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Résumé 

La présente thèse s'intitule ”Développent et Application des Méthodologies Computationnelles 

pour la Modélisation Qualitative”. Elle comprend tous les différents projets que j'ai entrepris en tant 

que doctorante. Plutôt qu'une mise en oeuvre systématique d'un cadre défini a priori, cette thèse 

devrait être considérée comme une exploration des méthodes qui peuvent nous aider à déduire le 

plan de processus regulatoires et de signalisation. Cette exploration a été mue par des questions 

biologiques concrètes, plutôt que par des investigations théoriques. Bien que tous les projets aient 

inclus des systèmes divergents (réseaux régulateurs de gènes du cycle cellulaire, réseaux de 

signalisation de cellules pulmonaires) ainsi que des organismes (levure à fission, levure 

bourgeonnante, rat, humain), nos objectifs étaient complémentaires et cohérents. 

 

Le projet principal de la thèse est la modélisation du réseau de l'initiation de septation (SIN) du 

S.pombe. La cytokinèse dans la levure à fission est contrôlée par le SIN, un réseau signalant de 

protéines kinases qui utilise le corps à pôle-fuseau comme échafaudage. Afin de décrire le 

comportement qualitatif du système et prédire des comportements mutants inconnus, nous avons 

décidé d'adopter l'approche de la modélisation booléenne. Dans cette thèse, nous présentons la 

construction d'un modèle booléen étendu du SIN, comprenant la plupart des composantes et des 

régulateurs du SIN en tant que noeuds individuels et testable expérimentalement. Ce modèle 

utilise des niveaux d'activité du CDK comme noeuds de contrôle pour la simulation d'évènements 

du SIN à différents stades du cycle cellulaire. Ce modèle a été optimisé en utilisant des 

expériences d'un seul “knock-out” avec des effets phénotypiques connus comme set 

d'entraînement. Il a permis de prédire correctement un set d'évaluation de “knock-out” doubles. De 

plus, le modèle a fait des prédictions in silico qui ont été validées in vivo, permettant d'obtenir de 

nouvelles idées de la régulation et l'organisation hiérarchique du SIN. 

 

Un autre projet concernant le cycle cellulaire qui fait partie de cette thèse a été la construction d'un 

modèle qualitatif et minimal de la réciprocité des cyclines dans la S.cerevisiae. Les protéines Clb 

dans la levure bourgeonnante présentent une activation et une dégradation caractéristique et 

séquentielle durant le cycle cellulaire, qu'on appelle communément les vagues des Clbs. Cet 

évènement est coordonné avec la courbe d'activation inverse du Sic1, qui a un rôle inhibitoire dans 

le système. Pour l'identification des modèles qualitatifs minimaux qui peuvent expliquer ce 

phénomène, nous avons sélectionné des expériences bien définies et construit tous les modèles 

minimaux possibles qui, une fois simulés, reproduisent les résultats attendus. Les modèles ont été 

filtrés en utilisant des simulations ODE qualitatives et standardisées; seules celles qui 
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reproduisaient le phénotype des vagues ont été gardées. L'ensemble des modèles minimaux peut 

être utilisé pour suggérer des relations regulatoires entre les molécules participant qui peuvent 

ensuite être testées expérimentalement. 

 

Enfin, durant mon doctorat, j'ai participé au SBV Improver Challenge. Le but était de déduire des 

réseaux spécifiques à des espèces (humain et rat) en utilisant des données de phosphoprotéines, 

d'expressions des gènes et des cytokines, ainsi qu'un réseau de référence, qui était mis à 

disposition comme donnée préalable. Notre solution pour ce concours a pris la troisième place. 

L'approche utilisée est expliquée en détail dans le dernier chapitre de la thèse. 
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Summary 

The present dissertation is entitled “Development and Application of Computational Methodologies 

in Qualitative Modeling”. It encompasses the diverse projects that were undertaken during my time 

as a PhD student. Instead of a systematic implementation of a framework defined a priori, this 

thesis should be considered as an exploration of the methods that can help us infer the blueprint of 

regulatory and signaling processes. This exploration was driven by concrete biological questions, 

rather than theoretical investigation. Even though the projects involved divergent systems (gene 

regulatory networks of cell cycle, signaling networks in lung cells), as well as organisms (fission 

yeast, budding yeast, rat, human), our goals were complementary and coherent.  

The main project of the thesis is the modeling of the Septation Initiation Network (SIN) in S.pombe. 

Cytokinesis in fission yeast is controlled by the SIN, a protein kinase signaling network that uses 

the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and 

predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this 

thesis, we report the construction of an extended, Boolean model of the SIN, comprising most SIN 

components and regulators as individual, experimentally testable nodes. The model uses CDK 

activity levels as control nodes for the simulation of SIN related events in different stages of the cell 

cycle. The model was optimized using single knock-out experiments of known phenotypic effect as 

a training set, and was able to correctly predict a double knock-out test set. Moreover, the model 

has made in silico predictions that have been validated in vivo, providing new insights into the 

regulation and hierarchical organization of the SIN.  

Another cell cycle related project that is part of this thesis was to create a qualitative, minimal 

model of cyclin interplay in S.cerevisiae. CLB proteins in budding yeast present a characteristic, 

sequential activation and decay during the cell cycle, commonly referred to as Clb waves. This 

event is coordinated with the inverse activation curve of Sic1, which has an inhibitory role in the 

system. To generate minimal qualitative models that can explain this phenomenon, we selected 

well-defined experiments and constructed all possible minimal models that, when simulated, 

reproduce the expected results. The models were filtered using standardized qualitative ODE 

simulations; only the ones reproducing the wave-like phenotype were kept. The set of minimal 

models can be used to suggest regulatory relations among the participating molecules, which will 

subsequently be tested experimentally. 

Finally, during my PhD I participated in the SBV Improver Challenge. The goal was to infer 

species-specific (human and rat) networks, using phosphoprotein, gene expression and cytokine 

data and a reference network provided as prior knowledge. Our solution to the challenge was 
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selected as 3rd best performing. The approach used is explained in detail in the final chapter of the 

thesis. 
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Chapter 1 

 

Introduction 
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Moving from molecular to modular  

As an enthusiastic photographer I have always been fascinated by the power of perspective. Every 

choice you make for your picture can reveal a different aspect of your subject. Let us take a look, 

for example, at the starlings in picture 1.1A. The photograph must have been taken with a zoom or 

prime lens, allowing us to observe the birds’ appearance in relative detail. We can also see that 

both starlings are flying, but their wings are not moving synchronously. We can continue making 

observations regarding each bird individually, and maybe a few for the relation between the two 

birds.  

 

       
Figure 1.1: Starlings in flight. A) Two starlings flying over Merseyside, Liverpool (photo by Steve 

Ward, 2013). B) Picture capturing around ten thousand starlings flying in formation over pylons in 

the Scottish borders near Gretna, Dumfriesshire (photo by Owen Humphreys, 2013).  

 

These observations are certainly of value, as they can help us understand many features of the 

bird. When we take off the zoom, though, a whole new level of organization and complexity is 

revealed, as shown in picture 1.1B. Birds interact with each other and adjust their behavior, when 

they are part of a flock. Those intelligent organisms, form groups with such a great level of 

coordination that, finally, they act like “superorganisms”. Keeping the zoom on, interesting though it 

may be, prevents us from understanding the flock dynamics that determine each bird’s behavior.  

 

Systems biology may be thought of as a flock photographer. It shifts our focus from molecular to 

modular, by following a holistic, rather than reductionist approach. While the understanding of 

genes and proteins continues to be essential, systems biology focuses on understanding the 

structure and dynamics of the system as a whole. A system is more than just an assembly of 

genes and proteins. Therefore, its properties cannot be fully understood by merely listing the 

properties of its components, neither by drawing diagrams of their interconnections. Although such 

a diagram is an important first step, it is a static photograph, whereas what we really seek to know 

A B 
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are the flock patterns, why such patterns emerge, and how they can be controlled. This is 

analogous to drawing an exhaustive topological diagram of gene regulatory networks and their 

interactions. Such diagrams provide limited knowledge of how changes to one part of a system 

may affect other parts. To understand how a particular system functions, we must first examine 

how the individual components dynamically interact (Cvijovic et al, 2014; Kitano, 2002; Samaga & 

Klamt, 2013).  

Dynamic modeling of gene regulatory networks 

Discerning the blueprint of the relations among components is not a trivial task. It is usually 

approached with either bottom-up or top-down methodologies. The former includes data collection 

(literature and databases), manual curation, network reconstruction through mathematical 

methods, and validation of these models through experiments and literature analysis. The latter 

encompasses network reconstruction using ‘omics’ data, generated through DNA microarrays, 

RNA-Seq or other high-throughput genomic techniques using appropriate statistical and 

bioinformatics methodologies (Bruggeman & Westerhoff, 2007).  

 

When aiming to construct dynamic models of bio-molecular networks, each case is approached 

individually, depending on the type and amount of knowledge and experimental data available for 

the specific system, as well as the size of the network (Kahlem et al, 2011; Wang et al, 2012). To 

account for the different quality of information that is available for a network under study, modeling 

formalisms of different levels of complexity have been developed over the last years, that can vary 

from qualitative Boolean models, to quantitative kinetic-based models (de Jong, 2002; Karlebach & 

Shamir, 2008; Kestler et al, 2008; Samaga & Klamt, 2013). 

 

Quantitative modeling approaches provide detailed descriptions of the biochemical processes that 

are based on chemical and physical principles (Aldridge et al, 2006). Sets of ordinary differential 

equations (ODEs) are the most commonly used formulation, due to their well-established 

biophysical basis and straightforward molecular interpretation; see (Szallasi et al, 2006) for 

detailed review. They describe the system's evolution over time using mass-action kinetics for the 

rates of production and consumption of the components included in the model. The major limitation 

of quantitative modeling is that it requires sufficient knowledge of biological mechanisms and 

kinetic parameters, which limits its applicability to small, well-characterized networks; for example 

(Csikasz-Nagy et al, 2007; Tyson et al, 2002).  
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In contrast to quantitative models, qualitative approaches are mainly based on network structure 

and do not require kinetic information. This makes them more suitable for large-scale network 

analysis. There are several qualitative modeling approaches, varying in formalism and complexity. 

Some of the most widely known are logical modeling (Garg et al, 2012; Morris et al, 2010; Wang et 

al, 2012), Petri nets (Chaouiya, 2007; Hardy & Robillard, 2004) and constraint-based modeling 

(Feist & Palsson, 2008; Papin & Palsson, 2004). Even though these frameworks rely on network 

structure, rather than kinetic parameters, they enable the analysis of important functional 

properties of large-scale regulatory networks. For example, they include regulatory relationships 

among components, feedback loops and signal transfer routes. Logical models (including Boolean) 

and Petri nets can also derive qualitative properties of the system’s dynamics by means of discrete 

dynamic modeling (figure 1.2). They can be used descriptively for the simulation of the steady 

states of the system, but they can also be used predictively to evaluate, for instance, the expected 

qualitative response of the system to defined perturbations.  

Boolean modeling features 

Boolean models integrate knowledge regarding components and interactions of biomolecular 

systems whose kinetic parameters have not been determined. Using the significant level of 

abstraction imposed by their binary definition, they manage to capture the system’s dynamic 

repertoire and they have been successfully used in several contexts (Albert & Othmer, 2003; 

Azpeitia et al, 2011; Davidich & Bornholdt, 2008; Giacomantonio & Goodhill, 2010; Li et al, 2004; Li 

et al, 2006; Morris et al, 2010; Saez-Rodriguez et al, 2007; Samaga et al, 2009; Sanchez et al, 

1997; Schlatter et al, 2012; Schlatter et al, 2009; Veliz-Cuba & Stigler, 2011). In Boolean models of 

Gene Regulatory Networks (GRNs), nodes can be gene products, proteins or complexes, and 

edges reflect the regulatory relationships between nodes. In Boolean formalism, each node is 

characterized by an activation state that can take the values 1 for “active” or 0 for “inactive”, 

corresponding to the logical values TRUE and FALSE. The activation state can refer to 

transcription, localization, phosphorylation or other post-translational modifications (PTMs).  

 

The input for a Boolean simulation is the GRN with all regulatory events encoded as logical rules 

that can be found true or not (figure 1.3). The Boolean functions (logical rules) representing the 

regulatory relationships of the system, can include AND, OR, NOT, IAND, XOR, XNOR (Akutsu et 

al, 1999; Garg et al, 2012; Garg et al, 2009; Kauffman, 1993; Kochi & Matache, 2012; Li et al, 

2004). The state of each node depends on the state of the nodes regulating it, that is, the state of 

all the incoming edges, and the rules that govern their interaction (figure 1.2). The state of all the 

nodes at a given moment defines the network state. The network transitions from state to state 
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dictated by the underlying Boolean functions, until it reaches a steady state or a cyclic attractor 

(Garg et al, 2012). The possible trajectories in the state space can be represented by the state 

transition graph (Naldi et al, 2007; Saadatpour et al, 2011; Wang et al, 2012).  

 

 
 

Figure 1.2: A GRN mapped to Boolean model. A) A simple, 5 node GRN. Green arrows 

represent activations and red circles inhibitions. In the model there are pairwise interactions (for 

example “D inhibits C”) and more complex regulations (for example “A together with C activate B”). 

B) The same network, represented as Boolean functions describing the state of each node at time 

t+1, given the state of their regulating nodes at time t. For example, at time t+1 B will be active if at 

time t both A and C are active, or if E is active. In any other case, the logical rule will not be found 

true and B will be inactive. C) The mathematical expression of the Boolean functions. Variables 

Xt
A, Xt

B, Xt
C, Xt

D and Xt
E represent the expression of nodes A, B, C, D and E respectively. ∧, ∨ 

and ¬ represent Boolean AND, OR and NOT. Source : (Garg et al, 2012) 

 

In Boolean modeling, time is discrete and abstract. Two main updating schemes can be used 

during model simulation; synchronous and asynchronous update. The former assumes that all 

biological events in the system have similar timescales, and all functions are updated 

simultaneously. In the latter, one function is updated at each time step, which can be deterministic 

(deterministic asynchronous) or randomly selected (stochastic asynchronous) (Chaves et al, 2005; 

Chaves et al, 2006). The asynchronous behavior can be controlled by setting additional rules for 

time delays and priorities (Garg et al, 2009). Alternatively, all possible transitions can be generated 

(Faure et al, 2006; Garg et al, 2008; Kahlem et al, 2011; Wang et al, 2012).  
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Figure 1.3: Boolean function mapping of biological phenomena in GRNs. Examples of the 

encoding of biological processes to logical rules. Source: (Garg et al, 2012) 

 

Thesis outline 

Each chapter of this dissertation is dedicated to a different biological process (gene regulation in 

cell cycle, signaling in lung cells) in a different organism (fission yeast, budding yeast, rat and 

human), based on case studies addressing specific biological questions. Despite the divergence in 

the methods used to approach them, all the case studies share a common goal: to derive the 

blueprint underlying the relations among the system’s components. Boolean modeling was the 

principal method employed for this goal. Since each chapter discusses different biological 

problems, these are introduced individually in situ. 

