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Abstract. We extend the construction principle of multivariate phase-type dis-
tributions to establish an analytically tractable class of heavy-tailed multivariate
random variables whose marginal distributions are of Mittag-Leffler type with
arbitrary index of regular variation. The construction can essentially be seen
as allowing a scalar parameter to become matrix-valued. The class of distri-
butions is shown to be dense among all multivariate positive random variables
and hence provides a versatile candidate for the modelling of heavy-tailed, but
tail-independent, risks in various fields of application.

1. Introduction

The joint modelling of dependent risks is a crucial task in many areas of ap-
plied probability and quantitative risk management, see e.g. [? ]. While in many
situations there is a reasonable amount of data available for the fitting procedure
of univariate risks, the identification of multivariate models is much more delicate.
A frequent approach proposed in applications is to use the available data for uni-
variate fitting, and choose a parametric copula to combine the margins, where the
parameters of that copula are then either assumed a priori or estimated from the
joint data. The choice of such a copula is of course crucial for the resulting joint
distribution and the conclusions one draws from it, cf. [? ? ]. In multivariate
extremes, which is currently a very active research topic, one typically uses less
restrictive assumptions for the quantification of joint exceedances, see e.g. [? ? ].
Some specific families, like multivariate regular variation, are considered particu-
larly attractive in this context, as they have a natural interpretation in terms of
how to extend univariate behaviour into higher dimensions [? ? ? ]. These results
focus, however, on the asymptotic behaviour, so that for a concrete application
with an available data set one typically has to choose thresholds above which this
respective behaviour is assumed [? ], and the bulk of the distribution is then to be
modelled by a different distribution (see e.g. [? ] and [? , Ch.IV.5]).

In this paper we would like to establish a family of multivariate distributions
that can be applied for modeling across the entire positive orthant, so that no
threshold selection is needed. In particular, we are interested in a family that leads
to explicit and tractable expressions for the model fitting and interpretation. While
such a family already exists for marginally light (exponentially bounded) tails in the
form of multivariate phase-type (MVPH) distributions, our goal here is to develop
a related family with heavy-tailed marginal distributions. The univariate starting
point for this procedure is the matrix Mittag-Leffler (MML) distribution, which is a
heavy-tailed distribution that was recently studied in [? ], and which proved to be
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very tractable, with excellent fitting properties. While in principle there are many
possible ways of defining a vector of random variables with given marginals, we
want to consider here the natural concept of multivariate families that can be char-
acterized by the property that any linear combination of the components of such a
vector is again of the same marginal type. This is exactly one possible definition
of MVPH distributions (so any linear combination of the coordinates of a random
vector are again (univariate) phase-type), and it is also a characterizing property
of multivariate regular variation of a random vector, namely that any linear com-
bination of the coordinates of such a vector is again (univariate) regularly varying,
see [? ].

The goal is hence to study the class of multivariate random vectors for which
such a property applies with MML marginal distributions. It will turn out that
for this approach to work, we first need to consider a slightly more general class,
which we will refer to as generalized MML distributions. We will show that the
analysis developed for the MVPH case can then be extended to our more general
situation. In particular, we will establish some properties of this class and work
out explicit expressions for a number of concrete cases. The analysis is consider-
ably simpler for the symmetric situation where all marginal distributions share the
same index of regular variation, but the general case can be handled as well. The
resulting multivariate MML distribution is asymptotically independent, i.e. there is
tail-independence for each bivariate pair of components. In the case of multivariate
regular variation, the subclass of random vectors with asymptotic independence
was studied and characterized in terms of second order conditions in [? ], where
also concrete application areas for such heavy-tailed, but asymptotically indepen-
dent risks are given. In a sense, the multivariate MML family of distributions we
introduce here is another candidate for models in this domain, with the advantage
of being explicit and tractable across the entire range Rn

+. In that respect, this
family is also an interesting alternative to multivariate Linnik distributions (see
e.g. [? ] and [? ]), which can be conveniently defined in terms of their charac-
teristic function, have the range Rn (rather than Rn

+) and also have heavy-tailed
marginals, but which do not lead to explicit expressions for the multivariate density.

The remainder of the paper is organized as follows. Section 2 recapitulates the
construction principle of univariate and multivariate PH distributions and provides
the available background on MML distributions. Section 3 introduces generalized
MML distributions. In Section 4 we then develop the necessary theoretical back-
ground for our definition of the multivariate MML family and establish some of its
properties. We also consider power transforms, which will provide useful flexibility
for modeling applications, and we derive denseness properties of the resulting mul-
tivariate family. In Section 5 we work out a concrete simple example in detail and
illustrate resulting dependence properties for this case. Section 6 concludes.

2. Phase–type distributions

2.1. Notation. We shall apply a common convention from phase–type theory that
matrices are expressed in bold capital letters (e.g. T ,Λ), row vectors are bold mi-
nuscular greek letters (e.g. π,α) while column vectors are bold minuscular roman
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letters (e.g. t, x). Elements of matrices and vectors are denoted by their corre-
sponding minuscular unbold letters with indices, e.g. A = {aij} and a = (ai). If
a = (a1, ..., an) is a vector, then by ∆(a) we shall denote the diagonal matrix with
a as diagonal.

2.2. Univariate phase–type distributions. Phase–type distributions are de-
fined as the distribution of the time until absorption of a finite state–space Markov
jump process with one absorbing state and the other states being transient.

Let p be a positive integer, and {Xt}t≥0 denote a Markov jump process on E =
{1, ..., p, p + 1}, where states 1, 2, ..., p are transient and state p + 1 is absorbing.
Let πi = P(X0 = i) and assume that π1 + · · · πp = 1, i.e. initiation in the absorbing
state is not possible. The intensity matrix of {Xt}t≥0 can be written as

(1) Λ =

(
T t
0 0

)
,

where T is the p × p sub–intensity matrix whose off diagonal elements consist of
transition rates between the transient states, t is a p–dimensional column vector
0 is a p–dimensional row vector. The diagonal elements of T are given by tii =
−
∑

j 6=i tij + ti, since the row sums of Λ must be zero.

Let e denote the vector of ones and π = (π1, ..., πp). Dimensions are usually
suppressed and e may then have any adequate dimension depending on the context.

