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T Cell Priming by Activated Nirc5-Deficient Dendritic
Cells Is Unaffected despite Partially Reduced MHC Class
I Levels

Giorgia Rota,* Kristina Ludigs,* Stefanie Siegert,T Aubry Tardivel,* Leonor Morgado,*
Walter Reith,” Aude De Gassart,* and Greta Guarda*

NLRCS, a member of the NOD-like receptor (NLR) protein family, has recently been characterized as the master transcriptional
regulator of MHCI molecules in lymphocytes, in which it is highly expressed. However, its role in activated dendritic cells (DCs),
which are instrumental to initiate T cell responses, remained elusive. We show in this study that, following stimulation of DCs with
inflammatory stimuli, not only did NLRCS level increase, but also its importance in directing MHCI transcription. Despite mark-
edly reduced mRNA and intracellular H2-K levels, we unexpectedly observed nearly normal H2-K surface display in Nirc5~'~ DCs.
Importantly, this discrepancy between a strong intracellular and a mild surface defect in H2-K levels was observed also in DCs
with H2-K transcription defects independent of Nirc5. Hence, alongside with demonstrating the importance of NLRC5 in MHCI
transcription in activated DCs, we uncover a general mechanism counteracting low MHCI surface expression. In agreement with
the decreased amount of neosynthesized MHCI, Nlrc5~'~ DCs exhibited a defective capacity to display endogenous Ags. However,
neither T cell priming by endogenous Ags nor cross-priming ability was substantially affected in activated Nlrc5~'~ DCs.
Altogether, these data show that Nirc5 deficiency, despite significantly affecting MHCI transcription and Ag display, is not

sufficient to hinder T cell activation, underlining the robustness of the T cell priming process by activated DCs.
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ntigen presentation to cytotoxic T cells is a powerful
A immune defense mechanism. For this reason, transcrip-

tional regulation of MHC class I (MHCI) genes is tightly
controlled by multiple regulatory motifs. These include an IFN-
responsive element, NF-kB binding sites, and a highly con-
served regulatory motif known as SXY module, which is proximal
to the transcription start site (1). Recent studies led to the dis-
covery of NOD-like receptor (NLR) caspase recruitment domain—
containing protein 5 (NLRCS) as the transcriptional regulator
occupying the SXY sequence (2-8). NLRCS5 does not directly
bind the DNA, but it is recruited by the enhanceosome, a DNA-
binding complex assembling on the SXY module (2-6). By
analogy with CIITA, a thoroughly studied NLR family member
that acts as a transcriptional regulator of MHC class II genes,
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NLRCS recruits in turn chromatin remodeling and transcription
factors, thus orchestrating the transactivation of MHCI genes (9).
Thereby, NLRCS5 contributes to the transcription of classical (H2-K
and H2-D) and selected nonclassical MHCI genes (2—4, 7, 10).

At steady state, NLRCS5 is highly expressed in immune cells and
predominantly in lymphocytes; accordingly, its relevance to MHCI
transcription is major in lymphoid cells (2, 3, 7, 8, 10). In contrast, in
dendritic cells (DCs), which are considered the most efficient APCs,
NLRCS is low and Nlrc5-deficient DCs show minor differences in
MHCI expression (2, 8, 10). However, activating stimuli such as LPS
positively regulate Nlrc5 transcription in macrophages and DCs,
mainly through the autocrine action of type I IFNs (2, 7, 11). This
important increase in the levels of NLRCS raises the possibility that its
contribution to MHCI expression augments following DC activation.

Although DCs are the key APCs in most instances, to date, a
single study tested the role of NLRCS in this cell type. The authors
observed a defect in OT-1 T cell activation using peptide-pulsed,
immature Nlrc5~~ bone marrow (BM)-derived DCs (BMDCs)
(7). Yet, natural routes of Ag presentation by activated DCs, the
DCs licensed to stimulate a full-blown T cell response, remain
unexplored. We therefore addressed the role of NLRCS in Ag
direct presentation and crosspresentation by activated DCs.

