
lable at ScienceDirect

Forensic Science International: Digital Investigation 43 (2022) 301443
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2022 APAC - Proceedings of the Second Annual DFRWS APAC
A forensic analysis of rclone and rclone's prospects for digital
forensic investigations of cloud storage

Frank Breitinger a, *, Xiaolu Zhang b, Darren Quick c, 1

a School of Criminal Justice, University of Lausanne, 1015, Lausanne, Switzerland
b Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX, 78249, United States
c South Australia Police, 100 Angas St, Adelaide, Australia
a r t i c l e i n f o

Article history:

Keywords:
Rclone
Cloud storage
Acquisition
Application forensics
Cloud computing forensics
* Corresponding author.
E-mail addresses: frank.breitinger@unil.ch (F. Br

edu (X. Zhang), darren.quick@gmail.com (D. Quick).
URL: https://www.FBreitinger.de

1 Dr. Quick contributed to this article in his p
expressed are his own and do not necessarily repre
Australia Police or the Australian Government.

2 We use the terms cloud storage and cloud s
describing disk space provided by service providers;
Microsoft OneDrive, or Dropbox.

https://doi.org/10.1016/j.fsidi.2022.301443
2666-2817/© 2022 The Author(s). Published by Elsevi
licenses/by-nc-nd/4.0/).
a b s t r a c t

Organizations and end users are moving their data into the cloud and trust Cloud Storage Providers (CSP)
such as pCloud, Dropbox, or Backblaze. Given their popularity, it is likely that forensic examiners
encounter one or more online storage types that they will have to acquire and analyze during an
investigation. To access cloud storage, CSPs provide web-interfaces, proprietary software solutions (e.g.,
Dropbox client for Windows) as well as APIs allowing third-party access. One of these third-party ap-
plications is rclone which is an open-source tool to access many common CSPs through a command line
interface. In this article, we look at rclone from two perspectives: First, we perform a forensic analysis on
rclone and discuss aspects such as password recovery of the configuration file, encryption, and JA3
fingerprints. Second, we discuss rclone as a prospect to be a forensic tool which includes its read-only
mount feature and sample cases. Under the circumstances tested, rclone is suitable for forensic practi-
tioners as it is open-source, documented, and includes some essential functionality frequently needed
but practitioners need to be aware of the caveats.
© 2022 The Author(s). Published by Elsevier Ltd on behalf of DFRWS This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rclone is a platform-independent software that offers a docu-
mented command line interface (CLI) to access a variety of cloud
storage providers (CSPs).2 In this article, rclone is discussed from two
angles:

Forensic analysis of rclone: Instead of installing one client
application per CSP, rclone provides one single interface for
accessing storage. This feature makes it an interesting tool for
criminals. For instance, according to Greetham (2021), rclone has
been used by “a large number of ransomware cases […] for data
exfiltration”. Consequently, it is important for investigators to
eitinger), xiaolu.zhang@utsa.

ersonal capacity. The views
sent the views of the South

torage service as synonyms
examples are Google Drive,

er Ltd on behalf of DFRWS This is a
understand how this tool is configured and what artifacts it leaves
on the system. Contribution: We conduct a comprehensive forensic
analysis of the rclone application and present artifacts found on the
system, in memory, and the network.

Rclone as a forensic tool: From a digital forensic investigation
perspective, cloud storage poses several jurisdictional and technical
challenges. One of these technical challenges is the acquisition of
evidence, i.e., accessing and downloading data, as there is only a
limited number of forensic tools available (conventional tools have
focused upon having physical access to the media that stores the
data (Quick et al., 2013)). This forces examiners to fall back on ap-
plications provided by CSPs or utilize a web interface (if available)
which brings two problems:

Ease of acquisition: Given the sheer amount of CSPs, many
applications are necessary to access the cloud storage making it
time-consuming and hampering automation.
Error-proneness: As these applications have not been devel-
oped for forensic purposes, there is an unnecessary risk that an
investigatormodifies/deletes data and thereforemay be accused
n open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:frank.breitinger@unil.ch
mailto:xiaolu.zhang@utsa.edu
mailto:xiaolu.zhang@utsa.edu
mailto:darren.quick@gmail.com
https://www.FBreitinger.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301443&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301443
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2022.301443

F. Breitinger, X. Zhang and D. Quick Forensic Science International: Digital Investigation 43 (2022) 301443
of data modification. Furthermore, it also requires vetting the
CSP applications beforehand to ensure they work as expected.

In comparison, for offline storage, practitioners may use write
blockers automatically performing a forensic sound acquisition.
Contribution: We demonstrate and discuss rclone's viability for
forensic investigations based on two sample cases.

Situating this work: As discussed by Chung et al. (2012, Fig. 1),
there are several steps involved when investigating CSPs such as
considering the Smartphone and PC/MAC, analyze locally found
data (with the aim to retrieve user credentials), or obtaining a
search and seizure warrant. This article only focuses on the two
steps ‘access to user's cloud storage’ followed by ‘collect data in
cloud storage’. An investigator may encounter other challenges
such as 2-Factor-Authentication, jurisdictional obstacles, or missing
user credentials. These aspects are not addressed by this work.
Furthermore, this article focuses on consumer CSPs and ignores
business solutions.

Background:Many CSPs can be accessed through aweb interface
(Browser) or client application where the latter provides better
usability and security, e.g., automatically sync modified files with
the cloud or the usage of zero-knowledge encryption. We differ-
entiate between two mechanisms where, in both cases, more than
one device may be connected:

Storage: The data is stored in the cloud and no local backup
exists. To access the data, it requires an Internet connection. The
client application downloads a requested file on-the-fly or the
cloud storage is mounted to the local system.
Sync: A copy of the data is stored local but also synchronized to
the cloud. The synchronization may be immediately or timed
(e.g., once per day for larger files).

Naturally, there are hybrid solutions where some folders are
synchronized, and others are not. An example would be Dropbox's
smart sync where the user decides which folders/files are only
stored online and no local copy exists.

Outline: The remainder of this work is organized as follows. The
next section summarizes the Related work. This is followed by the
Rclone application forensics presenting artifacts found on the sys-
tem. In Rclone as a forensic tool we discuss the viability of rclone as
a forensic tool by looking into key functionality. The last section
concludes this article.

