. The parameter ‘alpha2’ is set to 0.022 if the environment is 191 

favourable or to 0.052 if the environment is poor. 192 

 193 

Variable 
Discretized 

states 

Mean and 

variance 
Explanation 

Ga(α, ß) modelling 

the variable 

Days 

interval 

node; 0, 0.5 

then 1 to 31 

in steps of 1 

μ=2 

σ2=0.5 

TP1-TP3-TP4: The item was examined 

around two days after the offence. 
Ga(8, 4) 

μ=0.5 

σ2=0.5 

TP2: It is assumed that the handshake 

was made less than 12 hours but more 

than 2 hours before the stabbing. 

Ga(0.5, 1) 

Table 5: Variable “Days” with its states and parameters (mean and variance and associated Gamma 194 
distributions) used to inform the CPTs. 195 
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 196 

Data 2: Proportion of area sampled 197 

This variable is modelled using a Beta distribution Be(α, ß), whose parameters are estimated 198 

from a mean and variance for the proportion. It represents the proportion the touch surface that 199 

is sampled (using a swab or a tapelift). It allows to account for the fact that the whole (100%) 200 

of the touched surface may not be sampled. Note that it does account for the uptake efficiency 201 

of the swab or tapelift. The variability on the latter is accounted directly in the variable “Transfer 202 

proportion”. The parameters α, ß are computed from mean and variance according to [11]. Table 203 

6 summarizes these parameters. As for “Days”, this distribution is used here to reflect an 204 

uncertainty regarding the circumstances of the case. If we had no doubt regarding them, it would 205 

be unnecessary to carry out such simulations. 206 

 207 

Variable Discretized states 
Mean and 

variance of data 
Explanation 

Be(α, ß) based on 

mean and variance 

Proportion 

of area 

sampled 

interval node; 

values from 0 to 1 in 

steps of 0.1 

μ=0.95 

 

σ2=0.001 

We have assumed that 

almost the entire knife 

handle is sampled, 

representing about 95% of 

its surface. 

Be(44.17, 2.32) 

Table 6: Variable “Proportion of area sampled” with the explained mean and variance associated to the data 208 
used to inform the CPTs, with the parameters of the beta distribution based on the mean and variance. 209 

 210 

Data 3: Transfer proportion, Sampling efficiency, Extraction efficiency, DNA quantity on 211 

hands and Background 212 

We have adopted a full Bayesian strategy to inform the parameters associated with these 213 

variables. It means that we have initially set a prior probability distribution for the variables. 214 

Then, based on data from the scientific literature, we have updated these distributions, leading 215 

to posterior distributions that will be used to inform the CPTs associated with them.  216 

The prior distributions set for each variable are presented in Table 7.  217 

For the variables “Transfer proportion”, “Sampling efficiency” and “Extraction efficiency”, a 218 

so-called flat prior Be(1,1) has been chosen to start from a uninformed situation between 0 and 219 

1.  220 
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The variable “DNA quantity on hands” is transformed in log10 (from –inf to +inf) with a prior 221 

distribution based on a mean quantity of 2ng of DNA and a large variance (variance of 1). The 222 

mean quantity of 2ng is what appears to be a reasonable amount of DNA. A large variance was 223 

chosen to account for the paucity of data available at this stage. Note that the above method 224 

with these parameters led to only positive values. 225 

The variable “Background” is modelled using a Gamma distribution whose parameters have 226 

been estimated [10] from a mean quantity of background DNA (0.5 ng) and an associated 227 

variance (variance of 5). The mean of 0.5 ng is viewed as a reasonable upper bound quantity. 228 

The large variance has been chosen to be large reflecting the paucity of data available. Ten prior 229 

observations have been drawn from that Gamma distribution to act as our prior data counts. We 230 

will then update these counts with the data obtained from the literature. 10 was chosen to reflect 231 

the paucity of the sample sizes available in the literature. Indeed, we couldn’t claim more in the 232 

prior counts than what is actually published. 233 

The data used to update the above prior distribution for the variable “Transfer proportion” are 234 

based on [5] where the authors estimated the parameters of the Beta  distribution modelling 235 

“Transfer proportion” based on simulations from the original data from Daly [12], Bontadelli 236 

[13] and Goray [14]. To reflect the fact that a laboratory will conduct only a limited number of 237 

experiments to inform that variable, we randomly selected 51 data from the beta distribution 238 

obtained in [5] to act as the dataset that we will use to update our prior distribution. 51 is the 239 

number of experiments done by Daly [12].  240 

For the variable for the “Sampling Efficiency”, we will distinguish the “swab” from the 241 

“Tapelift”. In [5], the parameters Be(25, 20) of the beta distribution representing the data for 242 

“Swab” condition were based on [15]. As before, we will randomly draw a limited sample (21) 243 

from that distribution to carry out the Bayesian update of our prior distribution. Indeed, 21 244 

experiments were done in [15]. For the “Tapelift” condition, we have used directly the data 245 

from [15]. 246 

For the variables “Extraction efficiency”, “DNA quantity on hands” and “Background”, we 247 

have used directly the data from the literature (Table 7).  We have used these data to fit, 248 

respectively, a Beta, a Normal and a Gamma distribution (Figure 2). Note that only 15 data 249 

points from [17] have been used to inform the variable “Extraction efficiency”, hence the poor 250 
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quality of the fit (Figure 2a). It will serve as a starting point, keeping in mind that this variable 251 

will probably be flagged up following the simulations as a variable requiring more data to 252 

inform it. 253 

(a) Extraction efficiency 254 

 255 

(b) Log10 of Quantity of DNA on hands 256 

  257 

(c) Background 258 
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  259 

Figure 2: Histogram and theoretical densities and Q-Q plots for data of the variables “Extraction efficiency” (a), 260 
“DNA quantity on hands” (b) and “Background” (c). 261 