We found that NLRCS largely contributes to H2-K transcription in
DCs following exposure to inflammatory stimuli, with Nire5 "~
cells showing a 50% reduction in mRNA and intracellular H2-K
levels. Despite that, surface levels of MHCI were only slightly af-
fected. This phenomenon was not restricted to Nlrc5-deficient cells,
as DCs exhibiting low MHCI intracellular pool due to Nlrc5-inde-
pendent defects showed milder reduction in MHCI surface levels,
indicating the existence of a compensatory mechanism salvaging
MHCI display. Interestingly, presentation of endogenous Ags by
Nire5~~ BMDCs also exhibited a defect in the range of 50%, in-
dicating that the reduced amount of de novo synthesized MHCI
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affected the display of intracellular Ags. Despite that, T cell-priming
and cross-priming ability by Nlre5 "~ DCs was virtually normal.
Taken together, these data indicate that the defects in MHCI tran-
scription and direct Ag presentation observed in activated Nlrc5 ™~
BMDC:s are per se not sufficient to significantly alter priming ability
by these cells, highlighting the robustness of this process.

Materials and Methods
Mice

Rfx57"7 (12) and Rfx5" littermate controls on a mixed Sv129/C57BL/6
(H2b) background were provided by W. Reith and bred at the University of
Geneva (Geneva, Switzerland). H2-K hemizygous mice were generated by
crossing H2-K~/~ (13) with C57BL/6 mice in the animal facility of the
University of Lausanne. Nirc5™, Nirc57/~ (2), H2-K*™'~, B, microglobulin
(Bom) ™~ (14), OT-1 (15), and C57BL/6 were bred in the animal facility of
the University of Lausanne and treated in accordance with the Swiss
Federal Veterinary Office guidelines.

BMDC differentiation

BMDCs were generated from primary BM, which was isolated by flushing
femur and tibia from donor mice. BM was cultured for 7 d in DC differ-
entiation medium (RPMI 1640, 10% FCS, 100 U/ml penicillin, 100 pg/ml
streptomycin, 50 puM 2-ME, 10 mM HEPES, supplemented with 20 ng/ml
rGM-CSF [ImmunoTools]) in untreated cell culture plates. To enrich for
BMDCs, nonadherent cells were transferred into new culture dishes 1 d
prior to experiments.

Media and reagents

Lymphocytes were grown in RPMI 1640 supplemented with 10% FCS,
100 U/ml penicillin, 100 pg/ml streptomycin, and 50 uM 2-ME. LPS
(100 ng/ml), polyinosinic-polycytidylic acid [poly(I:C)] (100 wg in vivo),
and zymosan (10 pwg/ml) were purchased from InvivoGen; IFN- (500 U/ml)
from PBL IFN Source; and CpG (2 pg/ml or 20 g in vivo) from
Microsynth. TNF-a (20 ng/ml) and CD40L (1 pg/ml) were provided by
P. Schneider (University of Lausanne).

Flow cytometry analysis

For flow cytometry analysis, cells were preincubated with a-CD16/32
(2.4G2) to block Fc receptors and then surface stained for 20 min using
Abs against CD3e (145-2C11), CD8a (Ly-2), CD11b (M1/70), CDl11c
(N418), CD45.1 (A20), CD71 (R17217), CD80 (16-10A1), CD86 (GL1),
H2-D® (28-14-8), H2-K® (AF6-88.5.5.3), and SIINFEKL H2-K
(25D.1.16) (all from eBioscience). Streptavidin conjugated to different
fluorophores was from eBioscience. Stainings were performed with appro-
priate combinations of fluorophores. In some experiments, dead cells were
excluded by staining with 10 pg/ml propidium iodide. For analysis of the
total (surface and intracellular pool) of MHC molecules, cells were first
surface stained, then fixed with 4% paraformaldehyde. After permeabiliza-
tion with 0.5% saponin in PBS/1% FCS, cells were then stained with Abs to
detect MHC levels. Data were acquired with a FACSCanto flow cytometer
(BD Biosciences) and analyzed using FlowJo software (Tree Star).

Image stream sample preparation

At least 1 X 10° BMDCs for each condition were analyzed. Cells were
preincubated with a-CD16/32 to block Fc receptors and then surface stained
with Abs against CD11c and H2-K®. Then cells were fixed with 4% para-
formaldehyde. After permeabilization with 0.5% saponin in PBS/1% FCS,
cells were then stained for H2—K"; to discriminate surface and intracellular
signal, anti-H2-K® Abs coupled with different fluorophores were used. In
addition, nuclear (DAPI; Thermo Fischer Scientific) or Golgi (anti-Giantin,
ab28039; Abcam) staining was added in selected experiments.