 

Chapter 2 describes the central project of my PhD; modeling the Septation Initiation Network in 

fission yeast. It includes an introduction on the system as well as all our efforts during these years, 
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successful or not. It describes the construction of the initial model, the optimization process and the 

change of strategy that led to the CDK-switch model of the SIN. The latter was used predictively, 

and the predictions were validated experimentally. Chapter 3 focuses on the inference of a set of 

minimal models describing cyclin regulatory interplay in budding yeast. A description of the system 

is followed by the variable methods we used towards our goal and future perspectives for the 

project. Finally, Chapter 4 is dedicated to the SBV Improver Challenge, where, together with 

colleagues at Vital-IT, I participated at the “Species Specific Network Inference” sub-challenge.  
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Chapter 2 

 

An extended, Boolean model  
of the septation initiation network in S.pombe  

provides insights into its regulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Partially based on  

 

Chasapi A, Wachowicz P, Niknejad A, Collin P, Krapp A, Cano E, Simanis V, Xenarios I (2015) An 

Extended, Boolean Model of the Septation Initiation Network in S.pombe Provides Insights into its 

Regulation. PloS Comp Biol (submitted) 
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Introduction 

Schizosaccharomyces pombe, commonly referred as fission yeast, has long been used as a model 

organism for the study of conserved, essential functions in the eukaryotic cell. It has proved highly 

informative in the study of the cell cycle, particularly the control of the G2/M transition. Like many 

somatic higher eukaryotic cells, it divides by binary fission. Cytokinesis in fission yeast is controlled 

by the Septation Initiation Network (SIN), a protein kinase signaling network, which uses the 

spindle pole body (SPB; the functional counterpart of the centrosome in yeast), as a scaffold from 

which to initiate signaling. Elements of the SIN’s signaling architecture have been conserved 

throughout evolution. In Saccharomyces cerevisiae the corresponding pathway is known as the 

mitotic exit network (MEN), and controls both cytokinesis and mitotic exit. In higher eukaryotes the 

equivalent signaling network is the Hippo pathway, which regulates cell growth and proliferation 

(Bardin & Amon, 2001; Hergovich & Hemmings, 2012; Hotz & Barral, 2014; Seshan & Amon, 2004; 

Weiss, 2012).  

 

The SIN comprises a group of protein kinases and their regulators that induce cytokinesis when 

CDK activity drops in anaphase (Chang et al, 2001; Guertin et al, 2000). Signaling failure results in 

multinucleated cells, as cytokinesis fails while growth and the nuclear cycle continue (Mitchison & 

Nurse, 1985); this is referred to as the SIN phenotype. Failure to turn off SIN signaling produces 

multiseptated cells that remain uncleaved and contain one or two nuclei (Minet et al, 1979). 

Ppc89p, Cdc11p and Sid4p form the scaffold upon which signaling proteins are assembled at the 

SPB (Chang & Gould, 2000; Krapp et al, 2001; Rosenberg et al, 2006; Tomlin et al, 2002). SIN 

signaling requires the action of three kinase-regulator modules. The kinase Cdc7p associates with 

the signaling GTPase Spg1p (Mehta & Gould, 2006; Schmidt et al, 1997), Sid1p associates with its 

regulatory subunit Cdc14p (Guertin et al, 2000; Guertin & McCollum, 2001) and the kinase Sid2p 

associates with its regulator Mob1p (Hou et al, 2004; Hou et al, 2000; Salimova et al, 2000). It is 

claimed that Cdc7p also binds directly to Cdc11p (Feoktistova et al, 2012). The nucleotide status of 

Spg1p is regulated by a bipartite GAP, composed of a catalytic subunit (Cdc16p), which interacts 

with Spg1p in the context of a scaffold, Byr4p (Furge et al, 1999; Furge et al, 1998). Etd1p 

regulates the nucleotide status of Spg1p, perhaps by modulating Rho1p signaling (Alcaide-Gavilan 

et al, 2014; Daga et al, 2005; Garcia-Cortes & McCollum, 2009; Lahoz et al, 2010). Plo1p acts 

upstream of the SIN (Krapp et al, 2003; Tanaka et al, 2001), and coordinates SIN activity with 

other mitotic events. See figure 2.1 for a diagram of SIN signaling and the participating 

components.  
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Apart from the essential SIN components described above, there are several SIN signaling 

regulators. SPB-associated protein kinases are important for SIN regulation. The CDK Cdc2p-

Cdc13p is controlling the SIN both positively and negatively. The diverse influence of CDK 

depends on the stage of the cell cycle and the CDK activation levels (Cerutti & Simanis, 1999; 

Chang et al, 2001; Dischinger et al, 2008; Guertin et al, 2000). The ubiquitin ligase Dma1p is 

another SIN regulator, required to prevent septum formation if spindle function is compromised 

(Murone & Simanis, 1996). As part of the spindle assembly checkpoint, Dma1p binds to Sid4p and 

ubiquitinylates it, to prevent the recruitment of Plo1p to the SPB (figure 2.1C), thereby inhibiting 

SIN activity in mitotically arrested cells (Guertin et al, 2002; Johnson et al, 2012). In a subsequent 

paper, this is considered as a separate checkpoint, independent of the classical SAC (Johnson et 

al, 2013). The resetting of SIN proteins at the end of mitosis is controlled by Nuc2p, a subunit of 

the anaphase promoting complex APC/C (Kumada et al, 1995). This role of Nuc2p is achieved by 

interfering with the interaction between Spg1p and Cdc7p, maybe by stimulating the activity of 

Byr4p-Cdc16p (Chew & Balasubramanian, 2008), and is independent of its APC/C function. 

 

                                 
Figure 2.1: Organization of SIN components on the SPBs. The SPB scaffold is formed by 

Ppc89p, Sid4p and Cdc11p. A) In interphase, Spg1p is inhibited by the Byr4p-Cdc16p complex. 

The inhibition is relieved in early mitosis (B) allowing the association of downstream kinases 
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Cdc7p, Sid1-Cdc14p and Sid2p-Mob1p on the SPB. In case of an active mitotic checkpoint (C), 

Dma1 inhibits SIN signaling by preventing the recruitment of Plo1p on the pole. Figure source: 

(Johnson et al, 2012)  

 

The SIN controls many aspects of cytokinesis including the assembly of the contractile ring and 

synthesis of the division septum (Goyal et al, 2011). Our goal is to describe the qualitative behavior 

of the system, investigate the role of each SIN regulator and potentially predict unknown mutant 

behaviors. Towards this end we decided to adopt a Boolean modeling approach. The choice of 

qualitative modeling was based on its suitability to simulate systems with limited kinetic data, as 

well as their computational efficiency, that permits large numbers of in silico experiments even in 

networks with hundreds of nodes. 

 

Models of the fission yeast SIN have already been generated; Csikasz-Nagy et al. (2007) and 

Bajpai et al. (2013). In the study by Csikasz-Nagy et al the timing of septation in wild type and 

mutant cells was described using a minimal, continuous model. The SIN components were treated 

as two groups, the “Top of SIN” and “Bottom of SIN”, with Sid1p localization to the SPB being the 

pivotal event that differentiates the two groups (Csikasz-Nagy et al, 2007). Subsequent analysis, 

(Wachowicz et al, 2015) has revealed that Sid1p is already associated with the SPB early in 

mitosis, suggesting that this analysis may be oversimplified. In the successive model (Bajpai et al, 

2013), the asymmetric distribution of molecules at the SPBs was analyzed using a simple, non-

linear model of two antagonistic molecules. The model was also extended to incorporate key 

regulators of the SIN (Bajpai et al, 2013).  

 

In this work, we present an extended, Boolean model of the SIN, comprising most known SIN 

components and regulators as individual, experimentally testable nodes. The Boolean framework 

allows us to perform in silico knock-out and “constant activation” experiments for every 

combination of molecules present in the model, and to assess phenotypic predictions that could be 

subsequently validated experimentally. Our model provided useful insights for several aspects of 

SIN regulation such as the role of Fin1p, the inhibitory function of Nuc2p in interphase, as well as 

an in silico, counter-intuitive, double mutant phenotypic prediction. The model predicted that Sid4p 

mutant cells would septate if they express Cdc7p in high levels. The prediction has been 

experimentally confirmed. This work serves as a good example of the use of qualitative modeling 

in hypotheses generation and prediction of experimental outcomes in otherwise complicated and 

long experiments. 
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Results 

Model construction through expert biocuration 

For the gene regulatory network construction of the SIN we chose an expert biocuration approach 

(Bateman, 2010; Poux et al, 2014), taking advantage of the long-term expertise in the Swiss-Prot 

group. Experimentally determined interactions specific to the SIN, were retrieved, structured, 

curated and annotated from the literature and from available knowledge databases (for example 

PubMed, iHOP, UniProtKB/Swiss-Prot, ChEBI). To establish the model, we started by adding the 

main SIN signaling regulators such as the GTPase Spg1p, its effector kinase Cdc7p and the GAP 

Byr4p and Cdc16p (Furge et al, 1998; Krapp et al, 2008; Schmidt et al, 1997). We proceeded by 

adding the SPB scaffold for SIN, comprising Ppc89p, Sid4p and Cdc11p (Krapp et al, 2008; 

Rosenberg et al, 2006). Subsequently, additional regulators were added to this core unit, to 

complete a first working model. The collected knowledge was stored in a structure formed of 

pairwise interactions and regulations that include information about participating components, the 

origin of publications (PMID), the evidence used to evaluate the interaction was mentioned and a 

confidence assessment as an evidence tag from the biocurator. In detail, the database contains 

the following columns: 

 

1. Node 1: The name of the first element of the interaction, the one that acts as activator or 

inhibitor  

2. Action: A symbol characterizing the type of interaction as activation (→) or inhibition (⟞). 

3. Node 2: The name of the second element of the interaction, the one that gets activated or 

inhibited  

4. Node 1 type: The type of node 1. Can be protein, complex or miRNA  

5. Node 2 type: The type of node 2. Can be protein or miRNA 

6. UniProt ID 1: Reference of node 1 

7. UniProt ID 2: Reference of node 2 

8. PMID: Literature reference of the interaction 

9. Class: A letter characterizing the confidence level of the interaction. It can be one of the 

following:  

Sure (S), when the interaction is confirmed or known in textbook, and/or already in the 

UniProt general annotation lines. Sure interactions are generally associated with many 

PMIDs.  
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Unsure (U), when the interaction is shown once and/or not confirmed by others, or when 

the authors are not confident about the results.  

Inferred (I), when there are no results for the network in question, but the interaction was 

found in different cell types and/or organisms. It may also refer to cases where the 

information is inferred to all protein isoforms of a gene without confirmed results. Inferred 

interactions might be associated with more than one PMIDs. 

Contradictory (C), when the interaction is based on contradictory results.  

10. Evidence tag: Short extract from the publication where the interaction is mentioned. 

 

The constructed prior knowledge network (PKN) consists of 41 nodes (gene products, proteins and 

complexes) and 108 directed edges (figure 2.2). The regulatory information is the result of the 

curation of 67 published scientific papers. The most recently published interaction contained in this 

model is the inhibitory regulation of CDK and Plo1p upon Byr4p recently published by (Rachfall et 

al, 2014).  

  

              
             

Figure 2.2: The extended Boolean SIN model. The initial, prior knowledge network, manually re-

constructed from the literature. Nodes represent proteins and complexes that take part in the 

regulation of the SIN. Blue arrows indicate activation events and orange circles inhibition events. 

More complicated logical functions are also encoded in the model, such as AND, OR and XOR 

regulatory gates. The pink circles, for example, are AND nodes, representing interactions like “byr4 

AND NOT cdc7 activate spg1”.   
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The model interactions were classified as activations or inhibitions and they were represented in 

the network as a combination of Boolean functions including AND, OR, NOT, IAND, XOR, XNOR. 

Qualitative model simulation 

Despite the intensive study of the SIN over the past decades, there is little kinetic data for the 

protein interactions described in the literature that form the basis for our model. Obtaining such 

spatiotemporal data is experimentally difficult and represents one of the major challenges in 

systems biology research. For the simulation of the SIN model we adopted a qualitative Boolean 

approach, which has been successfully used in several other contexts (Albert & Othmer, 2003; 

Azpeitia et al, 2011; Davidich & Bornholdt, 2008; Giacomantonio & Goodhill, 2010; Li et al, 2004; Li 

et al, 2006; Morris et al, 2010; Saez-Rodriguez et al, 2007; Samaga et al, 2009; Sanchez et al, 

1997; Schlatter et al, 2012; Schlatter et al, 2009; Veliz-Cuba & Stigler, 2011). 

 

Asynchronous updating was chosen for the SIN model simulation in this study, since it assumes 

non-synchronous regulatory events, which places it closer to reality. However, the challenge in 

asynchronous update lies in interpreting the simulation trajectories; in stochastic asynchronous 

simulations, the same initial state can lead to different trajectories in the state space, due to the 

stochasticity of the updating scheme (Wang et al, 2012). The simulation algorithm used was based 

on genysis, a tool for synchronous and asynchronous modeling of gene regulatory networks, 

based on reduced ordered binary decision diagrams (ROBDDs) (Garg et al, 2008). The algorithm 

identifies all steady states / attractors that can be reached, by efficiently investigating all possible 

asynchronous state transitions. It is worth noting that for the construction and simulation of the SIN 

model we assumed that, for scaffold proteins, “active” (or, in Boolean terms, 1) corresponds to a 

state that permits the assembly of signaling complexes. 

 

Initial simulations 

The asynchronous simulation of the initial model candidate resulted in 4 attractors (figure 2.3).  