Then the time until absorption,

τ = inf{t ≥ 0 : Xt = p+ 1},
is said to have a phase–type (PH) distribution with representation (π,T ) and we
write PHp(π,T ). Since rows of Λ sum to zero, we get t = −Te. Note that the
case p = 1 leads to an exponential distribution.

If τ ∼ PHp(π,T ), then a number of relevant formulas can be written compactly
in matrix notation, like e.g.

f(x;π,T ) = πeTxt, x > 0,

F (x;π,T ) = 1− πeTxt, x > 0,

L(s;π,T ) = π(sI − T )−1t, s > Re(ηmax),

E(τα) = Γ(α + 1)π(−T )−αe, α > 0,

for the density, c.d.f., Laplace transform and (fractional) moments, respectively.
Here ηmax denotes the eigenvalue with maximum real part of T , and this real part
is strictly negative. In particular, the Laplace transform is well defined for all s ≥ 0
and in a neighbourhood around zero.

Remark 2.1. Representations (π,T ) of phase–type distributions are not unique.
In fact, one can construct an infinite number of different representations, which
may even be of different orders p. Hence phase–type representations may also suffer
from over-parametrisation, and it is not possible to attach a specific significance to
individual elements of an intensity matrix. While one can typically construct a
certain behaviour by means of structuring the sub–intensity matrix T , the opposite
task of deducing such a behaviour from a given matrix is typically not possible.
Some simple cases, however, may be described. For instance, p = 1 means one
phase and the resulting distribution is exponential, hence unimodal. For p = 2,
bimodality cannot be achieved either, as one could at most aim for a mixture of
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exponentials. For p = 3 it is possible to have a mixture of an exponential with an
Erlang 2 which is bimodal.

For further details on phase–type expressions, we refer to [? ] and [? ].

2.3. Multivariate phase–type distributions. A non–negative random vector
X = (X1, ..., Xn) is phase–type distributed (MVPH) if all non–negative, non-
vanishing linear combinations of its coordinates Xi, i = 1, ..., n have a (univariate)
phase–type distribution. This is the most general definition of a multivariate phase–
type distribution which, however, lacks practicality since it does not suggest how to
construct such distributions. It contains a sub–class of multivariate distributions,
MPH∗, which have multidimensional Laplace transforms of the form

(2) LX(u;π,T ,R) = E(e−<u,X>) = π (∆(Ru)− T )−1 t.

and we write thatX ∼ MPH∗(π,T ,R). Here (π,T ) is a phase–type representation
of dimension p, say, R is a p×n matrix and u = (u1, ..., un) ∈ Rn

+. Furthermore, the
joint Laplace transform exists in a neighbourhood around zero ([? , Thm.8.1.2]).

The form (2) is established from the following probabilistic construction (cf. [? ]).
Consider the Markov jump process {Xt}t≥0 underlying the phase–type distribution
with representation (π,T ). The n columns of R = {rik} are p–dimensional vectors
which contain non–negative numbers. These numbers are “rewards” to be earned
during sojourns in state i. If τ denotes the time until absorption of the underlying
Markov jump process, then

(3) Xk =

∫ τ

0

1{Xt = i}rik dt, k = 1, ..., n

is the total reward earned according to column k of R until absorption. The struc-
ture matrix R hence picks scaled sojourns out of the underlying Markov jump
process. Correlation between different total rewards, Xi and Xj say, will then de-
pend on the structure of R and on the underlying stochastic process. If there are
common states in which reward is earned for both Xi and Xj, then this will con-
tribute to a positive correlation between them. If there are no common states, the
correlation will be entirely generated by the structure of the T matrix. Negative
correlation between Xi and Xj is achieved if large rewards earned in one reduces the
one earned in the other and vice versa. Specific constructions of dependencies be-
tween Phase–type distributed random variables with given marginals is non–trivial,
see. e.g. [? ] for an example with exponentially distributed marginals.

The random variables Xk defined in (3) are again phase–type distributed and
in general dependent since different variables may be generated through earning
positive rewards on certain common states (while in other states there may be zero
reward for one variable whenever the other has positive reward). If all rik > 0,
i = 1, ..., p, then Xk is phase–type distributed with initial distribution π and sub–
intensity matrix ∆−1(r·k)T . This follows easily from a sample path argument: if
reward rik is earned during a sojourn in state i, then the distribution of the reward
during a sojourn is exponentially distributed with intensity −tii/rik.

If some rik = 0, then finding a representation for Xk is more involved. Let w ≥ 0
denote a non–zero vector. For obtaining the k’th marginal distribution we would
choose w = e′k, the k’th Euclidean unit vector, while for a more general projection
we may choose w = c1e1 + ... + cnek for some constants ci, i = 1, ..., n. For this
given w, decompose the set of transient state E = {1, ..., p} into E = E+ ∪ E0,
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where E+ denotes states i ∈ E for which (Rw)i > 0 and E0 states i ∈ E for which
(Rw)i = 0. Decompose π = (π+,π0) and

(4) T =

(
T++ T+0

T0+ T00

)
accordingly. Then we have the following theorem which is proved in [? , p.441].

Theorem 2.2. The distribution of 〈X,w〉 is given by an atom at zero of size
q = π0

(
I − (−T00)

−1 T0+

)
e and an absolute continuous part given by a possibly

defective phase distribution with representation (πw,Tw), where

πw = π+ + π0 (−T00)
−1 T0+ and Tw = ∆ ((Rw)+)−1

(
T++ + T+0 (−T00)

−1 T0+

)
This means that

π (∆(Ruw)− T )−1 t = E
(
e−〈X,uw〉)

= E
(
e−u〈X,w〉)

= q + πw(uI − Tw)−1tw,(5)

where tw = −Twe.

Remark 2.3. It is still an open question whether MPH∗ ⊂ MPH or whether
MPH∗ = MPH.

Remark 2.4. As for univariate phase–type distributions, representations (π,T ,R)
of MPH∗ are not uniquely determined by their distributions, and they may be over–
parametrised as well. In particular, the interplay between T and R introduces
further ambiguity.