Image stream acquisition and IDEAS analysis

Cells were acquired using Inspire software (Amnis) on a 4-laser 12-channel
imaging flow cytometer (Image Stream™ MarkIl) using original magnifi-
cation X40. Prior to each experiment, the machine was fully calibrated
using ASSIST (Amnis). At least 50,000 single cells were acquired/sample,
with debris and doublets being excluded based on their area and aspect
ratio. Single-stain controls were acquired as required (all channels on, no
brightfield and no side scatter image), and a compensation matrix was
calculated and applied to the files using IDEAS (v6.1) software. For
analysis, cells in focus (using the gradient RMS feature for the brightfield

image) and single cells (in a plot using area versus aspect ratio) were gated.
Based on DAPI intensity, cells with a sub-Gy DNA level were excluded.
Based on the surface marker CD1 Ic, an erode mask was created to analyze
the cell inside. This mask was combined with a CD1Ic dilate mask using
the Boolean operator “AND NOT” to create a cell membrane mask. The
intensities of intracellular and extracellular H2-K were calculated in these
masks, respectively. To create a mask covering the Golgi apparatus, a
threshold mask of 50% in the Golgi image was used. Within this mask, the
bright detail similarity of the intracellular H2-K signal was calculated.

Quantitative PCR

RNA extraction, retrotranscription to cDNA, and expression analysis were
done, as previously described (4). The following primers were used:
NLRCS5_forward (fwd), 5'- TGGAGGAGGTCAGTTTGC-3'; NLRC5_re-
verse (rev), 5'-ATGCTCCTGATTGCTGTGTAG-3’; H2-K_fwd, 5'-
TTGAATGGGGAGGAGCTGAT-3'; H2-K_rev, 5'-GCCATGTTGGAGA-
CAGTGGA-3'; Hprt_fwd, 5'-GCAGTACAGCCCCAAAATGG-3'; and
Hprt_rev, 5'-AACAAAGTCTGGCCTGTATCC-3'.

H2-K assessment in vivo

H2-K expression was evaluated in lymphocytes (CD3" cells) or in splenic
conventional DCs (cDCs; CD11c"€"CD11b™) after surface staining or
postfixation and permeabilization. In some experiments, mice were i.p.
injected with 100 g poly(I:C) 24 h prior to the analysis.

OT-I cell isolation, labeling, and proliferation analysis

OT-I T cells were isolated with a CD8* T cell positive isolation kit
(Miltenyi Biotec) from spleens of OT-I mice. Enriched CD8" OT-I cells
were then labeled with 5 pM CellTrace Violet (CTV; from Life Tech-
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FIGURE 1. Nirc5 is upregulated upon inflammatory stimulation and
drives H2-K transcription in DCs. (A and B) T lymphocytes (CD3"*) and
splenic ¢DCs (CD11c¢"€"CD11b™) (A) and BMDCs (CD11c*) (B) from
Nire5™ and Nirc5~~ mice were analyzed for surface H2-K expression by
flow cytometry. Histograms show a representative example of H2-K
fluorescence and mean fluorescence intensity. Results are representative of
at least two independent experiments (A and B), with n = 3 mice/group (A).
(C) Wild-type BMDCs were stimulated for 12, 24, or 60 h with IFN-$ (500
U/ml) or LPS (100 ng/ml). H2-K and Nirc5 mRNA expression relative to
Hprt mRNA were assessed by quantitative PCR. (D) Nlrc5™ and Nire5™"~
BMDCs were stimulated for 12, 24, and 48 h with IFN-$ or LPS. Quan-
titative PCR was performed to assess H2-K mRNA expression at each time
point (relative to Hprt mRNA). Ratios of H2-K expression of Nlre5™’™ to
Nire5™ BMDCs for each time point are indicated in the graph. Results
depict mean = SD (n = 3 replicates) (C and D) and are representative of at
least two (C) and more than three (D) independent experiments. ***p <
0.001.
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nologies) in PBS/1% FCS at 37°C for 20 min. The reaction was quenched
with complete medium, and cells were washed and cocultured with the
indicated amounts of BMDCs for the described Ag presentation assays
in vitro or transferred into the indicated recipient mice to assess cross-
presentation in vivo.