Note for the reader: To facilitate the discussion on the model’s design and results, the 

nomenclature for model nodes used is the protein name in lower case, without the letter p in the 

end; for example cdc7 instead of Cdc7p. For the interpretation parts, the appropriate 

nomenclature is used for gene and protein names. 
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Figure 2.3: Initial model steady states and attractors. The 4 attractors deriving from the initial 

simulation. The attractors are shown as horizontal lanes, separated by black lines. For each 

attractor, every model state is represented by a line. Grey boxes correspond to active (1) genes 

and white boxes to inactive (0). 

 

Unperturbed model attractors can provide information about the phenotypes of the system under 

study. In our case, we would expect the presence of a steady state (or attractor) similar to a wild 

type “septating” yeast, and possibly of one resembling the case when septation is not triggered. 

Indeed, computing the attractors there were three attractors where the main scaffold and SIN 

components (cdc11, spg1, sid1, cdc7) were active as expected (Bardin & Amon, 2001; Sparks et 

al, 1999) and one where there was a formed scaffold but inactive SIN components (attractor SS2, 

as represented at figure 2.3). Other participating nodes yielded unexpected results, such as sid2 

and sid4 that had the same state in all attractors contrary to expectations (Bardin & Amon, 2001; 

Sparks et al, 1999). Specifically, sid2 appeared always active, since the only inhibitory incoming 

edge from Nuc2p was always inactive due to missing regulation. Sid4 remained inactive due to a 

positive feedback loop with its inhibitor, dma1.  

Model evaluation and scoring development 

In order to evaluate the model, we designed a scoring method, based on computing a similarity 

score between the occurring steady states and experimentally characterized gene perturbations. 

To score the model, we selected a test set of 7 nodes: cdc16, cdc7, spg1, sid1-cdc14, sid4, sid2-

mob1 and cdc11, with activation states indicative of the expected phenotype. The selected genes 

and complexes have known activation states, both at the multiseptated and non-septated 

phenotype, as shown in table 2.1. Additionally, we selected a number of knock-out and over-

expression perturbations that have a known phenotypic outcome as a way to benchmark the 

predicted steady state (table 2.3).  
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Scoring test set genes and activation states 

 Multiseptation No septation 
cdc16 0 1 
cdc7 1 0 
spg1 1 0 
sid1-cdc14 1 0 
sid4 1 0 
sid2-mob1 1 0 
cdc11 1 0 

 

Table 2.1: Test set gene states. The expected activation state of all genes and complexes 

forming the scoring test set in the case of multiseptated and no septated phenotype.	
  

 

 

Gene perturbation set and phenotypic outcomes 

Experiment Phenotype 
spg1 KO no septum 
spg1 OE multiseptum 
cdc16 KO multiseptum 
byr4 KO multiseptum 
byr4 OE no septum 
cdc7 KO no septum 
cdc7 OE multiseptum 

 

Table 2.3: Gene perturbation set.	
  7 gene perturbations used for model candidate scoring, and 

their phenotypic outcome. 

 

For a given model candidate, we performed the test gene perturbations in silico, by perturbing the 

gene state to remain inactive (for KO) or active (for OE) during the whole simulation. For each 

occurring steady state we defined a vector x containing the states of test genes 1,2,…,N.  

                          
Gene states could take the values 1 for active, 0 for inactive and 0.5 for oscillating cases that can 

be observed in cyclic attractors. The expected values of the test genes for each perturbation, 

according to prior knowledge, are given by the respective vector y 

      

Therefore, the score s for each steady state for N genes is given by 

      

x = (x1, x2, ..., xN)

y = (y1, y2, ..., yN)

s =
NX

n=1

|xn � yn|
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In cases where more than one steady state for a perturbation experiment existed, the steady state 

with the highest score (smax) was selected. The overall model score S was defined as the average 

of smax for M test set perturbations.  

  
A practical example of the scoring process is presented schematically in figure 2.4. 

In the case of our model where 7 nodes are used as test set, the score can range from 0 to 7. A 

score of S=7 indicates that the model fully describes the selected perturbations, whereas a model 

with S=0 has no descriptive power for the test perturbations. Our initial model, as constructed from 

the prior knowledge body, had a score S=4.81.  

 

 
Figure 2.4: Model scoring process example. A number of gene perturbations with known 

phenotypic effect were selected as test set for the model optimization. During the optimization a 

number of genes were tracked, chosen because their activation state was known in the 

perturbation test set. For each model candidate, the perturbation test set was performed in silico 

and the simulated results were compared to the expected. The model then received a similarity 

score. 

S =
1

M

MX

m=1

smax

(n)
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Model optimization and refinement 

In order to correct the model to better describe the current state of our knowledge, we established 

an optimization procedure. The first step of the optimization workflow was to perturb the initial 

candidate model and score it. The model would then go through a refinement stage, which 

included several iterations of additions, modifications or deletions of regulatory edges, resulting in 

a number of new model candidates. Thereafter, the candidates would be perturbed and scored. 

Models that scored higher than the initial models were kept for further optimization iterations. This 

method produced a tree-like structure of model candidates, with some refinement attempts being 

rejected immediately while other branches were further explored. 

 

As mentioned, during the refinement step of the optimization a number of regulatory edges were 

added, deleted or modified. The decision for these changes was based on a number of principles, 

listed below.  

 

Feedback loops: In biology, a feedback loop is a circuit of any length that begins and ends at the 

same node. Feedback loops can be positive or negative, depending upon the parity of the number 

of negative interactions in the loop. Positive feedback loops are indicative of multistationarity and 

negative feedback loops of homeostasis (Plahte E., 1995) (Ferrell et al, 2011).  

 

Identifying the feedback loops of the system is of crucial importance for the decision making during 

optimization. The aim is to include and maintain the biologically known feedback loops of the 

system throughout the optimization process. In practice, this corresponds to modifying the network 

topology by adjusting the regulatory links and the nodes connectivity.  

 

An example of applying this principle at the SIN model optimization is the deletion of the sid4 

inhibition edge by dma1, which was part of the initial network (as described in papers (Goyal et al, 

2011; Johnson & Gould, 2011)). Dma1 used to be under constant positive regulation by cdc11, 

which consequently placed sid4 under constant negative regulation. Therefore, sid4 would stay in 

an inactive state. The problem was solved after removing the inhibition interaction. 

	
  

Source nodes: There are cases where nodes act as activators/inhibitors, but their regulation is 

absent from the model, as they are input feeds for the system. In modeling terms, these nodes (i.e. 

source nodes) have only outgoing edges but no incoming. Source nodes can be a major problem, 

as they appear constantly inactive during the simulation, which can bias the state of every entity 
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under their regulation. In this case missing regulation can be added directly at the source node or 

the compounds under its regulation. 

 

An example of altered information flow by source nodes at the SIN, was the case of the byr4-cdc16 

complex. The complex was inhibited by etd1 which had only one incoming inhibition edge by pab1, 

a source node. Being a source node, pab1 remained inactive, therefore fixing etd1 in a 

permanently active state. Consequently, the byr4-cdc16 complex was constantly under a dominant 

inhibitory regulation. The problem was solved by removing the etd1⟞byr4-cdc16 inhibitory rule, an 

interaction that was characterized as unsure by our biocuration (Lahoz et al, 2010). 

 

Conflicting information or low confidence level: The confidence level assignment for every 

interaction in the database is very helpful during optimization. Interactions that are labeled as 

uncertain or conflicting were selected more easily to undergo re-evaluation. Especially in the case 

of conflicting information, different suggested scenarios can be used as alternative regulations. For 

example, according to Li et al. (2000), Byr4p localization to SPBs during interphase maintains 

Spg1p in an inactive form (Li et al, 2000). However, the opposite statement is claimed by Furge et 

al. (1998), according to which in early mitosis, when Cdc16p leaves the pole (Wachowicz et al, 

2015) “Byr4p appears to stabilize the GTP bound, active form of Spg1p” (Furge et al, 1998). In this 

case, the regulatory rules included in the model were corresponding to different stages of the cell 

cycle. Having both regulations during the same simulation was not meaningful, since byr4 was 

acting both as an activator and an inhibitor of spg1. The issue was addressed later, when we 

partially implemented cell cycle regulation in our model (this is described in detail later in the 

thesis). 

Assessment of single perturbation analysis 

After going through the optimization stage, we started exploring and testing the best model. First, 

we performed all single gene perturbations in silico, both KO and OE. We then used exploratory 

principal component analysis (PCA) on all occurring steady states, in order to observe the 

contributions of genes to phenotypes and the number of possible derived phenotypes. Figure 2.5 

shows the PCA plot, for the first 2 principal components, which captured most of the data variation 

as indicated by the eigenvalues.  

 

The PCA analysis revealed, that the steady states of all possible perturbations tend to form a small 

number of clusters. For each perturbation there were 2 to 4 reached steady states, out of the 243 

state possibilities. This observation agrees with experimental observation, where a small number 
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of phenotypes can be observed during septation. Moreover, most of SIN scaffold and signaling 

genes have a similar contribution in the steady states, as expected.  

 

            
Figure 2.5: PCA analysis of all single gene perturbations. Principal component analysis of all 

single gene perturbations, represented as a biplot. Each cross corresponds to a steady state of a 

perturbation (e.g. rum1 k.o., steady state No1). 6 main clusters are formed. Nodes with small 

contribution to the variation were excluded from the graph to avoid a noisy representation around 

0.	
  	
  

Assessment of double perturbation prediction 

Experimentally performing single gene perturbations in fission yeast is time consuming and has 

been done by yeast biologists for many years, since most gene deletion mutants are available. 

However, moving towards more combinatorial, complicated experiments, as, for example, multiple 

perturbations, soon becomes challenging. Following the strategy of single perturbations, we 
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examined all possible combinations of double perturbations, KO and OE, in silico. The 3362 

experiments performed, yielded many different steady states. To evaluate the similarity of the 

steady states of each experiment to the phenotypes of interest, we used the evaluation system 

described above, scoring the experiments both for their similarity to the multiseptated and to the 

non septated phenotype. Figure 2.6 shows a heatmap of all double perturbations and their 

similarity to the multiseptated and the non septated phenotype. 

 

 
 

Figure 2.6: In silico predictions of double gene perturbations. Heatmap of steady state 

similarity to multiseptated phenotype, for all possible combinations of in silico double perturbations. 

The state of 7 genes was used to score the perturbed networks. For example, in 5a, byr4 k.o. – 

sid4 k.o. has a score of 7, which indicates that the activation state of all test genes is in agreement 

with the multiseptated phenotype. 

Model optimization assessment 

To assess the outcome of the model optimization process, we compared the score distribution of 

all double mutants to equivalent distributions where a random set of genes is selected. 1000 score 

sets were selected by a randomization process, having the same characteristics as our score S. 
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Our hypothesis was that if the distribution of random scores is similar to the distribution of S, our 

model will validate any random truth, which would downgrade its predictive value. Figure 2.7 

shows the density distributions of 1000 random score sets, in contrast to the true score for the 

multiseptated phenotype. Random scores produce a normal distribution as expected whereas the 

distribution of true score S is significantly different. 

 
Figure 2.7: Model optimization assessment. Score distribution of best scored steady states for 

multiseptated phenotype using the developed score (S) and 1000 sets of randomized scores. Each 

randomized set consists of the same number of genes as the original score. The distributions 

reveal a significant difference between the actual model score and hypothetical scores. 	
  

Byr4 KO – sid4 KO phenotype prediction 

A counter-dogmatic prediction was generated when we performed the double perturbation in silico 

experiments, according to which in a double KO of sid4 and byr4 we should observe a 

multiseptated phenotype. The prediction was experimentally tested using 2 approaches. 

 

Tetrads of crosses between sid4::KANR pREP-sid4 ura4-D18, ade6-M210, leu1-32 and 

byr4::ura4+ lys1::byr4-GFP ura4-D18, leu1-32 were dissected and the genotypes of growing 

colonies were assessed using replica-plating on selective media. Byr4 and sid4 are on different 
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chromosomes (I and II, respectively). Mendelian segregation predicts that 25% of progeny should 

be wild-type, 25% should be either single mutant and 25% should be double mutants. Since the 

phenotype of the double mutant was not predictable, we examined the phenotype of the colonies 

from non-parental ditype (NPD) tetrads, where two spores give rise to a wt colony and two should 

be double mutants. In all these cases, the germinated candidates of double sid4 and byr4 mutants 

(12/12 cells) were elongated and lysed, with no visible septa, suggesting that double null mutant 

cells do not septate. 

 

To confirm this result, the spores of cross sid4:: KANR pREP-sid4 ura4-D18, ade6-M210, leu1-32 

and byr4::ura4+ lys1::byr4-GFP ura4-D18, leu1-32 were incubated in  36°C in minimal medium 

(Hergovich & Hemmings) supplemented with 100mg/l adenine and leucine in order to permit the 

germination of byr4::ura4+ sid4+ and byr4::ura4+ sid4- KANR cells. Cells were incubated for 13.5h, 

fixed with 70% ethanol and stained for DAPI and Calcofluor for nuclear and cell wall/septum 

labelling, respectively. Out of 238 cells examined, 117 (49%) showed the multiseptation phenotype 

expected for byr4 null sid4+ cells, while 121 (51%) cells showed an elongated multinucleated 

phenotype, without septa suggesting that double null mutant will not septate. Therefore, the 

observed phenotype (no septum) did not match the model’s prediction (figure 2.8). 

 

     
Figure 1.8: Experimental evaluation of byr4 KO – sid4 KO prediction. The imaging results of 

germinated spores of byr4-null sid4+ and byr4-null sid4-null cells. 49% of the examined cells were 

multiseptated, which is typical for byr4 null sid4+ cells. The rest of the cells were elongated and 

multinucleated without septa, suggesting that the double null mutant does not septate.  
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 Even though the prediction was not successful, the experimental outcome was used to modify our 

scoring rules. The fact that a byr4 KO - sid4 KO results in a non septated phenotype was added as 

an additional rule in our scoring.  

Change of strategy to include effective CDK regulation 

During our initial modeling efforts, correctly describing CDK regulation through cell cycle was 

always problematic. A weakness of Boolean modeling, inherent to the definition of the method, is 

that there is no possibility to observe the effects of different activation levels of a protein upon the 

system, neither to control its activation curve during the simulation. What can be observed and 

adjusted are the initial conditions of the simulation, and the regulatory rules of the model. Given 

this limitation, we were unable to modify the regulation of Cdc2p/CDK1, in a way that is would 

reproduce the activity fluctuation which is important during cell cycle and for SIN related events 

(Stern & Nurse, 1996). The problem remained, even when we concatenated the cell cycle Boolean 

module that was publicly available (Davidich & Bornholdt, 2008). We, therefore, decided to change 

our strategy and restructure our model so that we have control over the levels of CDK during the 

simulation. This new approach allowed us to accurately describe SIN related events during 

different stages of the cell cycle and was successfully used as a predictive tool for multiple 

perturbation scenarios. The construction method and characteristics of the restructured model, as 

well as the optimization and prediction processes that followed, are described in detail below. 

