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Abstract

Forensic document examination is one of the oldest areas of forensic science. Despite
the advent of personal computers and portable digital tools, the discipline has enjoyed
relatively few methodological advances compared to other forensic areas. Moreover,
the use of handwritten evidence in court has historically faced many issues, particularly
in the US-centric system.

Among the specificities of this field, one can identify the lack of physical laws
governing the fundamental principles of handwriting, the difficulty in assessing the
general validity of these principles, and the reliance on human experts’ judgement to
provide an opinion to the stakeholders. The reporting of the evidential value also lags
behind other forensic areas, such as DNA interpretation, where the modern Bayesian
approach of the ENFSI Guideline for Evaluative Reporting in Forensic Science is fully
implemented.

Starting from the fundamental principles governing handwriting, necessarily
qualitative in their nature, this thesis first considers several well-defined forensic
scenarios in which such principles can be translated to a statistical description of a
series of measurements. The necessary evidence is collected either on request via a
panel of writers, or from real casework. We considered scenarios where authorship is
discussed, either of signatures or naturally handwritten content. Next, the Bayesian
approach is introduced, from the theoretical notions to the computational requirements.
As no universal technique to compute the Bayes Factor is available (the only coherent
measure for evaluative purpose), every scenario requires a distinct path and a tailored
approach. The stability and the validity of each developed model is also approached,
for instance by performing sensitivity analyses on its parameters or on the data.

Bayesian reasoning can be easily generalized, and allows one to approach the issue
of combining multiple kinds of evidence. As an example, we consider a hypothetical
scenario where an anonymous letter is found jointly with salivary evidence, under the
hypothesis that both came from the same person of interest. The person of interest
declares that his twin brother was the source of both traces. In the last Chapter we
first show how the developed models can be adapted for each type of evidence, then
how they can be combined together to produce an evaluative report that is coherent
and justified.



Résumé

L’expertise en documents est l’une des plus anciennes branches des sciences foren-
siques. Malgré l’époque numérique et l’apparition de l’ordinateur et de nombreux
outils numériques portables, la discipline n’a eu le même taux de développement
méthodologique par rapport à d’autres branches forensiques. De plus, l’utilisation
d’évidences manuscrites dans les tribunaux a historiquement été confrontée à de
nombreux problèmes, notamment dans le cadre du système judiciaire des États-Unis.

Parmi les spécificités (et les lacunes) du domaine, on rencontre l’absence de lois
physiques qui règlent les principes fondamentaux de l’écriture manuscrite, la difficulté
d’évaluation de la validité de ces principes, et l’approximation logique de l’expert
dans la formulation de ses conclusions. La manière dont la valeur de l’indice est
reportée est aussi en retard comparé à d’autres branches forensiques, notamment
l’analyse ADN, où l’approche dite “Bayésienne” moderne de l’ENFSI Guideline for
Evaluative Reporting in Forensic Science est pleinement adoptée.

Partant des principes fondamentaux régissant l’écriture manuscrite, nécessairement
qualitatifs par nature, cette thèse considère d’abord plusieurs scénarios forensiques bien
définis où ces principes peuvent être traduits dans un descriptif statistique d’une série
de mesures. Le matériel nécessaire (corps d’écriture, soit de signatures, soit d’écriture
naturelle) est récolté soit à travers un panel de scripteurs, soit provenant de cas
réels. Nous avons traité des scénarios où l’identité du scripteur est disputée. Ensuite,
l’approche Bayésienne est adoptée, suivie d’une exposition des notions théoriques et
computationnelles. Puisqu’il n’existe aucune technique universelle de calcul du Facteur
de Bayes (seule méthode cohérente pour l’évaluation des observations forensiques),
tout scénario nécessite une démarche adaptée et ciblée à la problématique d’intérêt.
La stabilité et la validité de chaque modèle développé sont également approchées, par
exemple à travers d’une analyse de sensitivité aux paramètres ou aux données.

Le raisonnement Bayésien peut être facilement généralisé, permettant l’inclusion de
plusieurs types d’observations forensiques différentes. Par exemple, nous considérons
un scénario hypothétique dans lequel une lettre anonyme manuscrite est saisie ainsi
que du matériel salivaire, sous l’hypothèse que les deux proviennent d’une même
personne d’intérêt. Cette dernière déclare que son jumeau est à l’origine des traces.
Dans le dernier chapitre, nous montrons d’abord comment les modèles ici développés
peuvent être adaptés à ces types de preuves, puis comment ils peuvent être combinés
pour produire un rapport d’évaluation de type évaluatif cohérent et justifié.



Chapter 1

Introduction

In this Chapter we give an overview on handwriting evidence and examination in
forensic science, from the first historical cases to contemporary times. We present
the current state of the art of research on handwriting examination, the relationships
it has with other fields such as machine learning, and reactions from the forensic
community.

The work of forensic handwriting examiners rests on several fundamental principles
that govern the act of handwriting production, as well as a specific vocabulary. These
aspects are briefly exposed in the Chapter.

We present the structured process that examiners follow to reach their conclusions,
beginning with the search of specimens and ending with the statement of the expert
opinion to the stakeholders. We also focus on the way their conclusions are stated, as
it is the subject of a lively transversal debate across all areas of forensic science.

As forensic handwriting examination is an extremely complex process, we present
the most important issues that characterize the field. Some of these have been suc-
cessfully solved by past research, for instance the issue of admissibility of handwritten
evidence in court trials (see Section 1.5.1 for a US-centric overview). Other issues are
still open for research and discussion.

It is upon both the fundamental principles and current research that this thesis
is based. Our contributions to the solution of the open issues in determined cases
are detailed. First, we adopt a wide perspective, showing we address these issues
within the generic scope of forensic handwriting examination. Then, we expose how
we intend to solve these problems on a case-by-case basis.

Finally, the end of the Chapter contains a summary of the structure of the thesis.
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1.1 A brief history of handwriting in forensic sci-
ence

Forensic document examination is one of the oldest areas of forensic science. The
Roman magistrate Gaius Verres was condemned in 70 B.C., on the basis of alleged
forgery of official documents (Locard, 1959; Stone, 2018). In the third century, Titus
was known to be involved in forgeries. Handwritten evidence was frequently reported
in court during history: Justinian I (539), the “La Roncière” case (1835), the “La
Bussinière” case (1891), the Dreyfus case (1894) (Münch, 2000).

Forensic document examiners (FDE) and forensic handwriting examiners (FHE)
acted as experts in many recent highly mediatized cases (Koppenhaver, 2007): we
can recall the Howard Hughes fake autobiography (1971), the false Hitler Diaries
(1983), the Gregory case (1983), the Omar case (1991) and the Seznec case (1923).

Nowadays, FHE — despite the electronic era and the diffusion of electronic
devices — are still being frequently confronted with cases involving handwriting or
signatures, for example in wills, contracts or authentication of paintings (Montani,
2015). However, the discipline has enjoyed relatively few methodological advances
compared to other forensic areas.

In 1910, Albert Osborn set the bases for modern forensic document examination,
establishing its scope, its tools, the techniques and the principles that experts still
use in current practice (Koppenhaver, 2007, p. 49; Osborn, 1910). Many scholars
have further developed the discipline during the last century. We cite the works of
Harrison (1958), Hilton (1992), Huber & Headrick (1999), Morris & Morris (2000),
Lewis (2014) and Koppenhaver (2007).

Efforts were mainly directed at understanding the intrinsic characteristics of
handwriting, how it is learned and taught, how it varies with time, how it is affected
by illnesses and medical conditions, and how it differs across writers, populations,
cultures and writing systems. The area was also concerned with examining printed
or typed documents, exploiting ink characteristics and chemical composition, paper
properties and latent marks on the document surface. Forensic document examination
has also recently been influenced by advances in neurosciences (Caligiuri & Mohammed,
2012), which provide a description of how the writing process is dissected by the
brain.

The advent of the digital era introduced new automatic tools to the arsenal
available to help FDEs in their work. Among these, we cite the systems Script
(1986), Forensic Information System on Handwriting (FISH) (1990), CEDAR-FOX
(1996), WANDA (2003), TRIGRAPH (2005), Graphlog (2006), Masquerade (2012),
Biografo (2015) and GRAPHJ (2018) (Fabiańska et al., 2006; Galbally et al., 2015;
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Guarnera et al., 2018; Leedham & Srihari, 2003; Marquis, 2007; Natural Intelligent
Technologies Srl, 2012; Niels et al., 2005). These systems automatically extract a set
of features (assumed relevant) given sufficient handwritten material, and produce
either a list of similar specimens in the system, a list of selected measurements
extracted from the images, or a binary conclusion on the authenticity (i.e. whether
the questioned specimen(s) are attributed to the same writer). These automated
systems share some major weaknesses (Marquis, 2007). A generally shared trait
between those systems is the assumption of independence between the set of features
which are extracted, but which may not hold. For example, it is known that the
writing system shown in the acquired material has an effect on multiple features
(Huber & Headrick, 1999). Another issue is that comparisons made by automated
systems are intrinsically different to comparisons made by experts. These systems
consider only the features that have been programmed to be considered as relevant,
while FDEs are able to reach conclusions exploiting subjective characterizations and
context-related information. Also, FDE are allowed to state a “no conclusion”, for
example when the acquired material is in insufficient quantity (Saunders et al., 2011).
For these reasons, automated systems are rarely used by forensic document examiners
(Found, 2012), although they can be employed as a means to process large quantities
of documents to create a database of items of handwriting (for example Graphlog
in Maciaszek (2011) and Dziedzic (2016)). Moreover, the criteria for inferential and
decisional processes are questionable from a logical and statistical point of view.

Contemporary research has also been influenced by the pattern recognition and
machine learning communities. A series of deep reviews of their research output
was conducted, showing the great interest by scholars in these fields (Impedovo &
Pirlo, 2008; Leclerc & Plamondon, 1994; Plamondon & Lorette, 1989). A number
of competitions were also held, with the goal of collecting and obtaining the best
performing algorithm for typical FDE tasks on a given database, such as writer
identification (detecting a writer given a set of samples from several writers) and
signature verification (given a written specimen, determine whether it could have
been written by a given writer) (Hassaine et al., 2013; Liwicki et al., 2012; Louloudis
et al., 2011, 2013; Malik et al., 2015).

The recent appearance and enormous success of deep learning techniques in
many computationally intensive fields (from image processing to autonomous driving)
inspired new applications by the machine learning community. The main difference
with the pattern recognition algorithms is that deep learning approaches heavily
exploit computational power in order to learn the best discriminatory features from
data, rather than relying on characteristics defined as relevant by humans. Some of
these techniques have recently been applied to FDE tasks such as writer identification
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(Christlein et al., 2015; Christlein et al., 2017) and signature verification (Hafemann
et al., 2016), beating in both cases the state of the art according to machine learning
metrics. Recent reviews on deep learning research have been conducted by (Rehman
et al., 2019) and (Hafemann et al., 2017).

Concerning these modern techniques, we will avoid citing any article in particular,
and rather referring the interested reader to the resourceful reviews cited above. One
common factor of the pattern recognition literature applied to FDE is that the metrics
used to report the conclusions are not well suited for forensic purposes. The goal of
most of these works is the creation of an automated system which decides whether
a set of specimens is consistent with the hypothesis of source (e.g. a given writer)
or authenticity. As it will be explained later in the Chapter, this approach is not
consistent with the Bayesian evaluative approach of forensic evidence, as the decision
ultimately bears on the judge, not on the expert (or in this case, the automated
system). The complete adoption of the evaluative standard should also impact the
entire process, for instance the choice of an appropriate reference database to elicit
prior knowledge about the evidence (Champod et al., 2004). However, these works
have the merit of exploring and suggesting novel handwriting features that might
guide FDEs in their decision.

1.2 State of the art of handwriting examination in
forensic science

It is important to note that the fundamental principles governing handwriting, as
established by Osborn and his scholars, are mostly qualitative in their nature. Some
of the discriminating elements that are used by FDE can be measured (e.g. slants),
but a standard approach on how the measurements are performed, compared and
catalogued, is lacking. One’s handwriting fluency and intricacy are often qualitatively
described, yet they are important factors that may alter a judgement of genuineness
(Huber & Headrick, 1999, sec. 55).

With the adoption of computers and the appearance of more sophisticated mea-
surement tools, a large amount of empirical quantitative studies on handwriting
appeared in recent literature.

Among these, we should cite the works of Srihari et al. (Srihari et al., 2008;
Srihari et al., 2002; Srihari et al., 2005). In these studies, the authors analyze several
large datasets with the main goal of verifying the principles behind forensic document
examinations, in particular the “uniqueness” of handwriting. Through their proposed
methods, they claim to be able to discriminate writers with a very low error rate.
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Despite attracting vivid criticisms by FDE practitioners (Marquis et al., 2005; Saks,
2003; Thiéry, 2014), they are frequently used in court to motivate the admissibility
of handwritten evidence in court, as well as raising important questions, perhaps
involuntarily, that the discipline needs to answer.

The simple presence or absence of certain characteristics in specimens may be
exploited by FDEs, provided that their rarity in a given relevant population is known.
Two studies were conducted in order to provide these relative rarities for specified
characteristics in natural handwriting (Johnson et al., 2017) and written numbers
(Vastrick et al., 2018). The authors warn that these results do not provide sufficient
information to correctly evaluate the value of evidence. For example, these studies
consider only the presence or absence of selected features, but not their range of
variation. Some of the most important characteristics (such as line quality) were not
analyzed. The independence between features was only partially characterized, so
the product rule of probability theory is not directly applicable to evaluate the joint
value for the occurrence of certain characteristics. Also, they consider a demographic
which allegedly represents the US population. An extrapolation of these results to
other populations might not be possible.

Other studies provided a quantitative description of various features that FDE
can exploit in their work. Starting from a large scale, a signature may be composed
by two elements, for example the name and the surname. It has been shown on 60
subjects that the horizontal length of these components is stable on a window of 15
weeks (Matuszewski & Maciaszek, 2008). In another study, experts considered the
variability of the total height and width of a signature across time (days or months),
grouping all components together. The study compared 2320 signatures from 8
individuals collected over 3 years, showing that in most individuals the dimensions
were significantly different across time. Length and height for most individuals were
lowly correlated when considering signatures which were written close in time (Evett
& Totty, 1985). These results were extended by considering various absolute and
relative measurements from the initial letters of signatures from 30 individuals. This
study showed the lack of correlation of absolute height and width of initials, as well
as showing that these are stable over time (Maciaszek, 2011). It is important to
note that these studies are not directly comparable, as they differ in the reference
population that supplied the specimens, the time window of collection, the criteria
used to measure absolute and relative lengths, and the statistical quantification of
the variability.

On a smaller scale, Lizega Rika (2018) described the variability of letter proportions
(height, width and their ratio) in natural handwriting, showing that these measure-
ments are highly characteristic across 21 writers (Lizega Rika, 2018). Muehlberger et
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al. (1977) considered the letter combination “th”, common in English texts, and gave
a description of the variability of several geometrical relations that can be measured
on the letter pair. Ling (2002) built upon this article, adding other measurements
(both lengths and spacings) from more letter combinations.

Marquis et al. (2005) investigated the shape of handwritten character loops, such
as those found in letter “o”. This work has been extended to letters “a”, “d”, “q”
in later works, and the effect of forced enlargement on letter shape was discussed
(Marquis et al., 2006, 2007). Thiéry (2014) attempted to generalize the previous
descriptors to characters of a generic shape.

The direction of strokes in selected characters as an indicator of authorship was
studied by Franks et al. (1985). FDE can also investigate cases where the questioned
material is handwritten, but does not represent any letter nor signature. For example,
Marquis, Mazzella, et al. (2019) considered the variability of “x”-shaped marks,
such as ones that can be requested by checkboxes in forms. Such marks appear
simple to the untrained eye, yet it has been shown that even simple marks contain
enough information to form a opinion on authorship (Marquis, Mazzella, et al., 2019;
Marquis, Hicks, et al., 2019). It is naturally possible to consider multiple features
from the same document. When the handwritten evidence is composed of words,
several stroke-based measurements can be taken, and the distributions compared
(Marcelli et al., 2015). Again, the features were supposed to be independent.

Despite the recent evolution of the discipline, very few studies venture into
providing an evaluation of handwritten evidence consistent with the principles of
forensic interpretation that will be explained later in the Chapter. Among these we
cite (Bozza et al., 2008; Marquis et al., 2011; Marquis, Hicks, et al., 2019; Srihari et
al., 2008; Taroni, Marquis, et al., 2014). It is upon these studies that this thesis is
built, to further provide support to the usage of the Bayesian framework in forensic
document examinations.

1.3 Principles and elements characterizing hand-
writing

Post-Osborn research manifested in the development of a structured body of knowledge
of writing characteristics that FDEs routinely exploit in their work. Many scholars
identified a set of fundamental principles that appear to arise when dealing with
handwriting. Here we report these principles as defined by Huber & Headrick (1999).
Alternative formulations exist, such as in Hilton (1963) or Morris & Morris (2000).