While both MPH∗ and MPVH distributions lack explicit formulas for distribution
and density functions, there is a sub–class of MPH∗ distributions that does allow
explicit forms. The latter is the one where the structure of the underlying Markov
chain is of so–called feed–forward type.

Let C1, ...,Cn be sub–intensity matrices and let D1, ...,Dn denote non–negative
matrices such that −Cie = Die. The matrices Di are not necessarily square
matrices, with the number of rows being equal to the number of rows in Ci and the
number of columns equal to the number of rows (and columns) of Ci+1. Define

β = (π,0, ...,0) and T =


C1 D1 0 · · · 0
0 C2 D2 · · · 0
0 0 C3 · · · 0
...

...
...

...
...
...

...
0 0 0 · · · Cn

(6)

and let the reward matrix be

R =


e 0 0 · · · 0
0 e 0 · · · 0
0 0 e · · · 0
...

...
...

...
...
...

...
0 0 0 · · · e

 .(7)

The structure of the R matrix implies that the i’th total reward, Xi, then equals
the inter–arrival time between arrivals i−1 and i. Positive correlation between two
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consecutive inter–arrivals i− 1 and i can then be obtained by choosing the matrix
Di in such a way that a long (short) duration of the Markov chain in block i − 1
will imply a long (short) duration in block i as well. For a negative correlation we
have to choose the matrix D1 such that the implications are reversed. The joint
density of the MPH∗ distribution is then given by

(8) f(x1, ..., xn;β,T ,R) = πeC1x1D1e
C2x2D2 · · ·Dn−1e

CnxnDne.

Remark 2.5. The matrices Ci are sub–intensity matrices, providing a phase–type
distributed time until arrival i. The matrices Di are non–negative matrices con-
taining intensities for initiating a new inter–arrival time for arrival i + 1 at the
time of the arrival i. Hence the matrices Di create the dependence between the
inter–arrivals. In particular, if Di = ciπi+1, where ci = −Cie is the exit rate
(column) vector corresponding to Ci and πi+1 is some probability (row) vector on
{1, 2, ..., pi}, then the inter–arrivals are independent.

Remark 2.6. The (full) matrix Dn is not really needed for our purposes, but only
the exit vector cn = −Cne = Dne. Thus we may rewrite (8) in the form

(9) f(x1, ..., xn;β,T ,R) = πeC1x1D1e
C2x2D2 · · ·Dn−1e

Cnxncn.

We shall, however, maintain the notation with Dn for notational reasons. Since
−Cie = Die for all i, this also implies the exit vector

t = −Te = (0, 0, ..., 0, cn)′,

so Dne, which is not part of T , is part of t (see (1)).

Remark 2.7. Note that the restriction −Cie = Die reduces the effective number
of parameters contributed from those matrices from 2p2i to 2p2i − pi. In particular,
the model of (9), and therefore also (8), has p1− 1 +

∑n−1
i=1 pi(2pi− 1) + p2n effective

degrees of freedom.

Remark 2.8. If Ci = C and Di = D for all i, then (8) is the joint density function
for the first n inter–arrival times of a Markovian Arrival Process (MAP) (see e.g. [?
],[? ]). This class of point processes is dense in class of point process on R+ (see [?
]), and therefore the class of distributions given by (8) is also dense – in the sense
of weak convergence and with flexible dimension of the matrices C and D – in the
class of multivariate distributions on Rn

+.

Later we shall need the joint fractional moments for such distributions, which are
given in the following lemma.

Lemma 2.9. Suppose that X = (X1, X2, ..., Xn) has a joint phase–type distribution
with density (8). Then for θi > 0, i = 1, . . . , n,

E(Xθ1
1 X

θ2
2 · · ·Xθn

n ) =

(
n∏
i=1

Γ(θi + 1)

)
π

(
n∏
i=1

(−Ci)
−θi−1Di

)
e
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Proof. It is sufficient to prove the lemma for n = 2.

E(Zθ1
1 Z

θ2
2 ) =

∫ ∞
0

∫ ∞
0

zθ11 z
θ2
2 πe

C1z1D1e
C2z2D2e dz1 dz2

= π

∫ ∞
0

zθ11 e
C1z1 dz1D1

∫ ∞
0

zθ22 e
C2z2 dz2D2e

= πLzθ1 (−C1)D1Lzθ2 (−C2)D2e,

where Lzθ(u) = Γ(u + 1)/uθ+1 is the Laplace transform for z → zθ. Since the
Laplace transforms are analytic (where they are defined), the result follows by a
functional calculus argument (see Theorem 3.4.4 of [? ]). �

2.4. Matrix Mittag–Leffler distributions. Let (π,T ) be a phase–type repre-
sentation. Then a random variable X has a matrix Mittag–Leffler (MML) distri-
bution with representation (α,π,T ), if it has Laplace transform

LX(u;α,π,T ) = π (uαI − T )−1 t, u ≥ 0,

where 0 < α ≤ 1. We write X ∼ MML(α,π,T ). Let

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

denote the Mittag–Leffler (ML) function. Then (see [? ]) the density of X is given
by

f(x;α,π,T ) = xα−1πEα,α (Txα) t, x > 0,

and the corresponding c.d.f. is

F (x;α,π,T ) = 1− πEα,1 (Txα) e, x > 0.

The ML function with (complex) matrix argument A is defined as

Eα,β(A) =
∞∑
k=0

Ak

Γ(αk + β)
.

For β > 0, one can express the (then entire) ML function of a matrixA by Cauchy’s
formula

Eα,β(A) =
1

2πi

∫
γ

Eα,β(z)(zI −A)−1 dz,

where γ is a simple path enclosing the eigenvalues of A. Invoking the residue
theorem, for each entry of the matrix Eα,β(z)(zI − A)−1, then provides a simple
method for calculating Eα,β(A).