We also provide a short summary of rclone and its features in A
which is recommended for readers completely unfamiliar with
rclone (the article keeps general aspects/functionality at a mini-
mum). Alternatively, one may read the official documentation:
rclone.org/docs/.
2. Related work

In 2010, Gartner estimated cloud computing services produced a
profit of $68.3 billion, which was a 16.6% increase from 2009, and
Fig. 1. Rclone aut

2

was forecast to be $148.8 billion by 2014 (Chung et al., 2012). In 2021,
with an increased reliance on cloud infrastructure due to the impact
of the COVID-19 pandemic with many organizations switching to
work-from-home, enabling a greater use of online collaboration, and
a hybrid workforce, Gartner forecast spending on public cloud ser-
vices to total $332.3 billion in 2021, and nearly $400 billion by 2022,
increasing from $270 billion in 2020 (Costello and Rimol, 2021).

With cloud computing and cloud storage gaining popularity, the
digital forensics community also started to investigate its impact on
investigations and what traces can be found. Given the sheer
number of publications, this section primarily discusses literature
focusing on cloud storage (services) and forensics but ignores sec-
ondary literature, e.g., cloud computing in general, distributed
storage technologies (Ricci et al., 2019).
2.1. Cloud storage analysis

Over the years several articles have been published which
examine local traces of cloud storage providers, where a local trace is
an artifact found on a (seized) device. Predominately these focus on
examining traces of client software, using digital forensic tools, traces
ofwebbrowser artifacts, or use theproviders’ software to collect data,
such as Chung et al. (2012) where cloud remnants from Amazon,
Google, Dropbox, and Evernote on Windows and MacOS computers
and iOSandAndroidonmobiledevices areexamined. Similarly,Quick
et al. (2013) examine Dropbox, SkyDrive (OneDrive), Google Drive
remnants on Windows and iOS devices, and Hale (2013) examines
Amazon Cloud Drive remnants onWindows computers.

Of note is Federici (2014) who examine Dropbox, along with
Google Drive and SkyDrive (OneDrive) and develop an imaging
solution for these providers, and Roussev et al. (2016) developed a
collection tool for four major providers: Dropbox, Box, Google
Drive, and OneDrive (also discussed in Ahmed and Roussev (2019)).
A specific tool for Google Docs collection was also developed (also
discussed in Roussev and McCulley (2016)), and a third tool to
provide a filesystem interface and remotely mount a cloud drive
(Roussev et al., 2016). Shariati et al. (2016) examined Sugarsync
remnants onWindows andMacOS computers, and iOS and Android
devices. These indicate a demand for software tools to enable the
collection of cloud stored data in a forensically sound manner for a
variety of cloud service providers.
2.2. Usage of cloud storage

Chung et al. (2012) stresses the importance to not only analyze
the client application and its traces but also cookies and log files of
web browsers to identify if cloud storage has been accessed. For
client applications, traces may be found in general log files or the
registry (Windows). Client application often also comes with a
database file (maybe a text file), containing information about
(successful) login attempts or synchronized files.

Data volume is increasing, which causes issues for digital
forensic examiners in collecting and examining data in a timely
hentication.

http://rclone.org/docs/

3 https://rclone.org/docs/#config-config-file (all footnotes were last accessed on
2022-08-16; date is omitted in the remaining footnotes).

4 https://madmurphy.github.io/libconfini/html/libconfini.html
5 https://rclone.org/commands/rclone_obscure/

F. Breitinger, X. Zhang and D. Quick Forensic Science International: Digital Investigation 43 (2022) 301443
manner (Quick and Choo, 2014). It is impractical to collect and
preserve all data from all devices seized in an investigation due to
increasing volumes of data, along with potential collection of co-
mingling data from innocent users, and the business impact on
cloud providers (Almulla et al., 2014).

Data deletion by users prior to preservation is also an issue, but
the preservation policies of cloud storage providers assist law
enforcement agencies by retaining deleted data for 30 or 90 days by
default, or longer depending on the provider (Quick et al., 2013). In
addition, cloud providers often retain data in multiple locations,
and hence the impact of a disruption to data from one location is
minimized (Almulla et al., 2014).

As Ruan et al. (2011) highlighted, cloud users have no control
over the location of their data and can usually only provide ex-
aminers an object or container as a location. Identification of a
physical location by a user is extremely difficult and relies on a high
level of cooperation from the provider. As highlighted by Simou
et al. (2014) and Simou et al. (2016) there exists a need to
develop tools that enable collection of specific data, which must
also abide with forensic principles and standards. This includes
ensuring read-only access to remote data (Federici, 2014). Any tool
solutions should minimize reliance and involvement of service
providers to preclude liability issues and ensure timely collection
(Alqahtany et al., 2015).

Electronic crime is defined as computers or computational de-
vices being used as a tool, target, or storage device in the com-
mission of a criminal offence (Police Commissioners’ Conference
Electronic Crime Working Party, 2000). Cloud-based evidence is
not limited to crime or offending in the cloud environment, with
much of law enforcement collection and examination of cloud data
relating to data stored in the cloud, as opposed to cloud infra-
structure being used as a tool or as a target of offending. Cloud
storage usage is increasing, as mobile device manufacturers and
mobile operating system developers offer cloud storage options to
users who regularly upgrade devices and have a need to retain their
personal data across devices and across operating systems. With
the increase in retained data over many years of use, and limited
data storage on devices, this adds to the demand for increasing
volume and use of cloud storage infrastructure.

Something that is becomingmore andmore prolific are requests
from investigators and prosecutors for in-depth analysis and spe-
cifically, reports around the duplication of key evidence across
devices and storage media (digital cross-pollination). These digital
cross-pollination analysis requests are time-consuming and even
more so when the complexity of cloud stored data is added to the
mix. The source of evidential data, oftentimes duplicated across
devices, is where an investigation should focus preservation and
collection efforts. Discovery and analysis of data located in cloud
storage and synchronized across various devices can be crucial to
an investigation to tell the complete story and enable facts to be
presented to a Court of law to aid decision makers. Digital polli-
nation analysis adds time (and hence cost) to an investigation
(Stawski, 2018).

Legislation should encompass the collection of data available to
a device at the point of execution of the warrant and subsequent to
warrant execution, as oftentimes the use of cloud storage is iden-
tified during post-warrant analysis. This is commonplace when a
forensic examiner is subsequently analyzing a device extract or
computer image and discovers remnants of cloud storage use, such
as those outlined in the related work papers. The ability to identify
and collect potentially relevant cloud-stored data post-warrant in a
forensically sound manner can be crucial to an effective investi-
gation, either confirming known evidence, providing further evi-
dence of offending, or exonerating a suspect and allowing an
investigation to move forward and closer to the complete truth.
3

3. Rclone application forensics

Rclone serves as a universal interface to access various CSPs by
implementing their backend APIs and can be used for accessing
multiple cloud storages simultaneously (see Fig. 1). This section
outlines various artifacts that can be found on the system (Sec. 3.1
to 3.5) and concludes with a procedure for conducting a forensic
analysis of a computer that has rclone installed.