First, handwriting is based on habituation. Everyone learns first to write using a
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common model (a copybook, or letters shown by the teacher on a blackboard) (Kelly
& Lindblom, 2006). As one grows, experience and repetition create a set of habits
which contribute in differentiating handwriting across individuals. These habits may
involve a number of characteristics such as word choice and letter formation. The
“imprecision with which the habits of the writer are executed on repeated occasions”
constitute the natural variation (Huber & Headrick, 1999, sec. 28).

The second principle is that handwriting is claimed to be unique to the individual.
In the words of Huber and Headrick, two writings of the same material by two
different persons are different (Huber & Headrick, 1999, sec. 28, as principle of
heterogeneity). This principle is generally accepted by the forensic community, and
is analogous to the claim of unicity of fingerprints. However, some care is needed to
interpret it correctly. As Huber & Headrick (1999) say, fingerprints have a system of
classification which allows one to verify this claim on very large databases. Despite
this fact, no one will ever be able to prove unicity by sampling the entire population
of the world, yet unicity of fingerprints is generally accepted. Actually, it is not even
necessary to prove this principle, but only to be able to assess the ability of FDEs
in differentiating writers (Champod, 2009). In fact, the notion of unicity is to be
intended as conditioned on the characteristics exhibited by the handwritten material
under evaluation, not on the process of handwriting in general. For example, available
material might be of insufficient quantity, or it may only show a limited set of features
which provide little discrimination. Equivalently, a fingermark might exhibit a very
poor quality. Hence, this principle relates only to the ability of a trained FDE to
correctly attribute (or exclude) the fingermark to a specific person.

It is then both natural and necessary to express the principle of heterogeneity
in a weaker form, by considering the writer’s natural variation. In general, one’s
handwriting evolves around a master pattern (Kelly & Lindblom, 2006; Morris &
Morris, 2000). afterward, FHEs in their expertise must first recognize the writer’s
master pattern, then assess the degree of consistency of the acquired material. The
master pattern usually evolves slowly with time, while larger variations are due to
illness, aging or abnormal psychomotor states. The very slowness of this variation
allows FHEs to perform the required comparisons.

Quantitative studies describe this principle with the term intra-variability.

Definition 1.1 (Intra-variability)
The normal range of a writer around a master pattern, characteristic of the writer.

The principle of unicity can be analogously translated with the term inter-
variability:
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Definition 1.2 (Inter-variability)
The variation of master patterns across different writers.

Other fundamental principles stemming from modern research concern the elements
that FDEs exploit in order to discriminate between writers. These are directly related
with the first principle, as they result from the acquired habit of handwriting.

Huber and Headrick classified them mostly under two large categories (Huber &
Headrick, 1999, sec. 30):

• elements of style: “aspects of writing that play a significant role in creating a
pictorial, or general or overall effect” (Huber & Headrick, 1999, sec. 30);

• elements of execution: aspects of writing that relate to less visible changes in
handwriting, as opposed to those implied by the elements of style.

To show some examples, among the elements of style one can find the arrangement
on a page, the characteristics of allographs, slant, slope and spacing. The interplay
of these features produces the general aspect of the written material. Among the
elements of execution one can find the choice of abbreviations, item alignments, line
production attributes (endings, continuity, quality) and pen control attributes.

To the untrained eye, the elements of style appear more markedly than elements
of execution, as the latter might imply the usage of an instrument to be assessed.
The elements of execution are “the personal idiosyncrasies of writing in which we find
the subtle dissimilarities between the writing of one individual and the next” (Huber
& Headrick, 1999, sec. 30).

The variation of the elements of style and execution, as well as their mutual
interactions, is itself discriminative. Huber and Headrick further consider these
aspects as two additional separate categories, one concerning the “consistency, the
natural variation and the persistency”, the other describing lateral expansion and
word proportions (Huber & Headrick, 1999, sec. 30).

Other fundamental principles concern the act of forgery. Handwriting is a conscious
process, thus it can be voluntarily modified in order to reproduce a signature, or
disguise one own’s writing. Recalling the first principle, notice that to successfully
produce a signature different that one own’s, one needs to modify one’s own habits
and reproduce the victim’s in a plausible and uniform way. If the forger has not
been trained in forensic handwriting examination, it is reasonable to assume that
he will fail to imitate the elements of execution, since by definition they are much
more subtle than the elements of style. As a result, an expert handwriting examiner
will detect the emerging inconsistencies between the reference and the questioned
material. These reasonings are stated by Huber & Headrick (1999) under the names
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of “principle of Exclusion and Inclusion” and “principle of Interference”. It is also
expected that the difficulty of simulating a signature increases with its length, its
complexity and the similarity between the writer’s and the victim’s writing habits.
This has been postulated and quantitatively verified in Brault & Plamondon (1993),
Found & Rogers (1996) and Dewhurst et al. (2007).

1.3.1 Types of handwritten evidence
As said before, handwritten evidence can appear under many forms. In this section
we give a partial classification, to delineate and restrict the scope of this thesis. It
is by no means an attempt to produce a complete classification; nor is it in full
agreement with the rest of the literature.
Definition 1.3 (Medium)
The physical support containing the written evidence.

Definition 1.4 (Writing instrument)
The physical tool used to produce the written evidence.
We will consider only handwritten evidence on a flat physical surface, such as a sheet
of paper, with ballpoint pens (the most common tool encountered in practice).
Definition 1.5 (Natural writing)
The result of execution of an individual’s writing habits, when performing a familiar
task that does not significantly impact the fluency (e.g. spontaneously taking notes, or
copying short familiar words).

Definition 1.6 (Signature)
“A way for a person to endorse the content of a document (. . . ), coming in a wide
variety of forms ranging from simple to complex, from legible to stylised.” (Allen,
2015).

Notice that the differences between signatures and natural writing amount not
only to their content (in terms of legibility) and their purpose (e.g. authentication),
but also to the way they are compared and evaluated by FDEs. FDEs must make
comparisons on a “like-by-like” basis (Allen, 2015, p. 63). For example, it is reasonable
to assume that the purpose of natural writing is to communicate a message. Letter
forms will be present and recognizable by readers. An expertise will require reference
written material that shows the same letter forms appearing in the questioned writing,
thus enabling the FDE to evaluate the writer’s natural variation. On the contrary,
when dealing with questioned signatures, FDEs must acquire specimens of signatures
from the putative source, that might not show any specific letter form.
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Definition 1.7 (Forged signature)
A signature which has been written by someone other than the claimant, by imitating
the shape of an authentic specimen without any external aid and with unlimited
practice, with “an intent to deceive” (from Ellen, 2005).

To distinguish against other kinds of forgeries in terms of instruments and way of
production, Huber and Headrick give this definition as “freehand simulated signature”
(Huber & Headrick, 1999, sec. 54). We will not consider traced signatures, nor
disguised signatures, nor signatures obtained by external aids (such as guided or
assisted signatures). Notice that this definition implies the existence of a forger, a
person whose own signature is, by definition, different from the victim’s.

Definition 1.8 (Off-line writing)
The image of a writing, obtained by digitising the medium.

Definition 1.9 (On-line writing)
The recording of the process of production of a writing, as a set of space-time positions
of the writing instrument across the medium.

Concerning on-line writings, notice that the amount of information available to
FDEs is much greater than off-line writings. Digital tablets also provide information
on pressure and tip-to-surface distance. The time ordinate is important to establish
a conclusion: it is not only intimately tied with many of the elements of execution
(in particular line quality, line continuity and fluidity of the writing movement), but
it is also an important feature to consider when the contemporaneity of writing
is contested, or when dealing non-occidental scripts (see for example Li (2019) for
Chinese handwriting). In these cases the stroke order needs also to be recovered
from the image. In off-line writings, in some cases one can infer the stroke direction
(Marquis, Hicks, et al., 2019; Snape, 1980) and the stroke order on line crossings, for
example with an optical microscope or mechanical methods (Brito et al., 2017; Shiver,
2009). A multi-stage process has recently been proposed to recover velocity and
pressure information from an image. Results are highly dependent on the accuracy
of each stage, in particular the extraction of the strokes from the image and the
determination of the strike order (Diaz et al., 2017). In general, a complete recovery
of the dynamical parameters of the stroke is unachievable. An extended description
of the dynamical parameters in forensic sciences is given by Linden et al. (2018).

In this thesis we consider handwritten evidence in the forms of off-line natural
writing, off-line signatures, and off-line forged signatures.
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1.3.2 Factors influencing handwriting
Handwriting is the result of a very complex process, thus it may be influenced by a
multitude of factors.

Huber and Headrick (2010) divide them into two large categories: intrinsical and
extrinsical factors.

Intrinsical factors can be at least partially controlled by the writer. Among these,
we cite the influence of the physical environment with which the writer interacts.
As an example, the effect of body posture on writing under normal (sitting at a
table) and unusual conditions (kneeling on the floor) was investigated in Sciacca et
al. (2008). The authors show that the natural variation does not depend strongly on
the analyzed body postures. However, the actual shape of the written material was
not analyzed. A successive study confirmed the findings on two new writing postures
(standing and lying down) and considering a vertical orientation of the writing surface
(Sciacca et al., 2011). The authors exercised care in interpreting these findings, as
the studies were limited in their experimental settings. The change of aspect ratio of
signatures as a function of posture was investigated by Thiéry et al. (2013). Results
show that some of the writers were sensitive to the adopted posture, while others
were not. Notice that the aspect ratio is not robust to accidental variations such as
longer ending strokes (Thiéry et al., 2013).

The change of shape when artificially forcing a writing size was taken into account
in Marquis et al. (2007). The authors analyzed the shape of closed character loops,
first written in writers’ normal size of writing, then three times larger. The same
Fourier methodology as in Marquis et al. (2005) was applied to parametrize the shape,
and a discriminant analysis classifier was trained with the goal of discriminating
writers. Results show that loop shapes were modified in the same way by most
(but not all) writers during the enlargement process, by increasing the roundness
and decreasing the slant. However, the classifier performed badly when trained only
on one version of the set of characters. In other words, the authors underline the
necessity of acquiring reference specimens with the same size of questioned material,
to eliminate the possibility of an artificial enlargement of the handwriting which could
lead to misleading evidence.

A factor which is relevant to signatures is the influence of the space that surrounds
them. It is frequent in forms and contracts that signatures have to be written
on an horizontal guide line, or in a box. A few studies are available in literature.
Morton (1980) show that an external constraint usually results either in a reduction
of the horizontal dimension, or a miniaturization of the whole signature, with little
alterations of the remaining writing aspects. Fazio (2015) studied the effect of
external constraints, both in on-line and off-line signatures. Results support the
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hypothesis that the constraints have an effect on a signature, increasing in strength
as the constraints become stricter. Concerning off-line signatures, the effect is not as
pronounced as on-line signatures, but the authors advise caution, and recommend
searching for reference specimens that exhibit the same limitations.

The second category of factors are those which are not controlled by the writer,
the so-called extrinsical factors. Among them, one extrinsical factor which is relevant
to the scope of this thesis is the genetic influence on handwriting.

The best way to study its effects is to consider handwriting in twins, who share
most of their genetic material. It is also reasonable to suppose that most twins share
the same environment and same education, at least in the first years of life. Available
studies which involve handwriting of twins conclude that twins can be discriminated
from unrelated persons, albeit at a higher error rate (Ahuja et al., 2018; Dziedzic
et al., 2007; Gamble, 1980; Srihari et al., 2008; Thorndike, 1915). A famous case
involving twins is the so-called Dionne quintuplets of Canada, whose handwriting has
been reported to be differentiated even during the twins’ formative years (Huber &
Headrick, 1999, sec. 25).

Another extrinsical factor which could potentially play a major confounding role
during an expertise is the influence of the writing system. In older times, handwriting
was taught using one of the standard models, the so-called copybooks. The influence
of the copybooks persisted as writers grew, notwithstanding the acquisition of a set of
personalized habits (according to the principle of habituation). Groups of writers could
have been differentiated by recognizing the taught copybook (class characteristics)
(Huber & Headrick, 1999). Nowadays, however, handwriting is taught differently:
pupils learn to write by copying the teacher’s handwriting on the blackboard, rather
than a prescribed copybook, reaching for legibility rather than the fidelity in shape
and good penmanship. As a consequence, the influence of the writing system is
generally greatly diminished, if not absent in signatures (Kelly & Lindblom, 2006, pp.
60–61). A counterexample has recently been observed, showing that Polish writers
may still possess a stronger copybook influence than English writers. However, the
study included participants with a very wide age range (Turnbull et al., 2010).

Class characteristics commonly also include habits that are shared by groups of
writers. For example, it has been reported a greater similarity of the handwriting
between members of a family (Kiran & Sridhar, 2017). Notice that this effect might
be a confounder of the aforementioned studies conducted on handwriting similarity
across twins. The same phenomenon may happen during adolescence, when writers
may be exposed through their peers to a particular style of writing. This was the
case for the so-called bubble writing, a particularly round style diffused among female
adolescents in the North-Eastern United States (Totty, 1991, p. 120).
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Nowadays, most features which are interesting to the purpose of writing identifi-
cation spur from the individual habits acquired during the formative years. However,
FDEs still need to be aware of class characteristics, for instance when the case involves
older people, foreign alphabets, or the design of particular letters.

It is important to remind that the reference material should have been produced,
as far as possible, in the same period of the questioned material (Sulner, 2018, pp.
648–649). This is due to the fact that the writer’s habits may change over time.
If the reference specimens are not sufficiently representative, differences in writing
characteristics may wrongly weigh towards the hypothesis of non-authenticity, rather
than the modification of a writer’s habits. As the writer reaches old age, the effect of
time may also be associated with other factors, such as a decline in health. In that
case, writing may manifest increased tremor, loss of design quality and, in conclusion,
will have a greater probability to err, due to the absence of lines of reasoning to deal
with uncertainty (Kelly & Lindblom, 2006, p. 85).

1.4 The forensic document examination process
An important outcome of the post-Osborn research is the rationalization of the process
of forensic handwriting examination. FDEs adopted the so-called “ACE-V” process,
which is also shared by other forensic fields such as fingermark analysis (Huber &
Headrick, 1999).

In short, evidence is examined by experts in three separate phases:

• Analysis: the principles governing the specific forensic discipline are exploited
in order to extract elements to be analyzed. In this case, writer’s habits are
identified from the writings, and the most discriminating elements extracted.
This is done first on the questioned material, then on the reference material.

• Comparison: the questioned material is compared with the reference material, to
collect similarities and differences between the discriminating elements identified
in the Analysis step.

• Evaluation: the outputs of the previous steps are considered in the light of the
hypotheses of interest, and the evidential value of the findings is assessed. The
experts’ report is finally stated in a verbal or numeric form. Commonly (and
unfortunately), experts state their conclusion as an identification, an elimination
or declare evidence to be inconclusive.

A fourth step, Validation, is typically added to the chain, and involves the blind
re-examination of the evidence by one or more experts in order to confirm or contradict
the conclusions.
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The third step, Evaluation, produces what is ultimately communicated in court or
to the stakeholders: to correctly conduct an evaluation is of utter importance. Many
miscarriages of justice have occurred due to fallacies in evaluative reporting. DNA
evidence is particularly sensitive to these issues, but an improperly conducted evalua-
tion can also occur in other domains (Gill, 2012). Forensic document examination
is not free from these issues either. One of the most widely known examples is the
Dreyfus case, where a group of mathematicians led by Poincaré pointed out that the
forensic expert Bertillon had drawn fallacious conclusions in his report (Bertillon,
1901; Mansuy & Mazliak, 2008). For an historical review of the case, see (Taroni et
al., 1998), (Champod et al., 2000) and (Kaye, 2007).

To dispel the possibility of any miscarriage of justice, the evaluative step is the
subject of several guidelines recently established by various forensic institutes, calling
for a trans-disciplinary standardization of evaluative reports. In the UK the AFSP
guidelines were published in 2009 (Association of Forensic Science Providers, 2009),
while European forensic institutions (ENFSI) published their own version in 2015
(Biedermann et al., 2017; Willis et al., 2015).

These guidelines require forensic experts to acknowledge the usage of probability
into uncertainty assessment for evaluative reporting. The whole reasoning behind
the formulation of the report should follow the probability axioms. The result of
the evaluation (i.e. the strength of the evidence) is to be stated using an expression
called Likelihood ratio (or, more properly, Bayes factor). Such an approach has also
recently been adopted by the Document Section of the Canadian Society of Forensic
Science (CSFS) that feels the necessity to express a formal position about the use
of an alternative evaluation and reporting scheme, often referred to as “the logical
approach to evidence evaluation” (Ostrum, 2019).

Interestingly, it has been observed that the adoption of these guidelines should
affect the whole ACE process. In fact it is helpful to consider which results are more
discriminative according to the evaluative hypotheses of interest, before proceeding
with the physical analyses on the collected evidence (Biedermann et al., 2017; Cook
et al., 1998b). This has also been observed for handwritten evidence (Stockton &
Day, 2001).

1.5 Issues in forensic document examination

The usage of handwritten evidence in court has historically faced many issues, and
still does nowadays.