As outlined in [? ], MML distributions with 0 < α < 1 are heavy-tailed with tail
indices less than one, so that their mean does not exist. This may be too restrictive
in many situations, and one way to obtain a closely related class of distributions
is by considering power transformations of the original MML distributed random
variables. Indeed, if X ∼ MML(α,π,T ), then X1/ν has density

f(x; ν, α,π,T ) = νxνα−1πEα,α (Txνα) t, x > 0,

and distribution function

F (x; ν, α,π,T ) = 1− πEα,1(Txαν)e, x > 0,
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for ν > 0 (cf. [? ]). Rewriting β = να leads to the reparametrization

(10) f(x; β, α,π,T ) =
β

α
xβ−1πEα,α

(
Txβ

)
t, x > 0,

and

(11) F (x; β, α,π,T ) = 1− πEα,1(Txβ)e, x > 0.

Thus, for any 0 < α ≤ 1 and β > 0, (10) and (11) define densities and their
corresponding distribution functions, with tail index β instead of α. We shall refer
to distributions with densities of the form (10) as power MML and write X ∼
MML1/ν(α,π,T ). Their Laplace transforms are somewhat more involved. Indeed,

the Laplace transform for X ∼ MML1/ν(α,π,T ) is given by (see formula (5.1.30)
in [? ] and compare to [? , p.364])

(12) LX(s; ν, α,π,T ) = s−ναπ

(
∞∑
k=0

Γ(να(k + 1))

Γ(α(k + 1))

(
s−ναT

)k)
t, s ≥ 0,

where the series expansion relates to a generalized Wright hypergeometric function
(cf. with [? , p.364] for further details). The similarity with the Laplace transform
for Y ∼ MML(α,π,T ) may be appreciated by rewriting

(13) LY (s;α,π,T ) = π(sαI − T )−1t = s−απ(I − s−αT )−1t, s ≥ 0,

where we also notice that (12) reduces to (13) for ν = 1.

3. Generalized matrix Mittag–Leffler distributions

The convolution of Mittag–Leffler distributions is not a Mittag–Leffler distribu-
tion. However, if the components in the convolution have the same tail index, then
the resulting distribution is a MML.

Theorem 3.1. Suppose that X ∼ MML(α,π1,T1) and Y ∼ MML(α,π2,T2). Then

X + Y ∼ MML(α,π,T ),

with

π = (π1,0) and T =

(
T1 t1π2

0 T2

)
.

Proof. This result follows from the Laplace transform of X + Y being

LX+Y (u;α,π,T ) = π1(u
αI − T1)

−1t1π2(u
αI − T2)

−1t2

= (π1,0)

(
(uαI − T1)

−1 −(uαI − T1)
−1(−t1π2)(u

αI − T2)
−1

0 (uαI − T2)
−1

)(
0
t2

)
= (π1,0)

(
uαI −

(
T1 t1π2

0 T2

))−1(
0
t2

)
.

�

Since X ∼ MML(α,π1,T1) implies that cX ∼ MML(α,π,T ) for any constant
c > 0, where

π = π1 and T = c−αT1,
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we conclude that if X1, X2, ..., Xn are independent MML with the same tail index
α, then any linear combination c1X1+ ...+cnXn with c1, c2, ..., cn ≥ 0 is again MML
with tail index α.

The convolution of MML distributions with different tail indices are not MML
distributions, but naturally lead to an extended class of MML which we refer to
as Generalized MML, as we will define in the sequel. If X ∼ MML(α,π1,T1) and
Y ∼ MML(β,π2,T2) with α 6= β, then calculations similar to the proof of Theorem
3.1 lead to X + Y having Laplace transform

(14) LX+Y (u) = (π1,0)

(
∆(uαI, uβI)−

(
T1 t1π2

0 T2

))−1(
0
t2

)
,

where ∆(A,B) denotes the block diagonal matrix

∆(A,B) =

(
A 0
0 B

)
for square matrices A and B. The linear combination c1X + c2Y will then have a
Laplace transform on the form,

Lc1X+c2Y (u) = (π1,0)

(
∆(uαI, uβI)−

(
c−α1 T1 c−α1 t1π2

0 c−β2 T2

))−1(
0

c−β2 t2

)
.

This motivates the following definition.

Definition 3.2. A random variable X is said to have a (univariate) generalized
matrix Mittag–Leffler distribution, if there exist α1, ..., αn with 0 < αi ≤ 1, and
a phase–type representation (π,T ) for which the absolutely continuous part of its
Laplace transform is given by

Lcont
X (u;α,π,T ) = π(∆(uα1I1, ..., u

αnIn)− T )−1t, u ≥ 0,

where Ik are identity matrices and dim(I1) + ...+ dim(In) = dim(T ). We write

X ∼ GMML(α,π,T ),

where α = (α1, ..., αn)∈ Rn
+.

Then, if X1, ..., Xn are independent with

Xi ∼ GMML(αi,πi,Ti),

we get
X1 + ...+Xn ∼ GMML(α,π,T )

where
α = (α1, ...,αn),

π = (π1,0, ...,0),

and

T =


T1 t1π2 0 ... 0
0 T2 t2π3 ... 0
0 0 T3 ... 0
...

...
...

...
...
...

...

0 0 0
...
...
... Tn

 .

By scaling, any non–negative non–zero linear combination of GMML distributed
random variables will again follow a GMML distribution.
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4. The multivariate matrix Mittag–Leffler distribution

Motivated by Section 3, we proceed now to define the multivariate MML in a
similar way as their underlying multivariate phase–type distributions.

Definition 4.1. A random vector X = (X1, ..., Xn) has a multivariate GMML
distribution in the wide sense, if all non–negative non–vanishing linear combinations
c1X1 + ...+ cnXn have a GMML distribution.

As for MVPH distributions, this definition is not very practical from a construc-
tive point of view, and we shall introduce a subclass inspired by (2). To this end
we first notice the following result.

Lemma 4.2. Let φ(s1, ..., sk) be a multidimensional Laplace transform and let
g1(x), ..., gk(x) denote functions for which −gi are completely monotone. Then
it follows that

L(s1, ..., sk) = φ(g1(s1), ..., gk(sk))

is again a Laplace transform.

Proof. This follows immediately from the multidimensional Bernstein–Widder the-
orem, see [? , p.87], which states that a multivariate function φ(s1, ..., sk) is a
multidimensional Laplace transform if and only if it is infinitely often differentiable
and

(−1)n1+···+nk ∂
n1+...+nkφ

∂sn1
1 . . . ∂snkk

≥ 0

for all n1 ≥ 0, ..., nk ≥ 0. �

From this we immediately get the following important result.