Beta, Normal and Gamma distributions were updated using standard Bayesian methods [16] 262 

Variable Discretized states 
Prior 

distribution 
Data Source 

Number of 

data points 
Posterior distribution 

Transfer 

proportion 

interval node; from 0 to 1 

in steps of 0.05 
Be(1,1) 

51 random 

sample from 

the Beta 

distribution 

defined in [5] 

51 

Hand(rough)/passive: 

Be(1.89,3.83) 

 

Hand(rough)/pressure: 

Be(1.99,2.78) 

 

Hand(rough)/friction: 

Be(2.02, 2.98) 

 

Smooth/passive: 

Be(1.55,32.65) 

 

Smooth/pressure: 

Be(1.73,33.43) 

Smooth/friction: 

Be(1.43, 2.10) 

Sampling 

efficiency 

interval node; from 0 to 1 

in steps of 0.05 
Be(1,1) 

State 

“Tapelift”:[15] 

State “Swab”: 

21 random 

sample from 

beta 

distribution 

from [5] 

21 

Swab: 

Be(14.36,11.79) 

 

Tapelift: 

Be(3.15,17.11) 

 

Extraction 

efficiency 

interval node; from 0 to 1 

in steps of 0.05 
Be(1,1) [17] 15 Be(5.79,18.43) 

Log10(DNA 

quantity on 

hands) 

interval node; 

-inf to -1.5 

-1.5 to 3.5 in steps of 0.1 

3.5 to inf 

N(0.3,1) [13] 50 N(0.764,0.004) 

Background 

interval node; 

0 to 0.1 in steps of 0.01 

0.1 to 1 in steps of 0.1 

1 to 5 in steps of 0.5 

5 to 10 in steps of 1 

10 data 

randomly 

selected from 

the distribution 

Ga(0.08,0.16) 

[18] 301 Ga(0.6, 30.15) 
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Table 7: Variables, discretized states, prior distribution, data source to update them and posterior distribution 263 
used to inform their CPTs. 264 

2.3. Methods used to perform simulations from the “initial case” 265 

In the previous section, we have presented the BN that captures the “initial case”. As such it 266 

can be used to compute a LR for any DNA outcome (Table 4) in terms of quantity of DNA 267 

corresponding to the POI and non-corresponding to the POI. For a given outcome, we will 268 

obtain one LR that encapsulates the knowledge that has been used to inform the CPTs. 269 

Using the Bayesian update mechanism presented before (under Data 3), we have used specific 270 

data sets from published studies. The numbers of data points used in these studies are rather 271 

sparse and can be seen as small subsets from larger and unknown populations. Through 272 

simulations, we would like to show the impact (if any) on the LR of such limited samples. To 273 

do that, we have resampled with replacement the data points that have been used to carry out 274 

the Bayesian update. The simulation method is detailed later in this section. At each simulation 275 

then, the above-described posterior distributions are recomputed, the BN CPTs are updated and 276 

LRs obtained for any DNA outcome. We carried out that task 100 times. Hence for a given 277 

DNA outcome, we have now 100 LRs. These LRs will have a range that can be characterized 278 

[e.g. IQR, min to max]. Note that these 100 LRs represents 100 slightly different scenarios. 279 

A first set of results out of these simulations will show these ranges (one per possible DNA 280 

outcome and for each of the defence propositions). They reflect how the LRs vary based on the 281 

state of knowledge and understanding for sets of data points used to inform the CPTs. 282 

The second question we will address trough simulation is to identify which variables impact 283 

the most on the LR. This identification of impacting variables will allow prioritisation of further 284 

data acquisitions. That approach stems from the realisation that, given the complexity of the 285 

problem, we cannot expect systematic acquisition of large datasets for all the variables 286 

identified in the BN. To make that selection, we will carry out resampling on a variable by 287 

variable basis (keeping all the other variables constant). For each set of simulations (100 288 

simulations per variable), we will measure the ranges (for each DNA outcome and considering 289 

each of the defence propositions). These simulations on a variable per variable basis allow 290 

pinpointing of the variables that have the most impact on the LRs. These shall then constitute 291 

the focus for further data acquisition, because additional datasets have the potential to reduce 292 

the observed ranges of LRs and improve on their robustness. 293 
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The simulations were performed in Rstudio (Version 1.1.463) [19] with R (version 3.5) [20] 294 

combined with RHugin (version 8.4) [21]. The library RHugin specifically allows to liaise 295 

directly with the Hugin inference engine. It allows then to load the BN as in Hugin and to 296 

interact directly with it without resorting to the Hugin GUI. It means that all the captured 297 

dependencies between the variables in the BN are duly maintained and are part of the 298 

computation. 299 

Table 8 presents the variables that will be used for the simulation exercise (either jointly or 300 

separately) with an indication of the method of simulation that will be applied. These three 301 

simulation methods are described below. 302 

 303 

 304 

Variable Simulation method 

Days 
1 

Proportion of area sampled 

Transfer proportion 

2 

Sampling efficiency 

Extraction efficiency 

DNA quantity on hands 

Background 

Match probability 3 

Table 8: Each variable associated with a method of simulation. 305 

Simulation method 1: For each simulation, the mean for each variable (“Days” and “Proportion 306 

of area sampled”) is resampled from a Normal distribution with a mean set as per the initial 307 

case but allowing a variance, respectively of 0.5 and 0.01 around it. For instance, the mean for 308 

the number of days in the TP1 block is 2. For each simulation then, the mean will be obtained 309 

by randomly selecting from a sample from a N(2,0.5), until the mean is positive (For 310 

“Proportion of area sampled”, the mean is resampled until a value between 0 and 1 is obtained). 311 