1.5. Issues in forensic document examination 17

1.5.1 What has been solved
Handwritten evidence is very different from evidence analyzed in other forensic fields,
such as physics, chemistry, biology and genetics (Huber & Headrick, 1999). One of
the differences lies in the fact that handwriting is the result of a chain of interactions
that start in the human brain and involves the neuromuscular system. The conscious
act is a fundamental component of the writing process, along with the precision of the
repetition of the neuromotor task. Moreover, there is no physical law that dictates how
handwriting is produced and evolves over time. This markedly contrasts with other
kinds of evidence, for example DNA. We know that DNA in an individual is mostly
immutable, and the way that DNA propagates across generations is described by the
laws of genetics. Further theoretical research provided a set of theoretical models
that describe how populations can be characterized by DNA. Major technological
improvements in terms of DNA laboratory analyses have finally given origin to DNA
profiling, the usage of DNA for identification (Jeffreys et al., 1985). In other terms,
the existence of a strong theoretical, empirical and scientific background is grounds
for the successful admissibility of DNA evidence in court (Buckleton et al., 2018;
Champod et al., 2017).

On the other hand, handwritten evidence did not enjoy the same luxuries. As
DNA evidence gradually was affirmed as the model for forensic identification science
(Saks & Koehler, 2005), the admissibility of handwritten evidence was the subject of
strong criticism, most notably in the United States of America.

In 1989 Risinger strongly affirmed that forensic handwriting examination lacked
any empirical bases, and many of the existing studies were either flawed, anecdotal,
speculative or non-rigorous (Risinger et al., 1989). This article was itself severely
criticized in FDE community (see for example Moenssens (1997–1998), p. 300), but
it started to raise several issues that grew in importance in the following years.

Until 1993, evidence resulting from forensic handwriting examinations was admit-
ted in the courts of the United States on the basis of Frye v. United States1. Under
Frye, expert opinion evidence is accepted as long as it is based on principles generally
accepted by the scientific or technical community where it belongs (Frye’s general
acceptance test) (Jamieson & Moenssens, 2009, p. 1331).

In 1993, in the case Daubert v. Merrell Dow Pharmaceuticals, Inc.2, the US
Supreme Court established four criteria that expert evidence should satisfy in order
to be admissible for testimony. First, Frye’s general acceptance test was demoted
to be a necessary condition. The other criteria concerned the scientific foundations

1Frye v. United States, 293 F. 1013 (D.C. Cir. 1923).
2Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993).



18 Chapter 1. Introduction

of the methodology used by the expert. Admissible methodologies would have been
subjected to peer review, would be testable through falsification, and error rates would
have been available (Jamieson & Moenssens, 2009, pp. 693–694). Moreover, the judge
was allowed to exclude any evidence not meeting all the aforementioned criteria (the
“gatekeeper role”). A later decision (case Kumho Tire3) further expanded the scope
of the Daubert criteria to all kinds of evidence, scientific and not. In 1995, in the US
District Case United States v. Starzecpyzel4, following the Daubert requirements, the
judge affirmed that handwriting examination “has never been validated as credible
scientific or technical knowledge”, but is only a “technical skill”. The courts’ decisions,
at their face value, would have excluded from the courtroom many professional figures
due to the lack of published error rates, such as members from the social sciences
(psychiatrists and psychologists), forensic pathologists and fingerprint examiners
(Moenssens, 1997–1998).

This chain of events severely impacted the whole forensic area, and stimulated
a major rethinking of the forensic handwriting discipline in the subsequent years.
The Daubert and Kumho Tire trials brought to attention how the scientific bases of
forensic handwriting expertise could have been justified and improved, and raised the
relevant question of how performant examiners are in what their profession claims to
be able to do (Berger, 2011, p. 32).

Concerning the scientific foundations, it has been recognized that empirical research
on handwriting is important, as it leads to fundamental and factual knowledge about
the phenomenon of handwriting. Such information is valuable. First, it adds to
the theoretical background that supports operational techniques for comparisons.
Secondly, it allows one to formulate recommendations on which handwriting features
can be exploited by FHE according to their discrimination power. Thirdly, once these
features are determined, one can evaluate the performance of FHE by establishing a
set of standardized proficiency tests, providing an unambiguous measure of reliability
of the examiners, for example by assessing their error rate. Nevertheless, some of the
FHE practitioners have themselves been pushing against the recognition of forensic
handwriting analysis among more “scientific” disciplines, as most of the founding
principles (such as the principle of uniqueness) are not experimentally verifiable. The
same practitioners, instead, advocate embracing uncertainty and focusing on testing
the reliability of experts (Sulner, 2018).

The issue of expert performance on FHE tasks was investigated by several scholars
after the Daubert trial. Recent studies were conducted, comparing trained forensic
document examiners against laypersons, both on handwriting and on signatures.

3Kumho Tire Co., Ltd v. Carmichael, 522 U.S. 136 (1997).
4United States v. Starzecpyzel, 880 F. Supp. 1027 (S.D.N.Y. 1995).
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(Found et al., 1999; Found et al., 2002; Found & Rogers, 2003; Kam et al., 1994,
1997, 1998, 2001; Kam & Lin, 2003; Risinger, 2007) In general, it was found that
FHE perform their tasks at a lower error rate than laypersons, supporting the actual
expertise of handwriting examiners.

Another result of research on FHE performance is the evaluation of the intrinsic
difficulty of the tasks. For example, Found & Rogers (2008) have shown that FHE
are more confident in expressing an authorship opinion on genuine signatures rather
than simulated or disguised ones, and do so with an error rate as low as 2.5%. On
the other hand, if the signature is simulated or disguised, expressing an authorship
opinion is a more difficult task, and the error rate can rise up to, respectively, 6.9%
and 40.1%. Also, FHE tend to favor the inconclusive opinion rather than call for an
authorship or an elimination (Found & Rogers, 2008). Laypersons, instead, are less
conservative than FHE, calling more often for the wrong decision (Sita et al., 2002).
It has been observed that the worsening of the performance on disguised signatures
might be due to the production of the specimens, not to the examiner’s skill. In fact,
it appears that some people may fail to disguise their signatures, producing specimens
whose natural variation is consistent with their own master pattern (Michel, 1978).

Two of the largest FDE organizations, namely the American Society of Questioned
Document Examiners (ASQDE) and the American Board of Forensic Document
Examiners (ABFDE), created several certifications to train and demonstrate the
reliability of practitioners (Day, 2009). Several other certifications exist (Huber &
Headrick, 1999, sec. 67).

The post-Daubert evolution of the forensic handwriting examination discipline,
such as the aforementioned quantitative studies by Srihari et al. (2002), and the
establishment of reliability assessments for the forensic profession, finally resulted in
the successful readmission of handwritten evidence in court in the case United States
v. Prime5 (Harralson, 2014; Kelly & Lindblom, 2006). However, the many critics
raised in the Daubert-era still remain.

It is important to note that these issues affect also other judicial systems, albeit to
a lesser extent than the US. Swiss courts, for example, allow the usage of handwritten
evidence as long as the expert is able to well justify its usage. The many critics, thus,
could potentially be used to invalidate experts’ justifications (Marquis, 2007).

1.5.2 What has not been solved
Despite the many post-Daubert efforts, the forensic handwriting discipline is still
facing a number of open issues.

5United States v. Prime, 220 F. Supp. 2d 1203 (W.D. Wash. 2002).
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One is related to the push for a stronger evaluative reporting across forensic
science, for instance through the adoption of the ENFSI Guideline for Evaluative
Reporting in Forensic Science (Willis et al., 2015). The new standard was modeled
on the Bayes factor approach to forensic interpretation of DNA profiles, calling for a
reporting that is balanced, robust, transparent and logical (Aitken et al., 2021; Willis
et al., 2015). Since its conception, it has been successfully applied to many areas
(Meuwly et al., 2017) including, but not limited to: glass evidence (Curran et al., 2000;
Curran, 2003), fingermarks (Neumann et al., 2006; Neumann et al., 2007), speaker
recognition (Gonzalez-Rodriguez et al., 2007), questioned documents (Biedermann et
al., 2011), fibers (Grieve et al., 2017), transfer evidence (Samie et al., 2016), footwear
marks (Evett et al., 1998), fire investigation (Biedermann et al., 2005), drug seizure
classification (Bozza et al., 2014).

However, the thorough application of the Bayesian forensic approach to handwrit-
ten evidence is lacking, as its implementation is not trivial. The first difficulty is
the need for a definition of a set of features to be extracted from the handwritten
evidence. Due to the complexity of handwriting, this task cannot be standardized
but must be conducted on a case-by-case basis, possibly under the guidance of a
FHE. Consequently, machine learning-based approaches are already barred out since
the features are often chosen to be highly discriminative for a large number of cases,
irrespective of their similarities/differences as evaluated by a FHE.

Once the features are defined, the second difficulty is the assignment of probabilities
to their relative rarities. A naïve adoption of the Bayesian forensic approach requires
the direct elicitation of probabilities by experts, a task that may be revealed to
be counter-intuitive and non-trivial for multiple reasons. For example, there exist
multiple definitions of the term probability that conflict in fundamental ways, for
instance in the attribution of a numerical value to an uncertain event (see for example
Köller et al. (2004), Cosmides & Tooby (1996) and Taroni et al. (2018) for a
discussion). It has recently been shown by Martire et al. (2018) that FDE are not
yet fully comfortable with the assignment of the probability of occurrence of certain
written characteristics from one own’s experience. The resulting likelihood ratio
values might therefore be flawed (Martire et al., 2018). It is important to note that
the study does not disprove the existence of the skills that FDE claim to have. It
focuses, instead, on the reliability of conclusions as given by FDEs under the very
specific form of the likelihood ratio value.

We conjecture that this issue might be resolved with the adoption of appropriate
evaluative procedures that are both grounded in computational methods and consistent
with the forensic Bayesian framework. Probabilities would be elicited with the help
of casework data, and the resulting computations would automatically be developed
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by a thoroughly tested computer program. All possible detrimental biases would
therefore be restricted to the choice of the data and the statistical model at hand.
Robustness checks are available, to further verify the dependence of the computed
quantities to the assumptions of the methods, even before any evidence is collected
(Cook et al., 2006; Gelman et al., 2009; Vehtari & Ojanen, 2012). To our knowledge,
to date only a few works consistent with this approach are available (Bozza et al.,
2008; Marquis et al., 2011; Marquis, Hicks, et al., 2019; Taroni, Marquis, et al., 2014).

Notice, however, that the complete procedure is sensitive to the creation of the
statistical model, a task that does not typically pertain to the educative path of
a forensic document examiner. A successful application of the Bayesian approach
would require the contribution of forensic scientists from other areas, and specialists
familiar with it from other scientific disciplines. We dare to say that all areas of
forensic science would benefit by this collaborative work to find a common language
for handling the problem in question.

The push for an increase in interdisciplinarity would contribute to the solution
of a second major issue that affects forensic handwritten evidence examination as
it is taught today, that is the inability to evaluate the value of evidence spanning
multiple domains (see (Taroni, 2005) for an example involving handwriting and
fingerprints). To this purpose, the Bayesian evaluative framework proposes the usage
of probabilistic graphical models (Bayesian networks) as basic tools to formalize the
rational thinking (Biedermann, 2007). These have been successfully applied to many
problems in forensic science (see for example Taroni, Biedermann, et al. (2014)), but
the integration of handwritten evidence is a problem that has not yet been explored.

Another issue concerns the tools that the forensic document examiners use in their
profession. Recalling the fundamental principles governing handwriting, it would be
pretentious to replace the human skill of an FDE with the output of a computer
program at this stage of research. Past attempts such as the aforementioned systems
FISH, CEDAR-FOX and WANDA, encountered limited enthusiasm among FDE
practitioners, although some of them were explicitly developed for police forces (for
instance GRAPHJ (Guarnera et al., 2018)). A Bayesian approach, however, is not
limited to hard data, but allows scientists to include any kind of variables into the
model that formalizes the evaluative reasoning. A properly constructed model would
allow the FDE not only to supervise the procedure, but also to react to the change of
the evidential scenario. For example, scientists may be asked whether their conclusion
would change (and if so, in what way) if further information would become available,
such as additional reference specimens from the suspect. We conjecture that tools
delivered under the Bayesian approach could be revealed to actually be useful to
experts, as they are designed to assist, not replace them.
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1.6 Originality of the current research
On June 4-5, 2013, the National Institute of Standards and Technology (NIST) hosted
the Measurement Science and Standards in Forensic Handwriting Analysis Conference
in Gaithersburg, Maryland. NIST planned and organized this event in collaboration
with the American Academy of Forensic Sciences (Questioned Document Section), the
American Board of Forensic Document Examiners (ABFDE), the American Society
of Questioned Document Examiners (ASQDE), the Federal Bureau of Investigation
Laboratory, the National Institute of Justice, and the Scientific Working Group for
Forensic Document Examination. The general discussion focused on the future of
forensic handwriting analysis. Three major points were emphasized. First, the future
of the discipline will incorporate the use of more quantitative analysis tools to handle
the handwriting examination process. Secondly, forensic document examiners would
like to use soundly based statistical models to explain the significance of results.
Thirdly, researchers should publish more studies involving the use of quantitative
methods for examinations, which will both improve the understanding of these
advancements and validate examination methods by converting research into the best
practice that examiners can incorporate into their standard operating procedures.

This thesis aims to be a major research contribution towards the points highlighted
in the NIST conference and the ENFSI guidelines for evaluative reporting. In
particular, this thesis will provide four types of contributions:

1. Empirical: our results are based on sound research as working hypotheses, the
fundamental principles governing handwriting, and state-of-the-art results such
as Marquis’ shape descriptors (Marquis et al., 2005).
Firstly, we investigate the usage of these descriptors on the same dataset as
in the original article, in the context of natural handwriting. Secondly, we
apply these descriptors in a novel context with a purposely collected dataset,
comprising forged and genuine signatures that contain character loops. Thirdly,
we use these descriptors to investigate the quantitative differences in handwriting
in twins, adding to the limited existing research available in literature. The
dataset has been collected on purpose. Finally, we provide an entirely novel
descriptor that can be used to quantify a class of particular signatures (simple
signatures) that do not show sufficient complexity to allow for a clear evaluative
examination by FHEs using the traditional elements of style and execution.
In this case, the dataset consists of real casework data. The latter descriptor is
extensible to other kinds of research questions spanning other forensic domains,
such as the comparisons of two sets of proportions of multiple items.
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2. Statistical: we adopt a rigorous Bayesian approach, from data collection to
communication.
We mainly focus on the so-called evaluative scenario: under this setting, two
items of evidence are compared, the source of one item is known (for example,
a suspect), the other is not (e.g. a questioned document). The forensic scientist
must, then, evaluate and quantify the value of the evidence at hand against (at
least) a pair of hypotheses on the source of the questioned material. Results will
be expressed in the form of Bayes factors, as requested by the ENFSI guideline6.
As the computation of Bayes factors is not a trivial task, we propose several
computational techniques with the aid of specialized libraries for R, the platform
for statistical computing (R Core Team, 2019). In particular, we first exploit
the model used to quantify the probative value of loop shapes, which has been
already validated on natural handwriting in current literature (Marquis et al.,
2005). The model is described in (Bozza et al., 2008; Bozza et al., 2014).
Its operative implementation has been revised and improved: this enabled us
to verify its performance on novel datasets as well as assessing its intrinsic
sensitivity to assumptions. Secondly, we introduce a novel statistical model for
the descriptor used in the context of simple signatures. This model allows us to
compute Bayes factors for novel scenarios, as well as to assess the sensitivity of
this metric to assumptions on the prior parameters. This thesis would, therefore,
contribute to the almost non-existent body of research concerning the usage of
the Bayesian framework in forensic handwriting examinations.

3. Transdisciplinary: we show how the descriptors for simple signatures can
be used to evaluate the value of evidence in a completely unrelated domain
(i.e. microbial composition of human saliva), and how to jointly evaluate it
along with handwritten evidence. The Swiss National Science Foundation has
supported a joint research between the École des Sciences Criminelles (ESC)
of the University of Lausanne (UNIL) and the Institute of Microbiology of the
Centre Hospitalier Universitaire Vaudois (CHUV) to deal with the collection,
analysis and joint evaluation of handwritten characters and salivary microbiota
of twins. With the proposed approach we will we able to tackle, for the first
time, casework that involves, for example, a handwritten letter and a trace in
the form of a salivary stain, in which classic DNA analyses cannot be applied
(due to degradation or the claim of a twin brother as the alternative source).

4. Methodological: the programs that have been developed to perform the necessary
computations are packaged into a set of fully documented open-source packages

6The ENFSI guideline uses only the term “Likelihood ratio”, not “Bayes factor”.
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for R, ready for use by the entire forensic community: bayessource (Gaborini,
2019), rstanBF (Gaborini, 2020a), rdirdirgamma (Gaborini, 2020b). Moreover,
the procedure of extraction of numerical data from the acquired images required
the development of several graphical interfaces for the programs R and MATLAB
(The Mathworks, 2019). These interfaces are easy to use, and can be adapted
to specific demands of interested users.

This thesis has been supported and financed by the grants no. 10001A_156290
(concerning goals 1, 2 and 4) and no. 10531C_170280 (concerning the transdisciplinary
objectives).