Theorem 4.3. Let (π,T ,R) be a representation for a multivariate PH distribution
(2). Then the multidimensional function

(15) φ(u) = π (∆(Ruα)− T )−1 t, u ∈ Rn
+,

with uα = (uα1
1 , ..., u

αn
n ), is a multidimensional Laplace transform.

From Theorem 2.2 we now obtain the following.

Theorem 4.4. Let w ≥ 0 denote a non–zero vector and let X = (X1, ..., Xn) have
a distribution given by the joint Laplace transform (15) with all αi = α. Decom-
pose (π,T ) as in (4) according to Rwα. Then the distribution of 〈X,w〉 has an
atom at zero of size q = π0

(
I − (−T00)

−1 T0+

)
e, and a possibly defective absolute

continuous part which is MML(α,πwα ,Twα), where (πwα ,Twα) is given in Theorem
2.2.

Proof. The result follows from

E
(
e−u〈X,w〉) = E

(
e−〈X,uw〉)

(15)
= π (∆(Ruαwα)− T )−1 t
(5)
= q + πwα(uαI − Twα)−1twα .

�

For possibly distinct αi, we proceed as follows.
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Theorem 4.5. Let w ≥ 0 denote a non–zero vector and let X = (X1, ..., Xn)
be a random vector with joint Laplace transform (15). Decompose (π,T ) as in
(4) according to Rwα. Then the distribution of 〈X,w〉 has an atom at zero of
size p = π0

(
I − (−T00)

−1 T0+

)
e and a possibly defective absolute continuous part

which is GMML(α,πwα ,Twα), where (πwα ,Twα) is given in Theorem 2.2.

Proof. We have that

E
(
e−u〈X,w〉) = E

(
e−〈X,uw〉)

= π (∆(R(uw)α)− T )−1 t

= π (∆(Rwα)∆(uα)− T )−1 t,

where ∆(uα) = diag(uα1 , ..., uαn). Now splitting into blocks according to E+ and
E0, we see that

π (∆(Rwα)∆(uα)− T )−1 t = π

(
∆(Rwα)+∆(uα)+ − T++ −T+0

−T0+ −T00

)−1
t

= (π+,π0)

(
A11 A12

A21 A22

)(
t+
t0

)
,

where

A11 =
(
∆(Rwα)+∆(uα)+ − T++ − T+0(−T00)

−1T0+

)−1
=

(
∆(uα)+ − (∆(Rwα)+)−1

[
T++ + T+0(−T00)

−1T0+

])−1
∆(Rwα)−1+

= (∆(uα)+ − Twα)−1 ∆(Rwα)−1+ ,

A12 = (∆(uα)+ − Twα)−1 ∆(Rwα)−1+ T+0(−T00)
−1,

A21 = (−T00)
−1T0+ (∆(uα)+ − Twα)−1 ∆(Rwα)−1+ ,

A22 = (−T00)
−1 (I + T0+ (∆(uα)+ − Twα)−1 ∆(Rwα)−1+ T+0(−T00)

−1) .
Then

π+A11 + π0A21 = πwα (∆(uα)+ − Twα)−1 ∆(Rwα)−1+ ,

π+A12 + π0A22 = π0(−T00)
−1 + πwα (∆(uα)+ − Twα)−1 ∆(Rwα)−1+ T+0(−T00)

−1.

Now inserting (
t+
t0

)
= −Te =

(
−T++e− T+0e
−T0+e− T00e

)
,

we get

(π+A11 + π0A21) t+ + (π+A12 + π0A22) t0

= π0(I − (−T00)
−1T0+)e+ πwα (∆(uα)+ − Twα)−1 twα

= p+ πwα (∆(uα)+ − Twα)−1 twα

with

twα = −Twαe.

�



12 H. ALBRECHER, M. BLADT, AND M. BLADT

From the previous results we see that we have found a sub-class of multivariate
matrix Mittag–Leffler distributions with explicit Laplace transform. This allows us
to concentrate on this class, and to make the following definition.

Definition 4.6. Let X = (X1, ..., Xn) be a random vector. Then we say that X has
a multivariate matrix generalized Mittag–Leffler distribution if it has joint Laplace
transform given by (15), and write

X ∼ GMML(α,π,T ,R).

The following result generalizes Theorem 3.6 of [? ] to the multivariate case. In
particular, it gives the probabilistic interpretation of the GMML class as a family
of random vectors whose marginals are absorption times of randomly-scaled, time-
inhomogeneous Markov processes. The dependence of the corresponding Markov
processes arises from the fact that they are all generated according to a reward
structure on an underlying common Markov jump process.

Theorem 4.7. Let X = (X1, ..., Xn) ∼ GMML(α,π,T ,R). Then

X
d
= W 1/α • Sα,(16)

where W 1/α = (W
1/α1

1 , . . . ,W
1/αn
n ) with W = (W1, ...,Wn) ∼ MPH∗(π,T ,R)

(see (2)), and where Sα = (Sα1 , . . . , Sαn) is a vector of independent stable random
variables, each with Laplace transform exp(−uαi). Here, • refers to component-wise
multiplication of vectors.

Proof. We observe that

E(exp(−〈u,W 1/α • Sα〉)) =

∫
Rn+

E(exp(−〈u,w1/α • Sα〉)) dFW (w)

=

∫
Rn+

exp(−[uα1
1 w1 + · · ·+ uαnn wn]) dFW (w)

=

∫
Rn+

exp(−〈uα,w〉) dFW (w)

= π (∆(Ruα)− T )−1 t,

which implies the desired representation. �

Remark 4.8. From representation (16), we have that the marginals of any multi-
variate GMML distribution are regularly varying with indices α1, . . . , αn, all smaller
than 1. Moreover, by the multivariate version of Breiman’s lemma (cf. [? ]) and
the fact that multivariate phase–type distributions have moments of all orders, it
follows that the tail independence structure of the vector Sα carries over to X.
That is, the multivariate GMML family introduced in this paper has (very) heavy-
tailed GMML marginals, but is tail-independent. As mentioned in the introduction,
application areas for such models are e.g. given in [? ].