3.1. rclone.conf

As shown in Fig. 1, rclone authenticates a user to cloud services
through their provided APIs. To maintain access to the authorized
accounts, rclone stores the information for authentication (user-
name, password, access tokens, etc.) in a single configuration file
named rclone.conf (the file name is hardcoded in the source code).
As soon as the user is authenticated, the data on the cloud storage
can be copied/moved among cloud storages or the local computer.
By default, the file is stored under %AppData%/rclone/rclo-

ne.conf on Windows and under ~/.config/rclone/rclone.conf on
other systems (there are some other locations as explained in the
documentation3).

Configuration files are in the INI format4; an example containing
three remotes is listed in Fig. 2. The 1st, 9th and 15th line are the user-
chosen names of the remote storage followed by one of forty-three
the predefined storage types, e.g., ftp or dropbox. The remaining
lines differ depending on the remote storage and may include
host, user, pass, key_file or token among others. Remark:
While it is possible to manually create the configuration file, it is
recommended to use the interactive CLI as many providers use
token-based authentication.

Passwords are not stored in clear text but obscured by
$ rclone obsure PASSWORD

to prevent eyedropping.5 To obtain the cleartext password, one
may use

$ rclone reveal OBSCURED_PW

Once a configuration file is created or found, it can be used by
anyone on any computer. To use a configuration, it must either be
placed in the default directory or loaded using the
econfig¼“path/rclone.conf” option.

3.2. rclone.conf password recovery

Due to its importance, users can encrypt the configuration file
with a user-supplied password either during the creation or at a
later point in time. When the password is set, its (unsalted) SHA-
256 hash value is used for producing the secret key for the
encryption algorithms (XSalsa20 and Poly1305).

If an encrypted rclone.conf file is found, which can be easily
identified by its header as depicted in Fig. 3, the only possibility to
recover the key is through memory forensic. In the following we
discuss our findings based on the newest pre-compiled version
(Linux Intel/AMD - 64 v1.56.1) installed on a Debian 10 (kernel ver.
4.19.0) PC.

There are two occasions to enter a password: (1) when a user
sets the password for the first time or (2) when a user wants to run
any command (e.g., rclone copy). To observe how the entered
password and the decrypted rclone.conf file are stored in memory,
we analyzed rclone's and traced the stack/heap changes. Since the

https://rclone.org/docs/#config-config-file
https://madmurphy.github.io/libconfini/html/libconfini.html
https://rclone.org/commands/rclone_obscure/

Fig. 2. Rclone configuration file content for Dropbox; entries have been modified/
shortened for better readability and not reveal credentials.

Fig. 3. Encrypted rclone.conf opened in a regular text editor.

F. Breitinger, X. Zhang and D. Quick Forensic Science International: Digital Investigation 43 (2022) 301443
executable is stripped, we list the names and offsets of the relevant
functions for analysis in Table 1 where the prompt-column de-
scribes what is shown on the screen, the layer-column specifies
callers and callees (e.g., 02 function is the callee of the 01 function
right above it), followed by the corresponding function and offset.

1. To set a new password, SetPassword() is called when user
selects ‘s’, and SetPassword() calls changeConfigPass-

word() when user selects ‘a’, which then invokes the
ChangePassword() and the SetConfigPassword().

2. If a password has been already set, the user must enter the
password for conducting any operation. Thus, rclone invokes the
getConfigPassword() to prompt ‘Enter configuration pass-
word:’ on screen and then calls the GetPassword() which it-
self calls the readPassword() to load the input password.
When these functions return, SetConfigPassword() uses the
password to generate the secret key for decrypting rclone.conf.

We found that in both situations SetConfigPassword() is
called which reformats the password to [password][rclo-

ne-config] (compare Fig. 4) and then calculates the SHA256 hash
of this string which acts as the secret key. During this procedure,
the cleartext string and the hash value are both stored in the
memory, and according to our test, the [rclone-config] string is
an effective indicator for locating the password in the memory
dump. Depending on how many times rclone was executed/the
password was entered before taking the memory dump. There may
be multiple copies of the string retained in the memory dump. For
instance, searching for [rclone-config] in the memory dump
where the rclone process terminated, the password testpwd was
successfully recovered (an example is shown in Fig. 5).

In addition to the [rclone-config] string, we found two other
indicators that are sometimes near the passwordwhich are 1) e/n/
d/r/c/s/q, the string at the bottom of the main menu for
4

command rclone config, and 2) [THEFIRSTREMOTE] (THEFIR-
STREMOTE is the name of the first remote in the configuration file,
e.g., germanFTP in Fig. 2).

3.3. rclone.conf fragments recovery

If the password recovery fails, e.g., because the memory pagewas
overwritten, it may be still possible to recover (parts of) the unen-
crypted content of rclone.conf. As mentioned, the rclone.conf is in
the INI format utilizing pre-defined keys, fields, and the section
names which could be used to locate the cleartext content in
memory. For instance, Fig. 2 shows the configuration template
defined for Dropbox where strings such as type ¼, token ¼,
“access_token”:, “token_type”:, “refresh_token”:, etc. may
be found in a memory dump and are also used in templates for other
storage types. More templates are provided in the docs/content/

CLOUDNAME.md in rclone's github repository where CLOUDNAME is a
placeholder for the different types such as ‘onedrive’ or ‘dropbox’.

According to our test, the complete file, or fragments of it could
be found by searching these keywords in the dump. An example is
shown in Fig. 6 where we searched for token ¼ in the dump and
found the access_token for a OneDrive remote at address
0x665c5020. However, the access token was broken at address
0x6959ec40 and we could not find the next field of
access_token. To find the missing part of the access token and
the rest of the rclone.conf file, we continued by searching for
token_typewhich revealed the rest of the access token at address
0x26d798fa. Note, while the fragments matched perfectly in this
case, they could also be overlapping. In this case, an investigator
must remove the overlapped data in terms of the possible length of
the field and the structure of the template. If the recovery fails to
restore the complete rclone.conf file, the snippets (such as access
token and user credentials) found in the fragments may still be
sufficient to access the CSP.

