WATER RESOURCES RESEARCH, VOL. 45, W09407, doi:10.1029/2008 WR007646, 2009

Click
Here

Full
Article

Use of high-resolution geophysical data to characterize
heterogeneous aquifers: Influence of data integration
method on hydrological predictions

B. Dafflon,' J. Irving,' and K. Holliger!
Received 10 December 2008; revised 19 May 2009; accepted 11 June 2009; published 11 September 2009.

[1] The integration of geophysical data into the subsurface characterization problem has
been shown in many cases to significantly improve hydrological knowledge by providing
information at spatial scales and locations that is unattainable using conventional

hydrological measurement techniques. The investigation of exactly how much benefit can
be brought by geophysical data in terms of its effect on hydrological predictions, however,
has received considerably less attention in the literature. Here, we examine the potential

hydrological benefits brought by a recently introduced simulated annealing (SA)
conditional stochastic simulation method designed for the assimilation of diverse
hydrogeophysical data sets. We consider the specific case of integrating crosshole
ground-penetrating radar (GPR) and borehole porosity log data to characterize the porosity
distribution in saturated heterogeneous aquifers. In many cases, porosity is linked to
hydraulic conductivity and thus to flow and transport behavior. To perform our evaluation,
we first generate a number of synthetic porosity fields exhibiting varying degrees of
spatial continuity and structural complexity. Next, we simulate the collection of crosshole
GPR data between several boreholes in these fields, and the collection of porosity log
data at the borehole locations. The inverted GPR data, together with the porosity logs, are
then used to reconstruct the porosity field using the SA-based method, along with a
number of other more elementary approaches. Assuming that the grid-cell-scale
relationship between porosity and hydraulic conductivity is unique and known, the
porosity realizations are then used in groundwater flow and contaminant transport
simulations to assess the benefits and limitations of the different approaches.

Citation: Dafflon, B., J. Irving, and K. Holliger (2009), Use of high-resolution geophysical data to characterize heterogeneous
aquifers: Influence of data integration method on hydrological predictions, Water Resour. Res., 45, W09407, doi:10.1029/

2008WR007646.

1. Introduction

[2] It is well established that knowledge regarding spatial
heterogeneity in hydrological properties is required for
effective modeling of subsurface contaminant transport
[e.g., Gelhar, 1993; Hubbard and Rubin, 2005; Sudicky
and Huyakorn, 1991; Zheng and Gorelick, 2003]. To this
end, high-resolution geophysical methods have shown
much potential to bridge a gap in terms of resolution and
subsurface coverage between traditional hydrological mea-
surement techniques such as borehole log/core analyses and
tracer/well tests [e.g., Hubbard et al., 2001; Hyndman and
Gorelick, 1996]. Whereas geophysical data were initially
used in hydrology to qualitatively delineate the general
architecture of the subsurface [e.g., Asprion and Aigner,
1999; Beres et al., 1995; Bowling et al., 2005], recent
efforts have focused on the determination of detailed
quantitative information from these data [e.g., Chen et al.,
2001; Harp et al., 2008; Hyndman et al., 2000; Kowalsky et
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al., 2005; Linde et al., 2006; Paasche et al., 2006]. The
general idea behind this work is that, when combined with
other site measurements, high-resolution geophysical data
can be used to significantly improve our knowledge regard-
ing the spatial distribution of subsurface hydrological
parameters. This knowledge can then be used to improve
models and thus predictions of flow and transport [e.g.,
Hubbard et al., 2001; Hyndman and Gorelick, 1996;
McKenna and Poeter, 1995; Scheibe and Chien, 2003].

[3] One class of methods for the reconstruction of hy-
drological property fields using geophysical and other data
is conditional stochastic simulation [e.g., Hyndman et al.,
2000; McKenna and Poeter, 1995; Tronicke and Holliger,
2005]. With this class of methods, multiple configurations
of subsurface properties are generated that are consistent
with all available data, constraints, and prior information. In
general, the data can be characterized by various degrees of
resolution and/or hardness and the constraints may be
deterministic and/or stochastic in nature. All of the resulting
property distributions are then considered as possible based
on the available information. In other words, the variability
between the generated realizations tends to describe our
uncertainty regarding the true hydrological property field.
This uncertainty in turn can be used to evaluate our
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uncertainty regarding groundwater flow and contaminant
transport. All of this is important because it is well known
that single “best” estimates of subsurface properties tend to
be too smooth for reliable hydrological predictions [e.g.,
Robinson et al., 2008; Scheibe and Chien, 2003].

[4] One type of conditional simulation technique that has
shown much promise for the integration of complex data
sets in both petroleum and hydrological studies is simulated
annealing (SA) [e.g., Dafflon et al., 2009; Day-Lewis et al.,
2000; Deutsch and Cockerham, 1994; Deutsch and Journel,
1998; Deutsch and Wen, 1998; Kelkar and Perez, 2002;
Parks et al., 2000; Tronicke and Holliger, 2005]. With the
SA method, a Monte-Carlo approach is used to successively
perturb an initial starting realization in order to satisfy the
structural and/or petrophysical constraints imposed by the
available data. This is done through a multiobjective opti-
mization process. Recently, Dafflon et al. [2009] introduced
a novel SA-based conditional simulation approach for the
assimilation of hydrogeophysical data sets having varying
degrees of resolution, subsurface coverage, and sensitivity
to the parameter of interest. In testing this approach on
synthetic data composed of crosshole GPR tomograms and
borehole porosity logs, they were able to generate realiza-
tions of porosity having an unprecedented degree of realism
when compared to the true subsurface porosity structure.
The approach was also tested with much success on field
crosshole GPR and neutron porosity log data from the Boise
Hydrogeophysical Research Site, Idaho, USA. However,
one issue that is as-of-yet unexplored with this technique
involves its potential hydrological benefits in terms of
groundwater flow and contaminant transport predictions.
Hydrological evaluation of the obtained realizations is
critical to understanding the potential value of such an
integration procedure, and indeed the value of high-resolution
geophysical data in general, in hydrological studies.