A consequence of αi < 1 is that the mean does not exist. To alleviate this
potential practical drawback, it was proposed in [? ] to consider power-transformed
variables in the univariate case. In the same way, we propose the following definition.

Definition 4.9. Let X ∼ GMML(α,π,T ,R). For ν > 0, we define

Y = X1/ν ∼ GMML1/ν(α,π,T ,R),
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and refer to it as the class of power multivariate MML distributions.

Under the power transform, the class is in general no longer closed under linear
combinations. For fixed α, however, it possesses the following denseness property
(in contrast to distributions with Laplace transform (15)). Here ‘dense on Rn

+’
means dense in the sense of weak convergence among all distributions on Rn

+.

Theorem 4.10. (i) The class of GMML(α,π,T ,R) variables is dense on Rn
+.

(ii) For any fixed α, the class of GMML1/ν(α,π,T ,R) variables is dense on Rn
+.

(iii) For any fixed marginal tail indices α • ν = γ−1 > 0, the class of

GMML1/ν(α,π,T ,R) variables is dense on Rn
+.

Proof. (i) The statement is evident by noticing that we may choose α ≡ 1 and
recalling that the class of variables with Laplace transform (2) is dense on Rn

+.
(ii) Let 0 < ν1 < ν2 < · · · be any increasing and (entry-wise) diverging sequence

of vectors and Y be an arbitrary random vector on Rn
+. Let Sα be as in Theorem

4.7 and notice that S
1/νn
α → 1. In particular S

1/νn
α

d→ 1. Moreover, we may choose
an independent sequence of vectors Wn with Laplace transforms of the form (2)

such that W
1/νn
n

d→ Y . Applying the continuous mapping theorem, and by the
characterization of Theorem 4.7, the statement follows.

(iii) Similar to the previous case, let 0 < α1 < α2 < · · · be an increasing sequence
of vectors, converging to 1, and set νn = (γ • αn)−1. With Sα as in Theorem 4.7

we have that S
1/νn
αn

d→ 1. Choosing an independent sequence of vectors Wn with

Laplace transforms of the form (2) and with W
1/νn
n

d→ Y , the proof is finished as
before. �

Remark 4.11. The above result shows how several classes of multivariate Mittag-
Leffler distributions and their power transforms are dense in the set of all distri-
butions of the n-dimensional positive orthant. However, since we are dealing with
a tail-independent model, the number of phases increases drastically when faced
with the need to capture dependence above high thresholds. Heuristically, the tail
dependence is only correctly modelled in the limit. This is in some way analogous
to the fact that phase–type distributions are dense on all distributions on the pos-
itive real line, but they are all light-tailed (of exponential decay), and very large
dimensions are needed for approximations of heavy-tailed distributions, cf. [? ].

5. Special structures and examples

From the previous sections, it becomes clear that the tail behavior of the GMML
class is determined by the parameters αi (cf. Remark 4.8) and the dependence
structure is mainly triggered by the parameters of the reward matrix R, as these
determine joint contributions to the size of each component. The marginal behav-
ior and overall shape in the body of the distribution is then finally implied by the
structure of the phase-type components (π,T ). In particular, the dimension p of
the latter also determines the potential for possible multimodalities of the compo-
nents. In fact, Theorem 4.10 on the denseness of GMML1/ν distributions on Rn

+

relies (implicitly in part (i)) on the possibility of having arbitrarily large dimension
p, a flexibility that is needed for modelling multiple modes, as the latter can require
many phases. However, due to the possibly complex interaction of all parameters,
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one can not uniquely assign the role of each of the parameters to achieve a par-
ticular distributional behavior or shape. Moreover, for arbitrary combinations of
parameters it is not always possible to get an explicit expression for the density of
a GMML distribution (a complication inherited from the phase-type distributions).

We now proceed to give an example of a subclass that, however, does allow an
explicit form. To that end, consider the special structure (6) and (7) for (π,T ,R),
which in the exponential case led to the density (8),

f(x1, ..., xn;π,T ,R) = πeC1x1D1e
C2x2D2 · · ·Dn−1e

CnxnDne.

This choice of (π,T ,R), when plugged into (15), results in the joint Laplace trans-
form of X ∼ GMML(α,π,T ,R)
(17)

LX(u;θ) = β


uα1
1 I −C1 −D1 0 · · · 0

0 uα2
2 I −C2 −D2 · · · 0

0 0 uα3
3 I −C3 · · · 0

...
...

...
...
...
...

...
0 0 0 · · · uαnn I −Cn


−1

0
0
0
...

Dne

 ,

where we now use the shorthand notation θ = (α,π,T ,R). For the resulting class
of GMML distributions we can derive joint and marginal density functions, but first
we notice the following lemma.

Lemma 5.1. ∫ ∞
0

xα−1Eα,α(Txα) dx = −T−1.

Proof. Since λ → λxα−1Eα,α(−λxα) is an analytic function, and a density as a
function of x, we get that∫ ∞

0

xα−1Eα,α(Txα) dx =

∫ ∞
0

xα−1
1

2πi

∫
γ

Eα,α(sxα)(sI − T )−1 ds dx

=
1

2πi

∫
γ

(∫ ∞
0

xα−1Eα,α(sxα) dx

)
(sI − T )−1 ds

=
1

2πi

∫
γ

(−s−1)(sI − T )−1 ds

= −T−1.
�

Remark 5.2. The matrix U = −T−1 is the so–called Green matrix which has the
following probabilistic interpretation: The element (i, j) of U is the expected time
that the Markov jump process underlying a phase–type distribution with generator
T spends in state j (prior to absorption) given that it starts in state i.

The main result of this section is as follows.

Theorem 5.3. The Laplace transform (17) can equivalently be written as

(18) LX(u;θ) = π

(
n∏
i=1

(uα1
i I −Ci)

−1Di

)
e, u ∈ Rn

+.
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The corresponding joint density is given by

(19) fX(x1, ..., xn;θ) = π

(
n∏
i=1

xαi−1i Eαi,αi(Cix
αi
i )Di

)
e, xi > 0, i = 1, . . . , n.

For the i’th marginal distribution of Xi we have

Xi ∼ MML(αi,βi,Ci)

where

βi = π

i−1∏
j=1

(−Cj)
−1Dj.