SIN modeling using CDK switches 

Cdc2p/CDK1 influences the SIN both positively and negatively. Active Cdc2p inhibits the SIN early 

in mitosis; its inactivation is required for septum formation and to establish SIN protein asymmetry 

(Chang et al, 2001; Dischinger et al, 2008; Guertin et al, 2000; He et al, 1997; Yamano et al, 

1996). Furthermore, Cdc2p and the Byr4p-Cdc16p GAP may cooperate to prevent septation in 

interphase (Cerutti & Simanis, 1999). However, Cdc2p and Plo1p also collaborate positively to 

ensure removal of Byr4p from the SPBs and facilitate SIN signaling in anaphase (Rachfall et al, 

2014). Failure to increase CDK levels during early mitosis will block cytokinesis, since the cells do 

not enter mitosis. However, failure to decrease CDK levels through mitosis will block cytokinesis. 

Thus, CDK levels need to increase to permit entry into mitosis, after which cytokinesis will occur. 

However, this will only happen once CDK activity decreases to a very low level, and cells exit 

mitosis. The model must therefore accommodate these CDK-dependent regulatory events.  
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As a first step towards this goal, we introduced three independent nodes for CDK, representing the 

CDK levels before, during and after mitosis. CDK-L corresponds to the low CDK levels during 

interphase; these prevent re-replication of DNA, but are insufficient for entry to mitosis (Baum et al, 

1997; Coudreuse & Nurse, 2010), CDK-H represents the high level of CDK activity found in early 

mitosis. Finally, CDK-0 represents the very low CDK activity in late mitosis as cells undergo the M-

G1 transition. This multi-node representation of CDK allows us to describe the SIN-related 

phenotypes corresponding to several stages of the cell cycle, using the CDK nodes as inputs. For 

example, setting CDK-L constantly on, indicates that we are simulating the events during 

interphase, while, CDK-H on represents early mitosis and CDK-0 on represents late mitosis (figure 

2.9).  

Model refinement and simulation results 

This model configuration that uses CDK levels as control nodes for the simulation of cell cycle 

events, allowed us to clearly define the expected steady states of the system and set our 

refinement strategy. First, we attributed the PKN interactions involving CDK to the correct CDK 

node. For example, an activation link from CDK-H was added towards Plo1p (figure 2.9), which in 

turn will reinforce the activity of CDK in a positive feedback loop (Grallert et al, 2013; Tanaka et al, 

2001). Following the attribution step, the model was evaluated using a number of well 

characterized in silico perturbations whose phenotypic consequences are known; knock-out of 

cdc11, spg1, cdc16, byr4, and cdc7. For the evaluation, the above 5 knock-out perturbations were 

simulated, by setting the corresponding node to 0 throughout simulation. A fixed set of nodes, with 

activation states indicative of the expected phenotype was selected to score the model’s ability to 

correctly reproduce the mutation’s effects. The scoring set includes sid4, cdc11, byr4-cdc16, spg1, 

cdc7, sid2-mob1 and sid1-cdc14. For each in silico perturbation, the resulting steady states were 

evaluated according to the number of the scoring set nodes that had the expected activation state. 

 

We proceeded by refining the connections within the network. A refinement cycle consisted of 

altering an edge of the network, perturbing the model and evaluating the simulation outcome of the 

perturbations test set. The alterations could involve additions and deletions of regulatory edges, or 

modifications of the existing regulatory rules. The reasoning behind each change of the model’s 

regulatory rules was based on several factors, such as the confidence level of each interaction, 

coupled with information from the published literature, as well as forming alternative logical rules of 

the given information to better represent the biological reality of the interaction. For example, “A 

inhibits B” can be alternatively encoded as “NOT A activates B”, and is more suited for cases 

where the inhibition is not dominant. During this process we maintained the known, required 
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connections of the model and minimized the model’s complexity by removing nodes that no longer 

served any regulatory role in the model. An example of the latter is the removal of cell cycle 

regulatory elements such as Cdc25p, Wee1p, Slp1p and Rum1p, which were removed after the 

simplification of the cell cycle representation using multi-node CDK. The final, optimized network is 

presented in figure 2.9. A full list of the edges comprising the final network, together with the 

justification for the inclusion of each edge, can be found in the appendix. 

 

 
Figure 2.9: The CDK-switch model. The restructured model, using 3-node representation of CDK 

activity, in its final, optimized form. Nodes in green are used as switches, and they are turned on to 

represent different stages of the cell cycle: interphase, early mitosis and late mitosis. SAC: spindle 

assembly checkpoint, APC: anaphase-promoting complex. 

 

The optimized model was used for in silico experiments in which a combination of nodes was 

perturbed and the phenotypic outcome in the interphase, early mitosis and late mitosis CDK-states 

were determined. A simulation of the wild type model, where no perturbation is introduced, is 

presented in figure 2.10.   

 

To simulate interphase, CDK-L is set to 1, and Ppc89p is set to 1 as well, to permit “binding” of 

scaffold proteins to the SPB. In interphase, the model simulation results in a steady state where 
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Byr4p and Cdc16p are present and able to form the GAP complex, therefore active. The scaffold 

proteins Sid4p and Cdc11p are also present (therefore “active” according to our initial assumption 

for scaffold molecules), but no SIN signaling occurs due to the inhibitory effect of the Byr4p-

Cdc16p GAP.  

 

Early mitosis is simulated by setting CDK-H, Ppc89p and the spindle assembly checkpoint 

(Musacchio) to 1. Activation of the SAC inhibits the anaphase promoting complex (APC), therefore 

blocking the decrease of CDK levels and mitotic exit (Jia et al, 2013; Musacchio, 2011). The SIN 

scaffold is still formed, as expected. Cdc16p is absent from the SPBs in early mitosis, preventing 

formation of the GAP. This allows SIN signaling to initiate, and we observe that all the main 

components of the SIN are active (Plo1p, Spg1p, Cdc7p, Sid2p-Mob1p), apart from Cdc14p-Sid1p, 

which is inhibited by high CDK activity (Dischinger et al, 2008; Guertin et al, 2000).  

 

Late mitosis is represented by setting CDK-0 and Ppc89p to 1 during the simulation. There are 2 

resulting steady states of the system simulation. In one state, the SIN signaling scaffold is present, 

the Byr4p-Cdc16p complex is formed, and all SIN components, except Plo1p, are inactive. In the 

other state, Byr4p-Cdc16p is not active, and all proteins of the SIN scaffold and signaling including 

Cdc14p-Sid1p are active. Intriguingly, these resemble the asymmetric constellation of proteins 

observed at the old and new SPBs in late anaphase B (see (Goyal et al, 2011; Johnson et al, 

2012; Simanis, 2003) for review), with the exception of Sid2p-Mob1p, which is present on both 

SPBs, but only active in one of the two states of the model. Setting GAP function to 0 abolishes the 

state that resembles the oSPB. Though it is often assumed to be the case, there is scant evidence 

to support the view that localization of SIN proteins to the SPB is a faithful readout of their in vivo 

activity. There is no data addressing whether Sid2p signals from one or two SPBs in late 

anaphase. Future experiments will investigate this. A detailed heatmap showing the activation 

state of all nodes of the model for all experiments presented herein can be found in the appendix. 

Model evaluation by assessing experimentally validated in silico perturbations 

The optimized model can describe the SIN related events during interphase, early and late mitosis. 

In order to evaluate the model’s ability to describe current knowledge regarding S. pombe mutants, 

we performed a series of in silico knock-out and constant activation experiments mimicking those 

described in the literature that have an established phenotype. Figure 2.10 summarizes the steady 

states yielded after simulating interphase, early and late mitosis behavior of core gene mutants. 

Interestingly, in all the in silico experiments we obtained steady states where the nodes displayed, 

overall, the expected activation state. More specifically, cdc11 knock-out completely blocks 
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septation. Both, byr4 knock-out and cdc16 knock-out have the same effect, which is failure to 

inhibit SIN signaling, and therefore SIN triggering in interphase. In a knock-out of either spg1 or 

cdc7, signaling fails, with Spg1p still getting activated in cdc7 deletion, indicating that Spg1p acts 

upstream of Cdc7p, as experimentally proven.  

                        
Figure 2.10: In silico steady states of the SIN, in wild type and mutated cells. Steady states 

deriving from simulations performed on the final model. The boxes on the left indicate the 

experiments performed, which can be knock-out (KO) or over-expression (OE). When there is 

more than one gene in the box, it is a double perturbation. For each perturbation, 3 experiments 

were performed: interphase simulation (indicated as i), early mitosis (eM) and late mitosis (lM, with 

suffixes new and old when there are 2 resulting steady states, indicative of late mitosis 

asymmetry). Blue boxes correspond to active proteins, white to inactive and light blue to proteins 

that can be either active or inactive at the resulting steady states of the system. 
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Apart from the experiments that were used as training set for the model refinement, we performed 

double mutant experiments that had not been used as part of the test set used to formulate the 

model. These experiments assess the predictive value of the model, as the in silico predictions are 

in accordance with the expected results. Specifically, the double delete of cdc11 and cdc16 

simulation predicts that cells should not septate, as shown in figure 2.10, with supporting evidence 

from the literature (Marks et al, 1992). A cdc7 over-expression in spg1 delete will septate, in 

agreement with studies (Schmidt et al, 1997). Moreover, cdc7 over-expression will produce 

septation in the absence of Cdc11p (figure 2.12), as confirmed by the literature (Fankhauser & 

Simanis, 1994). In this project, setting a node to 1 throughout the simulation has been used to 

simulate over-expression in silico, except in cases where it is known that the over-expression 

phenotype results from an indirect effect, such as the titration of another protein. 

 

Other in silico experiments performed during the optimization provided us with insights into 

potential knowledge gaps regarding SIN regulation, as well as the limitations of our model. One 

such example was a prediction that a byr4-KO sid4-KO should septate. The relevant strains were 

constructed and analyzed, and the cells were found not to septate. This allowed us to refine the 

model, by identifying regulatory links that would permit this state to be achieved and target them as 

candidates for edge deletion. Moreover, the nuc2 inhibitory links that were present in the PKN 

revealed our limitation of describing events that occur at the end of septation and the incomplete 

regulatory inputs to cdc16 helped us discover a potential link with fin1. The nuc2 and fin1 cases 

are discussed in detail below.  

Does Nuc2p have a role in regulating the SIN in interphase? 

Increased expression of the APC/C component nuc2 blocks septation, while incubation of nuc2-

663 at low restrictive temperature results in cutting of the cell (Hirano et al, 1988; Kumada et al, 

1995). Analysis of how the SIN is reset at the end of mitosis revealed an APC/C-independent role 

for Nuc2p (Chew & Balasubramanian, 2008). Nuc2p interferes with formation of the Cdc7p-Spg1p 

complex, possibly by stimulating the GAP activity of Byr4p-Cdc16p. Since our current model does 

not encompass resetting of the SIN, we tested whether the inhibitory link of nuc2 towards the 

Cdc7p-Spg1p complex should be included. Thereafter, we modeled the effect of inactivating Nuc2p 

in silico upon SIN behavior in interphase. The predicted outcome when including the Nuc2p 

inhibitory link was two steady states; one with inactive SIN and one with cells that septate in 

interphase.  
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To test whether this would be the case in vivo, the strain nuc2-663 leu1-32 was arrested in S-

phase by growth in medium containing 12mM hydroxyurea (HU). After 5h at 25°C, cells were 

shifted to 36°C to inactivate Nuc2p, and samples were fixed at hourly intervals, and stained with 

DAPI (to reveal DNA) and Calcofluor (to reveal the division septum). Before shift to 36°C nuc2-663 

(93%) and nuc2+ cells (97%) were mononucleate with no septum, consistent with an arrest in 

interphase. Examination of nuc2+ cells revealed that the interphase arrest was maintained for the 

first two hours after temperature shift (93% and 96% of cells were mononucleated without a 

septum, respectively). Cells then escaped from the checkpoint arrest and entered mitosis (78% 

and 44% of cells in interphase, at 3h and 4h, respectively). Analysis of nuc2-663 revealed that 

93% and 98% of cells remained in interphase 1h and 2h after shift, respectively. At 3h and 4h, 93 

% and 97% of cells were mononucleated without a septum. Importantly, the percentage of 

mononucleated, septated cells was ≤4 at all the time points, which is consistent with the view that 

Nuc2p does not play a significant role in regulating septation in interphase, once the SIN has been 

reset during mitotic exit. 

Fin1 over-expression may contribute to inactivation of the GAP for Spg1p at mitotic 

onset 

Fission yeast has a single orthologue of the conserved never-in-mitosis (nimA) kinase, called fin1 

(Krien et al, 1998). Fin1p is not essential, but is important for spindle formation and regulates the 

affinity of Plo1p for the SPB (Grallert & Hagan, 2002). Fin1 mutant cells are delayed in the G2-M 

transition and Fin1p is in part regulated by Sid2p (Grallert et al, 2012). This link between fin1 and 

the SIN prompted us to include fin1 in the SIN regulatory circuit.  

 

In the PKN of the model there were no negative regulators targeting GAP components during early 

mitosis, which resulted in suboptimal outcomes during the simulations of early mitosis; i.e. the 

simulation would produce a steady state where the GAP was still active in early mitosis. Since 

removal of the SIN GAP from the SPB is an early step in the activation of the SIN after entry into 

mitosis (Cerutti & Simanis, 1999; Li et al, 2000), we modeled whether GAP components could be 

regulated by fin1. Since Cdc16p contains several sites matching the established consensus for 

mammalian Nek2 (one of the orthologues of nimA), the effect of increased expression of fin1 on 

Cdc16p localization was investigated. Expression of fin1 from the medium strength nmt-41 

promoter (Basi et al, 1993) resulted in displacement of Cdc16p-YFP from SPBs in interphase cells 

(figure 2.11A). This required catalytically active Fin1p (figure 2.11B), and was not due to alteration 

of the steady state level of Cdc16p (figure 2.11C). Expression of fin1 promotes recruitment of 

Plo1p to the SPB in interphase cells (Grallert & Hagan, 2002); however, increased expression of 
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an activated allele of plo1 did not displace Cdc16p-GFP from the SPB (figure 2.11D) suggesting 

that its removal from the SPB is not a consequence of septation being activated by Plo1p. 