From that mean, and keeping the variance constant, we estimate, as before, the parameters of 312 

the Gamma distribution (for “Days”). The values for the variance were chosen because, in the 313 

authors’ opinion, they adequately reflect the amount of uncertainty surrounding the timeframes. 314 

Simulation method 2: For each of these variables that were subjected to the Bayesian update, 315 

the simulations are carried out by resampling (with replacement) from original data presented 316 

in the previous section. 317 



Page 16 on 39 

 

Simulation method 3: The block M of the BN, presented in Figure 3, shows a dependence 318 

between the node “Match probability” and the node “Quantity of DNA” as in [5].319 

 320 

Figure 3: Block M with its four nodes and associated states and values. 321 

In that block, only the node “Match Probability” requires input probabilities (the node “Quantity 322 

of DNA” being set by its parent). Its state is TRUE when the DNA profile is matching, FALSE 323 

otherwise. The probability of being TRUE is set by the match probability which in turn depends 324 

on the quantity of DNA. Linked to the quantity of DNA is the number alleles that the profile 325 

will show. To compute the match probability, we have accounted for that relationship between 326 

the quantity of DNA and the number of alleles. 327 

Hence, we will first establish the relation between quantity of DNA and the number alleles and 328 

then propose a way to compute match probability as a function of the number of alleles. The 329 

number of alleles corresponding to a given quantity of DNA is modelled based on the empirical 330 

observations [22] made between the quantity of DNA and the minimum and maximum numbers 331 

of detected alleles (Table 9). A Gamma distribution is used to represent the numbers of detected 332 

alleles as a flexible modelling distribution for counts between 0 and infinity. The parameters of 333 

the Gamma distribution are informed on the mean and variance obtained from [22]. These 334 

Gamma distributions will be used at each simulation to generate a given number of alleles 335 

corresponding to a given quantity of DNA (sampled from its own distribution). 336 

 337 

Quantity (ng) 

Minimum to 

maximum 

numbers of 

detected alleles 

Mean and variance 
Ga(κ, ɵ) modelling the 

Number of alleles 

0-0.01 0 to 1 μ=1; σ2=0.1 Ga(10, 10) 

DNA corresponding to either 

POI or AO

DNA different from POI or 

AO, hence from an unknown

interval node with states:

0 to 0.1 in steps of 0.01

0.1 to 1 in steps of 0.1

1 to 5 in steps of 0.5

5 to 10 in steps of 1

10 to 25 in steps of 5

25 to 1000

1000 to inf

Boolean node with states:

TRUE

FALSE

interval node with states:

0 to 0.1 in steps of 0.01

0.1 to 1 in steps of 0.1

1 to 5 in steps of 0.5

5 to 10 in steps of 1

10 to 25 in steps of 5

25 to 1000

1000 to inf

Values:

DNA quantity, if Match Probability =  TRUE,
0 if Match Probability = FALSE: 0

Quantity of DNA
(ng)

interval node with states:

0 to 0.1 in steps of 0.01

0.1 to 1 in steps of 0.1

1 to 5 in steps of 0.5

5 to 10 in steps of 1

10 to 25 in steps of 5

25 to 1000

1000 to inf

Values:

DNA quantity, if Match Probability =  FALSE,
0 if  Match Probability = TRUE: 0

Match 
Probability

Values: Input from parent node

Values: Explained in section 2.3 
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0.01-0.02 0 to 2 μ=1; σ2=0.4 Ga(2.5, 2.5) 

0.02-0.03 1 to 3 μ=2; σ2=0.4 Ga(10, 5) 

0.03-0.04 2 to 4 μ=3; σ2=0.4 Ga(22.5, 7.5) 

0.04-0.05 3 to 5 μ=4; σ2=0.4 Ga(40, 10) 

0.05-0.06 4 to 6 μ=5; σ2=0.4 Ga(62.5, 12.5) 

0.06-0.08 5 to 7 μ=6; σ2=0.4 Ga(90, 15) 

0.08-0.1 6 to 8 μ=7; σ2=0.4 Ga(122, 17.5) 

0.1-0.2 9 to 22 μ=15; σ2=1.5 Ga(150, 10) 

0.2-0.3 20 to 30 μ=25; σ2=1.4 Ga(446, 17.9) 

0.3-0.4 29 to 32 μ=31; σ2=0.5 Ga(1922, 62) 

>0.4 32 
the number of alleles is 

32 

the number of alleles is 32 

Table 9:  Range of quantities of DNA (ng) with the associated minimum and maximum numbers of alleles observed 338 
empirically. For each number of alleles (min-max), a mean and variance is set to reflect these ranges and the 339 
Gamma distributions parameters are obtained. 340 

To obtain the match probability for a given number of alleles (associated with a given quantity 341 

of DNA), we proceeded as follows:  342 

(1) 5 million full DNA profiles (32 alleles in total) are randomly generated based on allelic 343 

frequencies of the NGMSElect kit [23] for the Swiss Caucasian population. 344 

(2) From the above profiles, 27046 partial DNA profiles are created using the allelic 345 

degradation model from Hicks et al [24]. It means that for each number of alleles (1 to 346 

31), we have a collection of partial DNA profiles (from 6 to 1000) depending on the 347 

number of alleles. 348 

(3) For each of these profiles, their match probability (MP) is computed with a θ of 0.02 349 

using the allele frequencies from [23]. 350 

(4) For a given number of alleles, at each simulation, we draw the match probability from 351 

the collection of match probabilities associated with the drawn number of alleles 352 

(corresponding to a given quantity of DNA). 353 

 354 

During the simulation process, the number of alleles and the associated MPs are resampled only 355 

if this node is taken into consideration. Otherwise, its CPTs is set once for all simulations. 356 