Ag presentation assay

For cell-associated Ag crosspresentation, splenocytes of Bym ™~ mice were

irradiated with 1,500 cGy, washed, incubated for 10 min at 37°C with 10
mg/ml OVA (purchased from Calbiochem, endotoxins <0.01 EU /ug
protein, as tested with Endpoint Chromogenic LAL Assays, Lonza) in
complete medium and then washed three times. Cells were then added as
immunogen in the indicated numbers to 25,000 BMDCs, cocultured with
50,000 CTV-labeled CD8" OT-I T cells in a round-bottom 96-well plate.
For direct Ag presentation, BMDCs transfected with GFP or GFP-SIIN-
FEKL mRNA were cocultured in round-bottom 96-well plate at the indi-
cated ratios with 20,000 OT-I T cells. To analyze proliferation dye dilution
was assessed by flow cytometer after 48—60 h of culture.

Crosspresentation in vivo

A total of 1.5-2 X 10° CTV-labeled congenically marked CD8" OT-I
T cells was transferred i.v. into Nire5™" or Nire5™"™ recipient mice. The
day after, mice were immunized in the footpad with 10 wg OVA (pur-

FIGURE 2. Nirc5 deficiency affects H2-K
mRNA and total protein abundance, but mildly
surface expression. (A) Nire5™" and Nirc5™"~
BMDCs were stimulated for 24 h with IFN-3, LPS,
or left untreated (—). Mean fluorescence inten-
sity (MFI) of surface and total (following per-
meabilization) H2-K was evaluated by flow
cytometry on CD11lc* BMDCs, whereas H2-K
mRNA was assessed by quantitative PCR (relative
to Hprt mRNA). It is important to note that MFI
values of surface and total MHCI cannot be directly
compared. Results depict mean = SD (n = 3 rep-
licates) and are representative of more than three
independent experiments. (B and C) Surface, total
H2-K, and H2-K mRNA were assessed, as in (A).
Ratios of MFIs or relative mRNA abundance of
Nirc5~" to Nirc5" were calculated for surface,
total protein (B), and H2-K transcript abundance
(C). Results depict mean = SEM of 10-12 inde-
pendent experiments (B) and 13-16 independent
experiments (C). (D) Nire5"" and Nlre5™~
BMDCs were stimulated for 12, 24, and 48 h with
IFN-B or left untreated (—). MFI of surface and
total H2-K was evaluated on CD11c* BMDCs by
flow cytometry at the indicated time points. Ratios
of MFIs of Nirc5~~ to Nlre5™ were calculated for
surface and total protein. Results depict mean =
SD (n = 4 replicates) and are representative of more
than three independent experiments. (E) Represen-
tative ImageStream cytometry images of extracel-
lular, intracellular H2-K, and nuclear staining of
CD11c* Nire5™ and Nirc5™~ BMDCs 24 h post-
LPS stimulation. Histograms illustrate surface and
intracellular H2-K fluorescence on >10,000 events.
Results are representative of three independent
experiments. Original magnification X40. (F)
Nire5™" and Nire5™~ mice were injected i.p. with
100 pg poly(I:C), or left untreated (—). Splenic
c¢DCs were analyzed 24 h later for surface and total
H2-K expression. H2-K MFI values of Nirc5™’" to
Nire5™ for extracellular as well as total fluores-
cence are depicted in the graphs. Histograms show
representative examples of surface and total H2-K
fluorescence. Results illustrate mean = SEM (n =3
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chased from Sigma-Aldrich, endotoxins 0.3 EU/ug protein, as tested with
Endpoint Chromogenic LAL Assays, Lonza) and 20 wg CpG. Forty-eight
hours later, mice were sacrificed, popliteal lymph nodes were collected,
and OT-I T cell proliferation was assessed by flow cytometry.

BMDC transfections

For unstimulated cells, the AMAXA nucleofection protocol specific for im-
mature BMDCs was followed (Lonza). Cells were transfected with 5 nM
negative control or 2-5 nM H2-K small interfering RNA (Thermo Fischer
Scientific) and then stimulated with IFN-B (500 U/ml). For overnight LPS-
stimulated cells (100 ng/ml), the AMAXA protocol was optimized using Y-05
program and 2.5 pg in vitro transcribed mRNA encoding for GFP or GFP-
SIINFEKL. Plasmids encoding either for GFP or a fusion protein GFP-
SIINFEKL, under the control of the T7 promoter, were provided by P. Pierre
(Centre d’Immunologie de Marseille-Luminy, Marseille, France) (16). Plasmids
were first linearized with Narl enzyme (NEB) and gel purified (Promega).
In vitro transcription was performed with mMESSAGE mMACHINE T7
transcription kit (Thermo Fischer Scientific) following the manufacturer’s in-
structions. mRNA was then purified with RNAeasy mini kit (Qiagen).