 

                  
Figure 2.11: Fin1p over-expression results in Cdc16p disassociation from the SPB. (A) and 

(B) Cells expressing the SPB marker sad1-CFP and cdc16-YFP were induced to express fin1 or a 

catalytically inactive fin1 mutant from the medium strength nmt41 promoter (Basi et al, 1993). The 

percentage of interphase cells retaining an SPB-associated Cdc16-YFP signal was plotted. (C) 

Cells bearing the cdc16-HA allele were induced to express fin1. Protein extracts were prepared 

22h after induction were analyzed by western blotting using monoclonal antibody 12CA5. The anti-

α-tubulin monoclonal antibody TAT-1 (Woods et al, 1989) was used as a control. (D) Cells 

expressing cdc16-GFP were transformed with a plasmid expressing Plo1p from the full-strength 

nmt1 promoter (Ohkura et al, 1995). Expression was induced for 16h at 29°C and the localization 

of Cdc16p-GFP was examined. The asterisks indicate septated cells; note the presence of a SPB 

Cdc16p-GFP signal in these cells, indicating that despite the induction of septation, Cdc16p-GFP 

is not displaced from the SPB. Experiments and figure produced by P. Collin.  
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An unexpected prediction: cells overexpressing cdc7 will septate in the absence of 
sid4 

The final, optimized model describes the existing knowledge of the SIN, in wild type and known 

mutants. One of the main goals of developing this Boolean model was to use it predictively by 

performing in silico perturbations of interesting and/or experimentally challenging mutants. The 

regulatory relationships described in this model predict that increased expression of cdc7 should 

produce septation in the absence of Cdc11p and Sid4p (figure 2.12A). Previous studies have 

shown that spg1 overexpression will induce septation and permit colony formation in a cdc11 

mutant (Schmidt et al, 1997), but not a sid4 mutant (Balasubramanian et al, 1998). Moreover, 

increased expression of cdc7 will permit cdc11 mutants to form colonies (Fankhauser & Simanis, 

1994). In contrast to the situation with spg1 overexpression, induction of cdc7 expression from the 

very strong nmt1 promoter in sid4-SA1 at 36°C did not permit colony formation, but septa were 

formed in the cells (figure 2.12B). To test whether increased expression of cdc7 would permit 

growth of a sid4 mutant, cdc7 was expressed from the ADH1 promoter, integrated at leu1. The 

leu1::pADH1-cdc7 strain has a very high septation index at 19°C (>90%) and is barely capable of 

colony formation at 25°C and above (see figure 2.12D), with cells dying multiseptated at higher 

temperatures (see figure 2.12C). The strain sid4-SA1 leu1::pADH1-cdc7 was capable of colony 

formation at 27°C and 29°C (figure 2.12D), where neither parental strain could do so. Previous 

studies have shown that increased expression of cdc7 increases the level of kinase activity in 

immunoprecipitates of Cdc7p (Fankhauser & Simanis, 1994). This shows that septation can occur 

if the function of the scaffold proteins is compromised, provided the expression of Cdc7p is 

sufficiently elevated. 
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Figure 2.12: Cdc7p over-expression in a sid4 mutant will result in septation. (A) Steady 

states of in silico, double mutation experiments. The model predicts that in the absence of SIN 

scaffold proteins (Cdc11p or Sid4p) and over-expression of Cdc7p, the cell will septate. (B) sid4-

SA1 leu1-32 was transformed with a REP1-based plasmids (Basi et al, 1993) expressing cdc7; 

empty vector served as a control. Cells were grown to exponential phase in EMM2 medium at 

25°C containing 2mm thiamine. Expression was induced by washing with EMM2 and growth for 

16h at 25°C; cells were then shifted to 36°C for 5h, fixed, and stained with DAPI and Calcofluor as 

described (Moreno et al, 1991). The scale bar represents 10 µm. Note that the cells carrying empty 

vector have become elongated and multinucleated, while 75% of cells expressing cdc7 have one 

or more septa. (C) The strain leu1::pADH1-cdc7 was grown to exponential phase in YE medium at 

19°C. A sample was taken and cells were fixed and stained with DAPI and Calcofluor. The 

remainder of the culture was incubated for 5h at 36°C before fixation. Note the elevated 

percentage of septated cells. (D) The indicated strains were grown to exponential phase in YE 

medium, counted, and diluted to 106 ml-1. 10 µl of serial 5-fold dilutions were spotted on plates, 

allowed to dry and then incubated at the indicated temperature until the wild-type control had 

formed colonies. Experiments and figure (B, C and D) produced by P. Wachowicz. 

A 
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Discussion 

In this project we use qualitative Boolean modeling to represent and explore the regulatory 

relationships of genes participating in the Septation Initiation Network of fission yeast. Qualitative 

modeling is a powerful method for systems with restricted kinetic information and it is 

computationally efficient, allowing for thousands of in silico experiments in a short time, even in 

networks with hundreds of nodes. Moreover, it can be used predictively, to test combinations of 

mutations that would otherwise be time consuming, expensive and/or experimentally challenging to 

construct. The value of such models increases significantly when the model is coupled with in vivo 

experiments. Such experiments can be used to evaluate the regulatory rules, help the optimization 

procedure and test the predictions of the model (figure 2.13). 

 

                                             
Figure 2.13: Model construction and optimization workflow. The Prior Knowledge Network 

(PKN) is constructed after collecting relevant information from various sources, including network 

databases and literature. The PKN is translated into logical functions, describing the regulatory 

relations among genes products. The logical model is simulated under the preferred conditions, 

resulting in one or more steady states, where all the logical rules are satisfied. The model goes 

then through an optimization procedure, where the goal is to fit the resulting steady states with 

available experimental data by altering regulatory rules. The process is iterated until the simulation 

fits the available data. The model can then be used as a predictive tool, by performing in silico 

perturbations. Validation of the predictions can lead to discovery of missing regulatory links that 

are then added to the PKN. 



	
   44	
  

 

We report the construction of an extended, Boolean model of the SIN network that uses CDK 

levels as control nodes to simulate SIN related events in interphase, early mitosis and late mitosis. 

The prior knowledge network was manually curated, providing a trustworthy initial framework that 

could then be further optimized (figure 2.13). Information reported in literature (and used in network 

databases) can be conflicting, outdated, incomplete or based on in vitro knowledge only. 

Therefore, expert biocuration provides a significant advantage in order to filter the available 

information and construct a comprehensive network. 

 

We optimized the model using in silico experiments with well-established outcomes based on in 

vivo data, in order to recapitulate the SIN state in different stages of the cell cycle (figure 2.13). A 

challenging aspect of qualitative modeling, and especially of asynchronous update, is to interpret 

the resulting steady states of the simulations. This is because the simulation might result in a 

number of steady states that are theoretically possible but never reached in vivo. Our approach 

was to use CDK levels as an initial condition for the simulation, indicating the stage of the cell cycle 

that the simulation corresponds, to reduce unrealistic simulation outcomes. We further restricted 

the simulation space by taking as a fact that the scaffold has the potential to be constructed at all 

times by setting the SIN-SPB linker protein Ppc89p to 1.  

 

The optimization process under the controlled environment of CDK switches provided important 

insights into SIN regulation during the cell cycle. In the case of the fin1, the incorrect simulation 

results that were obtained in early mitosis helped us locate a potential missing link in the PKN. 

Increased expression of fin1 removes Cdc16p from the SPB. At present we do not know whether 

this is by direct phosphorylation of Cdc16p or an indirect effect; this will be the subject of future 

analysis. However, the important point in this context is that the modeling revealed the requirement 

for an additional control point to turn off the GAP in early mitosis. The optimization strategy was 

also useful in evaluating the limitations of our model. An example of this is the role of Nuc2p in SIN 

regulation. In the PKN there were several inhibitory links from Nuc2p to SIN kinases, indicating the 

events in SIN resetting, after septation (Chew & Balasubramanian, 2008). The use of CDK 

switches restricts the cell cycle events that can be modeled, and our model does not presently 

incorporate resetting of the SIN at the M-G1 transition. Our modeling predicted that if Nuc2p 

continued to activate the GAP in interphase, extending the role proposed for it at the M-G1 

transition (Chew & Balasubramanian, 2008), then its inactivation in post-START cells could result 

in septum formation; in vivo analysis showed this was not the case. Thus, the modeling was useful 

in this case, to define the possible limits of the extent of the time-window in which Nuc2p is active 

towards the SIN.  
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The great value of creating an optimized qualitative model is that it can then be used predictively to 

perform difficult or iconoclastic experiments in silico. We focused on testing whether an over-

expression of SIN kinases would rescue SIN scaffold mutants. The model’s prediction was that 

over-expression of Cdc7p in a cdc11 or sid4 knock-out will still septate, a prediction that was 

experimentally validated. Future research can investigate how signalling in such double mutant can 

occur. To test whether signalling is cytoplasmatic and what it depends on, future investigation can 

focus on tagging Cdc11p, Byr4p-Cdc16p and Plo1p in the double mutant cells. The model can be 

used in the future for any combination of gene mutants, and hopefully provide interesting 

hypotheses that can be tested experimentally. 

Future directions of the project 

Future studies can focus on several aspects. To begin with, the M-G1 transition can be included in 

the model, and it can be later extended to include the complete CDK cycle. Spatial components 

such as SPB localization can also be incorporated, as well as post-translational modifications of 

SIN proteins during the cell cycle (Bajpai et al, 2013; Feoktistova et al, 2012; Singh et al, 2011). 

This should allow modeling of the role of the asymmetry of SPBs with regard to SIN protein 

association, building upon the analysis performed by Bajpai et al., 2013. Future versions of the 

model can attempt to incorporate Etd1p. Finally, the same framework can be used for the 

construction of a SIN model for meiosis, which presents significant differences from the mitotic 

regulatory network. The methods that could be used to achieve these goals are explained in detail 

below. 

 

CDK cycle integration in the model 

For the current version of our model we attempted to simplify the CDK activity cycle and its effect 

on SIN regulation by setting three discrete CDK levels as control nodes; interphasic CDK, early 

and late mitotic CDK. This CDK switch structure proved to be a useful tool in describing 

interphasic, early and late mitotic events, as well as predicting unknown mutations (Chasapi et al, 

submitted). However, it restricted the cell cycle events that can be modeled to those three stages 

of the cell cycle. For example, in the PKN there were several inhibitory links from Nuc2p to SIN 

kinases, indicating the events in SIN resetting, after septation (Chew & Balasubramanian, 2008). 

However, our current model does not incorporate resetting of the SIN at the M-G1 transition. This 

was illustrated in practice when, during our simulations we noticed that Nuc2p continued to activate 

the GAP in interphase, extending the role proposed for it at the M-G1 transition (Chew & 

Balasubramanian, 2008), then its inactivation in post-START cells could result in septum formation; 



	
   46	
  

in vivo analysis showed this was not the case. The model could, therefore, be extended to better 

incorporate the cell cycle event sequence. 

 

At a first stage, a fourth CDK node could be introduced, reflecting the transition from mitosis back 

to interphase. The workflow to be followed for this task is already defined by our previous work; 

using the same PKN as the current model, we can attribute the regulatory relations that take place 

during the transition from mitosis to interphase to the corresponding CDK node. During this 

process molecules that are not present in the model so far will be added, such as the 

phosphatases PP1 and PP2A, and, of course, interactions relating to SIN inactivation after mitosis.  

 

At a second stage, the cell cycle sequence can be fully incorporated to our model. This will be 

facilitated by the incorporation of the cell cycle Boolean module of fission yeast, by Davidich & 

Bornholdt (Davidich & Bornholdt, 2008). This version of the model will still use multinode CDK, but 

instead of CDK switches, where each simulation corresponds to a different stage of the cell cycle, 

it will use CDK checkpoints and during one simulation the CDK levels will change based on the 

activation state of the rest of the proteins in the system. Part of this link between CDK nodes is 

already present in our current model, even though for now it is only present for descriptive 

purposes. Specifically, in the current model the transition from early to late mitotic CDK is encoded 

as such: Activation of the spindle assembly checkpoint (Musacchio, 2011) inhibits the anaphase-

promoting complex (APC), therefore blocking the decrease of CDK levels and mitotic exit (Jia et al, 

2013; Musacchio, 2011).   

 

Incorporation of spatial aspects of SIN regulation into the model 

Our current Boolean model of the SIN describes certain cell cycle stages in a satisfactory manner. 

For example, in late mitosis the model reaches two steady states, representing the constellation of 

the new and old SPBs respectively. However, the model does not incorporate spatial aspects of 

SIN regulation for the moment. Such aspects would be the discrimination between the sequence of 

events in the old and new SPB and the changes complexes undergo when they associate with the 

SPB.  

 

For the next version of the model the spatial aspects of SIN regulation could be implemented. This 

can be approached in a variety of ways such as (a) introducing multi-node configurations for 

proteins that display asymmetric association with the SPBs in anaphase (b) introducing 

multivariate nodes to simulate the effect of changes in the post-translational modifications of SIN 

proteins during the cell cycle (Bajpai et al, 2013; Feoktistova et al, 2012; Singh et al, 2011) and (c) 

a combination of the above.  
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(a) Multi-node configuration 

Similarly to the multi-node representation of CDK fluctuations during the cell cycle, two or more 

nodes can be created for other components of the SIN. This can be particularly useful in cases of 

proteins that participate in the asymmetry establishment of the two SPBs. There, there could be 

two nodes per protein, one representing its presence at the old SPB (for example Cdc7p-old) and 

the other representing its presence at the new SPB (for example Cdc7p-new). In fact, we can 

perceive this configuration as duplicating the SPBs during mitosis, same as in vivo. The 

components of the model that have an identical effect on the SPBs stay as unique nodes and the 

events that drive asymmetry are adjusted to regulate differently the duplicated nodes. 

 

(a) Multivariate nodes 

An alternative (or complementary) approach is to create multivariate nodes for key components of 

the SIN that undergo changes in the post-translational modifications during the cell cycle. A good 

example of this is Cdc11p, whose changes in phosphorylation levels and their effect in asymmetry 

establishment are demonstrated at the paper by Bajpai et al., 2013. Indeed, future work can build 

upon this study and extend it to other key components of the SIN. The challenge using this 

approach lies in the amount of information needed for the correct regulation of the transition among 

node levels. For example let us assume that a protein displays 4 phosphorylation levels. In a 

multivariate configuration this will be encoded as node levels 0,1,2,3. In order for the simulation to 

work successfully, the order of node level transition has to be known, as well as the regulators 

responsible for each transition.  