2.4. Method used to perform simulations beyond the “initial case” 357 

The “initial case” represents the circumstances of the case, typically set by the chosen states in 358 

the nodes that have been instantiated. The BN also allows us to explore other sets of 359 

circumstances. Hence, we can repeat the simulation process to explore how each node impacts 360 
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on the LRs under any set of circumstances. We have chosen to investigate two additional 361 

scenarios deviating from the conditions of the “initial case”. The first will adopt circumstances 362 

that will favour the transfer of the POI DNA (a rough surface to increase the deposition, a short 363 

time delay between the stabbing and the collection of the swabs, and favourable environmental 364 

conditions). The second adopts circumstances that are less favourable to the transfer of DNA. 365 

The states of the nodes for each scenario are presented in Table 10. The other nodes related to 366 

the case circumstances were kept constant with the same states as for the “initial case”. 367 

 368 

Node 

“Initial case”  

Instantiated state or 

mean 

“High transfer case” 

Instantiated state or 

mean 

“Low transfer case”  

Instantiated state or 

mean 

Nature of target surface 
TP1-TP3-TP4: Smooth 

TP2: Hand 

TP1-TP3-TP4: Rough 

TP2: Hand 

TP1-TP3-TP4: Smooth 

TP2: Hand 

Days between both 

transfers or transfer and 

recovery 

TP1-TP3-TP4: 2 

TP2: 0.5 

TP1-TP3-TP4: 0.5 

TP2: 0.5 

TP1-TP3-TP4: 20 

TP2: 0.5 

Environmental conditions 
TP1-TP3-TP4: Favourable 

TP2: Unfavourable 

TP1-TP3-TP4: 

Favourable 

TP2: Unfavourable 

TP1-TP3-TP4: 

Unfavourable 

TP2: Unfavourable 

Table 10: Choice for node instantiations and mean for the “initial case”, for the “high transfer case” and for the 369 
“low transfer case”. 370 

2.5. Method used for the analysis of the simulation results 371 

Following a set of simulations (one for each of the initial, the high transfer and the low transfer 372 

case), we obtain 100 LRs for each combination of results (quantity of POI and not POI DNA – 373 

36 x 36 possibilities), each proposition retained for the defence (Hd1 and Hd2) and for each 374 

node considered (10 nodes and the case with all simulated nodes considered jointly). It 375 

represents a total of 28,512 combinations and 2,851,200 LRs. 376 

A dedicated Shiny application (https://lydie-samie.shinyapps.io/DNA_Activity/) has been 377 

designed to allow the visualisation of these results for each possible combinations of variables. 378 

To explore which node (or variable) has impact on the LRs, we ordered them by range. That 379 

will be done by conditioning on the defence proposition. It is important to stress that with this 380 

approach, we aim at identifying the variables that have the most impact across all possible 381 

outcomes. The variable by variable analysis allows us to identify which variables contribute 382 

significantly to the whole. By significant, we mean that the range of log10 (LRs) (meaning the 383 

difference between the maximum log10 (LR) and the minimum log10 (LR)) produced by 384 
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sampling a variable exceeds 1 order of magnitude of log10 (LR). The range was chosen to cover 385 

up to extreme situations even if their probability of occurrence is low. At this stage, the issue 386 

to screen among variables with a rather wide net, instead of being too strict in their selection by 387 

adopting a more stringent criterion such as the interquartile range. 388 

 389 

2.6. Performing simulations adapting the number of data points informing the conditional 390 

probability tables 391 

As proposed in [7] we will mimic an increase of knowledge, to do so we have increased the 392 

counts informing the CPTs by a constant factor (retaining the observed proportions).  393 

The variables (“Background”, “DNA quantity on hands”, “Sampling efficiency”, “Extraction 394 

efficiency” and “Transfer Proportion”) that proved to be significant based on the method 395 

described in section 2.4, have been studied using simulations. To simulate an increase in the 396 

size of datasets, we have adapted the simulation process (Simulation method 2) by tripling the 397 

number of data points resampled and then used to inform the corresponding CPTs. The original 398 

numbers of datapoints used for each variable are given in Table 7. It means that the relative 399 

proportions associated with each state of each variable remain the same, but the counts are 400 

multiplied by 3 as if the study had been conducted on a larger sample. The factor of 3 is what 401 

we considered reasonable for an operational laboratory. 402 

3. Results and Discussion 403 

3.1. Ranges of simulated LRs obtained under Hd1 404 

Hd1 stipulates that the defence alleges that the DNA corresponding to the POI’s profile is the 405 

consequence of a secondary transfer. The DNA corresponding to POI’s profile is the 406 

contribution of the POI following the secondary transfer and the DNA different from POI’s 407 

profile is to the potential joint contribution of the background and the DNA of the alternative 408 

offender (AO). Figure 4 illustrates the ranges of log10 (LRs) for all outcomes (i.e. all considered 409 

amounts of POI and not POI’s DNA, each possibility gives a range of LRs after 100 410 

simulations) considering respectively all variables jointly and then each variable simulated in 411 

turn. The results are shown for the three cases considered: “initial”, “high transfer” and “low 412 

transfer”). Regardless of the case, the significant variables (with an impact of more than an 413 

order of magnitude) are: “DNA quantity on hands”, “Extraction efficiency”, “Background”, 414 
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and “Sampling efficiency”. Two of these variables “Extraction efficiency” and “Sampling 415 

efficiency” relates to the laboratory choices regarding their sampling devices and extraction 416 

techniques. The results obtained for the three cases are similar, particularly the results when 417 