Statistical analysis

Statistical analyses were performed using Prism software (GraphPad ver-
sion 5.0). Differences were calculated with an unpaired, two-tailed Student ¢
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test and considered significant when p < 0.05 (*), very significant when
p < 0.01 (**), and highly significant when p < 0.001 (¥#%).

Results
NLRCS significantly contributes to MHCI transcription upon
DC activation

Whereas NLRC5 strongly contributes to MHCI expression in
lymphocytes, as shown in Nire5 " T cells, the defect in cDCs
is much milder (Fig. 1A) (4, 10). Similarly, Nlrc5~~ BMDCs
exhibit only a minor defect in MHCI expression, as depicted in
Fig. 1B (8).

However, NLRCS expression can be increased by inflammatory
conditions (2, 7, 11). To explore this possibility in DCs, we
assessed the ability of IFN-$3 and LPS to induce Nirc5 and H2-K
mRNA at different time points following stimulation of wild type
BMDCs. Both transcripts increased upon activation, with Nlrc5
peaking earlier than H2-K (Fig. 1C), suggesting that H2-K in-
duction is driven by NLRC5. We therefore treated Nlrc5 /" and
control Nire5"" BMDCs with IFN-B or LPS and analyzed H-2K
transcript abundance 12, 24, and 48 h thereafter (Fig. 1D). H-2K
mRNA levels increased in response to both stimuli, and this was
significantly dependent on NLRCS5. As also illustrated by the
Nirc5~"" INIrc5"" ratio of H-2K transcript levels, the contribution
of NLRCS augmented following stimulation (Fig. 1D), compati-
bly with the kinetics of its upregulation in BMDCs following
inflammatory stimulation (2).

Nlre5™"~ DCs display a mild defect in surface H2-K expression
despite significantly reduced intracellular pool

We next assessed to which extent Nlrc5 deficiency affected
MHCI at the protein level in activated DCs. Unexpectedly, we
observed that Nlrc5~’~ BMDCs exhibited only a moderate al-
teration of surface H2-K expression 24 h following IFN-B or
LPS treatment (Fig. 2A, left-hand panel), despite a significant
defect of H2-K mRNA (Fig. 2A, right-hand panel). Interestingly,
total levels of mature H2-K (following permeabilization) in
Nlrc5-deficient BMDCs exhibited a 2-fold reduction as com-
pared with Nlrc5 BMDCs (Fig. 2A, middle panel), reflective
of the decrease in mRNA. This 2-fold difference in H2-K tran-
script and total protein pool between Nirc5 '~ and control
BMDCs, and smaller defect in H2-K display, were consistently
observed in numerous independent experiments and very
prominent upon BMDC activation, as illustrated as ratios of
Nlre5~" to NIre5™" in Fig. 2B and 2C.

We next analyzed H2-D that, albeit less regulated by NLRC5
(4), showed a trend similar to H2-K (Supplemental Fig. 1A).
Conversely, CD71, whose transcriptional regulation is not con-
trolled by NLRCS, was virtually unaltered, underlining the
specificity of this phenomenon (Supplemental Fig. 1B). We also
found that this compensatory mechanism, partially rescuing
H2-K surface expression in Nirc5~"~ BMDCs, was common
to a range of DC activators, including the innate immune stim-
uli CpG and zymosan and the cytokines TNF-a and CD40L
(Supplemental Fig. 1C). Furthermore, this phenomenon was
present 12, 24, as well as 48 h following IFN- treatment (Fig.
2D). Interestingly, 48 h after stimulation, the defect in total
MHCI was striking, translating also in a 2-fold reduction of
H2-K display by Nirc5~’~ BMDCs (Fig. 2D).