[5] In the above context, one study of particular interest is
that of Scheibe and Chien [2003], who evaluated the impact
of integrating various amounts of geophysical and hydro-
logical data on tracer transport predictions at a field site near
Opyster, Virginia. In the study, several procedures to infer the
subsurface hydraulic conductivity distribution were exam-
ined, including the simple use of a homogeneous model
obtained from the average of borehole flowmeter measure-
ments, the use of sequential indicator simulation condi-
tioned to these flowmeter measurements, and the use of
sequential indicator simulation conditioned to both geo-
physical tomograms and the flowmeter data. In this last
case, hydraulic conductivity data between the boreholes,
which were estimated from the tomograms using a normal
linear regression model based on collocated data at the
borehole locations, were considered as hard data in the
simulation process. The results of Scheibe and Chien [2003]
showed that conditioning to data with larger spatial support
scales (i.e., the cross-sectional estimates of hydraulic con-
ductivity based on geophysical tomography) provided a
significant improvement in hydrological model accuracy.

[6] In this paper, we work along the same lines as Scheibe
and Chien [2003] in order to evaluate the potential hydro-
logical benefits of tomographic geophysical data and the
implications of using various integration techniques on the
output hydrological predictions. In particular, we attempt to
assess hydrologically the SA-based method of Dafflon et al.
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[2009], in comparison with other more basic approaches, in
the context of porosity characterization in heterogeneous
aquifers using crosshole GPR and porosity log data. In
contrast to Scheibe and Chien [2003], we do this for three
different synthetic models possessing various degrees of
structural complexity, such that the advantages and disad-
vantages between the methods under different structural
conditions can be examined. It is important to note that we
consider a best case scenario for this work, which involves
assuming a unique and known small-scale relationship
between porosity and hydraulic conductivity for the hydro-
logical evaluation, optimal measurement conditions, and
some knowledge regarding the geostatistical structure of
the subsurface. Although admittedly such strong assump-
tions limit the direct applicability of our results to a field
setting, they allow us to effectively evaluate the greatest
potential benefits of each method in terms of its ability to
capture realistic subsurface structure, and how this translates
into an ability to perform accurate flow and transport
simulations.

[7] The paper proceeds as follows. First, we briefly
outline the SA approach to data integration, as well as the
pertinent features of the new algorithm presented by Dafflon
et al. [2009]. Next, we describe the process via which we
assess hydrologically the potential benefits of this and the
other more basic characterization methods. This involves
(1) generating a set of realistic subsurface models exhibiting
varying degrees of lateral continuity and structural com-
plexity, (2) numerically modeling the corresponding geo-
physical data, (3) integrating these data to obtain the
subsurface porosity distribution using the SA method and
other techniques, and (4) converting porosity to hydraulic
conductivity and performing flow and transport simulations.
Finally, we examine the results obtained for our suite of
models in terms of how well each technique allows for
successful hydrological predictions.

2. SA-Based Conditional Simulation

[8] Simulated annealing is a directional Monte-Carlo-
type optimization method that involves repeatedly perturb-
ing values of a target parameter field in order to satisfy a
global objective function. This function generally consists
of a weighted sum of several component objective func-
tions, each representing a different constraint on the output
realizations [e.g., Deutsch and Journel, 1998]. All pertur-
bations that lower the global objective function are uncon-
ditionally accepted, whereas those that do not are accepted
according to a Boltzmann-type probability distribution
controlled by a temperature parameter 7. The higher the
value of 7, the more likely an unfavorable perturbation will
be accepted. Throughout the SA process, T is lowered
gradually such that the algorithm has a chance to reach an
optimal ““energy state”. Once the global objective function
is deemed small enough, the SA procedure is terminated.
Advantages of using the SA approach for data integration
are that it is not limited to simple Gaussian statistics, and it
is able to incorporate any constraint on the output realiza-
tions that can be expressed in the form of a multicomponent
objective function. This of course comes with the caveat
that efficiency in terms of computation time and conver-
gence decreases with constraint complexity. For further
information on the use of SA for subsurface data integra-
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tion, we refer the reader to the works of Deutsch and
Cockerham [1994], Deutsch and Journel [1998], Deutsch
and Wen [1998], Day-Lewis et al. [2000], Parks et al.
[2000], Kelkar and Perez [2002], Tronicke and Holliger
[2005], and Dafflon et al. [2009].

[9] Recently Dafflon et al. [2009] presented a novel SA
algorithm for the integration of high-resolution geophysical
and hydrological data. In comparison with more conven-
tional SA-based integration approaches [e.g., Tronicke and
Holliger, 2005], this method provides significant advance-
ments in the way that large-scale structural information in
the geophysical data is accounted for, which results in a
substantial improvement in the parameter fields obtained.
One major novelty in the approach of Dafflon et al. [2009]
is that model perturbations in the SA procedure are made by
drawing from a conditional probability distribution for the
target parameter, given the available tomographic geophys-
ical data. This is the only place where geophysical infor-
mation is utilized in the algorithm, which is in marked
contrast to previous approaches where model perturbations
were made through the swapping of values in the simulation
grid and agreement with the geophysical data was enforced
through a correlation coefficient constraint. Another major
feature of the algorithm concerns the target variogram
function and the way in which available geostatistical
information is utilized. Instead of constraining output
realizations to match a parametric target variogram model
over a wide range of spatial lags, realizations are con-
strained only at smaller lags where the geophysical data
cannot provide enough information. Thus the larger-scale
subsurface features, which are well constrained by the
geophysical data, are allowed much more control on the
output realizations.