Proof. It is sufficient to prove the result for n = 2. (18) follows from the general
block diagonal inversion formula(

A −B
0 C

)−1
=

(
A−1 A−1BC−1

0 C−1

)
.

Concerning (19), we have that∫ ∞
0

∫ ∞
0

e−s1x1−s2x2πxα1
1 Eα1,α1(C1x

α1
1 )D1x

α2
2 Eα2,α2(C2x

α2
2 )D2e dx1 dx2

=

∫ ∞
0

e−s1x1xα1
1 πEα1,α1(C1x

α1
1 ) dx1D1

∫ ∞
0

e−s2x2xα2
2 Eα2,α2(C2x

α2
2 )D2e dx2

= π(uα1
1 I −C1)

−1D1(u
α2
2 I −C2)

−1D2e

= (π,0)

(
uα1
1 I −C1 −D1

0 uα2
2 I −C2

)−1(
0
D2e

)
,

which is of the form (15).
The result on the marginal distributions follow from Lemma 5.1 and by using

that (Ci +Di)e = 0, implying that (−Ci)
−1Die = e. �

The previous result can be used in the construction of bivariate (or multivariate)
Mittag–Leffler distributions of a reasonably general type.

Example 5.1 (Bivariate Mittag–Leffler distribution).
In this example we construct a class of bivariate distributions with Mittag–Leffler
distributed marginals. The starting point is the construction of a bivariate expo-
nential distribution underlying the MML. For details on this construction we refer
to Section 8.3.2 of [? ]. Let m be a positive integer and

S =



−mλ (m− 1)λ 0 . . . 0 0
0 −(m− 1)λ (m− 2)λ . . . 0 0
0 0 −(m− 2)λ . . . 0 0
...

...
...

. . . . . .
...

...
0 0 0 . . . −2λ λ
0 0 0 · · · 0 −λ

 .
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Then for any initial distribution π = (π1, ..., πm), the phase–type distribution
PH(π,S) is simply an exponential distribution with intensity λ. Similarly, if we let

S̃ =



−µ µ 0 . . . 0 0
0 −2µ 2µ . . . 0 0
0 0 −3µ . . . 0 0
...

...
...

. . . . . .
...

...
0 0 0 · · · −(m− 1)µ (m− 1)µ
0 0 0 . . . 0 −mµ


and π̃ = 1

m
e =

(
1
m
, ..., 1

m

)
, then PH(π̃, S̃) is again exponentially distributed with

intensity µ. Let P be a doubly stochastic matrix, i.e. its elements are non–negative
and

Pe = e and e′P = e′,

and define

T =

(
S λP

0 S̃

)
.

Consider the reward matrix

R =

(
e 0
0 e

)
.

Then MPH∗(e′1,T ,R) is a bivariate exponential distribution. This class of bivariate
exponential distributions is capable of achieving any feasible correlation (ranging
from 1 − π2/6 to 1) by choosing m sufficiently large and P adequately (see [? ]).
Independence is achieved for

P =
1

m
E,

where E = {1}i,j=1,...,m is the matrix of ones, maximum negative (minimum) corre-
lation (up to order m) by

P = I

and maximum positive correlation for order up to m by

P = {δi,m−i+1},

which is the anti–diagonal unit matrix, cf. [? ].
The correponding GMML(α,π,T ,R) then has a density f of the form

(20) f(x1, x2;θ) = mλµxα1−1
1 xα2−1

2 e′1Eα1,α1(Sx
α1
1 )PEα2,α2(S̃x

α2
2 )en, x1, x2 > 0,

where as usual ei denotes the i’th Euclidian unit vector. The marginals are Mittag–
Leffler distributions with densities

fX1(x;α1, λ) = λxα1−1Eα1,α1(−λxα1−1) and fX2(x;α2, µ) = µxα2−1Eα2,α2(−µxα2−1),

for x > 0, which follows directly from the invariance under different representations
(parametrisations), or by simple integration and using Lemma 5.1. Note that the
present dependence structure has a very natural interpretation as a copula con-
structed in terms of combining marginal order statistics, cf. [? ] and [? , Sec.8.3.2],
here for Mittag-Leffler marginals.
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We can write the expression (20) slightly more explicit. The eigenvalues of S are
−mλ, −(m− 1)λ,..., −λ. To the eigenvalue −λk there corresponds an eigenvector

v(k) = (v
(k)
1 , ..., v

(k)
n ) with

v
(k)
1 = 1

v
(k)
i+1 =

(
1− k − 1

m− i

)
v
(k)
i , i = 1, ...,m− 1.

Similarly, S̃ has eigenvalues −µm,−µ(m − 1), ...,−µ and to the eigenvalue −kµ
there corresponds an eigenvector w(k) with

w
(k)
1 = 1

w
(k)
i+1 =

(
1− k

i

)
w

(k)
i , i = 1, ...,m− 1.

Considering v(k) andw(k) as column vectors, we form the matrices V = (v(1), ...,v(m))
and W = (w(1), ...,w(m)). Then we may write

Eα1,α1(Sx
α1) = V∆

(
Eα1,α1(−mλxλ1), ...,Eα1,α1(−λxα1)

)
V −1,

Eα2,α2(S̃x
α2) = W∆ (Eα2,α2(−mµxα2), ...,Eα1,α1(−µxα2))W−1.

Though the correlation between the Mittag–Leffler marginals is not defined (since
moments of orders larger than α do not exist), some notion of dependence may be
appreciated from the correlation structure of the underlying phase–type distribu-
tion.

In Figure 1 we depict a bivariate Mittag-Leffler density along with simulated data
for the parameters α = (0.6, 0.7), m = 20, λ = 1, µ = 2, and P the identity matrix.

In Figure 2 we use the same parameters but with P being the counter-identity
matrix. As expected, the sign of the log-correlation is determined by the structure
of the latter matrix. Notice that the number of effective parameters corresponding
to each of the two proposed structures is five.

Figure 1. Density and 1000 simulated data-points from a bivariate
ML distribution with negative log-correlation (empirical correlation
of −0.53).
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Figure 2. Density and 1000 simulated data-points from a bivariate
ML distribution with positive correlation (empirical correlation of
0.55).