3.4. Rclone remote encryption

In addition to encrypting the configuration file, rclone allows to
create ‘crypt remotes’ which are virtual remotes adding a layer of
encryption on top of an existing remote as depicted in Fig. 7 (a
sample configuration is shown in Fig. 2 [crypto]). To utilize a
‘crypt remote’ one first creates the regular remote (e.g., an FTP
remote) followed by the crypt wrapper. Then, instead of copying
data/accessing the remote directly (1), one connects to the crypt (2)
which internally connects to the FTP (3) and access the data. As
‘crypt’ is a remote itself, it is possible to stack them and have two or
more layers of encryption.

When setting up a crypt remote, the user is given several se-
curity relevant choices:

Filename encryption can be set to full filename encryption
(default), simple obfuscation, or none which only changes the
extension to.bin.
Directory name encryption can be set to true (default) and false
(but will only work if filename encryption is activated).
Password is the passphrase used to encrypt the data.
Salt can be generated for strengthening the file encryption,
which can be set by a user or rclone (by default).

Rclone utilizes NaCl SecretBox which is based on XSalsa20 ci-
pher and Poly1305 for integrity which is state-of-the-art encryp-
tion and secure (Zinzindohou�e et al., 2017). The algorithm divides
the input into chunks of 64KiB, encrypts them, and lastly creates a
checksum of 16bytes that is appended to each chunk. After reas-
sembling the chunks to one file, a header consisting of an 8-byte

Table 1
Function call stack for the rclone commands that can cause a user entering the rclone.conf file's password.

Command Option/prompt Layer Function Offset

rclone config “s) Set configuration password” 01 SetPassword() 0x8923c0

“a) Add password” 02 changeConfigPassword() 0x88b220

03 ChangePassword() 0x0928a0

03 SetConfigPassword() 0x88aae0

rclone [command] “Enter configuration password:” 01 getConfigPassword() 0x89a9c0

02 GetPassword() 0x8926e0

03 readPassword() 0x888b60

02 SetConfigPassword() 0x88aae0

F. Breitinger, X. Zhang and D. Quick Forensic Science International: Digital Investigation 43 (2022) 301443
magic number RCLONE\x00\x00 (blue) and a 24-byte random IV
(Initialization Vector, orange) are prepended as shown in Fig. 8.

Rclone also offers the possibility to use a salt which is a second
password (not stored with the encrypted content) and used to
permute the encryption key. If no salt is provided, a default salt
A80DF43A8FBD0308A7CAB83E581F86B1 is applied (see on
GitHub path/rclone/backend/crypt/cipher.go). Lastly, rclone sup-
ports file/folder name encryption, which uses EME (Halevi and
Rogaway, 2004) with a 256-bit key.

Decrypt remotes: In a situation where the cloud authentication
data in the rclone.conf is expired but the encrypted files are
accessible (e.g., a local copy is found or the CSP provides them), one
can still recover the data if the ‘password’ and the salt (i.e., ‘pass-
word2’, not set by default) are found. Therefore, first de-obscure the
passwords running rclone reveal. Second, store the encrypted
files locally (or on a remote storage). Third, create a remote local

disk (local, option 22) which is not a remote but a reference to the
local hard drive. Lastly, create a new crypt remote pointing to the
local disk and provide the found credentials. Alternatively, forensic
investigators can generate the key with the Key(password, salt

string) function and then decrypt the files with DecryptData()

(in the source code file backend/crypt/cipher.go. Note, to the best of
our knowledge, we are the first describing this procedure which
therefore can be seen as a minor contribution.
Fig. 4. The assembly code snippet of the SetConfigPassword() function

5

In addition, we found the following that could be interesting for
forensic investigation:

� If no salt is set (default), the file and folder names are only
encrypted with the user password. In return, this means that
identical file/folder names on different crypt remotes will be
identical if they have the same user password. Note, names only
sharing a common prefix or substring will not have this com-
monality after encryption.

� For the encryption of the file content, an initialization vector/salt
is used which means that identical files are slightly larger than
their unencrypted version and that identical cleartext files result
in different encrypted files.

One can calculate the encrypted file size (FS) given the original-
text file size by FScrypt ¼ FSorg þ QFSorg/216S*16 þ 32.

In case an encrypted file is found, one can calculate the original
file size as follows: FSorg ¼ FScrypt � (PFScrypt/216R*16 þ 32)

which provides the correct result in most cases or following
these two steps for the definite answer:

x ¼ FScrypt � (FScrypt/212 þ 32)

FSorg ¼ FScrypt � (Qx/216S*16 þ 32)
that is about to construct the [password][rclone-config] string.

Fig. 5. The password found by searching for the string [rclone-config] through the dump.

Fig. 6. Sample fragments of the rclone.conf file recovered from memory dump.

Fig. 7. Comparison of directly using a remote FTP (1) vs. using a virtual crypt remote
(2) which then will access the actual FTP remote (3).

F. Breitinger, X. Zhang and D. Quick Forensic Science International: Digital Investigation 43 (2022) 301443
3.5. Network analysis

To analyze the network traffic, we set up six remotes (FTP,
FTPes,6 SSH/SFTP, Gdrive, Webdav, Dropbox), captured the network
traffic that is generated when executing

$ rclone 1sd remote:

and analyzed it manually. In summary, it can be said that reli-
ably identifying rclone-connections within network traffic is
almost impossible except for SSH/SFTP.

Commonly CSPs utilize the port 443 for their APIs as this port
compatible with firewalls. In our test, Gdrive, Dropbox andWebdav
operated on port 443. Consequently, the network traffic shows the
TCP handshake followed by the TLS session negotiation. Similarly,
the FTPs (explicit TLS) connection contacts the server on port 21
and then sends the AUTH TLS request moving to an encrypted
session. Besides the destination IP, there is no indication that these
are rclone connections to a remote storage. Evenwithin the regular
FTP connection (unencrypted), we did not see any hints indicating
that this is a rclone connection. Only for the SSH/SFTP connection,
the ‘client’ package includes the name rclone as well as the version
as shown in Fig. 10 row 4.

JA3: As connections are established on port 443, we also used
TLS Fingerprinting with JA3 (Althouse, 2019)7 which extracts pa-
rameters such as SSLVersion, Cipher, SSLExtension, EllipticCurve,
and EllipticCurvePointFormat to generate a fingerprint for a
particular client (see Fig. 9). Unfortunately, each connection (FTPes,
Webdav, GDrive and Dropbox) resulted in different fingerprints.
However, checking these fingerprints against ja3er.com/form e a
6 FTP over explicit SSL/TLS (FTPES): the client explicitly requests to upgrade the
connection to TLS sending Request: AUTH TLS after receiving the FTP server

ready.
7 As we run into problems with the original implementation from salesforce

provided on https://github.com/salesforce/ja3, we utilized the GoLang imple-
mentation from https://github.com/dreadl0ck/ja3.