1.7 Research questions
This thesis rests on several hypotheses that are commonly stated in FHE literature.
We assume that writers have a master pattern which can differ significantly across
persons. A writer’s natural variations manifest themselves in terms of departures from
a writer’s handwriting “master pattern”. Moreover, the master pattern is assumed
to be reasonably stable, as long as the time window is limited. In other terms,
the features in a writers’ handwriting are characterized by an intra-variability and
an inter-variability, and are quantified according to the descriptors that have been
developed in this thesis. The statistical models that we developed translate the
interaction between intra- and inter-variability into a Bayesian model separating the
two components. It is important to note that the usage of the Bayesian framework as
well as the adopted design of the experiences allow us to operatively verify whether
and when this hypothesis does not hold, namely by obtaining a numerical expression
for the value of evidence that points to the “wrong” hypothesis (e.g. there is evidence
that the questioned material comes from the reference writer, whereas the questioned
material has been taken from another person).

In this thesis we consider a set of scenarios that differ in the type of evidence
under consideration, as well as which statistical models are used to quantify its value.
The goal of each scenario is to establish a complete procedure to evaluate the value
of evidence in a particular context. Particularly, each scenario consists in a step
of data acquisition, a step of development of an appropriate statistical model, a
step of validation of the statistical properties of the model (e.g. sensitivity), and the
establishment of a procedure to compute Bayes factor values.

a. When handwritten material contains character loops, we exploit Marquis’ Fourier
descriptors as well as the Bayesian model for evidence evaluation. The method
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has already been validated on natural writing in past works (Bozza et al.,
2008; Marquis et al., 2005; Marquis et al., 2011). In this thesis we apply the
descriptors to other kinds of handwriting, namely questioned signatures, and
natural handwriting coming from related persons (i.e. twins). The first goal of
the thesis is to establish whether this method can be successfully applied to
cases that were not considered during their developments.

b. If the handwritten material does not contain character loops, we introduce
a novel descriptor based on the variability of specified proportions inside a
particular signature. By imitating the Bayesian model of the previous case, we
introduce an analogous model to assess the value of evidence in this case. The
second goal of this thesis is to assess whether the new descriptors and the new
model are able to quantify the value of evidence under an alternative context.

It is important to note that these methods seek to describe the variability of
specific features (i.e. loop shapes, and proportional distances), not the handwriting
as a whole. As a consequence, our conclusions cannot be taken as a substitute for an
expert analysis, but can quantitatively support FHE in their work (Thiéry, 2014, p.
13).

c. During the development of the proportional descriptors, it occurred to us that
it might have a much broader scope of application, in particular to describe all
kinds of data related to proportions. To provide an example, we apply these
descriptors and the proportional model to data consisting in the composition of
the microbiota in adult twins. The third goal of this thesis is to quantitatively
evaluate whether microbiota differ in twins rather than unrelated persons.

d. The combination of the three goals allows us to consider cases of forensic interest,
namely the recovery of a salivary trace and a handwritten item from the crime
scene, and a putative source related to the suspect, such as a sibling or a twin.

An element transversal to these goals is the usage of a Bayesian perspective to
assess the value of evidence, in particular through the Bayes factor. This raises
a number of significant technical and operative difficulties, for instance when the
(a) evidence consists of multivariate data, (b) when the amount of recovered data
is insufficient, or (c) the background information might be lacking. Also, Bayes
factors themselves attracted significant criticisms, both from forensic scientists (on
the appropriate definition, see for example (Hepler et al., 2012; van den Hout &
Alberink, 2016)) and statisticians (on their sensitivity as well as their operative
relevance) (Kamary et al., 2014, p. 3; Morey et al., 2016). These issues, where
relevant, will be isolated and discussed.
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1.8 Thesis structure

The thesis is organized as follows. Chapter 2 gives an introduction to the use of
Bayesian statistics in forensic science. Chapters 3 to 5 are dedicated to the analyses
of the collected datasets. Each chapter is independent of each other, and builds on
the generic framework introduced in Chapter 2. In general, each chapter is dedicated
to a particular type of evidence: character loops and simple signatures. Chapter 5 is
an exception, as we will exploit the results of the previous chapters in a completely
different context, the combined evaluation of handwritten and microbial evidence in
twins. Each chapter contains a discussion on the improvements, future extensions
and open problems that resulted from the analysis of each case. Chapter 6 is a review
of Chapters 3 to 5, showing problems and characteristics shared by the different
contexts. The structure of the thesis ,detailing datasets and statistical models, is
resumed in Table 1.1.

In more detail, in Chapter 2 we briefly review the basic concepts behind the
theory of Bayesian statistics and the usage of Bayes theorem in forensic science.
Afterward, we show how a typical evaluative forensic scenario can be modeled with
this framework. We explain the Bayes factor, the main quantitative tool that is used
to report evaluative conclusions in court (Willis et al., 2015). As the calculation of
the Bayes factor is mathematically challenging outside very simple cases, we show
how it can be performed with the help of numerical methods, introducing them in a
symbolic form. These methods will be concretely used in the subsequent chapters,
given the appropriate models, data and hypotheses for the considered cases.

In Chapter 3 we briefly recall Marquis’ shape descriptors (Marquis et al., 2005)
as well as the Bayesian two-level model from the state-of-the-art literature (Bozza
et al., 2008). First, we introduce our implementation of the model, showing how it
agrees and differs with the original article, and test its performance on two datasets,
a simulated dataset and the one used in the original articles. Next, once the code
is verified on natural handwriting, we apply the method to the context of forged
and genuine signatures containing character loops. A second dataset is introduced
and described, consisting of a set of forged and genuine signatures containing several
loops. The method is then applied, and the results discussed.

In Chapter 4 we consider an actual casework consisting of a set of reference and
questioned signatures. From now on, we call them simple signatures: by the term
simple we refer to the apparent lack of strongly discriminating features. As these
signatures contain no loops, we introduce a descriptor tuned to the case at hand.
The general framework of Chapter 3 is adapted to the specificities of this Chapter by
stating a Bayesian model for the newly introduced descriptor. Its implementation is
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discussed, and the Bayes factors calculated for the considered casework.
In Chapter 5 we consider a context in which available evidence consists of samples

of natural handwriting (in the form of character loops, as in Chapter 3), and the
composition of salivary microbiota. This context stems from a novel dataset, collected
in a collaboration with the Institute of Microbiology of the University of Lausanne.
The donors of the samples are adult monozygotic twins. Evidence is analyzed, first
separately using the results developed in Chapters 3 and 4, respectively. Afterward,
we approach the problem of combination of items of evidence, to reach a single
evaluative conclusion.

Table 1.1: list of datasets and descriptors.

Name of dataset Data source Chapter Descriptor
Natural handwriting (Bozza et al., 2008) 3 Fourier
Questioned signatures with loops Ad-hoc 3 Fourier
Questioned simple signatures Casework 4 Proportional
Natural handwriting in twins CHUV 5 Fourier
Salivary microbiome CHUV 5 Proportional





Chapter 2

The Bayesian framework

2.1 On uncertainty

Who is the likely source of this blood trace? How similar is the smudged fingermark
with the suspect’s prints? How often does one encounter a particular kind of paint
chip among all cars that were present in a given region? Forensic science is intrinsically
concerned with uncertainty, spanning almost every aspect of it.

Data is collected to gain insight into the unobserved. Laboratories are often
calibrated to deliver measurements within some established error bounds. Traces
may be of poor quality compared to standards. Standards are just a simplified
representation of the physical object, limited by the properties of the support or
the instrument that created them. Samples can be destructively collected, altering
subsequent analyses on the same material. Samples may have been improperly stored,
or the chain of custody may have been breached.

How do these findings relate to the material in possession of the investigators?
Context is uncertain. We might not know the identity of a victim, or the source

of a particular trace. We might consider the suspect among a panel of potential
offenders. A suspect might disprove his own association with a particular crime scene,
yet evidence is pointing at him. Or we might know the source of the trace, but
not its actual involvement with the offender or the chain of actions. Has this trace
been deposited for innocent reasons? Is the offender the same person that delivered
the mortal blow to the victim? Traces are not present, whereas they should have
been in a hypothetical situation. How do these findings change our belief about this
particular hypothesized chain of events?

Events are uncertain. Witness reports are not always reliable. Forensic experts
may state their qualified opinion on the basis of wrong assumptions (hence the need
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for the validation step according to the “ACE-V” process). Even the apparently
simple affirmation “The suspect is the source of the trace” has no truth or falsity in
general1. More complex affirmations such as “This blood trace contains DNA from at
least two persons” are associated with a degree of belief that must consider multiple
issues related to the laboratory results, such as the possibility of a contamination.

Clearly, all those questions cannot be answered with a clear “yes” or “no”, but
a more nuanced answer is required. This answer must connect data, context and
events in the most reasonable way, taking into account the intrinsic uncertainty
characterizing the three aspects.

The appropriate language of choice is probability theory (Taroni et al., 1998). His-
torically, it has been introduced to forensic science already in 1894 during the Dreyfus
case. However, some major flaws in the probabilistic reasoning were highlighted in
the second appeal (1904) by a group of mathematicians led by Poincaré.

Probabilistic reasoning was used in more subsequent cases, not without controver-
sies. In particular, in People v. Collins2 (1968) an argument involving probability
was fallaciously used to convict a couple based on a witness’ description, and back-
of-the-hand statistics on the occurrence of the witnessed attributes. Another major
error was the so-called fallacy of the transposed conditional, that manifests itself in
statements such as(Aitken et al., 2021, p. 189):

There is a 10% chance that the defendant would have the crime blood
type if he were innocent. Thus there is a 90% chance that he is guilty.

In fact, one may prove that it is not possible to obtain information on the
probability of the defendant being the offender without considering other elements,
such as the circumstantial evidence and the prior belief about the statement (i.e. the
belief about the truth of the statement before having collected any evidence: in this
case, the witness report).

One can identify many other related fallacies, commonly collected under the
name of fallacies in interpretation (Aitken et al., 2021). As the name implies, these
fallacies escape intuition, and can cast confusion during a fair court trial process. The
appearance of even more sensitive forensic techniques, such as Low Copy Number
(LCN) DNA profiling, is a double-edged sword if the conveyed information is misused
by an incoherent reasoning scheme.

The possibility of making such errors can be ruled out once the reasoning is
formalized into an appropriate probabilistic language, in particular by adopting the

1Unless the trace has been deposited under controlled conditions, or there is a reliable declaration
by the suspect.

2People v. Collins, 68 Cal.2d 319.
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Bayesian model as the main reasoning scheme. This was already observed initially
during the second appeal of the Dreyfus case, in 1904 (Taroni et al., 1998, p. 190).
The mathematicians called for the usage of Bayes’ theorem, the pillar of Bayesian
probability, as the only way to correctly apply a probabilistic reasoning to a forensic
case, if a coherent quantification is to be made3. However, the Bayesian framework
was not popularized until the aftermath of People v. Collins, more than sixty years
later.

2.2 Probability theory and forensic science
As we said before, forensic science is fundamentally concerned with uncertainty.
Probability theory is a branch of mathematics that is concerned with quantifying
uncertainty, and does so by using numbers.

There exist multiple branches of probability theory that differ mostly in the way
the uncertainty is considered (e.g. how it relates to the outcome of future events
or whether one can perform repeated experimental trials to change uncertainty).
However, these branches agree on the basic rules governing the mathematical objects
that translate uncertainty into formulas, the so-called Kolmogorov axioms (1933).
Common to all approaches is the possiblity to associate a numerical value (in the
[0, 1] interval), called probability, that quantifies the uncertainty of an event.

We share the Bayesian view: this definition always applies on the outcome of all
events, past, present and future, without referring to their repeatability. It is also
allowed to assign a probabilistic value to events that are entirely hypothetical, such
as the affirmation “The sun will not rise tomorrow”. We accept that this value might
differ depending on the person who assesses it, as it translates his own belief about
the uncertainty to a single number. Due to this aspect, Bayesian probability is said to
be subjective. However, the combination of beliefs is mathematically sound, and does
not actually depend on the adopted probabilistic branch, but only to the Kolmogorov
axioms. For instance, De Finetti proved that it is mathematically correct to attribute
a numerical value to one’s beliefs on uncertain quantities under mild conditions, and
showed how to do it by means of betting strategies (De Finetti, 1930; De Finetti et
al., 1964).

We will skip most details related to the construction of this set of axioms and the
3Actually, the group of mathematicians contested the application of mathematics to moral matters

due to its dangerousness (Taroni et al., 1998). However, a properly constructed Bayesian approach
limits itself to the quantification of the value of the collected evidence, whereas any decision upon
guilt or innocence is left to the judge. Thus, forensic scientists need not to be concerned with moral
matters, but only by measurable facts.
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related theorems. In this section we recall what is needed to show how the Bayesian
framework is used in a forensic context. We refer the interested reader to dedicated
texts, such as the classic tome from Jaynes (2003), Berger (1985) and Lindley (1971)
for an introduction to Bayesian probability and its links with decision theory, and
Aitken et al. (2021) for the utilization of Bayesian probability in a forensic context.

In forensic science one reasons about the relationship between items of evidence,
noted with the generic letter E, to the hypotheses of interest, generically represented
with the random variable H. Usually, H will assume the values hp (for the prosecution
hypothesis) and hd (for the defense hypothesis). More than two states are allowed.
Context-related information can be exploited, for example the frequency of occurrence
of a certain characteristic in a given reference population. This can be indicated
with the letter I, but it is usually omitted in subsequent equations for simplicity of
notation.

For example, E might be the observation of a correspondence between the geno-
types of a blood trace found on a crime scene and that of a person of interest (suspect
or victim). H = hp might indicate the statement, “The blood trace has been left by
Mr. X.”. H = hd might indicate the statement, “The blood trace has been left by
somebody else.”. I might contain the information on the occurrence of the blood type
found on a crime scene.

In real cases, the source of the trace is typically unknown, therefore we recur to
the usage of probability to assign a value value to our belief about the relationships
between E, hp and hd. For instance, Pr(E = e | hp) represents the probability that
the blood has a particular genotype e, assuming that it came from Mr. X ( hp ). The
operator Pr(·) translates the probability of the event in the argument to a number
in the closed interval [0, 1]. When not ambiguous, we will use it also to indicate the
probability that a discrete random variable X takes on a particular value x. We also
consider continuous random variables: in this case Pr(·) will indicate the probability
density function of a random variable evaluated in the argument. Deviations from
this rule will be made explicit when they occur. For brevity, we will often avoid the
distinction between a random variable and its realization. When the distinction is
needed, we usually employ upper-case letters for the former, and lower-case letters
for the latter.

The vertical bar appearing in Pr(· | ·) statements expresses a conditioning, i.e. we
assume complete knowledge of the variable(s) on the right-hand side of the vertical
bar.
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2.2.1 The Bayes’ theorem and the Bayes factor
A fundamental consequence of the Kolmogorov axioms is the so-called Bayes’ theorem.
In its simplest form it states:

Theorem 2.1 (Bayes’ theorem)
Let A, B be two events, with Pr(B) > 0. Then:

Pr(A | B) = Pr(B | A) Pr(A)
Pr(B) .

An equivalent expression can be obtained if one considers the complementary
event Ā that happens if and only if A does not hold. By dividing the Bayes’ theorem
with the equivalent form, one can restate the Bayes’ theorem as follows:

Theorem 2.2 (Bayes’ theorem in odds form)
Let A, B be two events, with Pr(B) > 0. Then:

Pr(A | B)
Pr(Ā | B)

= Pr(B | A)
Pr(B | Ā)

Pr(A)
Pr(Ā)

.

Considering a generic forensic case, assume that the evidence E has been observed
(e.g. the genotypes of a recovered stain and of a person of interest), assuming a
particular value e (e.g. the genotype AB).

Our view of subjective (i.e. Bayesian) probability allows us to associate a corre-
sponding number to hypotheses. This represents our personal belief about their truth
or falsity. Namely, Pr(H = hp) and Pr(H = hd) indicate one’s prior belief about the
prosecution and defense hypotheses, respectively. The ratio of those two numbers is
called prior odds in favor of hp.

Notice that in this case the events H = hp and H = hd are complementary, so the
term odds is fully justified. If the considered hypotheses are not exhaustive (i.e. the
probability of their union is 1), the odds ratio more properly describes the relative
odds in favor of hp against hd (Aitken et al., 2021, p. 108).

In the forensic context we usually make the following substitutions in Theorem
2.14: A is the event H = hp, Ā is the event H = hd, B is the event E = e. Then one
obtains:

Pr(H = hp | E = e)
Pr(H = hd | E = e) = Pr(E = e | H = hp)

Pr(E = e | H = hd)
Pr(H = hp)
Pr(H = hd) . (2.1)

4Here we highlight explicitly the role of H . For the sake of brevity, H is often left out in favor of
its states hp and hd. Analogously, a similar reasoning is done for the evidence E: in simple forensic
models, evidence is always observed, therefore e can be substituted to E without ambiguity.
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On the right side of Equation (2.1), one immediately recognizes the prior odds
term Pr(H = hp)/Pr(H = hd). A corresponding term can be located on the left side,
Pr(H = hp | E = e)/Pr(H = hd | E = e). This is called posterior odds in favor of hp.