“Initial case” and “High transfer case” are considered. 418 

 419 

Figure 4: Boxplots presenting the ranges (min-max) expressed in log10 of the LRs obtained following 100 420 
simulations under Hd1. The panels present the results for the three cases considered. The horizontal line drawn at 421 
the difference of 1 (in log10) set the limit above the variable considered will be declared as having a significant 422 
effect on the global variability shown when “all variables” are resampled jointly. 423 

Hence, when secondary transfer is alleged, the current state of knowledge regarding the transfer 424 

and persistence of DNA is sparse and induces a large variability on the simulated LRs. One way 425 

to overcome this problem would be to increase the underpinning data (see section 3.4 below). 426 

It is rather easy for a laboratory to increase its knowledge base associated with some of the 427 
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variables involved (see [25] for example regarding the acquisition of data in relation to sampling 428 

and extraction efficiency). 429 

3.2. Ranges of simulated LRs obtained under situation 2 (Hd2) 430 

In situation 2 the defence alleges that the DNA corresponding to POI’s profile is due to the 431 

contribution of an unknown alternative offender (AO) (Hd2). In this situation, the possibility 432 

for a secondary transfer for the POI is not retained. Figure 5 illustrates the ranges of log10 (LRs) 433 

plotted considering the same variables as before. The variable by variable analysis allows to 434 

identify the variables contributing to more than one order of magnitude. They are the following: 435 

“DNA quantity on hands”, “Match probability”, “Extraction efficiency”, “Proportion of 436 

transfer”, “Sampling efficiency” and “Background”, regardless of the scenario considered. 437 

 438 
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 439 

Figure 5: Boxplots presenting the ranges (between min-max) expressed in log10 of the LRs obtained following 440 
100 simulations under Hd2 The panels present the results for the three cases considered. The horizontal line drawn 441 
at the difference of 1 (in log10) set the limit above the variable considered will be declared as having a significant 442 
effect on the global variability shown when “all variables” are resampled jointly. 443 

In addition to the variables identified for Hd1, the variables “Match probability” and “Transfer 444 

proportion” comes into play under Hd2. This is due to the fact that under that defence 445 

proposition, the DNA corresponding potentially to the POI may arise from the background level 446 

of DNA on the surface. That was much less critical under Hd1 as the secondary transfer was 447 

dominating the considerations compared to the background. 448 

The above results are showing the most impacting variables in a global sense, regardless of the 449 

outcome observed in a given case (i.e. the respective amounts of DNA corresponding to POI 450 

and to the not POI). It helps us to identify the variables that ought to receive attention if we 451 
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want to treat the problem globally considering all possible outcomes. Also the case (initial, high 452 

transfer and low transfer) considered as no impact on the impacting variables. 453 

However, in a given case with observed outcomes, the variables that will have the most impact 454 

will vary and could be different from the above globally selected variables. To illustrate this 455 

point, we present one example (with 0.5-0.6 ng of POI’s DNA with 0.03-0.04 ng of not POI’s 456 

DNA) leading to a different selection of the most contributing variables (Figure 6). The reader 457 

can refer to the Shiny application to select any set of outcomes and explore the most impacting 458 

variables. In this chosen particular case, under Hd1, the results show that the most significant 459 

variables are “DNA quantity on hands”, “Background” and “Extraction Efficiency”, whereas 460 

under Hd2, the most impacting variable is the “match probability”. As before, a variable is 461 

declared to be significant (boxplots coloured in green in Figure 6) if the range (the whole height 462 

of the boxplots shown in Figure 6) is above 1 order of magnitude of log10 (LR). 463 
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 464 

Figure 6: Boxplots of the LRs (expressed in Log10) obtained after 100 simulations of each variable in both 465 
situations (Hd1 and Hd2) with a quantity of POI’s DNA between 0.5 and 0.6 ng with between 0.03 and 0.04 of not 466 
POI’s DNA. The boxplots corresponding to the significant variables are coloured in green. 467 

The purpose of setting up a rather complex simulation regime was twofold: (1) facing a large 468 

networks of connected variables, the simulations allow us to identify where there is a 469 

knowledge gap by identifying the most impacting variables and (2) to appraise the range of 470 

variations the computed LRs may take given the limited data points that have informed each 471 

conditional probability table in the Bayesian network.  472 

For the example in Figure 6, we note that when considering Hd1 the variables significantly 473 

impacting are only 2 and relates to transfer mechanisms. Under Hd2, the match probability 474 

variable is dominating on all the other variables, making variables in relation to transfer less 475 

impacting in favour of the variable in relation to the source of the DNA. This is not surprising 476 
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as Hd2 stipulated that the POI has no previous encounter with the knife and should his/her DNA 477 

profile be present, it must be from the AO whose profile, by chance, matches the POI or some 478 

background DNA which, by chance, matches the POI. Given that we are considering a 479 

relatively large amounts of DNA for the POI (0.5-0.6 ng), the chance of an adventitious 480 

correspondence is very small. The range of LRs observed stems from the fact that the simulation 481 

process accounts for the distribution of the number of alleles that could be derived from that 482 

quantity of DNA and for each of them the match probabilities that could potentially be 483 

associated. In other words, it accounts for a large range of potential matching DNA profiles 484 

each of them having different match probabilities depending on the number of alleles and their 485 

designations. In this paper the match probabilities are used as a plug-in to explore the relative 486 

importance of the variables, they do not guide precisely the sub-source level likelihood ratio. 487 

They are reasonable in terms of order of magnitude for single profiles, but they fail to account 488 

for the impact of mixtures on the sub-source level likelihood ratio. In a given case, with a 489 

specified DNA allelic profile, that variability will be extremely reduced as the match probability 490 

node will be directly informed with the sub-source level likelihood ratio computed for the case 491 

at hand. It will lead to different overall likelihood ratio compared to the values reported in 492 