 

Integration of Etd1p regulation in the mitotic cell cycle into the current model of the SIN 

The next version of the model can attempt to incorporate Etd1p. Though its effects upon SIN 

signaling are evident (Alcaide-Gavilan et al, 2014), the published information does not provide a 

sufficiently clear, direct link to SIN components to permit its unequivocal incorporation into our 

current model. To address this problem, a wide exploration approach can be followed. First, 

probable Etd1p regulators can be identified, based on literature and molecular information. Then, a 

collection of regulatory relations that can exist between Etd1p and the candidate regulators will be 

created. The parallel work on Etd1p at a wet lab such as Simanis lab will guide the choice among 

regulations to be tested. The collection of candidate models with the incorporated Etd1p relations 

will be simulated and scored according to their ability to reproduce known in vivo effects. To 
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choose among the best-scoring candidates in silico perturbations of unknown effects will be 

performed, and the results will be evaluated with in vivo experiments.  

 

 

 

Build a model of the SIN for meiosis 

Our previous work involved the creation of a Boolean model of the SIN during mitosis. Employing 

the same techniques, a SIN model can be constructed to describe events in meiosis, where the 

regulatory relations of SIN proteins differ substantially. Having already established the workflow of 

model creation and optimization is a great asset and will facilitate the fast and effective completion 

of this task. Specifically, a Prior Knowledge Network will be created, specific to SIN events in 

meiosis, using manual biocuration. The model will be simulated with software such as BoolSim and 

SQUAD (Di Cara et al, 2007), and will be optimized and evaluated using a set of well characterized 

knock-out and constant-expression perturbations that will be divided into a test set and a training 

set. The meiotic model of the SIN can be a great addition to our knowledge on S.pombe, providing 

complementary information and interesting comparisons with the already existing mitotic model 

(Chasapi et al, submitted). 

 

To conclude, it is worth noting that qualitative models such as the one presented here are 

oversimplifications of the actual regulatory processes; in our case of the regulation of the SIN. With 

advances in live monitoring of cell division and development of new fluorescent probes, we should 

be able to generate more accurate quantitative models for such a system. Our approach is 

nevertheless an important step towards a more comprehensive model that recapitulates known 

biology of the SIN and can be used as a hypothesis generator for complex experimental design. 
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Chapter 3 

 

Minimal Boolean models  
reproduce the wave expression  

of Clb proteins in the budding yeast cell cycle 
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(2015) Fkh transcription factors control timing of Clb expression to regulate waves of mitotic 

cyclins. (in preparation)  
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Cyclin control in budding yeast cell cycle 

In Saccharomyces cerevisiae, commonly known as budding yeast, the coordination between cell 

growth and DNA replication is guaranteed by two facts: (a) the transition to S phase only occurs 

when cells reach a critical cell size and (b) genome duplication is limited to once per cell cycle by 

several mechanisms. This coordination takes place during a narrow interval in the late G1 phase 

known as Start and it is connected to two crucial events. On the one hand, growth-dependent 

accumulation of waves of G1 (Cln) and B-type (Clb) cyclins regulates the order and the timing of 

cell cycle phases by binding to the kinase Cdk1 (also known as Cdc28) (Andrews & Measday, 

1998; Enserink & Kolodner, 2010; Fitch et al, 1992; Mendenhall & Hodge, 1998; Nasmyth, 1993; 

Nasmyth, 1996). On the other hand, the presence of Sic1, a potent inhibitor of Cdk1/cyclin 

complexes containing Clb but not Cln cyclins (Mendenhall, 1993; Schwob et al, 1994; Weinreich et 

al, 2001), prevents premature onset of DNA replication (Barberis et al, 2005a; Barberis et al, 

2005b). 

 

B-type cyclins Clb1–6 are expressed at different times and appear sequentially in specific cell cycle 

phases, resulting in a significant divergence of function (Bloom & Cross, 2007; Cross et al, 1999). 

Clb5,6 rise at the beginning of S phase and function primarily in the control of DNA replication 

(Schwob et al, 1994; Schwob & Nasmyth, 1993; Spellman et al, 1998). Clb3,4 increase in mid-S 

phase at about the same time as spindle pole bodies separate. Clb4 ensures proper alignment of 

the mitotic spindle with the cell division axis (Liakopoulos et al, 2003). However, there are still 

unanswered questions regarding their specific functions (Fitch et al, 1992; Richardson et al, 1992). 

Clb1,2 rise as mitotic spindle assembly progresses and are involved in the control of mitotic exit 

(Deshaies, 1997; Fitch et al, 1992; Spellman et al, 1998) (Figure 3.1A). The sequential expression 

curves of Clb5,6 – Clb3,4 – Clb1,2 is sometimes referred to as Clb waves; this term is used in the 

thesis as well (Figure 3.1Β).  

 

The regulation of active Cdk1–Clb complexes involves a combination of positive feed-forward 

loops – depending on the regulated transcription of CLB genes (Bloom & Cross, 2007; Fitch et al, 

1992; Koch & Nasmyth, 1994) – and negative feedback loops through down-regulation of Clb 

levels via ubiquitin/26S proteasome pathway (Amon et al, 1994; Hochstrasser, 1995; Irniger et al, 

1995; Lew & Reed, 1995; Tyers & Jorgensen, 2000). 

 

Sic1 protein expression is limited to the M/G1 transition (Donovan et al, 1994; Mendenhall et al, 

1987) and has been shown to inhibit kinase activities associated with Cdk1/Clb5, which triggers 

DNA replication, and Cdk1/Clb2, which triggers mitotic events (Schwob et al, 1994). These studies 
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highlight the fact that Sic1 strongly binds to Cdk1 its catalytic site, therefore preventing the access 

of substrates (Barberis et al, 2005b). Thus, Sic1 achieves two major functions in cell cycle 

regulation. On the one hand, it prevents premature S phase onset by inhibiting Cdk1/Clb5,6 until 

Sic1 is phosphorylated by Cdk1/Cln complexes and targeted for degradation via the ubiquitin-

mediated proteolysis pathway (King et al, 1996; Schwob et al, 1994; Sheaff & Roberts, 1996). On 

the other hand, Sic1 contributes to the abolishment of Cdk1/Clb2 activity required for mitotic exit 

(Calzada et al, 2001; Donovan et al, 1994; Toyn et al, 1997), although its binding to the kinase 

does not target Clb2 for proteolysis (Amon, 1997).  

 

      
Figure 3.1: Cyclin activity during cell cycle phases A) The sequential expression of Clb 

proteins during budding yeast cell cycle. (Lodish et al, 2008). B) The wave expression graph of Clb 

proteins. Clb5,6 gets activated first, followed by Clb3,4 and Clb1,2 (Morgan, 2007). 

 

The sequential activation and degradation of Clbs gives directionality to cell cycle events. Although 

many details of transcription of cyclin genes are well understood (Bahler, 2005; Haase & 

Wittenberg, 2014; Wittenberg & Reed, 2005), understanding the molecular mechanisms regulating 

the relative timing of waves of CLB activation remains a challenge.  

 

Prior to this work, there have been several efforts on S.cerevisiae cell cycle modeling. A Boolean 

model comprising 11 proteins was published in 2004 (Li et al, 2004), where Sic1, Clb5 and Clb2 

regulations are included, but Clb3 is absent. Other models followed top-down approaches, using 

biochemical kinetics and gene expression for model reconstruction (Chen et al, 2004; Chen et al, 

2000; Klipp et al, 2005). Clb3 is absent from all of the models mentioned above. Some modeling 

efforts have been comprehensive, such as the ODE based models by Chen et al (Chen et al, 2004; 

Chen et al, 2000; Klipp et al, 2005), while others address specific cell-cycle phenomena, such as 
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the links between cell size and cycle progression (Alarcon & Tindall, 2007; Barberis et al, 2007) or 

DNA replication (Gidvani et al, 2012). A review on the diverse approaches that were employed by 

different groups can be found at (Ingalls et al, 2007). 

 

In previous work by Barberis et al (2012), ODE modeling techniques were used to investigate 

whether Sic1 plays a potential role in the regulation of the oscillatory behavior of Clbs. With a 

combination of mathematical modeling and experimentation, it was proven that Sic1 is indeed 

continuously detected during the entire cell cycle, with the only exception of a temporal window 

during which all Clbs are present at the maximal level, and could play a role in coordinating the 

timing of Clbs waves (Barberis et al, 2012).  

 

The publication of the Clb wave ODE model prompted us to form a collaboration with Matteo 

Barberis, aiming to investigate whether we can reproduce the Clb wave behavior using qualitative 

modeling frameworks. In case that could be achieved, we were interested in the type of models 

that would give such results. The goal, as in the case of SIN modeling in fission yeast, was not only 

to describe the system, but also to use the model predictively, in order to identify potential missing 

regulatory links.   

Qualitative modeling of Clb wave behavior 

To describe the Clb wave expression qualitatively, we defined the system to be modeled as a 4 

node network including Clb5,6, Clb3,4, Clb1,2 and Sic1, the same proteins that had been used for 

the previous kinetic model (Barberis et al, 2012). For simplification reasons we named each node 

after one of the Clb complexes for each cell cycle stage. We started by constructing the prior 

knowledge network of interactions among Clb5, Clb3, Clb2 and their inhibitor Sic1 (figure 3.2A). 

The model was evaluated under 3 conditions: wild type simulation, knock-out of SIC1 and over-

expression of SIC1. All 3 experiments have known phenotypic outcome. Specifically, in wild type 

we observed the sequential activation of Clb5, Clb3 and Clb2, and their sequential inactivation 

when the inhibitor Sic1 increases in concentration. When Sic1 activity starts to decay, the Clb 

molecules are reactivated, producing a cyclic behavior. SIC1 over-expression results in the same 

attractor, the only difference being that the Clb activity curves display delayed activation. Finally, in 

sic1Δ all the Clb proteins are active, which, in Boolean terms, would be represented by the steady 

state 0111 (figure 3.2B).  
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Figure 3.2: The Prior Knowledge Network of cyclin regulation A) The minimal, prior 

knowledge network of Clb regulation. Green arrows represent known interactions and purple 

arrows represent potential, non-proven interactions. B) Expected activation profile of Clb 

molecules in wild type, SIC1 over-expression and sic1Δ, as simulated at (Barberis et al, 2012). 

The participating proteins are color coded as follows: Clb5 = red, Clb3 = blue, Clb2 = green, Sic1 = 

black. 

PKN-based optimization 

Different versions of the PKN were simulated, by filtering the included interactions based on their 

level of confidence. However, none of the simulated models was able to reproduce the behavior of 

the 3 test experiments. The outcome was constant activation of Sic1, which suppressed all Clbs. 

We therefore altered our strategy, assessing whether there is a network, similar to the PKN, with 

the potential of reproducing the expected experimental outcomes. Two strategies were followed: 

(a) reducing the model and (b) investigating whether there are missing interactions.  

 

(a) Model reduction 

Starting from the initial PKN network, a genetic algorithm approach was used to test whether there 

is a reduced model that satisfies all 3 expected experimental outcomes. The genetic algorithm tool, 

developed by Julien Dorier (Vital-IT, SIB Swiss Institute of Bioinformatics), requires a set of 
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interactions that are used as a pool from which the model can be constructed. Additionally, a set of 

parameters is provided, towards which the model is optimized. In our case it corresponds to 

looking for an attractor with all nodes oscillating in wild type and SIC1 over-expression, and a 

steady state with all Clbs active in sic1Δ. After several iterations of the simulations it became 

evident that there is no model solution, based on the given interactions, that completely satisfies 

the requirements. 

 

(b) Addition of possible missing regulations 

The inverse approach was tried as well. First, the collection of all possible edges of the system 

was identified, which we will refer to as edge pool. The edge pool involves all possible interactions 

involving 1, 2, 3 or all 4 nodes acting as co-regulators (for example A→B, A&C→B, A&C&D→B, 

A&B&C&D→B). The interactions can be activations (→) or inhibitions (⟞), and NOT (^) is also 

included at the possibilities (for example ^A→B). In total, the edge pool contains 640 edges, for our 

minimal system of 4 nodes (Sic1, Clb5, Clb3 and Clb2). The next step was to create all PKN+1 

models by adding one edge from the edge pool, as a way to investigate whether the in silico, 

unfitting results are due to a missing interaction. None of the simulated models produced, however, 

the expected results.  

The minimal model approach 

Minimal model construction rules 

The failure to produce model candidates reproducing the expected results in known experiments 

demonstrated that when working with the minimal, 4-node system in isolation, it is difficult to 

explain the Clb waves profile using PKN-based networks. We therefore decided to define the 

minimal networks that can reproduce the experiments. In other words, we decided to create a set 

of networks that, with minimum number of edges, capture the known information flow of our 

system. Such models can indicate the type of regulatory events that are necessary for the waves 

and they can be used as alternative hypotheses tools, in order to explain Clbs regulation and 

potentially identify missing regulatory events.  

 

The first step towards this end was to define the exact results expected from the models. Given 

that the experimental phenotype of wild type cells is a wave expression of the Clbs and Sic1 (figure 

3.3Α) we had to translate that to a Boolean attractor. The states comprising the attractor can differ 

according to the expression threshold set for each molecule. In order to have a comprehensive 
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analysis, we derived three alternative Boolean attractors for the wild type experiments (figure 

3.3C). For SIC1 over-expression the expected attractor is identical to wild type, with Sic1, of 

course, being constantly active. For sic1Δ, the expected experimental result is a steady state with 

Sic1 inactive and all Clb molecules active (0111). An example of one of the Boolean attractors 

derived from the real expression curve of the Clbs is shown in Figure 3.3B. 

 

 
Figure 3.3: Define expected results in Boolean simulations. A) Qualitative representation of 

real expression curves for Sic1, Clb5, Clb3 and Clb2 in wild type cells. The Clb molecules are 

activated sequentially and they start sequentially decaying in parallel to Sic1 activation. B) 

“Booleanized” version of the expression curves. The Boolean attractor is derived by setting activity 

thresholds. Each state between any activity transitions is translated to a Boolean vector. C) A list of 

the attractor candidates that were used for the downstream analysis. These attractors are identical 

for SIC1 over-expression, the only difference being that Sic1 is constantly set to 1.  