�

Concerning the power MML with this structure we have the following result.

Theorem 5.4. Assume that X has joint density (19). Then Y = X1/ν has the
joint density

fY (x1, ..., xn;ν,θ) = π

(
n∏
i=1

νix
αiνi−1
i Eαi,αi(Cix

αiνi
i )Di

)
e, xi > 0, i = 1, . . . , n,

and joint moments

E
(
Y θ1
1 Y θ2

2 · · ·Y θn
n

)
=

n∏
i=1

(
Γ(1− θi/(νiαi))Γ(1 + θi/(νiαi))

Γ(1− θi/νi)

)
π

(
n∏
i=1

(−Ci)
−θi/νiαi−1Di

)
e,

where νiαi > θi > 0, for i = 1, 2, ..., n.

Proof. The form of the joint density is immediate. Concerning the form of the
moments, it suffices to consider the case n = 2. Using the decomposition (4.7), we
get

E(Y θ1
1 Y θ2

2 ) = E

(
W

θ1
α1ν1
1 W

θ2
α2ν2
2 S

θ1
ν1
α1 S

θ2
ν2
α2

)
= E

(
W

θ1
α1ν1
1 W

θ2
α2ν2
2

)
E

(
S
θ1
ν1
α1

)
E

(
S
θ2
ν2
α2

)
,

where (W1,W2) has a bivariate phase–type distribution with joint density (8). Since

E

(
S
θi
νi
αi

)
=

Γ
(

1− θi
αiν1

)
Γ
(

1− θi
ν1

) ,

the result then follows from Lemma 2.9. �
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Example 5.2. Consider the case of a bivariate MML distribution, θ1 = θ2 = 1,
νiαi > 1 and that C1 and C2 have the same dimension (the latter can always be
achieved by augmenting the smaller one). Using the abbreviation

ci =
Γ(1− 1/(νiαi))Γ(1 + 1/(νiαi))

Γ(1− 1/νi)
, i = 1, 2,

we get

E(Y1) = c1π(−C1)
−1/(α1ν1)−1D1e,

E(Y2) = c2π(−C1)
−1D1(−C2)

−1/(α1ν1)−1D2e,

E(Y1Y2) = c1c2π(−C1)
−1/(α1ν1)−1D1(−C2)

−1/(α2ν2)−1D2e.

If νiαi > 2 we can calculate variances and correlation. Indeed, with

c′i =
Γ(1− 2/(νiαi))Γ(1 + 2/(νiαi))

Γ(1− 2/νi)
, i = 1, 2,

one has

E(Y 2
1 ) = c′1π(−C1)

−2/(α1ν1)−1D1e

E(Y 2
2 ) = c′2π(−C−11 D1)(−C1)

−2/(α2ν2)−1D2e

from which the correlation coefficient is readily calculated.
In Figure 3 we depict a bivariate density from a GMML1/ν(α,π,T ,R) distribu-

tion along with simulated data. The parameters are given by

α = (0.6, 0.7), β = ν •α = (3, 3),

and the phase-type component being of the feed-forward structure (6) and (7), with
n = 2, β1 = (1/3, 1/3, 1/3), β2 = 0,

C1 = C2 =

−10 0 0
0 −1 0
0 0 −1/10

 , and D1 = −C1 =

10 0 0
0 1 0
0 0 1/10

 .

Hence both marginals are mixtures of power Mittag–Leffler distributions. The
mixing probabilities of the two distributions are also the same, (1/3, 1/3, 1/3), since
the diagonal form ofD1 ensures that the second mixture draws the same component
as the first. The first marginal mixture distribution has a density given by

(21) f1(x) =
5

3
x3

3∑
i=1

λiE0.6,0.6(−λix3),

where λ1 = 10, λ2 = 1 and λ3 = 1/10, while the second marginal density has the
form

(22) f2(x) =
10

7
x3

3∑
i=1

λiE0.7,0.7(−λix3).

The reward matrix is

R =


1 0
1 0
1 0
0 1
0 1
0 1
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and Y1 and Y2 simply correspond to the aforementioned mixtures. The structure
of D1 implies a strong positive correlation. For example, if Y1 is picked from the
mixture component with rate 10, then Y2 will be picked from the same component
(but then drawn independently).

In Figure 4 we use the same parameters, except for

D1 =

 0 0 10
0 1 0

1/10 0 0

 .

Here the correlation between Y1 and Y2 will be negative: if Yi is drawn from the
component with rate 10, then Yj will be drawn from a component with rate 0.1,
i 6= j. The marginal distributions are again given by (21) and (22) since the mixing
probabilities are all equal. We observe how the sign of the correlation is affected
by the structure of the matrix D1, and the fact that the matrices Ci are no longer
of Erlang structure, the effect is qualitatively opposite to that of the bivariate ML
case. One also sees that the class provides quite some flexibility in terms of the
shape of the joint density function.

Remark 5.5. Dependence may often be constructed by introducing certain struc-
tures into the intensity matrices like in Example 5.1. More generally, dependence
between several random variables of MPH∗ type may be constructed using the
so–called Baker copula ([? ]), where order statistics are used and any feasible cor-
relation structure can be obtained.

Figure 3. Density and 1000 simulated data-points from a power
multivariate GMML distribution with positive correlation (true cor-
relation of 0.35 and empirical of 0.37).

6. Conclusion

This paper introduces a class GMML of multivariate distributions with matrix
Mittag-Leffler distributed marginals. With a construction essentially based on
the multivariate phase–type distribution, the GMML class remains a flexible and
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Figure 4. Density and 1000 simulated data-points from a power
multivariate GMML distribution with negative correlation (true cor-
relation of −0.32 and empirical of −0.33).

tractable dense class of distributions maintaining a number of closed form prop-
erties. Two important sub–classes are considered, which lead to explicit formulas
for distributional properties such as densities and fractional moments. This makes
it an attractive candidate for the modelling of both theoretical and practical as-
pects of multivariate heavy-tailed risks, in situations with tail-independence. The
present construction can not be extended to tail-dependent scenarios, so that other
approaches will be needed for the latter, which will be an interesting topic for future
research.
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