[10] As mentioned previously, Dafflon et al. [2009]
applied their SA-based method to crosshole GPR and
porosity log data in order to characterize the porosity
distribution in saturated heterogeneous aquifers. In tests
on both synthetic and field data, this algorithm showed
much greater capacity than other more conventional
approaches to incorporate the larger-scale subsurface struc-
ture provided by the geophysical data, while at the same
time realistically introducing smaller-scale stochastic fluc-
tuations from the utilized parametric variogram model. An
additional advantage of this method is that, because of a
dramatically simplified global objective function, the algo-
rithm exhibits very favourable characteristics with regard to
convergence and computational efficiency, and has less
subjectivity associated with choosing the weighting of many
objective function components.

[11] In this study, we use the algorithm of Dafflon et al.
[2009] to generate realizations of the subsurface porosity
field given crosshole GPR and porosity log data with the
objective of evaluating these realizations in a hydrological
context. As mentioned, we do this under a best-case
scenario, where one of our key assumptions is complete
knowledge of the relationship between porosity and
hydraulic conductivity. To obtain the conditional probability
distribution for porosity given the available geophysical
data, which is required to perform the model perturbations
with the method of Dafflon et al. [2009], we follow their
paper and use a simple parametric approach based on the
analysis of collocated data at the borehole locations. From a
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scatter plot of the collocated GPR velocity and borehole
porosity logs, we estimate the conditional expectation
E(¢|v) and the corresponding conditional variance o°(¢|v),
where ¢ denotes porosity and v the GPR velocity. We
assume that the expectation follows a linear relationship
and that the variance is constant, and that these are sufficient
to define the conditional distribution. This distribution is
used at every subsurface location except at the boreholes,
where it is more tightly constrained by the porosity log data.
Although we are aware that the velocity-porosity relation-
ship can vary with location in the tomogram because of
differences in resolution throughout the image plane [e.g.,
Day-Lewis and Lane, 2004], we feel that this approach is
pragmatic since the conditional distribution we infer is
worst at the borehole locations, which means that the
generated realizations will be under- rather than overcon-
strained by the tomographic data. Also note that other
methods could be used to infer such a conditional distribu-
tion, such as for example the Bayesian approach presented
by Chen et al. [2001]. In that work, a normal linear
regression model was used to explore the relationship
between collocated tomographic GPR velocity and borehole
hydraulic conductivity data. This relationship was then used
to update a prior probability density function (pdf) for the
hydraulic conductivity field, obtained by kriging the bore-
hole measurements, into a posterior pdf taking into account
the GPR data.

[12] Also required in the algorithm of Dafflon et al.
[2009] is a variogram function to constrain the small-scale
structure of the target parameter field. In other words, at
scales where the subsurface structure is not well resolved by
the geophysical data, it is constrained stochastically. To
obtain this target variogram function, we calculate the best
fitting parametric model to the vertical experimental vario-
gram of the porosity logs at short lags, and we assume a
known aspect ratio between the horizontal and vertical
directions. This assumption is justified by the fact that, with
our SA approach, the effect of the aspect ratio is quite
limited because the target variogram affects principally the
small-scale structure. This is clearly seen in the Figure 5 of
Dafflon et al. [2009]. Large-scale structure, in contrast, is
provided by the geophysical image through the use of the
above described conditional probability distributions. Fur-
ther, it may be possible to use the tomographic image to
estimate the variogram aspect ratio assuming that this ratio
remains constant across scales. To choose the variogram
cutoff lag for the SA procedure (i.e., the lag beyond which
we do not constrain the output realizations to the target
variogram model), we consider the estimated resolution of
the geophysical image. We set the cutoff to be larger in the
horizontal direction because of the restricted horizontal
resolution of crosshole tomographic data as a result of
survey geometry. For more details on this procedure, please
see the work of Dafflon et al. [2009].

3. Hydrological Evaluation Procedure

[13] The principal aim of this study is to investigate the
potential hydrological benefits brought by using the above
SA approach to data integration, in comparison with other
more basic characterization strategies, under the most opti-
mal conditions. To do this, we consider three realistic,
synthetic, 2-D porosity fields exhibiting varying degrees
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Figure 1.

Original (“true”) porosity model having (a) large horizontal-to-vertical aspect ratio and

relatively small vertical correlation length (Example 1), (b) small horizontal-to-vertical aspect ratio and
relatively small vertical correlation length (Example 2), and (c) small horizontal-to-vertical aspect ratio
and relatively large vertical correlation length (Example 3). (d—f) Result of traveltime inversion of the
three synthetic, crosshole georadar data sets simulated between boreholes located at 0, 10, 20, and 30 m
lateral distance from the left model edge and the simulated borehole porosity logs. See also Table 1.

of lateral continuity and structural complexity. With these
fields, crosshole GPR and borehole porosity log data are
simulated. The GPR and porosity log data are then used in
the SA and other procedures to reconstruct the subsurface
porosity distribution. Finally, to assess the hydrological
significance of the results, we assume a unique and known
relationship between porosity and hydraulic conductivity
and conduct groundwater flow and solute transport simu-
lations. It is very important to emphasize that assuming a
porosity-hydraulic conductivity relationship in this manner
is a big step, and not valid in many field scenarios.
However, in terms of our objectives, we feel that the
assumption is appropriate in that it allows us to examine
the potential hydrological benefits of reintroducing small-
scale heterogeneity, as well as the effects of possible biases
that occur when reconstructing the hydrological property
distribution. In addition, although the hydraulic conductiv-
ity depends on a number of parameters other than porosity
[e.g., Freeze and Cherry, 1979; Schon, 2004], a strong
relationship may exist between these two parameters in
sand and/or gravel-type materials [e.g., Hubbard et al.,
1999]. Such electrically resistive materials in turn are
required for effective GPR imaging. Indeed, GPR has
allowed the successful estimation of hydraulic conductivity
in a number of such environments [e.g., Chen et al., 2001;
Hubbard et al., 1999; Scheibe and Chien, 2003]. In the
following section, we describe each of the steps involved in
our hydrological evaluation procedure in detail.