6

JA3 SSL Fingerprint database e allows to identify the connection as
Go-http-client/1.1 (among others).

3.6. Proposed recovery methodology

Since the configuration may be encrypted, we propose the
following methodology for recovery:

1. If the system is still running, try to acquire a memory dump.
2. For a given disk, locate the rclone.conf file which may require

extra effort if the file is not stored in the default location. A
customized location is usually stored in the environment vari-
able RCLONE_CONFIG.

3. If the configuration is not encrypted or user credentials are
found, use a forensic workstation to download (and decrypt) the
files stored on the CSP(s).

4. If the rclone.conf file is encrypted, use the memory image for
recovering the password as described in Sec. 3.2.

5. If the password of rclone.conf cannot be found in the memory
dump, one may try to recover the (decrypted) fragments of the
configuration file from memory as outlined in Sec. 3.3.

6. If the access in the rclone.conf file is no longer valid but there are
rclone-encrypted files found on another computer, the investi-
gator must decrypt the files manually by using the key and salt
(see Sec. 3.4).

4. Rclone as a forensic tool

Rclone provides forensic investigators with a high-level file

http://ja3er.com/form
https://github.com/salesforce/ja3
https://github.com/dreadl0ck/ja3

Fig. 8. Beginning of an encrypted file displayed using $ xxd enc_file | less (column
one shortened for readability).

Fig. 9. JA3 TLS fingerprints for the rclone client for various remotes.

F. Breitinger, X. Zhang and D. Quick Forensic Science International: Digital Investigation 43 (2022) 301443
system to manage evidence across different cloud services. Prior to
its application, it is necessary to have access to the user credentials
or a non-expired access token issued by the CSP. Note, there may be
additional challenges or consequences. For instance, a user may
receive an email notification by the CSP that a novel client requests
access or if 2-Factor-Authentication (2FA) is enabled, access to the
linked device is needed. These are general acquisition challenges
and unrelated to rclone which is why they are not addressed in this
work.

The next section explains the copy and mount commands and is
followed by two sample use cases which are based on rclone
version 1.56.1 (no 2FA). In Sec. 4.3, we present the results of some
practical acquisition tests followed by some shortcomings we
observed. The last subsection is a discussion on the viability of
rclone as a forensic tool.
8 To remove the App from Dropbox, go to settings / connected Apps.
4.1. Copy and mount

To acquire a remote storage, one may use the copy or mount

commands. Using copy, the investigator runs the risk of swapping
source and destination and accidently copy data to the remove
drive. Therefore, we recommend using edry-run to simulate the
outcome. If copying is not an option, e.g., due to the size, one can
mount the remote where rclone provides a eread-only flag.
There are other possibilities as well, e.g., using the ebackup-dir

flag or sync command but they have a higher likelihood to make a
mistake like accidently modifying/deleting data, and are not
discussed.

Read-only: Interestingly, when having a closer look at the read-
only flag, we realized that rclone does not rely on the CSP APIs but
uses system functionality to prevent accidental writing. In detail,
we analyzed sup-processes of rclone using $ lsof -Fn -p [rclone

pid] (MacOS) and realized that the rclone-process use /dev/

macfuse meaning that it uses system functionality to mount the
network drive. Running the $ mount-command returned
ftp-test: on /Users/XXX/Desktop/rclone/mount (mac-

fuse, nodev, nosuid, read-only, synchronous, mounted

by XXX). Lastly, we tried to copy content to the mounted share via
the GUI drag-and-drop as well as the terminal using the regular cp-
command (not rclone copy)

$ cp test.file ~/Desktop/rclone/mount/

cp: ~/Desktop/rclone/mount/test.file: Read-only file

system

Both attempts failed; the local OS will block attempts to write to
cloud storage. This is safer than using edry-run on commands
that could corrupt cloud storage if used incorrectly.
7

4.2. Sample cases using rclone

Case 1: A forensic examiner found user credentials and assumes
that these credentials alsowork for the suspect's Dropbox as well as
FTP account. The interactive rclone config is used to create the
config file.

1. $ rclone config followed by n for new remote.
2. When prompt for the name, we will use ‘case03x_FTP’ (case

sensitive).
3. From the list of storage types, we utilize 13 (FTP Connection) and

provide host, user, and port.
4. When asked for the password, we choose ‘yes type in my own

password’.
5. As the FTP server does not support implicit FTPS, we chose ‘false’

but answer ‘true’ for explicit_tls to not transfer data
unencrypted.

The final configuration will look like the sample provided in
Sec. 3.1. Now that the remote has been created, it can either be
mounted or fully copied. Due to the size of the FTP (we assume
2 TB), it is only mounted

$ rclone mount case03x_FTP: mnt/ -read-only

and relevant folders are copied using the provided OS tools
$ cp -r mnt/images/ /case03x/FTP

Alternatively, one may use rclone to copy
$ rclone copy case03x_FTP:/images /case03x/FTP

Note, the copy command will directly access the remote (not
the read-only mounted directory). Thus, if users confuse the order,
they will write to the FTP.

Case 2: Setting up Dropbox is slightly different as OAuth2 is used
but rclone navigates the user through the process. We again use the
interactive CLI and start with new remote and set our name to
‘case03x_Dropbox’.

1. Follow the default options (no client_id, no client_secret, no
‘Edit advanced config?’ and yes to ‘use auto config’) which brings
the user to the Dropbox website.

2. Now, username and password are required to allow rclone to
access Dropbox which we assume have been found by other
means.8

3. Back in the terminal, one can see the OAuth2 token, and we
acknowledge with ‘yes’.

4. As the suspect uses the Dropbox basic plan (2 GB storage), it can
be directly copied
$ rclone copy case03x_Dropbox: case03x/Dropbox

Note, the configuration file for Dropbox will be different
compared to FTP as it contains the OAuth2 token instead of
credentials.

4.3. Storage acquisition

Given the large amounts of data and files that may be stored in
the cloud, acquisition performance is crucial. However, a compar-
ison is not straight forward as CSP applications may maintain local
copies of files, are accessed through a web interface, or it is difficult
to measure the exact time it takes to download. For instance, files
stored on Dropbox are also available on the local hard drive.9

Consequently, in the following we perform several practical tests
9 We assume the free Dropbox account that currently does not support smart
sync see https://www.dropbox.com/smart-sync.

https://www.dropbox.com/smart-sync

Fig. 10. Screenshot of Wireshark showing the first packages when rclone establishes a connection via SSH/SFTP.