The remaining term is the so-called Bayes factor ( BF ) (Kass & Raftery, 1995).
It is improperly known in forensic science as Likelihood ratio, as in this specific case
(for simple vs simple hypotheses) it is constituted by a ratio of likelihoods. In general,
it might be different: e.g. see (Taroni et al., 2010, p. 53) for a discussion.

In other terms, Equation (2.1) may be rewritten as:

posterior odds = BF× prior odds . (2.2)

From this, we define the Bayes factor to be the ratio of the posterior and the prior
odds:

Definition 2.1 (Bayes factor)
The Bayes factor of hp against hd for the evidence e is:

BF := Pr(H = hp | E = e)
Pr(H = hd | E = e)

/
Pr(H = hp)
Pr(H = hd) .

Forensically speaking, the relative belief about the hypotheses of interest can be
assessed before any evidence is collected. For example, one may establish a priori
the probability that the suspect is the source of the blood trace. This is usually done
by the mandating authority (Willis et al., 2015).

Collected evidence may change the relative belief about the propositions of interest.
We can also say that the evidence has a certain value for/against the considered
hypotheses. The way it occurs is described by Equations (2.1) and (2.2), namely
through the action of the Bayes factor. There is no other logical way to update
our beliefs using evidence, provided that we accept the Kolmogorov axioms, the
postulates of Bayesian probability and the generic probabilistic model for a forensic
case5 (Good, 1991). Notice also that the Bayes factor is a single number, since both
the prior odds and the posterior odds are numbers (for a discussion on this aspect see
(Taroni, Bozza, et al., 2016)). We believe that using the above definition of the Bayes
factor encourages practitioners to develop the statistical model around the question
of interest to the court (“What are the posterior odds in favor of hp ?”), necessarily
introducing the connection of the hypotheses to the observed evidence.

5Actually, it is not even necessary to recur to Bayesian probability to state that the Bayes factor
is the only way to measure the value of evidence in favor of an hypothesis. See Aitken et al. (2018).
It becomes necessary once one uses Bayesian theory to measure his belief about such hypothesis.
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2.3 Bayesian networks
The definition of conditional probability and Bayes’ theorem have a graphical repre-
sentation that can be used to explain and present statistical models and probabilistic
reasoning in general. This allows the adoption of a graphical representation and rea-
soning process, for instance, by immediately showing which are the interconnections
and the dependence structure between random variables of interest. Graphical models
are also easier to present to laypersons, without introducing heavy mathematical
jargon that would risk being incomprehensible.

Consider three random variables X, Y and Z along with their joint probability
distribution Pr(X, Y, Z). It can be shown that the joint probability distribution
can be factorized into a product of conditional probability distributions. Since
the decomposition is not unique, modeling effort is put forward to identify which
factors are representative of the statistical problem at hand. For example, suppose
that we judge Pr(X|Y, Z), Pr(Y ) and Pr(Z) (these two do not depend on any
other) as relevant factors. Then, the joint probability distribution is: Pr(X, Y, Z) =
Pr(X|Y, Z) Pr(Y ) Pr(Z).

This assumption can be represented graphically with a particular kind of graph
called Bayesian network. Bayesian networks are directed acyclic graphs (DAG
for short), where each node represents a random variable, and arcs represent the
conditional probabilistic relationship from the source nodes (on the right of the
conditioning symbol) to the target node. In this specific case, one may represent
Pr(X, Y, Z) with the following Bayesian network:

X

Y Z

Figure 2.1: A simple Bayesian network.

All nodes (i.e. random variables) have a probability distribution on their states
(i.e. the values of the random variables). When the node has no parents, its distribution
does not depend on other variables, and is assumed to be its prior distribution. Nodes
can be observed: the information carried by this operation is propagated according
to Bayes’ theorem to the rest of the network, in what is commonly called Bayesian
updating. Notice that information can flow in both directions across an arc. In
the forward direction, the information is propagated through the definition of the
conditional probability of the node. Backwards, it is propagated using Bayes’ theorem.
Once one or more nodes have been observed and the information distributed to
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the whole network, all node distributions are the respective posterior distributions,
conditioned on the observed node(s).

A major trait of Bayesian statistical models is that they both allow inference from
an observed dataset, as well as generate datasets from the described joint distribution.
Due to this property, they are also called generative.

Another desirable property of Bayesian networks stems from the interaction
between probability theory and graph theory. The interplay between those two
aspects results in a set of criteria (known as d-separation (Pearl, 1988)) that allows
for the isolation of specific sets of nodes by considering only the topology of the
network (i.e. interconnections). Across these sets, information may or may not flow
depending on the state of the nodes separating these sets. This results in a concrete
functional separation between network components, that translates to an encoding of
the dependence structure to a macroscopic scale.

The usage of Bayesian networks in forensic and legal applications enables prac-
titioners to model complex scenarios that involve multiple types of evidence and
multiple hypotheses in an unified framework. The graphical aspect, such as the
intrinsic directionality of the propagation process, helps in eliminating reasoning
errors and fallacies that could have easily been made otherwise. A deeper look into
Bayesian networks is available in (Nielsen & Jensen, 2009) and (Kjaerulff & Madsen,
2008). An introduction to Bayesian networks in forensic science is available in (Taroni,
Biedermann, et al., 2014) as well as in (Biedermann, 2007) and (Gittelson, 2013).

There exist also multiple software programs that allow practitioners to define
their desired Bayesian network, assess their prior knowledge and obtain the posterior
distributions for any node of choice. These programs are, however, often limited to
the subset of networks where all nodes are discrete or, at best, continuous Gaussian
random variables. In these cases, the posterior distributions can be computed in
an exact form. If the network contains nodes with more general distributions, an
automatic computational theory is no longer available, and the inference process
needs to be carried out using some approximate inference procedures. Often, these
solutions are developed on an ad-hoc basis, or are confined to research applications
(Korb & Nicholson, 2010, ch. 3).

2.3.1 Marginalization
A fundamental operation that must be performed to propagate belief between two
distant nodes in a Bayesian network is the so-called marginalization.
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Suppose that a three-node Bayesian network is available:

X Y Z

Figure 2.2: A three-node Bayesian network.

This Bayesian network can be used in forensic scenarios to model the uncertainty
tying the hypotheses (X) to the collected evidence (Z) through a distinct node Y .

Example 2.1 (A glass fragment). For example, suppose that a fragment of glass
is recovered from a crime scene. Two glass objects, a broken bottle and a window
fragment, are seized: their refractive index Y is known only with a large uncertainty
(for instance, no laboratory measurements are available). The hypothesis node is
used to discriminate whether the glass pieces came from the bottle or the window
item (states X = x1 and X = x2). Then, Z can be modeled as a continuous
random variable, for instance Gaussian, with the mean parameter corresponding to
the refractive index of the true source, and the standard deviation corresponding
to the laboratory measurement error. However, the mean of Z is not known, and
depends on the state of X. Through the operation of marginalization, all uncertainty
on the intermediary node Y is exploited to connect nodes X and Z. For example, if
it is certain that object 1 has a refractive index greater than 1.6, any observation of
Z lower than 1.6 would heavily support the hypothesis that the fragment came from
object 2.

Suppose that one is interested in evaluating the change of belief in Z after observing
a realization of X. To do so, the law of total probability6 and the definitions of
conditional probability can be applied:

Pr(Z = z | X = x) =
∫

Pr(Z = z | Y = y) Pr(Y = y | X = x) dy , (2.3)

where the symbol of integration in Equation (2.3) becomes a simple sum if the
evidence assumes discrete values.

If Z is a continuous random variable and the function Pr(Z = z | Y = y) represents
the density function for the data z with parameter y, the term Pr(Z = z | X = x)
is also called the marginal likelihood for the data z under x. If X is discrete and
acts as a model indicator, the marginal likelihood can also be seen as the prior
predictive density for Z, evaluated in z, under the model X = x. One can also
define the posterior predictive density, considering a situation where the belief about

6In the forensic context it is also called “extension of the conversation” (Lindley, 1991).
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Y has been already updated through a past observation of zb, another realization
of Z. The argument of the integral would change from Pr(Y = y | X = x) to
Pr(Y = y | X = x, Zb = zb), to indicate the updated belief.

To reconnect with the forensic context, notice that the left-hand side of Equation
(2.3) is the numerator of the Bayes factor, where the evidence is Z = z and the
prosecution hypothesis is X = x. Y is a node which is never observed, but models
latent properties that are relevant to describing the dependence of the evidence
Z from the hypotheses X. An analogous term appears in the denominator, with
the respective defense hypothesis in the place of x. This motivates the paramount
importance of being able to compute Equation (2.3) in actual cases.

Notation

Here we introduce a concise notation for the marginal likelihood in Equation (2.3).
For clarity, this notation is shared with the article that suggested the hierarchical
structure of the models (Bozza et al., 2008). The marginal likelihood m for the
evidence z given the hypothesis x over variable Y is:

m(e | h) := Pr(Z = z | X = x) =
∫

Pr(Z = z | Y = y) Pr(Y = y | X = x) dy . (2.4)

2.3.2 On causality
As the factorization of the joint probability distribution is not unique, the Bayesian
network is not unique (Dawid, 2008). This means that Bayesian networks do not
necessarily encode a causality relation, but simply describe the structure of the data.
Moreover, forensic science is not concerned with issues of causality, but only with
describing which hypothesis is more supported by the collected data.

For the sake of completeness, causality structures can be represented by a DAG.
This way of thinking was recently popularized by Pearl et al. (2016), and is currently
encountering a large support in many scientific communities. Particularly, it helps in
addressing issues that, up to now, were often improperly modeled in experimental
studies, such as the “correlation ̸= causation” debate, determination of counterfactual
effects, or deciding which variables need to be measured to account for confounders
(i.e. unobserved common causes or associations). However, not all scientists agree
with this approach to causality modeling: see for example (Gelman, 2011; Krieger &
Davey Smith, 2016) for a discussion.

DAGs developed for causal inference share many properties with Bayesian net-
works, yet it can be shown that causal interventions, called do-operators, involve the
modification of the structure of the graph (i.e. cutting incoming arcs) instead of a
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simple instantiation of the affected node. This operation is not typically done in
Bayesian networks, as forensic scientists are not concerned with issues of causality but
only a probabilistic description of the relation between hypotheses and data (Taroni,
Biedermann, et al., 2014, sec. 2.1.11).

2.4 Forensic scenarios
In forensic science, one can distinguish two common situations, depending upon if a
putative source of a questioned item is available (Taroni et al., 2012).

2.4.1 Investigative scenario
The investigative scenario (or investigative setting) occurs when evidence (a questioned
item) has been collected, but no person of interest (control item) is available to provide
reference material. Equivalently, the pair of hypotheses may no longer refer to a single
putative source, but to broader statements that concern a population of potential
sources (e.g. “the recovered sample comes from a Caucasian male population or an
alternative population”).

The forensic procedure under an investigative scenario is aimed at providing
support to investigating authorities, for instance by narrowing the search for a person
of interest to a particular set of candidates (de Zoete et al., 2017; Jackson et al., 2010),
or by helping to establish connections between cases providing that the evidence is
relevant to the case at hand (Taroni et al., 2006).

It is also the scenario under which searches for matching evidence (e.g. DNA)
against a database are conducted. In this case, if the procedure results in a corre-
spondence between objects, investigation may proceed to an “evaluative” scenario
once the person of interest is apprehended. Other items of evidence from the alleged
source can then be exploited for comparative purposes. Hypotheses of interest also
shift into an evaluative mode, for example by considering the activity of the person
of interest during the offense.

Probability theory can be applied under an investigative scenario, and a Bayes
factor can be computed (Taroni et al., 2012). Considering the illustrative Example
2.1 for the glass fragment, we suppose that no laboratory measurements on the bottle
and window fragments are available. The Bayes factor may be used to decide which
items should be sent to the forensic laboratory, and which kinds of objects can be
further seized. The hypotheses are only concerned with the generic source of Z: Z is
a fragment of a bottle glass (under X = x1), or is made up of window glass (under
X = x2). This results in the investigative Bayes factor:
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BF = Pr(Z = z | X = x1)
Pr(Z = z | X = x2)

, (2.5)

where the numerator and the denominator must be computed using the marginalization
procedure.

During the early phase of this thesis, an application of probability theory to
handwritten evidence has been developed and published (Gaborini et al., 2017).
We admittedly used the plug-in approximation to the Bayes factor for illustrative
purposes (see Section 2.6.2), as more sophisticated methods (e.g. the implementation
of the bridge sampler used in Chapter 4 (Gronau et al., 2017)) were not available at
the time. A discussion of the investigative Bayes factor on anonymous handwritten
documents can be found in (Bozza, 2015, sec. 3).

2.4.2 Evaluative scenario
Notice that the investigative scenario involves only one type of evidence, whose source
is unknown. In the glass example (Example 2.1), only Z was available. Imagine that
one of the glass objects was broken apart under laboratory-controlled conditions, and
the refractive index of one of its fragments (the “control fragment”) was measured.
Let us represent the measured refractive index on the control fragment with the
random variable C. The hypotheses X reported in the investigative scenario (i.e. the
recovered fragments come from object 1, or from object 2) would also change to X ′:

X ′ = x′
1 : “the glass fragment Z and the control fragment C come from the

same glass object” ,
X ′ = x′

2 : “the glass fragment Z and the control fragment C come from (two)
different glass objects” .

This pair of hypotheses characterizes the so-called evaluative scenario. Notice
that now the evidence is the recovered item and the control material; the evidence
contributes to the update of beliefs on the states of X ′.
In this case, the Bayes factor is the following:

BF = Pr(Z = z, C = c | X ′ = x′
1)

Pr(Z = z, C = c | X ′ = x′
2)
. (2.6)

An example for the calculation of a Bayes factor on glass fragment data can
be found in (Aitken & Lucy, 2004). This methodology was further extended in an
application to handwritten data in (Bozza et al., 2008) and (Bozza, 2015). In this
thesis we will consider only evaluative scenarios, adapting the methodology developed
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in (Bozza et al., 2008) to account for characteristics such as the intra- and the
inter-variability of source parameters.

2.5 Hierarchical models
In this section, the general form of the probabilistic models that we developed for this
thesis is described. The notation is purposely generic, to give a unified description of
the procedures that will be adopted in the subsequent chapters, and to determine an
expression for the computation of the value of the evidence through the Bayes factor.
For instance, all probability distributions will be left unspecified, and no details will
be given on individual evidence items as well as their types. The form of the model
follows the one developed in (Bozza et al., 2008) for handwriting comparison. In
particular, one can distinguish a dependence structure that spans multiple levels,
describing the evidence and the sources in turn. In statistical literature, this model
structure is called hierarchical.

First, we consider only evaluative scenarios, where the source of Nq questioned
items is disputed. Nr reference items from the putative source are available. We
indicate these sets of items as eq and er, respectively. Each set is a collection of
random variables that represent the measurements, possibly multivariate, on the
single item. For the sake of clarity we could expand er =

{
er,i

}Nr

i=1
and eq =

{
eq,i

}Nq

i=1
,

but we will often drop the index subscript unless necessary.
The evaluative hypotheses are:

H = hp : “the items er and eq come from the same source” ,
H = hd : “the items er and eq come from two different sources” .

Notice that these hypotheses are not exhaustive. For example, we do not consider
cases where one of the eq came from the putative source while others did not. In
other words, all the eq either came from the putative source, or another unseen source,
belonging to the reference population. The exhaustive model for two total traces
(Nr + Nq = 2) can be found in (Gittelson et al., 2013): in that case, inference is
noticeably more complicated even if inference is restricted to binary-valued random
variables.

We assume that the properties of the questioned and reference sources are described
by the latent source parameters θq and θr, respectively. For instance, in the glass
example (Example 2.1), θq indicates the refractive index of the entire glass object,
which is never measured but only inferred through the observations eq. In handwriting,
it indicates the intra-variability component, or within-source variation (Bozza et al.,
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2008). We suppose that er and eq are observations from the respective source,
conditionally i.i.d. on the respective latent source parameter θ, with density function
f(·; θ).
The evaluative hypotheses can be translated on θ to a pair of events H ′:

H ′ = h′
p : “θr = θq” ,

H ′ = h′
d : “θr and θq are independent” .

Remark. In principle, H ′ could be viewed as a new hypothesis pair with a different
nature from H. For instance, H are discrete and mutually exclusive hypotheses, H ′

involve statements on continuous variables that are no longer mutually exclusive.
It is also clear that hp implies h′

p, and hd implies h′
d, so H is more restrictive than

H ′ (more details are given in Sections 2.6.3 and 2.6.4). However, the “hypothesis
pair” H ′ is free from forensic interest, as the connection with the alleged source of
the questioned material is no longer explicit. Also, we must remember that we are
testing H, not H ′. Pragmatically, we conflate H and H ′, e.g. assuming h′

p whenever
hp is valid, and we avoid indicating H ′ in the formulae. In other words, we are saying
that sources are completely characterized by their latent parameters θ. Two different
sources have independent parameters θ1 and θ2.
The model can be resumed using the common Bayesian model notation:

er | θr
iid∼ f(er; θr) , (2.7)

eq | θq
iid∼ f(eq; θq) .