3.1.

[14] Three realistic stochastic porosity fields exhibiting
varying degrees of lateral continuity and structural com-
plexity were generated. The statistical characteristics of
these fields, which we refer to as Examples 1, 2, and 3,
are described in Table 1. The porosity field in Example 1
(Figure la) has a horizontal-to-vertical aspect ratio of 10
and its horizontal variogram is well fitted by a linear

Hydrological Property Models

combination of two exponential functions having sills of
0.45 and 0.55 and ranges of 3 m and 15 m, respectively.
This field is representative of scenarios where large lateral
continuity and relatively thin layers are present. The poros-
ity field in Example 2 (Figure 1b) has an aspect ratio of 2
and its horizontal variogram is well fitted by two exponen-
tial functions having sills of 0.5 and 0.5 and ranges of 0.6 m
and 4 m. This field represents situations where we have little
horizontal and vertical continuity, and a small amount of
structural anisotropy. Finally, the porosity field in Example 3
(Figure 1c) has an aspect ratio of 2.5 and a horizontal
variogram that is well fitted by functions having sills of
0.55 and 0.45 and ranges of 1.5 m and 11.25 m. This field is
representative of scenarios where we have a small amount
of structural anisotropy, but relatively large horizontal and
vertical continuity.

[15] All of the porosity models described in Table 1 and
shown in Figures la—1c have a mean porosity value of 0.26
and a standard deviation of 0.035. This can be regarded as
typical of unconsolidated clastic sediments consisting pre-
dominantly of sand and gravel [e.g., Gelhar, 1993; Heinz et
al., 2003]. The models are discretized at 7.5 cm increments
in the x and z directions, and boreholes are considered at
lateral positions of 0, 10, 20, and 30 m from the left model
edge. Another key feature of all of the models is that they
visibly exhibit heterogeneity at a range of spatial scales.
They can thus be regarded as challenging and pertinent test
cases.

[16] For all of our examples, we assume a known unique
linear relationship between porosity and the logarithm of
hydraulic conductivity (K) at the scale of a grid cell (7.5 cm).
This relationship is of the form log;o(K) = 6.66 ¢ — 4.97,
which yields hydraulic conductivities within an interval that
is typical for sand and gravel [e.g., Gelhar, 1993; Heinz et
al., 2003; Hubbard et al., 2001; Schon, 2004]. The goal is
then to evaluate flow and transport through these models
and compare this “true” behavior with that predicted
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Table 1. Characteristics of the Three Synthetic Porosity Models and the Assigned Relationships to Hydraulic Conductivity®

Example 1

Example 2 Example 3

Description
correlation length
Aspect ratio (a,/a.) 10

Experimental variogram function type Exponential
[Silll a.; a.;] [0.45 0.3 3]
[Sill2 a., a,;] [0.55 1.5 15]
Mean of ¢ 0.2587
Standard deviation of ¢ 0.0357
Slope of log;o(K) vs. ¢ 6.6667
Intercept at ¢ = 0 —4.9677
Mean of log;o(K) —3.2433
Standard deviation of log;o(K) 0.2377
Relationship inferred from collocated data: = —5.54 x 107>

E(¢lv)=av+b b =0.694
o(¢|v) 0.030

Large aspect ratio, small vertical

Small aspect ratio, small vertical
correlation length

Small aspect ratio, large vertical
correlation length

2 2.5

Exponential Exponential
[0.5 0.3 0.6] [0.55 0.6 1.5]
[0.52 4] [0.45 4.5 11.25]
0.2603 0.2590

0.0343 0.0347

6.6667 6.6667
—4.9677 —4.9677
—3.2325 —3.2411

0.2286 0.2315
a=-523x10"° a=-767x 107
b=0.672 b =0.862
0.032 0.029

“The experimental variogram function of the models is best fitted by the sum of two exponentials having variances (Sil/1, Sill2) and ranges (a,;, ay2, a.1, a.5).
The range is defined as the lag distance where the variogram function reaches 95% of the sill value. To infer the hydraulic conductivity from porosity, we

assume a linear relationship between ¢ and log;o(K).

using the porosity reconstructions obtained from the differ-
ent methods.

3.2. Geophysical Measurements

[17] From the porosity models shown in Figures la—1Ic,
synthetic borehole porosity logs and crosshole GPR data
were simulated. For the porosity log data, vertical traces
were extracted from the model at the defined borehole
locations (Figures 1d—1f). Consequently, the log data in
this study are simply unbiased in-situ measurements of the
actual porosity at the borehole locations with a resolution on
the order of a grid cell (7.5 cm). Although this is clearly a
simplification of real porosity log data, which will contain a
small amount of smoothing related to the support volume of
the measurement, we feel that it is an adequate approxima-
tion for our purposes. Further, biases in the porosity-log
measurements would influence the results of all of the tested
characterization approaches and thus not change drastically
the conclusions obtained.