Figure 6. When mixtures are involved, the node “Match probability” will be informed by 1 over 493 

the LR obtained for that mixture considering sub-source propositions. 494 

In this example, when considering Hd1 and Hd2, the overall range of the LRs is of 2 orders of 495 

magnitude but for a median log10(LR) of about 6 under Hd1 and about 22 under Hd2. The 2 496 

orders of magnitude have then a greater impact under Hd1 rather than Hd2 with regards to how 497 

it might influence the decision making of the recipient. We shall see below (in section 3.4) that 498 

one way to reduce the range is to increase the number of data points informing the impacting 499 

variables, that would be worth the investment for a case involving Hd1 and not for a case 500 

involving Hd2. 501 

Exploring the results in the Shiny application allows one to observe that, for some specific cases 502 

(a given amount of POI’s DNA and not-POI’s DNA), other variables may have a higher impact, 503 

hence be more critical to the case. That observation calls for a case specific approach if needed 504 

once a specific outcome has been observed in a given case. The general trend though is given 505 

by the variables identified globally. 506 

 507 
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3.3. Impact on the LR of the quantities of DNA, POI and not POI respectively 508 

To show the respective impact of the quantity of POI’s DNA and not POI’s DNA on the LR 509 

obtained (summarized by their median), we can show two situations linked to the above 510 

example. In the first, we will maintain the quantity of not POI’s DNA (0.03-0.04 ng) and vary 511 

the amount of POI’s DNA. In the second, we will keep fixed the amount of POI’s DNA (0.5-512 

0.6 ng) and vary the not POI’s DNA quantity. Both are shown in Figure 7. 513 

 514 

Figure 7: LRs obtained when the amount of DNA (POI and non-POI) are respectively varied for a given amount 515 
of DNA that remain fixed. 516 

 517 
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When the quantity of DNA of the POI is kept fixed (top graph of in Figure 7), under Hd2, the 518 

presence of non-matching DNA has little impact on the LR. It is the fact that Hd2 stipulates that 519 

the POI has no link whatsoever of with the knife, hence the probability that some background 520 

DNA or AO DNA, would correspond to the POI, is the key consideration. The amounts have 521 

almost no effect. Under Hd1, however, the LR will be above 1 (the findings will provide support 522 

for Hp) with a maximum above one billion, but lower that 1 over the match probability (value 523 

under Hd1)
1. When the quantity of not POI’s DNA is increased, the LR drops gradually. The 524 

clinching point (when the LR is equal to 1 or 0 on a log10 scale) is with 0.07−0.08 ng of non-525 

matching DNA. Above that amount, the non-matching DNA becomes more compatible with 526 

the stabbing activity, hence the findings overall would lend support for the defence. 527 

When the quantity of DNA of the not POI is kept fixed and we increase the amount the quantity 528 

of DNA corresponding to the POI (bottom graph of in Figure 7), under Hd2, the likelihood ratio 529 

gradually increases with the increased amount DNA corresponding to the POI. The maximum 530 

LR is obtained when the quantity is the most expected when handling a knife (0.07−0.08 ng). 531 

Above that quantity, the LR will gradually reduce. Under Hd1, the LR will increase only when 532 

the quantity of DNA corresponding to POI reaches the point that it is more compatible with the 533 

POI stabbing scenario than under the POI handshaking scenario. That clinching point is at the 534 

same quantity as the quantity of not POI’s DNA (0.03−0.04 ng). That is logical because we 535 

have modelled the transfer probabilities in the same way for both POI and AO. Then, adding 536 

quantity of DNA corresponding to the POI will gradually increase the LR up until the quantity 537 

that is best expected under the primary transfer and not under the scenario of a secondary 538 

transfer. Then it will reduce again. The LRs lending support for the defence spans over a large 539 

range of POI corresponding DNA quantities despite the presence of non-matching DNA. It 540 

stems from the fact that the non-matching DNA is a quantity that is more compatible with 541 

background level than with a quantity you would expect following primary transfer. 542 

The above considerations will change as a function of the choice of quantities, hence in the 543 

Shiny application, the one can find the same representations as in Figure 7 but for any given 544 

choice of POI or not POI quantities of DNA. 545 

                                                 
1 Interestingly, while this is true of the values we found, there is nothing stopping the LR from being greater than 

1 over the match probability (MP). If the probabilities of the transfers are extremely low, they can quite 

legitimately (in theory) lead to an LR that exceeds 1/MP. 
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3.4. Increasing the datasets informing impacting variables 546 

Should we judge that the overall variation on the ranges of LRs obtained is too high (such in 547 

the example shown in Figure 6 under Hd1), one way to reduce it is to increase the number of 548 

data points informing the most impacting variables. Indeed, large variations in LRs translate 549 

limitations on the size of the datasets constituting the knowledge used to inform the CPTs. But 550 

before rushing into conducting specially designed experiments to acquire additional data to 551 

inform the relevant conditional probability tables, we can again take advantage of the simulation 552 

strategy developed in this research. It will allow to assess if the analytical investment if worth 553 

the effort, hence lead to a reduction of the ranges of LRs that will be beneficial for the case at 554 

hand. 555 

We could proceed considering any combination of results (POI and not POI’s DNA) or jointly 556 

for all of them. In Figure 8 we show the results for the case presented before (POI’s DNA of 557 

0.5-0.6 ng and not POI’s DNA of 0.03-0.04 ng).  558 

 559 
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 560 

Figure 8: Boxplots of the LRs (expressed in Log10) obtained after 100 simulations of each variable in both 561 
situations (Hd1 and Hd2) with a quantity of POI’s DNA between 0.5 and 0.6 ng with between 0.03 and 0.04 of not 562 
POI’s DNA. The boxplots in red are with the actual data, those in blue are obtained after increasing the 563 
underpinning data counts by a factor of 3 on the significant variables only. 564 