The upper level of the hierarchical model is now introduced, to model the uncer-
tainty and the dependence between the within-source parameters. We assume that
θq and θr are i.i.d. observations from the between-source prior distribution g, itself
characterized by a latent parameter ψ, with density distribution g(·;ψ).
Using the common Bayesian model notation:

θr | ψ ∼ g(θr;ψ) ,
θq | θr, ψ,H = hp ∼ 1{θr}(θq) , (2.8)
θq | ψ,H = hd ∼ g(θq;ψ) ,

where 1{θr}(θq) means that θq can assume only the value θr.
There are other possible parameterizations that try to disambiguate the interac-

tions between eq, θq and H. For instance, we could introduce a latent node θt that
models the source properties of the true source for eq. θt becomes θr under hp, and
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θq under hd. Under every hypothesis, eq are assumed to be i.i.d. samples from the
true source with density f(eq; θt).

Notice that another layer in the hierarchy might be added on the bottom, for
example to take into account three sources of variation such as the error introduced
by multiple measurements of the same item (Bozza, 2015, p. 190).

All models in this thesis will differ in the choice of f , g and the distributions for θ
and ψ.

2.5.1 Background observations

Information on ψ might not be readily available. However, a set of background
observations can be exploited to elicit a distribution for ψ7. The way the observations
are exploited is discussed in Section 2.5.3.

We assume that the background dataset comprises Mb sources (unrelated given ψ),
where the i-th source is characterized by Nbi observations. For clarity, we avoid the
double subscript for background observations, indicating them collectively as eb. We
assume that the model describes all observations coming from every considered source,
be it in the background, reference or questioned set. As a consequence, background
sources will be characterized by their own latent source parameter θb. Moreover, we
assume that the between-source variability is described by the random variable ψ.
ψ becomes the only random variable that conditions the background dataset, the
reference dataset and the questioned dataset.

2.5.2 Bayesian network

The model can be represented with a Bayesian network, as in Figure 2.3. The root
node ψ conditions all parameters θ, be they reference, questioned or background
sources. The plate notation indicates repeated nodes, as many times as the indicated
number of repetitions. The leftmost part models the background dataset, with Mb
sources. The middle part models the reference items, coming from a single source
(i.e. the single θr), that does not depend on the hypothesis H. The right part models
the questioned items, coming from a single source. According to the evaluative
hypotheses (Section 2.5), the single source is θr under H = hp, and θq under H = hd.

7Notice that we could put a prior distribution on ψ, but there would be no apparent way to elicit
its hyperparameters in this simplified model.
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θb θr θq

ψ

er eqeb

H

Nb

Mb

Nr Nq

Figure 2.3: The generic two-level hierarchical model. The plate notation
indicates repeated elements, whose subscript has been omitted. Shaded
nodes are observed.

2.5.3 Evidence propagation
The graphical model may also illustrate how the beliefs are updated using the available
data. First, the background information eb is collected, thus the node is instantiated.
Taroni, Biedermann, et al. (2014) collapse eb into the context information I, to stress
that it is already known before er and eq are observed: instead, we keep indicating eb
for clarity. Next, as ψ separates8 the left (background) and the right (casework) part
of the Bayesian network, this procedure can be split into three phases:

1. the background data eb updates the first level of the network, θb, then the root
node ψ. Now the prior Pr(ψ) has become the posterior Pr(ψ | eb).

2. The updated knowledge on ψ is exploited to update θr and θq (generically
indicated with θ•). Now we are able to evaluate Pr(θ• | ψ, eb)9.

3. The densities for the casework evidence er, eq can be evaluated by marginalizing
over θ• | ψ, eb. The Bayes factor is a ratio of these values evaluated in the
hypotheses states.

In most cases, the addition of the second level of the Bayesian network results in
the general impossibility of either obtaining an analytical expression for Pr(ψ | eb),
or the posterior distribution of ψ itself, requiring the usage of a numerical method.

8Once ψ is observed, information cannot flow from the left to the right part of the network and
vice versa. This is a consequence of the d-separation criterion. See (Pearl, 1988) for details.

9In (Cereda, 2017), they equivalently rewrite the probability Pr(θ• | ψ, eb) to a new probability
P̂r(θ• | ψ) := Pr(θ• | ψ, eb).
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The posterior for ψ is in general known only through a set of samples from a Monte
Carlo method, possibly autocorrelated. This fact represents a further step in the
quantification of the Bayes factor.

The methods exploited in this thesis require the knowledge of the distribution
of ψ | eb. To prove this, we remember that the Bayes factor can be computed as
a ratio of marginal likelihoods. From Equation (2.6), Z is er, C is eq, X ′ is H.
Numerator and denominator can computed by marginalizing the posteriors on θr, θq
and ψ (Equation (2.3)). The integrand would, therefore, involve Pr(ψ | eb) that is
not known.

The plug-in approximation

The solution we adopted is to replace the previous Step 1 with a two-part procedure:

1a) the background data eb is used to obtain ψ̂, a point estimate of ψ, for instance
using its maximum likelihood estimator,

1b) the propagation continues, collapsing ψ | eb to a point mass located in ψ̂.

Step 2 is therefore replaced with the evaluation of Pr(θ• | ψ, eb) from the model,
using the point estimate for ψ. We are approximating Pr(θ• | ψ, eb) ≈ Pr(θ• | ψ̂)
(= g(θ•; ψ̂) within the hierarchical model). After part 1b., the procedure continues to
Step 3, where the marginalization on θ• can be done.

This procedure is similar to the “plug-in” estimation (see Equation (2.12)), and
can be related to the so-called empirical Bayes method (Casella, 1985), and the
“Bayesian plug-in method” described in (Cereda, 2017).

The d-separation criterium makes clear the dependence between casework evidence
(er and eq) and background information (eb), namely through the knowledge of ψ.
To approximate ψ with ψ̂ means that the Bayes factor estimate, which is obtained by
considering the right part of the Bayesian network (as in Figure 2.3), depends on the
background only through the point estimate ψ̂.

Compared to the many criticisms reported in Section 2.6.2 and in literature such
as (Cereda, 2017), however, a “proper” marginalization step is retained, and the
approximation is performed in the between-writer layer of the Bayesian network, far
from the evidence layer. As long as a well-justified point estimate for ψ is available (for
instance by estimating ψ on a large background dataset, or eliciting ψ from another
expert’s knowledge), we suppose that the obtained Bayes factor is less suffering
from the issues that affect the “plug-in LR”. We also perform extensive sensitive
analysis to evaluate the sensitivity of the Bayes factor to the assumed ψ̂. Predictive
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checking procedures (see Section 2.6.5) represent another tool that can be used to this
purpose. More pragmatically, this approximation allows us to tackle the computation
of the Bayes factor, that otherwise would not have been possible with the considered
methods.

2.5.4 The Bayes factor
Once the model is defined, the Bayes factor follows by performing the marginalization
in Equation (2.6) on the writer’s parameters θ. Using the notation introduced in
Equation (2.4), the marginal likelihood for the evidence e given the hypothesis h is:

m(e | h) = Pr(E = e | H = h) =

=
∫

Pr(E = e | Θ = θ,H = h) Pr(Θ = θ | H = h) dθ , (2.9)

where Θ denotes the writer’s parameters seen as a random variable.
Consider the generic two-level hierarchical model (Section 2.5), with the plug-in

approximation for the background parameter (Section 2.5.3).
We are interested in quantifying the Bayes factor for the hypothesis pair hp against

hd, with evidence er and eq. We suppose that ψ is known, approximated with the
point estimate ψ̂ according to Section 2.5.3. It can be proven that the Bayes factor
in Equation (2.6) can be written as:

BF = m(er, eq | hp)
m(er | hd)m(eq | hd) . (2.10)

Explicitly, all marginal likelihoods with the model notation are:

m(er, eq | hp) =
∫
f(er; θ) f(eq; θ) g(θ; ψ̂) dθ ,

m(er | hd) =
∫
f(er; θ) g(θ; ψ̂) dθ ,

m(eq | hd) =
∫
f(eq; θ) g(θ; ψ̂) dθ .

(2.11)

All evaluative situations can, therefore, be reduced to the problem of calculating
three marginal likelihood values.

2.5.5 Scenario simulations
During the thesis two kinds of operative conditions may be encountered:
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1. background-dominant: eb is provided, but not necessarily er and eq,
2. evidence-only: er and eq are provided, but not eb.

The background-dominant situation is important for the development of the
methodology, as it enables us to explore the structure of the data, and choose a
statistical model that allows for the calculation of the Bayes factor. Usually, we
assume that eb is large, i.e. is constituted by many observations coming from many
different sources.

In this thesis, the first situation is particularly important, as it is most often
encountered when dealing with simulated datasets (i.e. data generated from a model
which is completely known, including all latent parameters). Their analysis allows
us to understand whether the implemented models behave correctly, for instance by
obtaining correct estimates of the true parameter values (when known, such as in a
artificially generated dataset), and examining the general properties of the computed
Bayes factors such as their asymptotic behavior, or the influence of prior parameters.
This phase is called model validation.

The background-dominant situation is also encountered when eb comes from a
situation where obtaining a large background dataset is relatively easy. This was the
case for the dataset of character loops in natural writing.

The evidence-only situation typically occurs during casework where no background
data is initially available. As we have seen before, the computation of a Bayes factor
requires a validated statistical model, and informed knowledge of the between-source
parameter ψ. These prerequisites can be satisfied if one is able to collect information
on ψ by searching in available literature, or by creating background data (under the
hypothesis that the generated data can be modeled by the same model that describes
er and eq). For instance, if two naturally written manuscripts are compared, and the
authenticity of one is disputed, a forensic scientist can request a background corpus
eb from a large relevant population, to inform his knowledge on ψ. If either the
literature search or the simulation succeed, we fall back to a background-dominant
situation, where knowledge of ψ is available.

The evidence-only situation was encountered twice in this thesis. When dealing
with forged signatures with character loops (Chapter 3), a background dataset
comprising specimens coming from other, unseen, forgers, was collected. In that case,
the model had already been validated on simulated data as well as in Bozza et al.
(2008).

When dealing with simple signatures in a real casework, a model validated on
simulated data was proposed, under the assumption that the simulated data contains
relevant information on ψ. In this case, request forgeries could not have been obtained
due to privacy concerns.
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Bayes factors distribution

It is easy to pass from a background-dominant to an evidence-only situation. This
procedure will be named scenario simulation, as it allows one to simulate the per-
formance of our model as if one were confronted with real casework data. Moreover,
one is no longer restricted to a fixed pair er and eq, being free instead to exploit the
entire background dataset, leveraging on pure computational power. This procedure
is similar to the so-called cross-validation, typically used in the machine learning
context to train robust classifiers and statistical models.

To simulate a casework scenario, one must consider a pair of mutually exclusive
hypotheses hp and hd. The output of a scenario simulation is a list of Bayes factor
values, computed when one of the hypotheses is true. Their distribution10 allows
one to verify, for example, whether the model is able to obtain Bayes factors that
point to the correct hypothesis. Whenever this result does not hold, it means that
the model is unable to describe the data under the assumed hypotheses. Ruling out
programming errors, it implies that one or more model assumptions are wrong.

Scenario simulation: the procedure

The fundamental prerequisite for scenario simulation is the set of sources M in the
background dataset, supposed large. We also suppose to know the source of the i-th
item in the background dataset, indicated with mi ∈M .

Firstly, we choose the size of er and eq, i.e. how many evidence items are collected
in the simulated casework. These are indicated with kr and kq, respectively.

Then, at the g-th step:

1. A random source for the reference items, mr
(g) ∈ M is picked. The eligible

sources will, in general, coincide with M .
2. A random source for the questioned items, mq

(g) ∈ M is picked. Here one
chooses the hypothesis to be tested: for instance, under hp, mq

(g) = mr
(g).

3. One randomly picks kr items from the background dataset, to form er
(g).

4. One randomly picks kq items from the background dataset, to form eq
(g).

5. The casework background eb
(g) is formed by items that do not appear in any of

the er
(g) and eq

(g).
6. The tuple e(g) :=

(
eb

(g), er
(g), eq

(g)
)

forms a hypothetical dataset that is used to
obtain a single value of the Bayes factor, BF(g), using the procedure described

10With “distribution” we mean their descriptive statistics, such as their histogram. We do not
assume that Bayes factors are random variables. For a critical discussion of the misunderstandings
surrounding this issue, the interested reader may refer to (Taroni, Bozza, et al., 2016).
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in Section 2.5.3.

The collected Bayes factor values
{
BF(g)

}G

g=1
form the desired distribution, which

is analyzed to the purpose of the simulation.
There are many choices that can be tuned during this procedure. For instance,

the samples er
(g) and eq

(g) can be picked either with or without replacement. One
may also want to make sure that any item appears at most once across all e(g).
The background eb

(g) may be restricted to sources that never appear in any of the
casework items er

(g), eq
(g). Depending on the structure of H, step 2 can be modified

to allow picking multiple sources for the questioned material. In this case, one may
also want to observe each questioned source at least once in mq

(g).
In this thesis we assume that sampling is always done without replacement, and

each item appears at most once in e(g). Further assumptions and details will be
specified when needed.

2.6 Issues and criticisms to the Bayes factor

2.6.1 Bayes factor for model choice
The Bayes factor is often cited in introductory texts to Bayesian statistics as a first
approach to the problem of hypothesis testing. In frequentist statistics, this is usually
done by measures such as the p-value (a value p such that p := Pr(E ≥ e|H0), where
the evidence E is observed to be e, and H0 is the null hypothesis; if p is lower than a
fixed threshold, then H0 is rejected in favor of another hypothesis11).

This approach is known as null hypothesis significance testing (NHST). p-values
are particularly easy to compute, as one needs to assume a null hypothesis H0 (which
is in general uninteresting) and identify a distribution of the evidence (more generally,
a test statistic) under H0. However, this recipe is treacherous for a number of reasons
that will be explained later in this Chapter.

The widespread use (or, more properly, misuse) of p-values in multiple scientific
branches, in particular life and social sciences, was one of the factors that resulted
in widespread replication failures of published studies, in what has been known as
the “replication crisis”. As a consequence, p-values used as a measure of evidence
attracted strong criticisms in recent years, culminating in suggestions such as lowering
the minimum p-value thresholds for publication (Benjamin et al., 2018), replacing

11Notice here the fallacy of the transposed conditional, and how the alternative hypothesis does
not play any role in the definition of the p-value (although it does when the sample size is decided).
A discussion can be found in (Taroni, Biedermann, et al., 2016).
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p-values with more appropriate measures (Benjamin et al., 2018), rethinking the
approach to hypothesis testing (Haaf et al., 2019), or abandoning completely any
procedure that results in a dichotomization of the result (Johnson, 1999; McShane et
al., 2019). Similar objections were raised in matters of justice and forensic science
many years ago, anticipating the current replication crisis (Kaye, 1986).

The Bayes factor is often chosen as one of the replacements for p-values, as it is
the formal definition of the value of evidence (Good, 1991). Also, it is less treacherous
than p-values: for instance, it avoids the fallacy of the transposed conditional.

However, the use of Bayes factors as a replacement for the old experimental designs,
such as NHST, is not problem-free. For instance, the structure of the design phase
(i.e. the Bayesian equivalent of the notion of “effect size”, which prior distributions
should be chosen, and how many items of evidence must be collected to obtain
compelling Bayes factor values) is still under discussion (Schönbrodt & Wagenmakers,
2018). A recent statistical discussion on the specific form of the competing hypotheses
under consideration can be found in Etz et al. (2018). Note that this does not
represent a theoretical criticism, just an operational one.

The recent increase in the utilization of Bayes factors resulted also in an increase
of discussion and criticisms, notably from statistic branches, but also from forensic
scientists.

Criticisms coming from statisticians mostly address issues related to the general
properties of Bayes factors, for instance their sensitivity to parameters or their
statistical well posedness and behavior. These aspects are generally avoided if a
subjectivist point of view is assumed and accepted.

Forensic scientists have debated (and still do), instead, on issues such as the
proper way to define the forensic scenario to the purpose of computing a Bayes factor,
and how the Bayes factor value can be effectively communicated to the court. This
aspect mostly relates to psychological arguments of communication (see, for example,
(Martire et al., 2014) and (Thompson et al., 2018)).

We report some of these issues, showing which ones are relevant to this context,
and what is our approach to solving them in our work. Another major issue of Bayes
factors is the well-known general difficulty of their computation outside “toy cases”.