[18] To create the crosshole GPR data, three tomography
surveys were simulated between all adjacent pairs of wells in
the synthetic models. As a first step, the porosity models in
Figures 1a—1c needed to be converted to subsurface electri-
cal properties. To obtain values for the relative dielectric
permittivity, the complex refractive index model (CRIM)
equation for saturated media was used [e.g., Schdn, 2004]:

VE = 0/ + (1 - 9) /e, (1)
where €/ and ¢} = 80 are the relative dielectric permittivities
of the dry matrix and water, respectively. For this study, a
value of & = 4.6 was employed, which is typical for
unconsolidated sand and gravel sediments [e.g., Schon,
2004]. For the electrical conductivity of the subsurface
region, a constant value of 1 mS/m was assumed. Finally,
because surficial soils and rocks are generally nonmagnetic,
we assumed that the magnetic permeability is equal to its
free-space value throughout the simulation region [e.g.,
Davis and Annan, 1989].

[19] Using the above electrical properties, full-waveform
GPR data were computed using a finite-difference time-
domain (FDTD) solution of Maxwell’s equations in 2-D
cylindrical coordinates [Holliger and Bergmann, 2002].

This efficient and accurate computational method predicts
all direct, refracted, reflected, and scattered electromagnetic
waves and accounts for the inherent 3-D radiation and
geometric spreading characteristics of dipole transmitters
and receivers. The transmitter antenna was approximated as
an infinitesimal dipole with a center frequency of 100 MHz.
In each of the three crosshole data sets, 197 transmitter and
197 receiver locations were spaced equally at 0.075 m
intervals between 1.95 and 16.65 m depth. After the FDTD
modeling, the traveltimes of the direct transmitted wavefield
were determined using a semiautomated picking procedure
and then tomographically inverted for the subsurface elec-
tromagnetic velocity distribution using a nonlinear inver-
sion scheme based on a finite-difference solution of the
eikonal equation [Lanz et al., 1998] with a inversion cell
length of 0.3 m. Note that noise was not added to either the
simulated GPR traces or picked travel times prior to the
tomographic inversion for this study. Although not repre-
sentative of realistic conditions, the addition of noise was
deemed unnecessary for this work as its effect is to simply
decrease data quality such that more regularization is
required in the inversion procedure. This in turn results in
a tomographic model with decreased resolution, which is
addressed in the SA procedure by enforcing greater reliance
on the target variogram function through the cutoff lag
parameter.

[20] Figures 1d—1f show the velocity tomograms
obtained from the inversion of the crosshole GPR traveltime
data. A comparison of these images with the original
porosity fields in Figures la—1c demonstrates that the
velocity tomograms outline very well the larger-scale sub-
surface structures, but that structures smaller than the
dominant GPR wavelength of approximately 1 m are not
resolved. This smoothing is typical and results from the
band-limited nature of the radar signal, the regularization
applied in the tomographic inversion, and the fact that only
traveltimes were used for the tomographic reconstruction. It
clearly demonstrates why we require additional information
at smaller scales to generate realistic porosity realizations.

3.3. Porosity Reconstruction Methods

[21] To evaluate the potential hydrological benefits of
using our SA-based data integration procedure for the three
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examples, we compare its performance with other more
elementary methods to reconstruct the porosity field given
the borehole log and/or crosshole GPR data. In the follow-
ing we briefly describe each of the methods used, which we
denote by the codes I, SS, T, and SA.

[22] T: This refers to horizontal linear interpolation be-
tween the porosity logs. Clearly this is an extremely basic
technique that does not take into account the available
crosshole GPR data, nor does it utilize any spatial statistical
model for the porosity distribution. Nevertheless, we feel it
is important to evaluate under what scenarios a simple
method like linear interpolation might provide results that
are as “hydrologically useful” as those provided by more
sophisticated approaches involving geophysical methods.
Only one realization is obtained with this approach.

[23] SS: This refers to the use of sequential Gaussian
simulation to obtain the porosity field, given only the
porosity log measurements and a prior variogram model.
Again, the geophysical data are not used, but we try here to
reproduce the spatial variability in the porosity field as
prescribed by the variogram model. As the sequential
simulation methodology has been thoroughly explained in
several reference books [e.g., Deutsch, 2002; Deutsch and
Journel, 1998; Goovaerts, 1997; Kelkar and Perez, 2002],
we refer the reader to these books for detailed information.
We base our SS approach on simple kriging and use the 40
nearest neighboring sampled points to estimate the kriging
mean and variance at the randomly selected unsampled
location [Kelkar and Perez, 2002]. The porosity value at
that location is then drawn from a Gaussian distribution
having this mean and variance. To obtain the variogram
model required for this approach, we fit the vertical exper-
imental variogram function of the porosity logs and assume
that the aspect ratio between the horizontal and vertical
directions is known (Table 1). For Examples 1-3, we
generated 10 random realizations with the SS method. Solute
transport simulations were then run on each realization.

[24] T: This refers to the process of converting directly
the crosshole GPR tomographic velocity image to porosity
using the E(¢|v) relationship established from the collocated
data at the borehole locations. For each example, the
parameters describing this linear relationship are provided
in Table 1. Clearly, this approach does not at all address the
fact that a crosshole GPR tomogram is in fact a spatial
average of the underlying “true” parameters as a result of
the ill-conditioned nature of the inverse problem and the
regularization required to stabilize the solution [e.g., Day-
Lewis and Lane, 2004]. Thus the resulting porosity field
will lack the small-scale variability of the true model.
However, it has not been thoroughly investigated whether
such “smoothed” images of subsurface structure may, in
many cases, contain enough information for reliable hydro-
logical predictions.