To directly assess intracellular MHCI levels, we took advantage
of the ImageStream technology, which combines the statistical
power of flow cytometry to the subcellular imagery of microscopy.
By specifically quantifying extracellular and intracellular H2-K
pools, we confirmed that the latter was strongly affected in LPS-
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FIGURE 3. A general, NLRC5-independent mechanism compensates
H2-K surface levels. (A) Rfx5™~ and Rfx5~/~ BMDCs were stimulated
with either IFN-B, LPS, or left untreated (—). Mean fluorescence in-
tensities (MFIs) of extracellular and total H2-K were evaluated 24 h
poststimulation by flow cytometry on CD11¢* BMDCs. Ratios of H2-K
MFI values of fo57/7 to fo5+/7 for extracellular as well as total
fluorescence are depicted in the graph. (B) Wild type and H2-K*/~
BMDCs were treated and analyzed as in (A). (C) Nlre5™ BMDCs were
transfected with either 5 nM negative control small interfering RNA
(mock, dark gray bars) or 5 nM H2-K-specific small interfering RNA
(H2-K siRNA, light gray bars). Following transfection, cells were
stimulated with IFN-B. In parallel, untransfected Nirc5™" and Nire5~/~
BMDCs stimulated with IFN-3 for 24 h were assessed. Surface and total
H2-K levels were analyzed on CD11c* BMDCs after 24 h. Ratios of MFI
values of Nlrc5~~ to Nlre5™" and for H2-K small interfering RNA- to
mock-transfected cells for extracellular and total fluorescence are illus-
trated on the right. Results represent mean = SD of n = 3 technical
replicates (A and C), n = 4 technical replicates (B), and are representative
of at least two (B) or three (A and C) independent experiments. *p <
0.05, **p < 0.01, ***p < 0.001.

treated Nirc5~’~ BMDCs despite a milder extracellular reduc-
tion (Fig. 2E). Of note, mature intracellular MHCI was mainly
found in a distinct location, which to a good extent overlapped
with the Golgi staining (Supplemental Fig. 1D).

Finally, we tested whether the increase in surface MHCI relative
to the intracellular pool observed in Nire5~/~ BMDCs was ob-
served in DCs in vivo. We therefore injected i.p. Nire5™" and
Nlrc5~"~ mice with poly(I:C), to induce an acute IFN response,
and assessed surface and total MHCI levels on splenic ¢cDCs 24 h
later. In line with our in vitro results, Nirc5 ’~ c¢DCs showed a
greater defect in MHCI total pool than surface levels as compared
with control cells (Fig. 2F). We therefore identified a phenomenon
of altered MHCI distribution, partly uncoupling surface from
neosynthesized MHCI pool.

The abundance neosynthesized MHCI fine-tunes its surface
levels

We thus asked whether NLRCS5 is directly involved in regulating
the subcellular distribution of MHCI molecules. Because only a
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minority of NLRCS resides in the nucleus (2), the latter hypothesis
could have provided an attractive candidate function for cyto-
plasmic NLRCS5. To uncouple the nuclear from a potential
cytosolic function of NLRCS5, we analyzed Rfx5-deficient
BMDCs, which have an intact Nirc5 expression (Supplemental
Fig. 2A), but lack RFXS5, an enhanceosome factor essential for
NLRCS recruitment and transactivation of the MHCI promoter
(4-6). Interestingly, IFN-B— and LPS-treated Rfx5 '~ BMDCs
showed H2-K surface expression comparable to control cells,
but reduced total protein and mRNA expression, recapitulating
results obtained in Nlrc5~/~ BMDCs (Fig. 3A, Supplemental
Fig. 2B). We then decided to assess whether H2-K*'~ BMDCs,
having an expected reduction of H2-K of 50%, presented a
similar compensatory mechanism for surface H2-K expression.
We observed the predicted reduction of total H2-K levels, whereas
surface expression was less strongly affected (Fig. 3B). Finally,
we wondered whether a similar phenomenon was observed
when H2-K transcription was reduced in a transient manner.
We therefore transfected BMDCs derived from Nire5" mice
with H2-K-specific small interfering RNA leading to a partial
reduction in H2-K transcript abundance (Supplemental Fig.
2C). Again, the reduction in H2-K surface expression was
milder as compared with the reduction in total levels (Fig. 3C).
Our results highlight that the phenomenon partly uncoupling
surface from the neosynthesized MHCI pool originally ob-
served in Nlrc5-deficient cells was common to Nlrc5-inde-
pendent models exhibiting low transcript and intracellular
MHCI levels.

Nlrc5-deficient DCs are efficient at cross-priming

These results prompted us to test the ability of activated Nlre5 /™
BMDCs to prime CD8* T cells. We started by addressing the
ability of Nlre5~/~ BMDCs to crosspresent Ags, that is, to display
in MHCI molecules of peptides derived from exogenous Ags. To
this end, we fed Nlre5~'~ and Nlre5™ BMDCs with OVA-coated
Bym™’~ irradiated splenocytes in the presence of IFN-B and
cocultured them with transgenic OT-I T cells, which are specific
for the H2-KP-restricted OVA-derived peptide SIINFEKL. As
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shown in Fig. 4A, T cell proliferation was comparable when in-
duced by Nirc5~"~ and Nlrc5"" BMDCs.