We believe that these issues are not detrimental to the usage of Bayes factors in
forensic science. One cannot simply refuse the utilization of Bayes factors simply
because they are difficult to compute (Nordgaard & Rasmusson, 2012, p. 309). Even
a Bayes factor that has been computed using a simplified approach could be helpful
to communicate the value of evidence in court, provided that the whole procedure
has been guaranteed to be transparent and honest in its assumptions and limitations
(Nordgaard & Rasmusson, 2012).
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2.6.2 Criticisms from forensic scientists
Another common approximation to Equation (2.3) arises in forensic literature, known
as “plug-in” (as it is used in the so-called “plug-in LR”) (Cereda, 2017). Bernardo
& Smith (1994) called it “estimated likelihood” (Bernardo & Smith, 1994, pp. 480,
483).

Firstly, one first supposes to have a background dataset of observations of Z. This
dataset is then used to infer some knowledge about Y . In the context of the glass
example (Example 2.1), one could collect information on glass objects of the same
kind as the one that has been recovered, and analyze similarly obtained fragments.

Secondly, a maximum likelihood (ML) point estimate for Y replaces the full
probability distribution of Y , and the integrand is evaluated using the point estimate.
In other terms, one assumes that the density of Y is concentrated to a point mass
located in the ML estimate, throwing away most of the information regarding Y ’s
incertitude. In formulæ, Equation (2.3) can be approximated with Equation (2.12):

Pr(Z = z | X = x) =
∫

Pr(Z = z | Y = y) Pr(Y = y | X = x) dy ≃

≃ Pr(Z = z | Y = ŷML) . (2.12)

This approximation is clearly very crude, and it has been shown to provide a
misleading estimation12 of the Bayes factor value in certain cases (Bernardo & Smith,
1994, p. 483; Cereda, 2017; Dawid, 2017).

Some forensic scientists suggest that Bayes factors computed in this way do
not “consume” all uncertainty, but should still retain a dependence on the spread
of Y , since it has been approximated with a point value. Therefore, these “Bayes
factors” would awkwardly still be functions of Y (or some statistic on its distribution).
Remember also that Bayes factors can be computed as the ratio between the posterior
odds (where Y has been observed to assume the value of y, thus being fixed) and the
prior odds (where Y plays no role). These are both scalar numbers, and they bear no
dependence on Y , as it has been already observed, thus the proper Bayes factor does
not depend on Y .

We strongly disagree with this view, as the Bayes factor value is a) a scalar
number, b) computed by integration (or, equivalently, by dividing the posterior odds
by the prior odds).

Other forensic scientists try to circumvent the necessity of eliciting a full probabilis-
tic model for the evidence, relying instead on projecting the dissimilarities between

12We use the term “estimation” to mean the numerical procedure of obtaining an approximation
to the true Bayes factor value that can be defined using Equation (2.2).
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measurements on evidence items to an unidimensional space (the “score metric”), then
eliciting a distribution on the obtained unidimensional distribution. The Bayes factor
is then approximated by a ratio of probabilities of the score values. In literature this
approach is called “score-based LR”. It is often appealing for its apparent simplicity,
as the definition of a distance measure is often straightforward compared to what
is typically needed to compute a full Bayes factor. Also, the projection of complex
data to an unidimensional space is a procedure that can be visualized, helping thus
intuition and communication in the courtroom.

However, it has been proven that this approach is, at best, formally unjustified.
Even in simplified scenarios, the score-based LR might be an unacceptable approxima-
tion to the full Bayes factor (Hepler et al., 2012). Also, it brings forward many issues
that are not encountered with the usage of “proper” Bayes factors. For instance, the
choice of the probability distributions for the score metrics is known as “calibration”
(Robertson et al., 2016, sec. 7.2). These distributions characterized by parameters
that are unknown, need to be estimated, but their connection to the “physical” world
of the evidence space is lost. Hepler et al. (2012) and Neumann & Ausdemore (2019)
give a good review of these issues. Notice also that the score-based LR must involve a
comparison between two items, potentially coming from two different sources, whereas
the full Bayes factor can be computed even in an investigative scenario.

2.6.3 Criticisms from statisticians
The Bayes factor is often stated in statistical literature as a means to choose, among
two competing models, the one that better explains the observed data. For example,
suppose that one wants to study the effect of a new medical treatment to affect the
blood pressure. First, a dose X of medicament is administered, then one measures
the increase (or decrease) of blood pressure Y between two reference time points.
A control group of subjects does not receive any medicament, and their increase of
blood pressure Y is taken in the same conditions. It might appear to be reasonable
to investigate a pair of hypotheses such as hp : Y = 0 (“the treatment has no effect”)
against hd : Y ≠ 0 (“the treatment has an effect”). Notice that the form of these
hypotheses replicates those typically assumed under the NHST framework. However,
this pair of hypotheses (where hp is known in this case as a “sharp null hypothesis”)
cannot be appropriately investigated with the Bayes factor, as they suffer from the
same issues as those under NHST. In fact, it is reasonable to assume that Y will never
be exactly 0, but will depend on many unobserved confounding factors. Moreover,
it was also suggested that a naïve Bayesian approach would introduce issues in the
choice of the priors for the parameters (Gelman et al., 2009, p. 190 for a similarly
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posed problem; also Kass, 1993).
Luckily, there are instances where the usage of Bayes factors is considered to be

justified and meaningful. Gelman et al. (2009) gives an example, where the Bayes
factor can be computed using the prior and the posterior odds, both hypotheses are
scientifically sound, and there are “no obvious scientific models in between” (Gelman
et al., 2009, p. 190). We believe that Bayesian models for forensic science, as we
stated them, account for one of these cases, provided that the set of hypotheses
is well-posed (i.e. hypotheses must be discrete, mutually exclusive and exhaustive).
Notice that exhaustivity is not required if we accept that the Bayes factor is a relative
measure of evidence (Robertson et al., 2016, p. 34).

Another issue which is frequently reported by statisticians is that Bayes factors
are very sensitive to the priors (see for example (Yuan & Johnson, 2008)). This is in
marked contrast with other statistical estimators, such as the maximum likelihood
method, which converge to the true value as the sample size grows. However, in our
opinion, one must always consider that Bayesian probabilities are subjective (Gelman
et al., 2009). Different users might assume different values for the values of prior
parameters, for example by considering different relevant populations. The reported
sensitivity of Bayes factors to prior assumptions is thus a desirable trait that should
not constitute an element of surprise. A more in-depth discussion can be found in
(Morey et al., 2016, sec. 4.1).

2.6.4 Computation of the Bayes factor
Through marginalization

We have shown that the Bayes factor can often be written as a ratio of two integrals,
such as the one appearing in Equation (2.3). If the Bayes factor is computed by
separately computing the numerator and the denominator, we call this the “marginal-
ization approach”. When all random variables are discrete (or finite), the integration
symbol in Equation (2.3) becomes a simple sum, thus all computations may be
exhaustively carried out. With continuous or vector-valued random variables, the
integration is often notoriously difficult or impossible to compute in a closed form.

Notice also that if the evidence Z consists of multiple observations that are
conditionally i.i.d. given Y , the first integrand term in Equation (2.3) becomes a
product of likelihood functions, that can rarely be analytically simplified. In the left
hand side of the Equation, one finds the predictive distribution of a random vector.
Even if one had a closed form for the predictive distribution of the scalar Z, it would
not generally be possible to exploit it in the vector-valued case. Moreover, these
likelihood values could easily result to be extremely small, moreso if the dimension of
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the space increases, contributing to the potential propagation of numerical errors.
Luckily, the problem of computing the marginalization integrals is shared by many

scientific fields. For instance, the marginalization integral is known as the partition
function in statistical mechanics (Jaynes, 2003, pp. 281–282, 364). Shannon’s
information theory has deep connections with the partition function (Jaynes, 2003,
p. 631). More recently, the Nobel Prize laureate Richard Feynman and others
invented the so-called path integrals to compute the partition function in Quantum
Electrodynamics (QED) (Zinn-Justin, 2002).

A number of methods have appeared in statistic and forensic literature to approx-
imate the marginal likelihood value. We have already seen an example, the plug-in
method (Equation (2.12)). An extensive comparison of major methods is available in
(Bos, 2002). Most methods are either numerical (the integral is computed using nu-
merical methods, such as quadrature), analytical (where an analytical approximation
to the probability terms is sought) or stochastical (where integration is performed by
random sampling). They differ also in how much information they require: some of
them require that all elements appearing in the integrands must be in a closed form,
others need only random samples from their distributions. However, no method is
clearly superior, as some of them might be well suited for particular problems but
fail to reach acceptable approximations in others. Moreover, the implementation
difficulties greatly vary as well as the computation times.

The choice of an appropriate computational method strongly depends on the
problem at hand. For instance, it has been shown that some of the most attractive
methods (e.g. simple Monte Carlo sampling, and the harmonic mean estimator),
extremely easy to derive and implement, often provide unacceptable approximations
to the marginal likelihood value (Gamerman & Lopes, 2006; Lartillot & Philippe,
2006).

In this thesis we will use two methods to compute the marginal likelihood value:

• Gibbs sampling (Chib, 1995) for the Fourier loop shape descriptors,
• bridge sampling (Gronau et al., 2017; Meng & Wong, 1996) for the proportional

descriptors.

The first method is operatively explained in (Bozza et al., 2008); bridge sampling
is far too technical to be explained in this thesis, operative details can be found in
(Gronau et al., 2017).

Other approaches

Notice that there is a class of methods that target directly the computation of a
ratio of marginal likelihood values, that corresponds to the Bayes factor in non-trivial
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cases. Some of these methods are closely related to those that attempt to compute a
single marginal likelihood value, for instance bridge sampling (Meng & Wong, 1996).

Others are entirely novel, and they rather exploit other characteristics of the
model. Lodewyckx et al. (2011) propose to compute the Bayes factor by introducing
a prior on the model indicator (i.e. the hypothesis), creating a “supermodel” that
encompasses both hp and hd, run a Markov Chain Monte Carlo, and count how many
times each hypothesis is more supported by data (Lodewyckx et al., 2011). The
method is very general but its implementation is delicate, as one needs to make
sure that the chain explores both hypotheses, even if one is very unlikely. Also, it
requires the awkward introduction of prior distributions (the so-called pseudopriors)
on parameters that might not appear under one of the hypotheses under consideration.

Other approaches exploit the structure of the hypotheses under evaluation. If
these hypotheses are nested (i.e. the model specified under hd is contained into hp),
the Savage-Dickey ratio provides an easy way to compute the Bayes factor value
(Wagenmakers et al., 2010). It is not without its own difficulties and paradoxes,
however (Consonni & Veronese, 2008; Heck, 2019; Marin & Robert, 2010). Moreover,
it has recently been shown that this method cannot be used to compute a Bayes
factor in a nested model where one of the hypotheses has an exact equality constraint
between two continuous random variables (Wetzels et al., 2010). Notice that this
case contains all models presented in this thesis if H ′ (the statements relating θr and
θq in Section 2.5) were considered as an hypothesis pair. In that case, the authors
recommend the adoption of other techniques such as the marginalization approach,
the one that has been followed.

2.6.5 Open problems
Besides these issues, it is important to remember that the Bayes factor is a relative
measure for the value of evidence. Namely, it shows which one among the compared
hypothesis better explains the observed data. It does not guarantee that the most
supported explication is true (Morey et al., 2016). Bernardo & Smith (1994) in-
troduced the notation M-closed for the case where one of the compared models is
assumed to be true. If this does not happen, the case is said to beM-open (Bernardo
& Smith, 1994, sec. 6.1).

The burden of determining whether the chosen hypothesis is plausible lies on the
ability of the forensic scientist to choose a statistical model that is both defensible
and close to the phenomenon that one wants to describe.

To this purpose, several solutions have been proposed to verify whether the models
are close to the data.
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The easiest method exploits the fact that the form of the marginal likelihood
(Equation (2.3)) is the same as the form as the predictive distribution13. If one uses
the posterior distribution for the latent parameter (Y in the Example), the marginal
likelihood equation can be used to sample new observations from the same model
that is assumed to be generating the data. Instead of checking whether the obtained
parameters are reasonable (e.g. their credibility intervals for Y overlap scientifically
sound values), a visual comparison can be made directly in the space of the original
data. Moreover, sampling from the marginal likelihood is a much easier operation
than computing its value in a given point. Notice that the same procedure can be
repeated using the prior distribution for Y instead of the posterior. Notably, this
allows practitioners to check whether their prior assumptions on the latent parameters
generate plausible data, even before considering actual evidence into the case. This
approach has been described in multiple texts under the name of prior (posterior)
predictive checking, such as (Gelman, Meng, et al., 1996; Lynch & Western, 2004). In
the forensic world, this procedure is known as “pre-assessment” (Taroni, Biedermann,
et al., 2014, ch. 10).

Another possible extension relates to the fact that the choice of the probability
distributions (for example those in Equation (2.3)) is fixed by the forensic scientists.
One could in principle allow the form to vary among a specified set, for example to
allow for uncertainty on the model. In forensic literature a similar procedure has
been proposed for glass evidence, replacing the probability distributions with kernel
density estimates (Aitken & Lucy, 2004).

The Bayesian way of choice to allow for the variability of probability distributions,
is to put a prior on them, resulting in a so-called Bayesian nonparametric model. We
hypothesize that this procedure can be applied to the numerator and denominator of
the Bayes factor. It could also potentially lead to specific advantages. For instance,
if the Bayesian nonparametric models encompass all possible distributions for a set
of random variables, one could transition from an M-open to an M-closed case.
Current literature on a nonparametric Bayes factor is scarce. Among available works
we cite (Holmes et al., 2015), which could be of relevant forensic interest. To our
knowledge, this approach has been applied only once in a forensic context (Cereda,
2015).

We also emphasize that the statistical procedure of model choice can be performed
using approaches other than the Bayes factor. An example is the so-called Bayesian
model averaging (BMA), where multiple models are combined to obtain a single

13The predictive density is the LHS of (Equation (2.3)), seen as a function of z (Equation (2.3)).
The marginal likelihood value, or equivalently the denominator of the Bayes theorem, is the predictive
density evaluated in the observed z: it is therefore a scalar value.
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expression for a quantity of interest that appears in all considered models, accounting
for their respective epistemological uncertainty (Hoeting et al., 1999). This does
not apply to forensic purposes since we are solely interested in obtaining the Bayes
factor value, as it is by definition the number that allows recipients of expert evidence
to compute the posterior odds ratio. Note also that the Bayes factor cannot be
considered among the quantities of interest for the BMA procedure, since it results
from the comparison of models, rather than living inside them.





Chapter 3

Quantifying loops

This Chapter is dedicated to handwritten evidence that includes characters featuring
closed loops, such as those in lower-case letters “a”, “d” and “o”.

We first introduce two datasets that may fall under this definition.
One has been the subject of several past forensic literature works, in particular

(Marquis et al., 2005) and (Bozza et al., 2008). It is upon these works that this
Chapter is built, in particular by suggesting the Bayesian model that we use to
quantify the value of evidence. This dataset comprises measurements taken on a set
of naturally written corpora.

The second dataset has been collected and introduced in a publication within the
scope of this thesis (Gaborini et al., 2017). It consists of a set of genuine signatures
of a single person, and a set of specimens created by several forgers, who had been
exposed to the genuine set, and were allowed to practice imitation at will. All genuine
and forged signatures contain character loops, that can be analyzed under the same
statistical framework that has been employed to analyze the first dataset.

Secondly, we briefly recall the Fourier descriptors that we adopt to describe this
kind of evidence. These descriptors are used by both datasets.

Thirdly, we detail the Bayesian model used in this Chapter. We will refer to the
original article (Bozza et al., 2008), relating it to the more general inferential scheme
introduced in Chapter 2 (Section 2.5.2).

Afterward, we show our optimized implementation of the Bayesian model, enabling
us to discuss its sensitivity, strengths and weaknesses in greater detail than the original
article. We will do so also by leveraging several simulated datasets, following the
procedure described in Section 2.5.5.

Lastly, we will exploit our implementation to discuss results in the form of Bayes
factors for each of the two datasets.
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3.1 The datasets

3.1.1 Natural handwriting dataset
This dataset was collected among a sample of 42 French native speakers from the School
of Criminal Justice, University of Lausanne, Switzerland. The dataset comprises 6868
specimens of the character loops “a” and “d”, with a median of 177.5 loops per writer.
All specimens were written in the writers’ natural handwriting. The shape of each
loop was described by their Fourier descriptors as presented in (Bozza et al., 2008;
Marquis et al., 2005). 5 harmonics were retained (from order 0 to 4) as well as the
loop surface: details on the meaning of Fourier coefficients are given in Section 3.2.
Note that no image of the specimens nor the specimens themselves were available.
The numerical values related to the 5 harmonics plus the surfaces have been used as
in (Marquis, 2007).

3.1.2 Forged signatures dataset
A subset of this new dataset was described in (Gaborini et al., 2017). However,
note that the article mostly considered a different set of features (absolute signature
dimensions), and character loops were only briefly described.

This dataset was built starting from 143 specimens of genuine signatures of a
single person, collected over the period of one month, writing in small batches to
avoid nuisance factors such as fatigue. 6 persons were recruited in the project, with
no experience in signature forgery and document examination. Each person was
provided the full set of genuine signatures and was told to produce at least 20 freehand
forgeries over a week period, practicing the forgeries at will. Tracing was forbidden.
All specimens were produced on white unruled paper, writing with a ballpoint pen.
In total, 444 specimens were collected.