[25] SA: This refers to the simulated annealing condi-
tional simulation approach described earlier. For each per-
turbation of the realization in the SA process, we draw the
new value from a Gaussian distribution having conditional
expectation and variance defined in Table 1. This is done
everywhere except at the borehole locations where we set
the distribution to have a conditional expectation equal to
the porosity log data and a small standard deviation of o =
0.005. As mentioned, we obtain the vertical geostatistical
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model using the best fit to the experimental variogram
function of the porosity logs at short lags. For the horizontal
model, we assume that the aspect ratio between the horizontal
and vertical directions is known. The cutoff lags, below
which we constrain the output realizations to the variogram
model, were set to 2 and 5 m in the vertical and horizontal
directions, respectively. For Examples 1—3, 10 random real-
izations were again generated with this technique and tested
with regard to their hydrological performance.

3.4. Groundwater Flow and Contaminant Transport
Simulations

[26] After obtaining the hydraulic conductivity distribu-
tion from each porosity reconstruction using the relationship
described in section 3.1, groundwater flow and solute
transport simulations were performed. To do this, we
assume an unconfined aquifer model with an impermeable
boundary at the bottom and fixed head boundaries on either
side. The hydraulic head at the inflow and outflow bound-
aries was set to 16.775 m and 16.475 m, respectively, which
yielded an average hydraulic gradient equal to 0.01. For the
tracer experiment, we set a constant concentration of
10 kg/m® of nonreactive solute along the left edge of the
model from t = 0 onwards. The longitudinal and transverse
dispersivities were specified to be 0.05 m, which is signif-
icantly smaller than the model cell size and thus implies that
dispersion is largely governed by the underlying heteroge-
neity of our models.

[27] To simulate two-dimensional flow and transport, we
used Comsol Multiphysics, a finite element analysis and
solver program. First we solve for the steady-state spatial
distribution of hydraulic heads on the basis of the Darcy
flow equations. We then use this information to solve the
transient advection-dispersion equations describing solute
transport [e.g., Freeze and Cherry, 1979; Pinder and Celia,
2006; Todd and Mays, 2005]. Measurements of the tracer
concentration are then assumed to be available all along the
borehole on the right-hand side of the model, which
provides us with “breakthrough images” of the concentra-
tion along this borehole in time and depth.

4. Results

[28] For each of the three example cases shown in
Figures la—1c, we show in the left-hand column of
Figures 2, 3, and 4 an example of one of the porosity fields
obtained using each of the reconstruction techniques: I, SS,
T, and SA. The true realization is shown again at the top and
denoted by O. For each of the reconstruction methods the
breakthrough image, showing the predicted solute concen-
tration in the right-hand borehole as a function of depth and
time, is shown in the middle column. In the right-hand
column, we plot the absolute difference between the true
breakthrough image and the one obtained from the recon-
structions, with the mean absolute difference (MAD) value
shown to the right of the plot as a general indicator of the
quality of the prediction. Note that for both the SS and SA
approaches, we chose for the sake of clarity to show only
one realization out of a population of ten. For this we
selected the realization that provides the fifth best hydro-
logical prediction in terms of minimizing the MAD between
the predicted and true breakthrough images. In other words,
we take the median of ten realizations when considering the
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Figure 2. (left) Original ¢/K distribution (O) and reconstructed ¢/K fields obtained using the I, T, SS,

and SA approaches for Example 1. (center) Corresponding breakthrough images, showing concentration
in the right borehole as a function of time and depth. The white and black lines represent the time at
which half of the maximum concentration is reached for the true and reconstructed fields, respectively.
(right) Absolute difference between the true and reconstructed breakthrough images. The mean absolute
difference (MAD) is shown to the right as a general indicator of goodness of fit.

hydrological performance compared to the true model.
Although we admit that the use of 10 realizations is not
enough to capture the true prediction uncertainty associated
with the SS and SA techniques, we have found that it was
more than sufficient in this study to provide an initial
assessment of the hydrological benefits that these methods
can bring.

4.1. Visual Comparison of the Reconstructed
Porosity Fields

[20] For all three examples considered in Figures 2, 3 and
4, the comparison of the porosity fields obtained by linearly

interpolating between the borehole logs (I) and the true
porosity models (O) shows that, as expected, linear inter-
polation can only provide an acceptable approximation of
the true porosity field if the horizontal correlation length is
larger than the spacing between the boreholes (Figure 2). In
this case, the borehole logs provide significant information
about porosity in the interborehole region, and additional
geophysical and geostatistical information is of limited
benefit. Otherwise, linear interpolation provides simply a
horizontally smoothed version of the true subsurface het-
erogeneity, which as we will see in the next section is not
suitable for reliable flow and transport predictions.
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Figure 3. (left) Original ¢/K distribution (O) and reconstructed ¢/K fields obtained using the I, T, SS,

and SA approaches for Example 2. (center) Corresponding breakthrough images, showing concentration
in the right borehole as a function of time and depth. The white and black lines represent the time at
which half of the maximum concentration is reached for the true and reconstructed fields, respectively.
(right) Absolute difference between the true and reconstructed breakthrough images. The mean absolute

difference (MAD) is shown to the right as a general indicator of goodness of fit.

[30] In the sequential simulation SS case, the porosity
fields are reconstructed using both the borehole porosity
logs and prior geostatistical information provided by the
parametric target variogram function. Here we see that, for
all three examples, the reconstructed porosity fields com-
pare quite well with the original models in terms of the
visible statistical nature of the heterogeneity. However,
when the deterministic reproduction of the original porosity
field is considered, only Example 1 shows a result that can
be considered to be close to the truth (Figure 2). This again
results from the large lateral correlation length used in
Example 1, which allows the borehole porosity log data
to provide the majority of information required for an

accurate reconstruction. In Examples 2 and 3, much greater
differences are present between the SS reconstructed and
true fields because of the smaller lateral correlation lengths
(Figures 3 and 4).