 565 

As expected, when probabilities are informed by an increased number of experiments, the 566 

ranges of likelihood ratios decrease. Under Hd1, the reduction is greater than under Hd2 due to 567 

the fact that the increase of data affected the significant variables (identified in Figure 4). For 568 

Hd2 however, the increase of data does not have a strong impact on the range of LR observed 569 

for “All variables”. This is due to the dominant impact on the LR of the match probability that 570 

is not affected by this increase in data. If Hd2 is the defence proposition, there is no benefit in 571 

acquiring more data on the other variables that were significant under Hd1. 572 
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These simulations allow an assessment, in advance of investing in a large number of 573 

experiments to inform the CPTs, if the benefits, in terms of reduction of LR range, would be 574 

meaningful for the case at hand. 575 

3.5. The discretisation of continuous variables 576 

During the analysis setting up of nodes within the BN and the assignment of probabilities we 577 

have discretised the continuous variables, such as those dealing with DNA amounts, proportions 578 

of transfer, etc. This is a small step away from a fully Bayesian analyses of the data (and the 579 

idea of having parameters for the continuous distributions of variables or their priors), which 580 

would keep all continuous variables as continuous distributions. This is largely due to the 581 

limitations of the BN software. It would be possible to maintain continuous variables, and 582 

perhaps utilise stochastic sampling techniques, in a more customisable software, at the cost of 583 

a loss of comprehensibility. The discretisation itself could have an effect on the sensitivity of 584 

the LR to the data. As an initial investigation into the potential effects of different discretizations 585 

we performed simulations of the initial case using a BN whose states of the variables associated 586 

with the quantity of DNA (in ng) were discretized in three different ways as described in Table 587 

11, called “New discretization 1” and “New discretization 2”. Moving from the initial 588 

discretization, to New discretization 1, then to New discretization 2 represents increasing 589 

coarseness in describing the data. 590 

Variable 
Possible states for the new 

discretization 1 

Possible states for the new 

discretization 2 

Results DNA POI 

 

Results DNA not POI 

 

DNA Matching 

 

DNA DIFF 

 

Background 

 

Quantity on hands 

(ng) 

interval node; interval node; 

0 to 0.01 

0.01 to 0.09 in steps of 0.02 

0 to 0.01 

0.01 to 0.1 in steps of 0.03 

0.09 to 0.1 0.1 to 0.2 

0.1 to 0.2 0.2 to 0.8 in steps of 0.3 

0.2 to 1 in steps of 0.2 0.8 to 1 

1 to 1.5 1 to 1.5 

1.5 to 4.5 in steps of 1 

4.5 to 5 

5 to 6 

6 to 9 in steps of 1.5 

9 to 10 

1.5 to 4.5 in steps of 1.5 

4.5 to 5 

5 to 6 

6 to 10 in steps of 2 

10 to 15 

10 to 15 

15 to 25 

25 to 1000 

1000 to inf 

15 to 25 

25 to 1000 

1000 to inf 

 

 591 

Table 11: New discretizations of the states for the non-instantiated interval variables. 592 
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 593 

The results show the following trends regarding the LRs obtained (Figure 9): 594 

 In situation 1 (Hd1: secondary transfer), for a fixed DNA quantity of POI (Figure 9 top 595 

plots), or not POI (Figure 9, bottom plots), the trends taken by the LRs are similar, 596 

regardless the chosen discretization as shown by the white dots.  597 

 For situation 2 (Hd2: someone else did it, black dots in in Figure 9), we have similar 598 

observations when the quantity of POI rises for a fixed quantity of not POI (bottom 599 

plots). However, for a fixed quantity of POI (top plots), we observed that the presence 600 

of non-matching DNA has little impact on the LR for the initial discretization (plot C). 601 

This is due to the fact that Hd2 stipulates that the POI has no link whatsoever of with 602 

the knife, hence the probability that some background DNA or AO DNA, would 603 

correspond by chance to the POI, is the key consideration that is not impacted by the 604 

quantity of not POI. For coarser discretization (plot A and B), the log10 (LR) decreases 605 

more drastically when an increased quantity of not POI is obtained. 606 

 We note that at the junction between bins of different sizes the LRs may drop or increase 607 

abruptly. For example, bottom plots A under Hd2 (black dots), when moving from 0.07-608 

0.1 ng with the next bin at 0.1-0.2 ng, we observe an increase of the LR. The same is 609 

seen on plots under B (bin 0.09-0.1 to bin 0.1-0.2).  610 

 611 

 612 
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 613 

Figure 9: LRs obtained when the amount of DNA (POI and non-POI) are respectively varied for a given amount 614 
of DNA that remain fixed with the BN whose states of the variables were discretized with the new discretization 2 615 
(A) or the new discretization 1 (B) or the initial discretization (C). The top plots refer to the situation where the 616 
quantity that is varied is the DNA from not POI and the quantity of POI is fixed (the states varies only because of 617 
the discretization). The bottom plots give the LRs for a fixed quantity of not POI and a varying quantity of DNA 618 
corresponding to the POI.  619 

 620 

During our work on discretization, we noted that care must be exercised when changing bin 621 

sizes. The relative sizes of adjacent bins have an impact. This is due to the fact the probabilities 622 

for the nodes associated with the quantity of transferred DNA and the quantity of recovered 623 

DNA are obtained by multiplying the previous quantities by a discount factor linked to the loss 624 

of DNA. These probabilities, obtained though multiplication, will be affected by the sizes of 625 

adjacent bins. In some cases (not reported in this paper), our discretization choices led to LRs 626 

that were misleading (cases under Scenario 2 with LRs below 1). These results highlight the 627 

need for a careful choice of the states. There is a need in the future to investigate how BN can 628 

be constructed in a way that is less affected by multiplication factors. 629 

 630 

To further illustrate the impact of discretization on the obtained LRs, we compared, in Table 631 