 

The next step was to set the construction rules for the models. Since the goal was to identify all 

minimal models explaining the Clb waves, our starting edge pool was the previously constructed 

collection of all possible edges (640 edges). Knowing that all participating genes present activity 

fluctuations, a rule was set that each gene should have an incoming edge. Ergo, a minimal model 
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should have at least 4 edges, one for the regulation of each gene. On the same note, auto-

regulations were not permitted, as that would isolate the auto-regulated node from the system, the 

auto-regulation being the only incoming edge for that node. To summarize, the constructed models 

should have 4 edges, one input per node and no auto-regulations.  

Filter out contradicting edges 

An exhaustive model construction and testing of all models complying with the rules above would 

be impossible, as there are around 660 million candidate models. Therefore, we decided to follow 

a reconstruction approach and filter the edges that would be able to explain the expected attractors 

/ steady states. This process would be extremely difficult to perform manually in more complex 

models. However, the fact that in our minimal model we only allow one edge (logical rule) to 

regulate each node renders the manual edge filtering feasible.  

 

Initially, we defined the collection of possible transitions. Those included the attractors in wild type 

and SIC1 over-expression as well as the steady state of sic1Δ which can be interpreted as a 

constant transition 0111→0111. Then, for a given transition, we would go through the edge pool 

and remove the regulatory rules that would not permit it. At the end of the process the possible 

edge pool would be reduced to include only the regulatory rules that do not contradict any of the 

transitions.  

 

Let us consider the transition 0100→0110, which is present in one of the candidate wild type 

attractors, as a simple example to demonstrate the edge filtering. In this vector, the proteins are 

represented in the following order: Sic1-Clb5-Clb3-Clb2. The transition basically constitutes the 

activation of Clb3, with all other proteins keeping their previous activation states. For the purposes 

of this example, we will only test the plausibility of 4 regulatory rules: Sic1→Clb3, ^Sic1→Clb3, 

Sic1&Clb5→Clb3, ^Sic1&Clb5→Clb3.  

 

Sic1→Clb3 and ^Sic1→Clb3 

The state of Clb3 at time t+1 is defined by the state of its regulators at time t. If Sic1 is the only 

regulator of Clb3 and acts by activating it (Sic1→Clb3), then Clb3 will be active in time t+1 if and 

only if Sic1 is active at time t. This, however, is not the case (Sic1 state at time t is 0), therefore 

Sic1→Clb3 cannot be the logical rule regulating Clb3. ^Sic1→Clb3 can interpreted as «the 

absence of Sic1 will trigger Clb3 activation». Practically, this means that for Clb3 to be active in 
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time t+1, Sic1 has to be inactive in time t, which is true in this case and, therefore, ^Sic1→Clb3 is 

not discarded. 

 

Sic1&Clb5→Clb3 and ^Sic1&Clb5→Clb3 

In cases of AND regulatory rules we have to take into account the state of all nodes participating in 

the regulatory rule. For the regulation to function, all states of all the participating nodes must 

satisfy the logical rules. At time t, Sic1 is inactive (0) and Clb5 is active (1). Under this setting, Clb3 

switches from 0 to 1. If both Sic1 and Clb5 participate in the regulation of Clb3, the only AND rule 

configuration that would trigger the activation of Clb3 is the one expecting an inactive Sic1 and an 

active Clb5 at time t : ^Sic1&Clb5→ Clb3. Sic1&Clb5→ Clb3 is, of course, discarded as 

contradictive. 

 

The process described above was used for all nodes in all attractor candidates that were defined 

initially. Only one of the 3 candidate attractors (attractor B in figure 3.3C) resulted in an edge 

collection that could be used to construct the minimal model candidates. In the other 2 cases, there 

were very few regulatory rules that did not contradict any transitions, and more importantly, not all 

nodes had the possibility to be regulated (all possible incoming edges had been filtered out). 

Without all nodes being regulated, it would have been impossible to obtain a cyclic attractor during 

the simulation, and, therefore, the 2 candidate attractors were rejected. 

 

In the case of the third attractor that resulted in a permissible edge pool, the initial 640 edges were 

reduced to 10, and the possible minimal models to be constructed were reduced to 36. Table 3.1 

shows the list of regulatory rules comprising the minimal model edge pool.  
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Clb2 → Sic1 

Clb2 & Clb3 → Sic1 

^ Clb2 ⟞ Sic1 

Sic1 & Clb2 ⟞ Clb5 

Sic1 & Clb3 & Clb2 ⟞ Clb5 

Clb5 → Clb3 

^ Clb5 & Sic1 ⟞ Clb3 

Clb3 → Clb2 

^ Clb3 ⟞ Clb2 

Sic1 & ^ Clb3 ⟞ Clb2 

 

Table 3.1: Minimal model edge pool. A list of the regulatory rules not contradicting any of the 

transitions for wild type, sic1Δ and SIC1 over-expression attractors / steady states. This edge pool 

is the result of filtering the attractor candidate B (see figure 3.3C). 3 logical rules can explain the 

regulation of Sic1 and Clb2, and 2 the regulation of Clb5 and Clb3.  

Capturing the wave phenotype with minimal models 

The 36 model candidates were simulated using BoolSim and, all of them reproduced the Boolean 

attractors expected for wild type and SIC1 over-expression, as well as the steady state expected at 

sic1Δ. Next, we used SQUAD (Di Cara et al, 2007) to further filter the model candidates and only 

keep the ones that reproduce the waves during qualitative ODE simulations. SQUAD is a dynamic 

simulation software that uses a standardized qualitative dynamic approach. It works by first 

identifying the steady states of the network using Boolean modeling. A system of standardized 

ordinary differential equations is then used to simulate the dynamic behavior of the network in time 

(Di Cara et al, 2007).  

 

When we simulated the 36 candidate models with SQUAD, only 6 of them reproduced the wave 

curves that are experimentally observed (figure 3.4A). Furthermore, these 6 models reproduced 

not only the expected attractors, but also the slight delay in activation of Clbs relative to wild type 

that is observed in SIC1 over-expression (Barberis et al, 2012). The latter can be observed in 

figure 3.4B, where SQUAD simulations of one of the minimal model candidates are shown. 
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Figure 3.4: Minimal model candidates and simulation results. A) The 6 minimal models that 

satisfy all experiments, both with Boolean simulations and with standardized ODE simulations. 

Arrows indicate activations and circles inhibitions. Many interactions appear in more than one 

model, with Sic1&Clb2⟞Clb5 being the only shared interaction among all models. B) SQUAD 

simulations of the simplest model, shown at the top right frame. From top to bottom are plotted the 

simulations of wild type, SIC1 over-expression and sic1Δ. Notice that by time t=15 wild type cells 

have entered the fourth cycle, whereas in SIC over-expression we observe a delay, with cells 

having just competed the third cycle. These results agree with published literature (Barberis et al, 

2012). 
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Result verification using MaBoSS 

To independently validate our results we decided to use MaBoSS, which is a software that applies 

Markov processes onto Boolean networks. MaBoSS describes heterogeneous cell population 

behavior using continuous and discrete Markov processes (Stoll et al, 2012). It uses a specific 

language to associate transition rates to each node. Given some initial conditions, MaBoSS applies 

a Monte-Carlo kinetic algorithm to the network to produce time trajectories. Time evolution of 

probabilities for each network state are then estimated (Stoll et al, 2012). Since MaBoSS describes 

a cell population rather than single cells, the probabilities of all states converge to a constant when 

time goes to infinity. The Boolean feedback loop depends only on the topology of the regulations 

and not on transition rates or time; this is the kind of cycle we observe, for example, with our 

models when using BoolSim. However, these cycles cannot be linked perfectly to periodic behavior 

of instantaneous probabilities that MaBoSS uses, because the set of instantaneous probabilities 

cannot be perfectly periodic. They can display a damped oscillating behavior, or none at at all. In 

our case, we observe a damped oscillation (figure 3.5A). In this simulation, the probability 

distributions of all network states tend to a stationary distribution. In this case, we can use the 

entropy and transition entropy measures that are also provided in the MaBoSS simulation results, 

and can help characterize cyclic stationary distributions. As defined at the software publication 

(Stoll et al, 2012):  

 

“ The Entropy (H) measures the disorder of the system. Maximum entropy means that all states 

have the same probability; H=0 means that one of the states has a probability of one (i.e. steady 

state). “  

 

“ The Transition Entropy (TH) characterizes the system at the level of a single trajectory. For 

each state S, there exists a set of possible transitions. TH(S)=0 means that there is no transition 

from S to any other state. The TH for all trajectories is a way to measure how deterministic the 

dynamics is. If the transition entropy is always zero, the system can only make a transition to a 

given state. “ 

  

To identify a cyclic stationary distribution (meaning a stationary distribution that ‘’hides’’ a cyclic 

attractor), the entropy H has to be non-zero and the transition entropy TH has to be 0. This is 

indeed the case with our simulation (figure 3.5B). 
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Figure 3.5: MaBoSS simulations of a minimal model candidate. A) Standard continuous 

Markov process simulation. The probability distributions for network states tend to stationary 

distribution. However, during the first cell cycle we observe that the sequence of states 

corresponds to the wild type attractor we obtain with BoolSim and SQUAD. B) Entropy H and 

transition entropy TH distributions. H is non-zero and TH is almost 0, which indicated that the 

stationary distribution shown in panel A is “hiding” a cyclic attractor. C) Discrete time simulation 

with MaBoSS. Even though the state probabilities reduce with time, we can clearly observe the 

cyclic behavior of the system. 

 

To keep the cyclic behavior of the probabilities, we can use discrete time modeling with MaBoSS. 

The results obtained with this approach are shown in figure 3.5C. In this case, the cyclic behavior 

of the model is clearly maintained, with a much slower decrease through time due to the stochastic 

events. Here, we clearly see the state transition replicating the results we obtain using BoolSim 

and SQUAD.  

 

To sum up, both continuous and discrete MaBoSS simulations validate the results we obtain with 

BoolSim and SQUAD. In the case of continuous time simulation we obtain an attractor with a state 

probability graph similar to the state transition graph we obtain with BoolSim/SQUAD. Given that 
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MaBoSS is a stochastic, probability-based software that focuses on cell populations (instead of 

single cell simulations in the case of SQUAD), we end up in a damped oscillation where each state 

has similar probabilities. However, looking at the asymptotic behavior of entropy (not converging to 

0) and transition entropy (converging to 0) we can characterize this stationary distribution as cyclic 

stationary distribution. 

Discussion 

In this project we make use of qualitative methods to evaluate whether we can characterize the 

budding yeast cyclin wave behavior with such a level of abstraction. For this purpose we 

constructed the possible model configuration, starting from the experimental facts that had to be 

described. The 6 minimal models derived from Boolean and Standardized dynamic simulation 

analysis, compose an interesting collection that can be used as an important tool for research 

around Clb regulation.  

 

It is important to note that the minimal models capture the information flow necessary for the 

system to present the expected phenotype, rather than direct biochemical relations. Many 

regulatory processes that would require an extension of the model have been omitted for the time 

being, such as the transcription and degradation regulation of the cyclins. It was in our interest, 

however, to try to understand the mechanisms regulating the relative timing of Clb waves, rather 

than the detailed activation and degradation processes. Therefore, we focused on the interplay 

among cyclins and their inhibitor Sic1.  

 

Our future work will focus on choosing the best candidate among the minimal models. Since for the 

construction of the models we only used Sic1 perturbations, we will now perform in silico 

perturbations of the cyclin molecules and test the predictions in the lab. This will be achieved in 

collaboration with M. Barberis lab where they will evaluate the plausibility of the models’ wiring and 

eventually choose the best fitting model. 
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Chapter 4 
 

SBV Improver Challenge: Species Translation 
Sub-challenge 4: Species Specific Network Inference  
A solution using treatment-specific network inference 
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Introduction 

Sbv IMPROVER stands for Systems Biology Verification combined with Industrial Methodology for 

Process Verification in Research. This approach aims to provide a measure of quality control of 

industrial research and development by verifying the methods used. The scope of sbv IMPROVER 

is the verification of methods and concepts in systems biology research using crowd-sourcing 

challenges. A complex research program is typically built upon research projects (consisting of 

“building blocks”) that synergistically support each other towards a final goal. Each building block is 

formulated as a standalone challenge of a complex workflow. It has a defined input that results in a 

defined output (Meyer et al, 2011; Meyer et al, 2012).  

Species Translation Challenge: Species specific network inference 

Systems biology emphasizes in studying relationships and connectivity between the components 

of complex systems. As such, pathway diagrams are the primary representation of complex 

biological systems, and the construction of accurate and complete pathway maps is an on-going 

challenge in the field. The two main approaches that have been taken to build pathway maps are 

knowledge driven and data driven. The knowledge-driven approach uses a priori data, often 

curated from the literature, to define entities (nodes) and connections (edges) that can be 

assembled into network diagrams. In contrast, the data-driven approach seeks to infer the 

connection based on inference from large dataset using methods such as regression analysis and 

Bayesian probabilistic models. Combining disparate data types in pathway maps is a useful way of 

synthesizing such diverse knowledge into a consistent and unified view of a complex biological 

system. In addition, knowledge-driven approaches are often used to construct the scaffold network 

that can be augmented and refined using data-driven approaches.  

 

The aim of the Species Translation Challenge was to identify rules which map measurements 

derived from systematic perturbations in one species to another species, quantify the translatability 

between species and understand the limitation of species translatability. The Species Translation 

Challenge addressed the translatability of findings between rat and human model systems. The 

four Sub Challenges addressed different aspects of this problem. 

 

The goal of the SBV Improver sub-challenge 4 was to infer human and rat networks given 

phosphoprotein, gene expression and cytokine data and a reference network provided as prior 

knowledge. Participants were required to use network inference to add or remove edges from the 

reference map in order to produce specific rat and human networks (Figure 4.1) 
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Figure 4.1: The sub-challenge 4 – Species specific network inference. In sub-challenge 4, a 

Reference Network was provided to participants. Participants were asked to construct human- and 

rat-specific networks given the omics data provided. Participants would have to use network 

inference to add or remove edges from the Reference Network based on Phosphoprotein (P), 

Gene Expression (GEx) and Cytokine (Cy) data in training sets for rat and human. Only human 

and rat data from subset A were to be used to allow for proper comparability between the 

respective networks. Figure source: SBV Improver website (sbvimprover.com/challenge-2/sub-

challenge-4-species-network-inference). 