[31] In the case of the porosity reconstructions obtained
by converting directly the tomographic GPR velocity image
into porosity (T), we see a different behavior with changing
aspect ratio and correlation length in the true model. Here,
the T approach provides an acceptable reconstruction of the
porosity field only for Example 3, which is described by a
small aspect ratio and large vertical correlation length
(Figure 4). This results because, in Example 3, the length
scale of heterogeneity is larger than the dominant GPR
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Figure 4.

(left) Original ¢/K distribution (O) and reconstructed ¢/K fields obtained using the I, T, SS,

and SA approaches for Example 3. (center) Corresponding breakthrough images, showing concentration
in the right borehole as a function of time and depth. The white and black lines represent the time at
which half of the maximum concentration is reached for the true and reconstructed fields, respectively.
(right) Absolute difference between the true and reconstructed breakthrough images. The mean absolute

difference (MAD) is shown to the right as a general indicator of goodness of fit.

wavelength, which means that the subsurface structural
variability can be adequately imaged. Nevertheless, the T
reconstruction in Example 3 is still a significantly smoothed
version of the true porosity field, and thus lacks small-scale
structures that may affect flow and transport. This only
becomes worse in Examples 1 and 2, where the correlation
lengths are smaller and thus the small-scale variability more
significant.

[32] Finally we examine the SA method, which utilizes
all available porosity log and crosshole GPR data for the
reconstructions. Small-scale model structure with this
method is provided by the parametric target variogram
function, larger-scale structure by the GPR data, and the

shape of the overall porosity histogram by the borehole log
data and its relation to the GPR velocities. For all three
examples, we see in Figures 2, 3 and 4 that the SA
reconstructions agree most favorably with the original
porosity models when compared to the other methods
considered. Note especially that SA provides the most
significant improvements compared to I and SS when the
lateral continuity in the model is smaller than the distance
between the boreholes (Figures 3 and 4). These results
confirm that the SA-based approach is able to give reliable
results independent of the structural variability. It should
also be noted that, because the tomographic data are utilized
in the SA procedure, the variability between the obtained
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realizations is less than with the SS approach. This differ-
ence in variability between the SA and SS approaches can
be seen to decrease as the horizontal correlation length
increases, as in that case the porosity log data provide a
significant amount of information about the interborehole
porosity distribution.

4.2. Evaluation of Hydrological Behavior

[33] Looking at Figures 2, 3 and 4, it is clear, and after all
not surprising, that differences in the spatial structure of the
obtained porosity/hydraulic conductivity realizations have a
significant impact on the solute transport predicted through
these models. For simple linear interpolation between the
borehole porosity logs (I), we see that the true hydrological
behavior can only be well predicted in the case where the
horizontal correlation length is larger than the borehole
spacing. This is the case for Example 1, where we have
an acceptable transport prediction with a MAD between the
true and predicted breakthrough images equal to 0.18. For
Examples 2 and 3, the obtained transport predictions are
much worse, having MAD values of 0.37 and 0.30,
respectively.

[34] With the SS method, we similarly see that the longer
correlation length case of Example 1 yields the most
accurate hydrological predictions. In this example, the
predicted breakthrough images from the ten SS reconstruc-
tions had MAD values between 0.15 and 0.23, with the
median value shown in Figure 2 equal to 0.18. In contrast,
for Example 2, where we had much greater interborehole
variablility between the ten realizations because of a shorter
horizontal correlation length, the MAD values ranged
between 0.17 and 0.29 with the median value equal to
0.20. For Example 3, we saw MAD values between 0.21
and 0.51 with the median value equal to 0.25. In this last
case, the predicted breakthrough image very poorly esti-
mates the true transport behavior even for the realization
with the lowest MAD value. The main reason for this is that
the mean of the borehole porosity data is not at all
representative of the global mean of the true porosity field.
Note that even using ordinary kriging and other parameters
in the SS approach does not significantly change these
findings.

[35] Contrary to the SS approach, the T approach shows a
very good capacity to estimate the hydrological behavior for
Example 3, providing the best prediction compared to the
other methods with a MAD equal to 0.10. However, it is
only in Example 3 where the tomographic reconstruction
gives an acceptable transport prediction. This again results
because the scale of heterogeneity in this case is larger than
the dominant GPR wavelength, and thus the subsurface
structural variability can be adequately imaged by the radar
experiment. In Figures 2 and 3, for example, the MAD
values of 0.31 and 0.24 are significantly larger. Neverthe-
less, significant similarities between the true and predicted
breakthrough images can be seen with regards to the
variability along the depth axis in Figures 2 and 3. That
is, there is a more-or-less constant time shift between the
true and predicted images, which is best seen from the white
and black lines representing the time at which half the
maximum tracer concentration is reached for the true and
predicted fields, respectively. The reason for this shift is the
underestimated variance of porosity with the T method,
which when linked with a nonlinear relationship to the
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hydraulic conductivity strongly influences its mean and thus
the average solute travel time. Therefore the result of the
tracer experiment would clearly not be improved by varying
the lateral and transverse dispersivity parameters compared
to the potential use of a modified petrophysical relationship,
calibrated to hydrological data. This is a topic that we are
currently investigating.