F. Breitinger, X. Zhang and D. Quick Forensic Science International: Digital Investigation 43 (2022) 301443
with respect to efficiency, completeness, and correctness, to have a
point of reference.

Efficiency: From the list of supported storage types, we decided
to compare rclone's acquisition efficiency to FTP, SSH/SCP, Dropbox,
and GDrive, where the question is: Can rclone achieve similar
download rates than common tools? To compare against FTP/SCP/
Dropbox, we utilized a 100MiB file, downloaded it five times and
provide the average duration. The utilized FTP client was from
inetutils 2.2 on MAC OS where we first logged in and then used the
get-command to download the file. With respect to rclone, we
created the remote interface following the interactive CLI and then
used

$ time rclone copy ftp-simple:/100MiB ./test/

On average, the FTP client required 8.42sec while rclone finished
in less than half the time (3.90sec). Mounting the remote read-only
and performing a copy achieved similar times

$ rclone mount ftp-simple:/ /mountpt/

$ time cp /mountpt/100MiB ./test/

For SSH/SCP we again navigated the interactive CLI to configure
rclone using a public key. The two commands used were

$ time rclone copy sshpi:100MiB rclone-test/

$ time scp -i key_rsa www@pi:100MiB rclone-test/

where rclone required 10.91sec and SCP was slightly faster with
9.92sec on average. Next, we connected rclone to Dropbox and
downloaded the file using

$ time rclone copy Dbox:100MiB rclone-test/

where the average time was 5.25sec. This time rclone was
compared against Safari, i.e., HTTPs download through the website,
where we manually measured the time: 8.1sec. For GDrive we
tested using a 1GiB file and like before against the web interface.
On average, rclone needed 25.6s and the Safari download was
completed in 25.2s. While it is hard to predict how rclone compares
against all existing solutions, these rudimentary tests show that
rclone has an acceptable throughput.

Accuracy: This test aimed to analyze correctness and
completeness. We therefore downloaded our complete Dropbox
drive via rclone which includes almost 9600 files totaling in 1.4 GB.
The following command was used

$ time rclone copy dropbox: ~/dbox/

The overall time was 29m35s. We then compared it against our
local Dropbox sync folder running

$ diff -qr Dropbox/ ~/dbox/

as well as the GUI application FreeFileSync10 which allows to
compare hashes. The comparison revealed 105 differences.
Analyzing these differences showed that most files only exist
locally and are never sync'd to the Dropbox account; consequently,
they cannot be downloaded. For instance, the :dropbox and
:dropbox:cache folders, :DS_Store (81 times), Icon11 (7) and one
temp file (~$eval.xlsx). Alias/symbolic Link (3) are sync'd by the
Dropbox client application but are modified, i.e., the local copy is a
proper alias (9 KB) where the online copies are empty files. Note,
10 https://freefilesync.org
11 Icon? file is MAC specific and exists in directories that have a custom icon in the
Finder.

8

according to the documentation “rclone will [also] ignore symlinks
or junction points (which behave like symlinks under Windows). If
you supply ecopy-links or -L then rclone will follow the sym-
link and copy the pointed to file or directory.”

The remaining 11 mismatches are due to empty folders and files
with special characters: By default, rclone does not sync empty
folders (5) or folders that only contain empty folders. If they are
needed, the user has to add the ecreate-empty-src-dirs op-
tion to the copy command. The last 6 entries are due to special
characters (€o,ü,�a) and are actually correctly copied. However, diff
seems to consider them different due to their filenames. Example:
diff lists the following

Only in ~/dbox/Autom�atica e Inform�atica.pdf

Only in Dropbox/Autom�atica e Inform�atica.pdf

However, comparing the SHA1 hashes and timestamps showed
that these are identical files.

4.4. Rclone shortcomings

While performing our tests, we observed the following short-
comings of rclone:

Large files via FTP: First, when copying larger files (1GiB) from
the FTP, we had problems with rclone's multi-thread which is uti-
lized by default. This caused incorrect downloads and the following
error message: ERROR : 1GB: Failed to copy: 450 Transfer

aborted. Link to file server lost Attempt 3/3 failed with

1 errors and: 450 Transfer aborted. Link to file server

lost. To fix this, we had to add the emulti-thread-streams

0 option. The download then took 21s which is similar to the
GDrive test (see Sec. 4.3).

Timestamps: We realized that rclone does only preserve time-
stamps for files but not directories. After copying, all directories had
the same stamp: the time of executing the copy command. In
contrast, using the Dropbox client application or the web interface
will preserve the original timestamp. According to Craig-Wood
(2022) (rclone Bug page) this seems to be a common bug:
“Rclone doesn't currently preserve the timestamps of directories.
This is because rclone only really considers objects when syncing.”
We noticed that this also applies when doing a lsd (list directories
only) which shows wrong timestamps. Whenmounted and copied,
the regular file system rules apply, i.e., files and folders timestamps
are updated.

CSPs specific features: Proprietary software offers features that
rclone does not support. For instance, most clients and web in-
terfaces allow to ‘share folders’ or have a trash that may still contain
files. In addition, rclone relies on the API. Although we have not
encountered this, there may be instances where not all files are
visible via rclone.

Buckets and million files: According to Craig-Wood (2022), rclone
also has difficulties if there are millions of files inside a directory or
bucket. It also struggles with buckets as buckets do not utilize the
concept of directories.

4.5. Discussion on rclone's prospects to be a forensic tool

While it seems a natural step to compare rclone to other

https://freefilesync.org

12 https://rclone.org/commands/

F. Breitinger, X. Zhang and D. Quick Forensic Science International: Digital Investigation 43 (2022) 301443
acquisition possibilities such as native apps of the CSP or existing
cloud forensics tools, there are several challenges. For a thorough
comparison, one would have to subscribe to all CSPs, install their
application, and perform a manual analysis of the acquisition effi-
ciency as well as possible settings (e.g., is it possible to activate a
‘read-only’ mode). On the other hand, professional forensic tools
are costly, and terms & conditions often prohibit research. There-
fore, this section provides a comparison on theoretical level to
answer the question if rclone has the potential to act as a digital
forensic tool? We start with the two aspects raised in the intro-
duction, ease of acquisition and error proneness, followed by some
other points we deem relevant:

Ease of acquisition: Rclone supports a wide variety of CSPs,
comes with a documented CLI and is platform independent. While
there are certainly practitioners who favor a GUI over a CLI, the
latter has a higher potential for automation, e.g., being integrated
into existing software or proprietary scripts. The two cases, out-
lined in Sec. 4.2, are exemplary of how rclone could be used. In
addition, it is a dynamic GitHub project with an active community
around it ensuring (for the moment) that new CSPs will be added,
and bugs will be fixed.