We next assessed crosspresentation capacity of Nlre5~’~ and
Nlre5" DCs in vivo. We adoptively transferred OT-I T cells
into Nlrc5~/" and Nlre5™ recipients and challenged these
animals with the indicated doses of OVA coinjected with CpG.
Two days after antigenic challenge, OT-I T cell proliferation
was measured in the draining lymph node. As illustrated in
Fig. 4B, OT-I T cell proliferation was negligibly affected in
Nlre5~'” mice. These data therefore show that Nirc5~/~ DCs
efficiently cross-prime T cells and suggest that this ability re-
lies on their relatively abundant surface MHCI molecules,
compatibly with the sizeable use of recycled molecules for
crosspresentation.

Nirc5 deficiency affects direct Ag presentation, but not T cell—
priming ability by DCs

Finally, we analyzed the contribution of NLRCS5 to direct Ag
presentation, which denotes the display in MHCI molecules of
Ags derived from endogenous protein synthesis. To this end,
we transfected LPS-treated Nlrc5~’~ and Nirc5"" BMDCs with
mRNA encoding the SIINFEKL peptide and GFP, to select
for transfected cells, or GFP only, as control. As shown in
Supplemental Fig. 3, similar percentages of GFP" cells were ob-
served among Nlrc5~~ and Nire5™ BMDCs. We then measured
surface H2-K and SIINFEKL-MHCI complex levels on GFP*
cells, as illustrated in Fig. SA. The net amount of SIINFEKL
presented by GFP* Nirc5~/~ DCs was remarkably lower as
compared with the levels presented by Nlrc5%" BMDCs and rel-
ative to surface H2-K, implying a defect in direct Ag presentation.

We next assessed the capacity of these BMDCs to prime OT-I
T cells. Despite the defect in the surface level of MHCI loaded
with endogenous Ags, the activation of OT-1 T cells by transfected
LPS-treated Nirc5~~ and Nire5™ BMDCs was only marginally
affected, even at low DC:T ratios (Fig. 5B). As the expression
of costimulatory molecules by DCs can strongly amplify TCR-
mediated signaling and overcome partial Ag presentation defects
(17-19), we measured the expression of CD80 and CD86. Im-
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FIGURE 4. Nirc5-deficient DCs efficiently crosspresent exogenous Ags in vitro and in vivo. (A) Nirc5" or Nirc5~/~ BMDCs were cocultured with
CTV-labeled OT-I T cells and with the indicated numbers of OVA-coated Bom ™/~ irradiated splenocytes (OCS) after 6 h of IFN-f stimulation. Numbers,
percentages, and a representative example of OT-I T cell proliferation as observed by flow cytometry after 3 d are illustrated. Results represent mean *+ SD
(n = 3 technical replicates) and are representative of at least three experiments. (B) Proliferation of congenically marked OT-I T cells adoptively transferred

into Nire5™ or Nirc5™/~

recipient mice was analyzed in popliteal lymph nodes 48 h after footpad immunization with OVA and CpG. Numbers, per-

centages, and a representative example of proliferating (CD45.1%) OT-I T cells are depicted. Results are a pool of two independent experiments, illustrate
mean = SEM (n = 8-9), and are representative of at least three independent experiments. *p < 0.05.
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portantly, IFN-B— or LPS-treated Nirc5’~ and Nirc5" BMDCs
normally increased costimulatory molecule levels (Fig. 5C).
Taken together, these data show that direct Ag presentation is
affected in the absence of Nlrc5; despite that, T cell activation is
robustly induced, suggesting that compensation through costim-
ulatory mechanisms efficiently counteracts weaker TCR-mediated
signaling.

Discussion

Even though the importance of NLRCS5 as a transcriptional reg-
ulator of MHCI in lymphocytes has become increasingly appre-
ciated, its physiological relevance in DCs, the most important
APCs in most instances, remained unexplored. Our work dem-
onstrated the importance of NLRCS in transactivating MHCI genes
in DCs following exposure to inflammatory stimuli, which was
mirrored in the reduced amount of intracellular MHCI.