12, the log10(LR) for four contrasting outcomes, in both scenarios: 632 

 High quantity of POI (2 ng) with high quantity of not-POI (2 ng) 633 

 High quantity of POI (2 ng) with low quantity of not-POI (0.03 ng) 634 

 Low quantity of POI (0.03 ng) with high quantity of not-POI (2 ng) 635 

 Low quantity of POI (0.03 ng) with low quantity of not-POI (0.03 ng). 636 
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 637 

Situation Outcomes 

Log10 (LR)                             

New 

discretization 

2 

Log10 (LR)                             

New 

discretization 

1 

Log10 (LR) 

Initial 

discretization 

Situation 1 

(secondary 

transfer) 

High quantity of POI (2 ng) 

High quantity of not-POI (2 ng) 
-15 -16 -16 

High quantity of POI (2 ng) 

Low quantity of not-POI (0.03 

ng) 

9 12 18 

Low quantity of POI (0.03 ng) 

High quantity of not-POI (2 ng) 
-18 -18 -18 

Low quantity of POI (0.03 ng) 

Low quantity of not-POI (0.03 

ng) 

1 1 0.8 

Situation 2 

(someone else 

did it) 

High quantity of POI (2 ng) 

High quantity of not-POI (2 ng) 
21 20 18 

High quantity of POI (2 ng) 

Low quantity of not-POI (0.03 

ng) 

21 21 19 

Low quantity of POI (0.03 ng) 

High quantity of not-POI (2 ng) 
-18 -17 -13 

Low quantity of POI (0.03 ng) 

Low quantity of not-POI (0.03 

ng) 

4 8 12 

 638 

Table 12: LRs (in log10) obtained for four outcomes, depending on the situation and the chosen discretization of 639 
the states. 640 

 641 

We observe that the choice of discretization can have an impact on the value of the LRs, 642 

depending on the choice of DNA quantities as findings. The fewer states there are, the less 643 

discrimination of the propositions is achieved, which means that smaller LRs can be obtained. 644 

For example, when a low quantity of not-POI DNA is considered, coarser discretization 645 

(moving from initial to new discretization 2), leads to lower LR because of the loss of 646 

discrimination capability between the propositions.  647 

Regarding the selection of the impacting variables, we observe an impact of discretization that 648 

is linked to the loss of discrimination capability when coarser discretization is adopted (Figure 649 

10). This is especially the case for the new discretization 2. For all discretizations, the same 650 

variables are passing the threshold set to be declared significant, but we can expect that if an 651 

even coarser discretization would be chosen, some significant variables would drop below the 652 

threshold because of the loss of discrimination. 653 
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 654 

 655 
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 656 

Figure 10: Boxplots presenting the ranges (min-max) expressed in log10 of the LRs obtained following 100 657 
simulations under Situation 1 and Situation 2. The panels present the results for the initial case using either the 658 
initial discretization of the states or the two new discretizations presented in this part. The horizontal line drawn 659 
at the difference of 1 (in log10) set the limit above the variable considered will be declared as having a significant 660 
effect on the global variability shown when “all variables” are resampled jointly. 661 

 662 

4. Conclusion 663 

The ENFSI guideline [3] is advising forensic scientist to evaluate biological traces with a low 664 

level of DNA considering activity level propositions. For that task, specific variables such as 665 

transfer, persistence, recovery and background need to be considered. Many experts face 666 

practical difficulties when considering these variables for various perceived reasons. Typically, 667 

expert will indicate that:  668 

– the number of variables at play is overwhelming and unmanageable;  669 
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– every case represents a unique set of circumstances and any numerical assignment 670 

of probabilities is critically dependant on the specificities of the case;  671 

– the paucity of current published studies to inform the parameters associated with 672 

these variables cannot reasonably be compensated by reasonable data acquisition 673 

campaigns.  674 

In this study, we show that Bayesian networks can handle this complexity efficiently, when 675 

coupled with simulation techniques, they can be used to identify the most impacting variables, 676 

hence reducing the data acquisition burden by directing the laboratory to the key issue. 677 

The method has been applied to a scenario involving trace DNA recovered from knife handles 678 

where the prosecution alleges that the person of interest (POI) stabbed a victim. The findings 679 

considered take the form of given quantities of DNA (in ng) corresponding or not the POI. As 680 

a general tendency, regardless of the findings, we showed that when the defence claims that the 681 

POI has nothing to do with the incident, the match probability associated with the POI will 682 

dictate most of the weight to be assigned to the findings. If the POI defence is invoking the 683 

possibility of secondary transfer, the key variables are associated with the sampling, the 684 

extraction efficiency, the background and the quantity of DNA on the hands. 685 

Simulation techniques can also be used to assess the merit of increasing the knowledge base (in 686 

terms of size of studies carried out) when the significant variables had been identified. We 687 

presented preliminary results on the impact of the choice of discretization of the variables. 688 

Discretization can have an impact on the LRs and potentially on the choice of impacting 689 

variables, mainly due to the loss of discriminability between the propositions when a too coarse 690 

discretisation is adopted. In our view, the number states and their ranges should be chosen 691 

carefully in a way that avoids losing information (e.g. merging states to a point where 692 

discrimination is lost). 693 

Finally, we noted that the identification of significant variables depends on the obtained DNA 694 

results and this selection may be refined on a case by case basis. To allow one exploring all 695 

possibilities, a dedicated Shiny application has been designed (https://lydie-696 

samie.shinyapps.io/DNA_Activity/). 697 

https://lydie-samie.shinyapps.io/DNA_Activity/
https://lydie-samie.shinyapps.io/DNA_Activity/
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