Error-proneness: Although rclone has not been developed for
forensic purposes, it comes with an important feature: mount read-
only. In addition, it provides a dry-run option as well as -i/
einteractive flag which can be used in the beginning to avoid
accidental data loss. Overall, we rate the error-proneness of using
this application similar or even lower compared with existing
approaches.

Connected apps/authentication attempts: Accessing remote stor-
age via rclone requires that the CSP supports ‘connected Apps’
(depending on the CSP this terminology differs). Thus, on rclone's
first connection attempt, the application is added to the connected
devices (where it later can also be removed). Depending on the CSP,
this may trigger a notification. For instance, when we connected to
Google drive, we received an Email and a push notification to our
phone.

Portability and security: As explained in Sec. 3.1, an investigator
can access various cloud storages across platforms/workstations by
carrying the rclone.conf file and the client software (instead of
installing various cloud apps provided by different CSPs). The data
and the config file can be encrypted which provides additional
protection, i.e., leaked data will not reveal information.

Open-source: A general problem in digital forensics is that
practitioners often (must) rely on ‘black boxes’ when doing their
work especially for acquisition. As discussed by Ottmann et al.
(2021), this poses a problem which is beyond the scope of this
paper. In contrast to CSP applications and most digital forensic
tools, rclone is open-source and thus an examiner can analyze the
source code to understand how it exactly works. Of course, it is free
of charge which is also a plus compared to other commercial tools.

5. Conclusion

This article examined rclone - an open-source tool for managing
many common cloud storages such as Amazon Buckets, Dropbox, or
Mega.We first investigated rclone and showed that an unencrypted
configuration file provides value for forensic investigations. It was
also demonstrated that in case an encrypted rclone.conf is
encountered, that the encryption key (password) or the configu-
ration file itself may be found in memory even if the rclone process
has already terminated. In addition to the forensic analysis of
rclone, we discussed rclone as a prospect to be a forensic tool.
Specifically, we analyzed the read-only mount feature, presented
two sample use cases on how rclone could be used for cloud
acquisition, and looked at the performance as well as caveats of
9

rclone. We conclude that rclone comes with some interesting fea-
tures and can be valuable for forensic investigations but has the
limitation that it does not maintain the directory timestamps.

Author contribution statement

Frank Breitinger: Conceptualization, Methodology, Validation,
Investigation, Writing - Original Draft. Xiaolu Zhang: Methodol-
ogy, Validation, Investigation, Writing - Original Draft. Darren
Quick: Writing - Review & Editing.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Rclone overview

Rclone is an open-source GoLang program allowing to access
and manage many common cloud service providers (CSPs): ac-
cording to rclone.org, there are 55 supported providers/mecha-
nisms at the time of writing this article making it the ‘Swiss army
knife of cloud storage’. It serves as a universal interface to access
various CSPs from the command line using the rclone com-
mand. After installation, one first must create a new ‘remote’
which is the generic term used by rclone to describe all cloud
storages. The creation of a remote can be done by executing

$ rclone config

which invokes the interactive CLI and walking a user through
setting up all sorts of remotes. Before providing the access details
(e.g., username, password), we first must set a unique remote
name serving as an identifier for the storage, e.g., germanFTP or
businessDropbox. After completing the setup, one can access
the remote using the provided rclone commands in the format

$ rclone subcommand <parameters> <parameters...>
The full list of all commands can be found on rclone.org12; in the

following we highlight some commands that we see relevant from
an investigator's perspective.

Copy and mount: To acquire a remote storage, we recommend
two procedures (detailed examples are provided in Sec. 4.2)

$ rclone copy remote: . econfig¼usr/rclone.conf

which will copy all files from the remote (remote needs to be
replaced by the identifier, e.g., germanFTP) to the current directory
(.) using the provided config file. Note, the colon after remote is
essential and indicates that the root directory of the remote is
copied. It is recommended to use edry-run first to simulate the
outcome. If copying is not an option, e.g., due to the size, one can
mount the remote using

$ rclone mount remote:/pictures /mnt/ -read-only

which will use the default configuration file and mount the sub-
directory pictures to the local path/mnt/.

Note, there are other possibilities as well, e.g., using the
ebackup-dir flag or sync command but they have a higher
likelihood to make a mistake, e.g., modify/delete data, and will not
be discussed.

Other helpful rclone commands: From a forensic/investigation
perspective, the following commands may also be relevant

rclone listremotes - List all the remotes in the

config file.

rclone lsl - List all the objects in the path with

size, mod time and path.

http://rclone.org
https://rclone.org/commands/

F. Breitinger, X. Zhang and D. Quick Forensic Science International: Digital Investigation 43 (2022) 301443
rclone md5sum - Produce an md5sum file for all the

objects in the path.

rclone sha1sum - Produce a sha1sum file for all the

objects in the path.

rclone hashsum - Produces a hashsum file for all the

objects in the path.

rclone size - Return the total size and number of

objects in remote:path.

Note that not every remote supports every command. For
instance, SHA1 hashing is only supported by a handful of providers
while MD5 is supported by about two-thirds of storage types. A
comprehensive overview of supported features by remote can be
found on the website.13

References

Ahmed, I., Roussev, V., 2019. Analysis of Cloud Digital Evidence. Security, Privacy, and
Digital Forensics in the Cloud, p. 301.

Almulla, S., Iraqi, Y., Jones, A., 2014. A state-of-the-art review of cloud forensics.
Journal of Digital Forensics, Security and Law 9, 2.

Alqahtany, S., Clarke, N., Furnell, S., Reich, C., 2015. Cloud forensics: a review of
challenges, solutions and open problems. In: 2015 International Conference on
Cloud Computing (ICCC. IEEE, pp. 1e9.

Althouse, J., 2019. TLS Fingerprinting with JA3 and JA3S. Retrieved 2022. https://
engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-
247362855967, 7 04.

Chung, H., Park, J., Lee, S., Kang, C., 2012. Digital forensic investigation of cloud
storage services. Digit. Invest. 9, 81e95.