[36] Finally, we consider the transport predictions
obtained using the SA reconstruction method. Generally,
by integrating both the borehole and tomographic data with
this technique along with small-scale information from the
supplied variogram model, we obtain the most accurate
hydrological predictions. In Example 1, the MAD values
between the true and predicted breakthrough images for the
ten realizations created were between 0.12 and 0.18, with a
median equal to 0.14 (Figure 2). In this case, because of the
high lateral continuity between the boreholes, the improve-
ments brought by the SA approach over the SS method are
limited. Where the lateral correlation length is smaller than
the distance between the boreholes, however, the SA
method performs much better than SS, showing MAD
values between 0.09 and 0.19 in Example 2, with a median
equal to 0.14 (Figure 3), and between 0.11 and 0.16 in
Example 3, with a median equal to 0.13 (Figure 4). From
Example 2 it is clear that, when we are dealing with
relatively small correlation lengths and with a scale of
heterogeneity smaller than the dominant GPR wavelength,
very good hydrological predictions can be obtained by
incorporating tomographic geophysical data through condi-
tional stochastic simulations. Further, when the scale of the
heterogeneity is larger than the dominant GPR wavelength,
such as in Example 3, we see that the SA approach does not
always allow for improved hydrological predictions com-
pared to the T approach. Clearly, the SA method shows the
most benefit when compared to the other methods when the
hydrological problem requires information at several scales
because of its complexity.

5. Discussion and Conclusions

[37] The primary objective of this study was to investi-
gate the potential hydrological benefits of incorporating
high-resolution geophysical data into the subsurface char-
acterization problem through a recently introduced SA
conditional stochastic simulation method. We did this by
evaluating hydrologically this method alongside other char-
acterization approaches that utilize different amounts and
types of subsurface information, again under optimal con-
ditions. This was done for three hydrological property
models, each having different heterogeneity characteristics,
and within the context of assimilating borehole porosity log
and crosshole GPR data to reconstruct the subsurface
porosity field. On the basis of the assumption that there
exists a unique and known grid-cell-scale relationship
between porosity and hydraulic conductivity, we investigated
whether the SA approach can offer significant hydrological
benefits over the other methods, and if so, under what
hydrological/structural circumstances these benefits are
likely to be most significant.

[38] Visually, we saw that the porosity fields obtained by
integrating crosshole GPR and borehole porosity log data
using the SA-based approach had a significant degree of
realism under all structural conditions studied. We can
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therefore conclude that, with this method, detailed and
seemingly realistic subsurface porosity distributions can
be obtained independent of the heterogeneity character-
istics, assuming of course that the utilized sources of data
are of reliable quality. More importantly for this study, our
hydrological evaluation of the estimated porosity distribu-
tions showed that the SA-based approach, in general, has
the potential to yield much more reliable hydrological
predictions than the other more elementary techniques. In
particular, we found that SA provided the most significant
improvements compared to I and SS when the lateral
continuity in the model was smaller than the distance
between the boreholes, and/or when the hydrological prob-
lem requires information at several scales because of its
complexity. One notable exception occurred when the
correlation length of the heterogeneity was greater than
the dominant GPR wavelength. In this case, it seems that
accurate hydrological predictions may also be made using
the T approach, as the subsurface structural variability can
be adequately imaged without the need for conditional
simulations. It is important to note that the overall approach
pursued in this study, as well as these key results, are
expected to remain valid for all pertinent combinations of
geophysical and borehole log data of comparable resolution
and sensitivity to the hydrological target parameter, such as,
for example, crosshole seismic and flowmeter log data.

[39] The above observations are clearly important to our
understanding of how we can optimize the use of high-
resolution geophysical data in hydrological studies. They
allow us a much better understanding of when the use of an
evolved data integration approach, such as the SA method,
might potentially yield significant hydrological benefits and
is worthwhile pursuing. However, for field applications, a
number of important issues need to be further considered.
First is the fact that, in reality, we are dealing with three-
dimensional environments rather than the 2-D profiles
considered here. Consequently, the results shown here are
only valid for cases where heterogeneity in the third
dimension is insignificant. Although the methods employed
can still be expected to be valid for 3-D characterization,
this will require adequate spatial coverage, resolution, and
sensitivity of the geophysical data to the hydrologically
pertinent parameters.

[40] Another critically important issue is that a large
number of uncertainties and errors, which were purposely
not considered in our evaluation, are present in real sit-
uations. This means that, in practice, each data set will need
to be carefully considered in regard of its quality and
reliability, and errors must be properly dealt with in the
corresponding inversion and data integration procedures.
Whereas errors in the borehole log measurements will
influence all of the investigated approaches, errors in the
geophysical data will have an impact on the T and SA
approaches only. Clearly, errors in the geophysical data will
be more adequately handled by the SA approach than the T
approach because our use of a conditional distribution
inferred from the collocated velocity and porosity measure-
ments is sensitive to data quality. That is, the estimated
conditional distribution will tend to be broader when the
data are of lesser quality, which will result in greater
uncertainty in the suite of output SA realizations. Note
again that, because the velocity resolution with crosshole
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georadar tomography is worst at the borehole locations, the
SA realizations will tend to be under- rather than overcon-
strained by the tomographic image. Further, the use of a
cutoff lag with the SA method allows us to choose for what
spatial scales we wish to rely on the tomographic image,
taking into account its estimated resolution.

[41] Finally and most importantly, the largest limitation in
applying the above approaches in the field comes from the
uncertainty in the small-scale relationship between porosity
and hydraulic conductivity. Clearly, we have assumed here
the ideal case of being in a single hydrological unit where
the relationship between these parameters is unique and
known. Although this allowed us to investigate a number of
important issues related to data integration using different
approaches, the estimation of the distribution of hydraulic
conductivity in the field will clearly need to make use of
field-derived hydrological data to be most accurate. Evi-
dently one important goal that we would like to achieve is to
use reconstructions of geophysically derived property fields,
such as the porosity fields obtained in this study, along with
complementary information such as tracer test concentration
data, to delineate various hydrological units and study
possible relationships between the geophysical and hydro-
logical parameters at the field scale. This is a topic of future
research.
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