Yet, we observed disequilibrium between intracellular and ex-
tracellular MHCI distribution in Nlrc5’~ as compared with
control DCs. This phenomenon was not limited to Nlrc5-deficient
cells, as we had similar observations in different genetic models
presenting a partial defect in MHCI transcription. Therefore,
NLRCS is not directly regulating the subcellular distribution of
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MHCI, which is rather fine-tuned based on the size of the intra-
cellular MHCI pool. As MHC display is known to be strongly
regulated also at posttranslational levels, we can postulate that
MHCI trafficking and degradation are controlled through com-
pensatory mechanisms influenced by the intracellular MHCI pool
(20-25).

Of note, we observed a dramatic loss of intracellular H2-K
molecules and a remarkable decrease in surface levels 2 d after
Nlrc5~"~ DC activation. Even though the contribution by this
specific priming condition to the overall immune response in vivo
is unlikely to be major, these stimulating data suggest that late
priming might be affected by Nlrc5 deficiency, or that, in the
case of infections specifically targeting DCs, defective immuno-
surveillance by CD8" T cells might ensue.

Among immune cells, DCs are considered the most efficient
APCs, and one of the features that mainly distinguishes them is
their ability to crosspresent Ags. In our study, Nlrc5’~ DCs
exhibited efficient cross-priming ability. Whereas we successfully
used the Ab specific to SIINFEKL-bound H2-K (clone 25-D1.16)
in the context of presentation through the endogenous route (26,
27), we failed to observe a specific staining for the crosspresented
epitope. We therefore quantified only DC ability to cross-prime
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T cells, what encompasses both Ag display and costimulatory
ability (17-19, 27). We therefore speculate that the unaffected
costimulatory capacity and the relative abundance of MHCI
molecules at the surface of Nirc5”~ DCs, which can feed into the
crosspresentation pathway (23, 28), contribute to efficient T cell
cross-priming.

In agreement with the reduced levels of MHCI mRNA observed in
Nire5~~ DCs, reduced levels of neosynthesized MHCI molecules
were measured intracellularly. Interestingly, the main bolus of mature
intracellular MHCI molecules partly overlapped with Golgi staining,
lending support to previous observations indicating that this organelle
stores the majority of mature MHCI (21). The decrease in H2-K
mRNA and intracellular pool strongly suggested a reduction of im-
mature H2-K protein in the endoplasmic reticulum, explaining the
defective capacity of Nlrc5’~ DCs to display endogenous Ags.
However, we could not detect significant defects in T cell-priming
ability, indicating that the partial reduction observed in Ag-loaded
MHCI molecules was amply compensated by costimulatory signals
(17-19). 1t is interesting to notice that, in contrast to the CIITA-MHC
class II axis that is silenced upon DC activation by innate immune
stimuli (29), NLRCS and MHCI transcription are induced, thereby
actively contributing to direct Ag presentation (2, 7, 11).

Despite being well established and extremely useful, the widely
used SIINFEKL-OT-I system has some shortcomings (30). On the
one hand, SIINFEKL is an immunodominant epitope, binding
H2-K with good affinity, which might thus represent an ideal
model for certain microbial epitopes, but not for subdominant
ones (31, 32). In contrast, OT-I T cells bear a high-affinity TCR,
which well exemplifies the behavior of good-affinity T cell
clones (30, 32), but not of low-affinity ones, being potentially
impaired in their activation by Nlrc5’/~ DCs. However, as
immunodominant epitopes and high-affinity T cell clones are
crucial to most immune responses, we decided in this work to
focus on these important aspects.

Our results underline that transcriptional regulation of MHCl is
arobust process in DCs, as even the complete loss of NLRCS only
leads to mild or negligible alterations of surface MHCI and prim-
ing ability. We can therefore speculate that interindividual variations
or immunomodulatory cytokines controlling NLRC5 or MHCI
transcription are unlikely to significantly affect cytotoxic T cell
priming, at least for immunodominant epitopes. In light of these
findings, it is not surprising that viruses, including Kaposi’s sar-
coma-associated herpesvirus and HIV, target MHCI at the post-
transcriptional level to favor immune evasion (24). Taken together,
these data highlight how MHCI-mediated T cell priming is a robust
and highly efficient mechanism and how NLRCS5 represents one
among multiple transcriptional, posttranscriptional, and costimula-
tory mechanisms that have simultaneously evolved to guarantee this
fundamental immune defense process.
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