Costello, K., Rimol, M., 2021. Gartner forecasts worldwide public cloud end-user
spending to grow 23% in 2021. https://www.gartner.com/en/newsroom/press-
releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-
spending-to-grow-23-percent-in-2021. Retrieved 2022-07-04.

Craig-Wood, N., 2022. Bugs and limitations. https://rclone.org/bugs/. Retrieved
2022-07-04.

Federici, C., 2014. Cloud data imager: a unified answer to remote acquisition of
cloud storage areas. Digit. Invest. 11, 30e42.
13 https://rclone.org/overview/#features

10
Greetham, A., 2021. Detecting rclone e an effective tool for exfiltration. Retrieved
2022. https://research.nccgroup.com/2021/05/27/detecting-rclone-an-
effective-tool-for-exfiltration/, 7 04.

Hale, J.S., 2013. Amazon cloud drive forensic analysis. Digit. Invest. 10, 259e265.
Halevi, S., Rogaway, P., 2004. A parallelizable enciphering mode. In: Cryptographers'

Track at the RSA Conference. Springer, pp. 292e304.
Ottmann, J., Pollach, J., Scheler, N., Schneider, J., Rückert, C., Freiling, F., 2021. Zur

blackbox-problematik im bereich mobilfunkforensik. Datenschutz und Daten-
sicherheit - DuD 45, 546e552. https://doi.org/10.1007/s11623-021-1487-1. URL:
10.1007/s11623-021-1487-1.

Police Commissioners’ Conference Electronic Crime Working Party, 2000. The vir-
tual horizon: meeting the law enforcement challenges: developing an Aus-
tralasian law enforcement strategy for dealing with electronic crime.
Australasian Centre for Policing Research. http://www.police.govt.nz/resources/
2001/e-crime-strategy/e-crime-strategy.pdf.

Quick, D., Choo, K.-K.R., 2014. Impacts of increasing volume of digital forensic data:
a survey and future research challenges. Digit. Invest. 11, 273e294.

Quick, D., Martini, B., Choo, R., 2013. Cloud Storage Forensics. Syngress.
Ricci, J., Baggili, I., Breitinger, F., 2019. Blockchain-based distributed cloud storage

digital forensics: where's the beef? IEEE Security & Privacy 17, 34e42.
Roussev, V., Ahmed, I., Barreto, A., McCulley, S., Shanmughan, V., 2016. Cloud

forensicsetool development studies & future outlook. Digit. Invest. 18, 79e95.
Roussev, V., McCulley, S., 2016. Forensic analysis of cloud-native artifacts. Digit.

Invest. 16, S104eS113.
Ruan, K., Carthy, J., Kechadi, T., Crosbie, M., 2011. Cloud forensics. In: IFIP Interna-

tional Conference on Digital Forensics. Springer, pp. 35e46.
Shariati, M., Dehghantanha, A., Choo, K.-K.R., 2016. Sugarsync forensic analysis.

Aust. J. Forensic Sci. 48, 95e117.
Simou, S., Kalloniatis, C., Gritzalis, S., Mouratidis, H., 2016. A survey on cloud fo-

rensics challenges and solutions. Secur. Commun. Network. 9, 6285e6314.
Simou, S., Kalloniatis, C., Kavakli, E., Gritzalis, S., 2014. Cloud forensics solutions: a

review. In: International Conference on Advanced Information Systems Engi-
neering. Springer, pp. 299e309.

Stawski, S., 2018. Digital pollination: user impact on the document life cycle. URL:
https://thesedonaconference.org/sites/default/files/conference_papers/%5B8.2%
5D%20S.%20Stawski_Digital%20Pollination%20Paper_Oct%202018.pdf.

Zinzindohou�e, J.-K., Bhargavan, K., Protzenko, J., Beurdouche, B., 2017. Hacl*: a
verified modern cryptographic library. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, p. 1789, 1806.

http://refhub.elsevier.com/S2666-2817(22)00124-X/sref1
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref1
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref2
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref2
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref3
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref3
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref3
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref3
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref5
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref5
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref5
https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021.%20Retrieved%202022-07-04
https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021.%20Retrieved%202022-07-04
https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021.%20Retrieved%202022-07-04
https://rclone.org/bugs/.%20Retrieved%202022-07-04
https://rclone.org/bugs/.%20Retrieved%202022-07-04
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref8
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref8
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref8
https://research.nccgroup.com/2021/05/27/detecting-rclone-an-effective-tool-for-exfiltration/
https://research.nccgroup.com/2021/05/27/detecting-rclone-an-effective-tool-for-exfiltration/
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref10
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref10
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref11
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref11
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref11
https://doi.org/10.1007/s11623-021-1487-1
http://www.police.govt.nz/resources/2001/e-crime-strategy/e-crime-strategy.pdf
http://www.police.govt.nz/resources/2001/e-crime-strategy/e-crime-strategy.pdf
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref14
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref14
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref14
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref15
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref16
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref16
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref16
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref16
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref17
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref17
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref17
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref17
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref17
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref18
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref18
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref18
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref19
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref19
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref19
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref20
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref20
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref20
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref21
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref21
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref21
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref22
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref22
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref22
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref22
https://thesedonaconference.org/sites/default/files/conference_papers/%5B8.2%5D%20S.%20Stawski_Digital%20Pollination%20Paper_Oct%202018.pdf
https://thesedonaconference.org/sites/default/files/conference_papers/%5B8.2%5D%20S.%20Stawski_Digital%20Pollination%20Paper_Oct%202018.pdf
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref24
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref24
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref24
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref24
http://refhub.elsevier.com/S2666-2817(22)00124-X/sref24
https://rclone.org/overview/#features

	A forensic analysis of rclone and rclone's prospects for digital forensic investigations of cloud storage
	1. Introduction
	2. Related work
	2.1. Cloud storage analysis
	2.2. Usage of cloud storage

	3. Rclone application forensics
	3.1. rclone.conf
	3.2. rclone.conf password recovery
	3.3. rclone.conf fragments recovery
	3.4. Rclone remote encryption
	3.5. Network analysis
	3.6. Proposed recovery methodology

	4. Rclone as a forensic tool
	4.1. Copy and mount
	4.2. Sample cases using rclone
	4.3. Storage acquisition
	4.4. Rclone shortcomings
	4.5. Discussion on rclone's prospects to be a forensic tool

	5. Conclusion
	Author contribution statement
	Declaration of competing interest
	Appendix A. Rclone overview
	References