Produced Datasets 

Normal bronchial epithelial cells from human (NHBE) and rat (NRBE) were exposed, in parallel, to 

52 various stimulus types or to control medium (DME: Dulbecco's Modified Eagle's Medium 

corresponding to standard cell culture medium for those cells). Cells were collected and lysed at 

different time points depending on the type of measurements done with the samples (5 and 25 

minutes for phosphoproteins; 6 hours for gene expression). The cell supernatant was collected at 

24 hours for cytokine level measurement. The exposure of cells to each stimulus was performed in 

triplicate, and in quintuplicate and sextuplicate for the DME control. Two experiments were 

performed to collect all samples. Experiment 1 contained 3/4 of the stimuli (with respective 
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controls) and experiment 2 contained the remaining 1/4 of the stimuli with respective controls. 

More information on the data set used can be found at (Poussin et al, 2014). 

 

                                
Figure 4.2: Challenge data generation scheme. Schema summarizing the experiments 

performed to generate the complete dataset for the Species Translation challenge (mRNA: 

messenger RNA; NHBE: normal human bronchial epithelial cells; NRBE: normal rat bronchial 

epithelial; GEx: gene expression; Phospho: phosphorylation; Cyto: cytokine). Figure source: SBV 

Improver, Challenge documentation, Detailed Information about the Data. 

Results 

For the Species Specific Network Inference Sub-Challenge of SBV Improver, we decided to 

conduct a treatment-based analysis. The goal was to identify the genes that are differentially 

expressed in each treatment, and create treatment specific networks, based on the provided 

reference network (figure 4.3). The ensemble of all treatment specific networks for a species 

constitutes the species-specific network. All scripts of this work were developed in R, and several 

packages were used, such as limma and igraph. 
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Figure 4.3: Challenge reference network. Snapshot of the Reference Network visualized in 

Cytoscape. Figure source: SBV Improver, Challenge documentation, Detailed Information about 

the Data. 

Data Mapping 

The first step of the analysis was to identify the genes that are present in the reference network but 

do not appear with the same name in the gene expression data. The NCBI gene database was 

queried for those genes and the gene expression datasets were scanned against the alternative 

names retrieved. In case there was more than one matching measurement in the data, the most 

variant gene would be selected. All cytokine and phosphoprotein names were mapped to their 

gene names using UniProtKB. Thereafter, all data files were filtered to contain only elements found 

in the reference network. 
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CD120 IKB_family 

PI3K IKK_family 

PKA NFKB_family 

PLC PGR_family 

SOS PKC_family 

AC_family PDGFR_family 

ADR_family FGFR_family 

	
  

Table 4.1: Name inconsistencies in data.	
   List of reference network nodes that were not 

represented in the GEx data with the same name and were retrieved by public database query. 

Data Normalization 

The workflow in its entirety was performed separately for the human and rat measurements. During 

the first step of normalization, each batch was treated separately. The average control (DME) 

value of all repetitions from the specific batch was calculated for each gene. The average values 

vector was then subtracted from the treatment expression values belonging to the same batch.  No 

averaging was performed for treatment repetitions.  

 

For the second normalization step all data were merged. For each repetition of each treatment the 

z score was calculated. The same process was followed for the phosphoprotein and cytokine 

datasets. 

Treatment Specific Differential Expression 

To define treatment specific, differentially expressed genes, a moderated t-test for each treatment 

against the remaining treatments and controls was performed , and genes with p value < 0.05 were 

selected as differentially expressed. This process was repeated in all datasets (gene expression, 

phosphoproteins, cytokines). ANOVA analysis of the gene expression dataset revealed a number 

of genes that were not found with the t-tests. We assumed that this is a result of treatments that 

have very similar expression patterns but their effect is underestimated when one of the treatments 

is used in the “control set” for the t-test against the other. We used hierarchical clustering on the 

treatments, and divided them to clusters to test this hypothesis. We performed again the t-test for 

each treatment against the rest, excluding members of the same cluster. Indeed, this method 

yielded additional differentially expressed genes that were added to the results. 



	
   69	
  

 

 
Figure 4.4:	
  Clustering of treatments.	
  Hierarchical clustering of treatments in human, based on 

euclidean distance. The red line corresponds to the clustering cutoff, same for rat and human.  

Treatment specific network inference 

At this stage we had a list of highlighted (i.e. differentially expressed) genes for each treatment, 

derived from t-tests performed in gene expression, phosphoproteins, cytokines and GEx clustered 

datasets. For the network inference of each stimulus, we evaluated the reachability of every 

highlighted gene pair in the reference network. Having as a principle that every highlighted gene 

should be reachable from the stimulus node, we added missing edges according to the following 

rules: 

 

1. Every node should be reachable from the stimulus node 

2. If not, test if the node is connected to other upstream, highlighted nodes 

3. If it is not connect node to all highlighted nodes of the level above 

4. If none, reveal the paths of all upstream nodes to all downstream nodes, and connect the 

node to all nodes of the level above.  
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Figure 4.5: Treatment specific network inference. Adding missing links for treatment specific 

network inference, the case of human PROKINECITIN2. Yellow nodes are differentially expressed 

for PROK2 and blue nodes are not, but are used for path reconstruction. Blue links represent 

already existing paths and pink links are the ones added. In the case of JAK1, there were no 

highlighted nodes on the level above. Therefore, all paths that connect PROK2 to downstream 

nodes were revealed and JAK1 was connected to the nodes of the level above, i.e. PROKR1 and 

PROKR2. For the connection of TRAF2 no path revealing was necessary since JAK1, which is on 

the level above, was already highlighted. The same principles are applied for the rest of the added 

edges. 

Species specific network inference 

The added edges of all treatments were appended to the reference network. For every highlighted 

gene pair of each stimulus, all shortest paths were calculated. Every time an edge was found in the 

path, the edge received +1 point (which corresponds to number of visits). The final, species-

specific network was derived by keeping only the visited edges of the extended reference network. 

A presentation of the challenge meta-analysis, the evaluation methods as well as the approaches 

followed by the best scoring teams including our approach, can be found at (Bilal et al, 2014). Our 
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team scored 3rd in the challenge. The best performing teams were announced at the sbv 

IMPROVER Symposium 2013 in Greece and the identity of the best performing teams for each 

challenge was published in Nature (Volume 503 Number 7476, 21 November 2013, Naturejobs 

page 12). 
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Computational Methods 

 
For the Septation Initiation project, as well as the Clb interplay project, a wide range of tools and 

scripts were used throughout the workflow.  

Septation Initiation Project Scripts 

For the workflow stages of “model simulation and steady state prediction” as well as “optimization 

based on experimental data” (figure 2.13), several scripts were developed using R and Groovy 

programming languages. The produced scripts served as parts of the standard analysis workflow 

as well as specific efforts such as the scoring randomization (figure 2.7) and they covered the 

following functionalities: 

 

• construct experimental tree and input for simulation 

• structure and parse results 

• score model candidates / selected experiments 

• analyze / visualize results and scoring 

• scoring randomization 

 

The developed scripts were used for the initial stages of the Clb interplay project as well. 

Modeling software used 

BoolSim 

BoolSim was the main modeling software used in this thesis, for the identification of Boolean 

attractors and in silico perturbation experiments. Gene regulatory networks can be modeled 

efficiently using reduced ordered binary decision diagrams (ROBDDs or in short BDDs). BDDs are 

directed acyclic graphs that can represent large Boolean functions in a space efficient manner, and 

are computationally suitable for complex Boolean operations (e.g. logical AND, OR, etc.) and set 

operations (e.g. Union, Intersection, etc.). To map gene regulatory networks on BDDs, the first step 

is to transform networks into Boolean functions, which represent the dynamics of a model. All the 

operations that can be performed on Boolean functions can also be performed on their 
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corresponding BDD representations (Garg et al, 2008). BoolSim uses this strategy to efficiently 

compute cyclic attractory of large networks that are not feasible using other existing software.  

SQUAD 

SQUAD was mainly used in the Clb interplay project, for all continuous simulations of Clb 

sequential expression. It was also used in SIN analysis for exploratory purposes, in order to 

observe the nodes that did  not change activation state during simulation (with the initial, non 

controlled modeling strategy), indicating problemating wiring. 

 

SQUAD is a software for the dynamic simulation of signaling networks using the standardized 

qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical 

system, and it uses a binary decision diagram algorithm to identify all the steady states of the 

system. Then, the software creates a continuous dynamical system and localizes its steady states 

which are located near the steady states of the discrete system. The software permits to make 

simulations on the continuous system, allowing for the modification of several parameters. 

Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is 

performed in experimental laboratory protocols, for example by activating receptors or knocking out 

molecular components (Di Cara et al, 2007). 

MaBoSS 

MaBoSS was used in the Clb interplay project, for the verification of the results obtained using 

BoolSim and SQUAD, by another software.  

 

MaBoSS is a modeling framework based on a qualitative approach that is intrinsically continuous in 

time. The algorithm fills the gap between qualitative and quantitative modeling. It is based on 

continuous time Markov process applied on a Boolean state space. In order to describe the 

temporal evolution of the biological process to be modeled, the transition rates for each node are 

sexplicitely specified. For that purpose, MaBoSS uses a generalization of Boolean equations. 

Mathematically, this approach can be translated in a set of ordinary differential equations on 

probability distributions. The software is developed in C++ , and is able to simulate such a system 

by applying Kinetic Monte-Carlo (or Gillespie algorithm) on the Boolean state space. This software, 

parallelized and optimized, computes the temporal evolution of probability distributions and 

estimates stationary distributions (Stoll et al, 2012). 
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Concluding Remarks 

 
Computational models of biological processes have gained an important role in systems biology, 

not because they are correct, but because they can be useful. Indeed, models can only 

approximate reality. Yet the simplicity of these models makes them useful anyway, often more 

useful in day-to-day life than more complicated models that better fit the data. The idea that models 

never fit all the data was nicely summarized by the statistician George Box in his famous phrase, 

“all models are wrong, some models are useful” (Box, 1979). Systems biologist Arthur Lander, in 

his thought-provoking article “The edges of understanding” further advocates this idea, by insisting 

on “utility before validation” (Lander, 2010).  

 

In the present thesis, Boolean modeling has been used as core approach, in order to infer the 

regulatory relations and systems’ dynamics in several biological contexts. Even though Boolean 

models have limited capacity to describe quantitative characteristics of dynamic systems, they 

reveal considerable dynamic richness and were proven effective in describing qualitative behaviors 

of biological systems (Albert & Thakar, 2014). The fact that Boolean models do not require the 

knowledge of kinetic parameters makes them a practical choice for systems where these 

parameters have not been measured. The success of Boolean models illustrates that, in at least a 

subset of biological systems, the organization of network structure plays a more important role than 

kinetic details of individual interactions.  

 

An advantage of working on diverse biological problems is that the toolset and methods developed 

for a project are directly available to be applied in other contexts. For example, budding yeast 

modeling was the most recent project I undertook during my PhD. The minimal model strategy 

developed in this project could be very helpful for the continuation of the SIN modeling research. In 

fact, applying the technique to subsets of the S.pombe model, such as, for example, to the Byr4p, 

Cdc16p, Spg1p and Etd1p minimal node set, could potentially facilitate the deciphering of Etd1p 

regulatory relation to the system.  

 

Despite the diversity of the biological questions described in this thesis, many are the modeling 

challenges that were not addressed or deeply investigated. To begin with, an important field of 

research in computational modeling is reverse engineering of regulatory networks. This is achieved 

by identifying the underlying network on the basis of correlated molecular behavior observed in 

genome-wide "omics" studies (top-down approach). Even though there are some success stories 

using this approach (see, for example, (Davidson, 2002 #223)) there is still extensive research on 
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model inference. The aim, in this case, is to identify the real underlying network that results in the 

observed phenotypes. However, the “gene-system-phenotype” puzzle is not an easy one to solve. 

Many networks can theoretically generate the same phenotype. This happens, for example, in 

sister cells with same phenotype but different transcriptomes / proteomes / metabolomes, as well 

as in a single cell where transcriptomes / proteomes / metabolomes change over time but the 

phenotype remains the same. An old but always relevant illustration by Conrad Hal Waddington 

exemplifies this point (figure 5.1). In his illustration we can see a network of interactions putting 

specific tensions to the system, defining the system state trajectories and, ultimately, the cell 

phenotype. Still, any other combination of interaction network with the same tensions would result 

in the same phenotype.  

 

        
Figure 5.1: A) A depiction of the epigenetic landscape. The ball represents a cell, and the 

bifurcating system of valleys represents the trajectories in state space. B) Behind the scenes of 

Waddington's landscape. The valleys are formed by tension on cables (interactions) that are 

attached to pegs (genes). Source: (Waddington, 1957) 

 

Another important issue in modeling, and a big bet for future research, is the problem of scales. 

Biological systems consist of many spatial and temporal scales, each rich and complex. The levels 

of biological organization range from molecules to genes, proteins, individual biological cells, 

tissues, organs, and up to organisms that interact with the environment (Southern et al, 2008). 

Associated with this spatially based organization are the temporal scales of biological processes 

that range from microsecond (10−6 s) for molecular interactions to 80 years (109 s) for the average 

human life expectancy (Walker & Southgate, 2009). This enormous diversity of biological events’ 

scales is one of the greatest challenges for computational modeling. Indeed, successful 

physiological analyses require an understanding of the functional interactions between the key 

components of cells, organs, and systems, as well as how these interactions change in disease 

states (Noble, 2002). Current model frames are restricted in magnitude of description, temporally 

as well as spatially. There have been some multi-scaling modeling efforts in the past (Dada & 

A B
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Mendes, 2011; Southern et al, 2008). The resulting complex integrated models, however, are 

difficult to solve numerically even with the incredible advances in computational power. The major 

challenge in multi-scale modeling is how to couple together the various models that are available at 

different spatial and temporal scales. Even if all the models of a biological system at different 

scales can easily be integrated, the task of simulating the integrated models is computationally 

very expensive. High performance computing, parallel processing, grid computing and similar 

technologies will undoubtedly help in the future, but the most important step will be to develop 

adequate software in order to take full advantage of the hardware. 

 

The future of biological research lies in dealing with complexity. As lex parsimoniae rarely applies, 

we will have to ascertain the central factors of each process and focus our attention on them, in 

order to gain better understanding. Computational modeling will most definitely play a significant 

role in this process. Asking the right questions will help us define the adequate assumptions that 

will lead to the answers we are looking for. And then, who knows, maybe we will be able to 

understand the flock and create even more majestic patterns. 
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