All genuine signatures could present at most 5 character loops, corresponding to
characters “a”, “b”, “o” in different positions. The same loops were extracted in the
forged specimens, if present.

A partial reproduction of a signature is shown in Figure 3.1.

Digitalization and loop extraction

All specimens were digitalized at 600 dpi, then converted to a black and white un-
compressed format. Every loop is extracted from the digitalized images of samples
through various image processing steps, that isolate the skeleton of each character
loop from the ink trace. The procedure is rather manual, as some of these steps
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Figure 3.1: A partial reproduction of a signature in the dataset. Two
loops (“o”s) are visible.

require minor image retouches (e.g. noise removal, or loop closure) and calibration
of parameters (e.g. choosing the appropriate morphological filters, or binary thresh-
olding). The main reasoning we adopted is that loops were manually closed if this
operation did not significantly alter their shape (i.e. very small opening, or the closing
is strongly suggested by the surrounding character traits) (Gaborini et al., 2017).
Given a single character loop, the output of this step is a list of planar coordinates
to each pixel, as well as additional information that links the loop to the original
specimen (e.g. its relative position in the signature). The planar coordinates were
afterward converted to polar coordinates, using the barycenter of the pixel sets as the
center of the representation, and discretizing the angle over 128 equispaced nodes.

In total, the dataset comprises 1336 loops, whose 420 appear in genuine specimens.
Table 3.1 summarizes the composition of the signature dataset.

The superposition of all extracted character loops is shown in Figure 3.2, dis-
tinguishing by writer and letter. It can be visually appreciated that some forgers
never reproduced (or failed to close) some character loops, present in most genuine
specimens. Also, the shape of genuine loops does not significantly vary across letters,
except for the “b” loops, appearing slightly more elongated than “o”s and “a”s.

Table 3.1: Number of specimens and loops per writer in the forged
signature dataset. “A” indicates the genuine author, “F1” to “F6”
indicate the forgers.

Writer Total specimens Total loops
A 143 420
F1 35 98
F2 20 49
F3 16 23
F4 20 56
F5 153 538
F6 57 152
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Figure 3.2: All characters in the forged signature dataset, superposed,
distinguishing by writer (columns) and letter (rows). All character loops
have been rescaled to have the same surface. Only closed loops were
shown.
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3.2 Features
The method introduced in this Chapter is based on the representation of closed shapes
(e.g. character loops) as a sum of harmonic components, through the Fourier series on
a polar parametrization of the shape contour. The main idea was introduced in this
forensic context in several articles (Marquis et al., 2005, 2006; Marquis et al., 2011),
although the extraction of said features was originally described for anthropological
applications in (Schmittbuhl et al., 1998). We briefly recall the construction of the
Fourier features, referring the reader to the cited articles to obtain further details.

Let us consider a single character loop. We initially assume to have a list of x− y
coordinates to the pixels that belong to the loop, possibly those close to the center of
the stroke (skeleton). Following (Marquis et al., 2005), each loop was converted in
polar coordinates (θ, R(θ)) with respect to its barycenter, then the Fourier descriptors
are extracted according to the truncated Fourier series in Equation (3.1). Figure 3.3
shows the representation of a loop in polar coordinates.

(0, 0)

R(θ)

θ

Figure 3.3: A contour in polar coordinates.

R(θ) = A0 +
n∑

k=1
Ak cos(kθ + θk) for θ ∈ [0, 2π) . (3.1)

Each harmonic contribution is characterized by the harmonic index k (an integer),
an amplitude Ak (a non-negative real number) and a phase θk (typically in radians
or degrees).
The meaning of all harmonics contributions can be represented in Figure 3.4, where
each harmonic contribution of amplitude Ak = 0.5 is added, in turn, to the unit circle.
The reference article considered as features the sets {Ak} and {θk} for k > 0, and
the loop surface.

It is also known (Zahn & Roskies, 1972) that the series in Equation (3.1) can be
rewritten as Equation (3.2):
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Figure 3.4: The unit circle (k = 0) along with some shapes obtained by
summing a Fourier contribution of amplitude Ak = 0.5 and phase θ = 0
to the unit circle.

R(θ) = a0 +
n∑

k=1
(ak cos(kθ) + bk sin(kθ)) for θ ∈ [0, 2π) . (3.2)

Each harmonic contribution can also be described by the harmonic index k, and
the terms ak and bk (real numbers). It can be proven that ak = Ak cos θk and
bk = Ak sin θk for k > 0.

In this Chapter, the features are constituted by the sets {ak} and {bk} for k > 0,
and a0.

The number of retained harmonics n determines the degree of approximation of
the Fourier representation. In both datasets as well as the reference article n did
never exceed the value of 4, as it achieves a good balance between the graphical
approximation of the loops, and the reduced number of parameters to fit.

Notice that n is fixed, as it has been decided during the digitalization procedure.
However, the number of Fourier coefficients that take part in the statistical model
may vary, depending for instance on their discrimination power. As a consequence,
this choice has been also briefly investigated in the next sections.

In both datasets, it can be shown that authors tend to differentiate on components
k = 2, which determine the “elongation” of shapes. This behavior was already
observed in the reference articles, and we observe the same phenomenon in the forged
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signature dataset. Moreover, the amplitudes of harmonic components k = 2 are
much greater than other harmonic orders (except k = 0, which mostly determines
the average radius of the loop). A comparison of the harmonic structure across the
two datasets is shown in Figure 3.5.

3.2.1 Parameters and choices
This procedure requires the establishment of a number of choices for various pa-
rameters. The first choice is the number of Fourier components n used to represent
character loops (more generally, which k were considered to form the feature vectors).
In general, it is advisable to choose an n that guarantees a reconstruction that is
sufficiently close to the actual loops, whilst yielding a number of parameters to fit
(2n+ 1 coefficients: 2n for the Fourier coefficients, 1 for a0) that is compatible with
the available number of observations. In the forged signature dataset we considered
n = 4, as 4 harmonics were sufficient to characterize loop shapes, thus describing
each loop with a vector of maximal length 9.
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Figure 3.5: Distribution of pairs of harmonic coefficients of order k.
Each shape and color is associated with a writer. Each point represents
a loop. Only a subset of loops and writers is shown. Notice how writers
tend to separate on k = 2.
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A second choice that needs to be made is whether loops should be rescaled in
order to have a unitary area. In the reference articles, the authors used the rescaled
versions. In the forged signature dataset, we briefly investigate this assumption
through the developed Bayesian model. If Bayes factors are not sensitive to the
loop surface, the choice of whether the rescaling is needed is not relevant. From the
forensic handwriting examination perspective, the usage of rescaled loops attempts
to reduce the influence of external constraints that are known to affect absolute size,
such as the presence of boxes or a horizontal line (Ellen, 2005; Fazio, 2015).

3.3 Statistical model
The statistical model developed in (Bozza et al., 2008) was adopted to treat the new
set of data. We recall it briefly here.

3.3.1 Background observations
We initially suppose to have a background dataset on m writers. ni character loops
are available coming from the i-th writer, i = 1, . . . ,m. Each loop is characterized by
p features, the number of Fourier coefficients {ak, bk} (possibly including a0) forming
the feature vectors.

The set of features for the i-th writer and the j-th loop coming from the i-th
writer is a random vector, indicated with Xij ∈ Rp, where j = 1, . . . , ni.
A hierarchical model is stated for Xij:

Xij ∼ Np(θi,Wi)
θi ∼ Np(µ,B) (3.3)
Wi ∼ IW (U, ν) ,

where θi is the mean vector of the i-th writer, Wi is the non-constant within-writer
covariance matrix, µ is the mean vector between writers and B is the between-writers
covariance matrix.

To reconnect to the evaluative inferential scheme described in Section 2.5, evidence
e from the i-th writer and j-th loop is represented by the random vector Xij. f
is the density of a multivariate Normal, parametrized by (θi,Wi) in the i-th writer
(previously indicated with θ). The between-writer hierarchical level models the
distribution of the within-writer parameters (θi,Wi). In this case, θi and Wi are
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modeled separately, with a multivariate Normal and an inverse Wishart distribution.
Consequently, g is the density of the product of those two random variables.

Some statistical differences were introduced. As said in Section 3.2, we note
that we describe Fourier contributions using the coefficients {ak, bk} rather than
{Ak, θk}1. This no longer imposes sign and domain constraints on the variables, and
they both share the same order of magnitude for any harmonic index k. In this way,
the hypothesis of multivariate normality is supported.

Background parameter elicitation

We now apply the plug-in approximation (Section 2.5.3) to elicit values for µ and B.
The hyperparameters µ, B and Wi are estimated using maximum likelihood on the
background dataset, as in (Bozza et al., 2008, sec. 4). In particular, we obtain an
estimate of W , the within-writer covariance matrix pooled over all Wi. U and ν are
elicited using the mean of the inverse Wishart distribution (Press, 2012):

E[Wi] = U

ν − 2(p+ 1) . (3.4)

We initially set the number of degrees of freedom ν to be as low as possible, in
order to let Wi have a finite expectation in Equation (3.4).
The smallest possible value for ν is indicated by νmin:

νmin := ν = 2(p+ 1) + 1 . (3.5)

The inverse Wishart scale matrix U is elicited by substituting the pooled maximum
likelihood estimate for E[Wi] in Equation (3.4), the chosen value for ν, and solving
for U .

3.3.2 Evaluative scenario
We now introduce the evaluative scenario and the evaluative hypotheses that we wish
to use for evaluating evidence, following the structure introduced in Sections 2.4.2
and 2.5.

We suppose that the questioned material shows multiple character loops, indicated
with eq. The reference material, provided by the putative writer, shows multiple
character loops, indicated with er. All loops are described using the aforementioned
Fourier descriptors, keeping the same fixed number of values.

1There is no relation between θk and any θi in Equation (3.3).
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The evaluative hypotheses of interest are:

H = hp : “the character loops er and eq come from the same writer”
H = hd : “the character loops er and eq come from two different writers”

Under hp, er and eq are samples from the same source, with parameters θrq and Wrq.
Under hd, er and eq are two independent random vectors: the source for er is
parametrized by the parameters θr and Wr, the source for eq is parametrized by the
parameters θq and Wq.

The Bayes factor value can be computed using Equation (2.10). In particular,
it requires the computation of three marginal likelihood values that share the same
structure (Equation (2.11)). The generic marginal likelihood is:

m(e | h) =
∫
f(e; θ,W ) π1(θ; µ̂, B̂)π2(W ; Û , ν̂) dθ dW ,

where µ̂, B̂, Û and ν̂ are the plug-in estimates on the background dataset, and π1
and π2 are the densities for the prior parameters θ and W , respectively.

3.3.3 Bayes factor computation
The Bayes factor value is obtained by computing the three marginal likelihoods,
separately. The procedure follows the one described in (Bozza et al., 2008), and is
done in two steps.

First, we use the fact that m(e | h) is the normalizing constant of the posterior
for (θ,W ), indicated with π.

m(e | h) = f(e; θ,W ) π1(θ; µ̂, B̂)π2(W ; Û , ν̂)
π(θ,W ; e, µ̂, B̂, Û , ν̂, h)

. (3.6)

Therefore, the marginal likelihood can be estimated from a set of samples for the
posterior of (θ,W ) (Chib, 1995). Equation (3.6) is used to deliver an estimate of
m(e | h) in a given point of (θ,W ), indicated with (θ∗,W ∗). The Equation holds for
any choice of (θ∗,W ∗), but it is desirable to choose a point where many samples are
available (Chib, 1995, sec. 2.1). For (θ∗,W ∗), we chose the point where the likelihood
f assumes the maximum value.

In the second step, we sample from the posterior distribution of (θ,W ). The
posterior is not available in closed form, but the full conditional distributions Pr(θ |
W, e) and Pr(W | θ, e) are known, allowing for the usage of a Gibbs sampler. More
details are available in (Bozza et al., 2008) and (Aitken et al., 2021).
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3.3.4 Implementation
This Chapter was first approached by using the code that was developed for the
reference article. The original implementation was written using the R language (R
Core Team, 2019). Given the need for a detailed description of the sensitivity of this
method to new datasets and prior parameters, notwithstanding the required heavy
computational loads, it was necessary to improve the user-facing components and
the general user experience, particularly the speed of computation of each marginal
likelihood value.

A new code implementation has been afterward packaged to the R package
bayessource (Gaborini, 2019), providing a set of functions to obtain the background
plug-in estimates, marginal likelihoods and the Bayes factor values for the proposed
model.

The core functions were translated from pure R routines to C++, a high-
performance language that directly generates machine code. This was done using the
Rcpp R package, a tool that enables the creation of a transparent interface between
the two languages (Eddelbuettel & François, 2011).

Moving core computational procedures to a C++-based implementation allowed
for extremely large speedups for the computation of Bayes factors. In Table 3.2
we compare the computation times for a single Bayes factor across three different
implementations of the model:

a. the reference pure R implementation,
b. an improved pure R implementation, exploiting vectorization and matrix fac-

torizations,
c. our R/C++ package.

One can see that the mean time for computation of a single Bayes factor value
reduces from around 3031.924 milliseconds to 13.47519 milliseconds, with an average
225× speedup. Even faster speedups are achievable by parallelizing the algorithm
and exploiting various matrix factorizations for the covariance and scale matrices.

Further benefits for wrapping the article code to an R package include the increased
reproducibility of the analyses, the facilitated creation of package documentation, and
the establishment of an automated suite of tests. These tests make sure that most
components of the package behave correctly in scenarios where results are known.
For example, we check that the implemented definitions for the Wishart densities and
samplers reduce to known distributions for known particular parametrizations, and
that all covariance matrices can be provided either in their full form or through their
Cholesky factors. We also verify that the package computes Bayes factor values that
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Table 3.2: Comparison of Bayes factor computing times (in milliseconds)
across the three implementations. All statistics were computed over
10 replicas. 100 burn-in iterations, 1000 sampling iterations, p = 2
variables, kr = kq = 30 samples, 510 background samples.

Implementation min [ms] mean [ms] median [ms] max [ms]
Reference (pure R) 2719.91 3031.92 2859.97 3882.45
Improved (pure R) 1274.06 1369.07 1347.24 1515.70
Ours (Rcpp) 12.67 13.48 13.18 14.96

support the true hypothesis in a situation where the generating model is fully known.
The suite of tests is supported and ran by the testthat R package (Wickham, 2011).

The package has not been released to CRAN (the official R package repository),
but its source is open and available on request (Gaborini, 2019). In the repository,
one also finds abundant documentation on how to use it, including some worked-out
simplified scenarios.

3.4 Model validation
With the available package, we first proceeded to verify its behavior in a situation
where the generating model is known, and a large set of background samples are
available (a background-dominant situation: see Section 2.5.5).

The background data consists of 200 samples from m = 3 bivariate (p = 2)
Gaussians, representing three different sources, i ∈ {1, 2, 3}. In total, 600 samples
are available. The model parameters θi,Wi, µ, B, U, ν were chosen to produce slightly
overlapping distributions, shown in Figure 3.6.

We consider i = 1 to mark the reference source. We want to evaluate the hypothesis
pair:

H = hp : “the samples er and eq come from the source 1”,
H = hd : “the samples er and eq come from sources 1 and 2, respectively”.

The scenario simulation procedure (Section 2.5.5) is applied twice to simulate two
situations:

1⃝ under hp, we deal kr = 30 samples from the reference source (i = 1) and kq = 30
samples from the reference source (i = 1)

2⃝ under hd, we deal kr = 30 samples from the reference source (i = 1) and kq = 30
samples from the questioned source (we pick i = 2)
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The remaining 510 samples constitute the background dataset, which is used to
elicit the hyperparameters using the plug-in estimation procedure.

The generated dataset is shown in Figure 3.6. The point shapes mark in which
sample set they belong.

3.4.1 Priors and computational parameters

Using the plug-in estimation procedure, one can obtain the point estimates for
the between- writer parameters µ̂, B̂, Û , ν̂ using the background observations eb, as
detailed in Section 3.3.1. Particularly, ν̂ was set to νmin = 7 (Equation (3.5)).

For the Gibbs sampling procedure, 10000 Gibbs samples are obtained, whose 1000
are dedicated to the burn-in process. The number of samples was decided to provide
a good mixing of the Gibbs chain. Only one Gibbs chain is run. Trace plots did
not show any anomalies. Also, the reference article used only 1000 Gibbs samples in
total.
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Figure 3.6: A generated bivariate dataset for model verification. Each
point represents a bivariate observation. The small circles constitute the
background samples. Colors represent the true source. Shapes indicate
whether the sample belongs to the reference or the questioned set.
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3.4.2 Bayes factors

By plugging in our point estimates for the prior hyperparameters in Equations (2.11)
and (3.6), one can compute the Bayes factor values under the scenarios 1⃝ and 2⃝ of
Section 3.4.

In the situation 1⃝ (hp is true), er and eq have been sampled from the same source.
The log-Bayes factor is:

log10 BF = 1.1989623 ,

which is greater than 0, as expected.
In the situation 2⃝ (hd is true), er and eq have been sampled from two different

writers. The log-Bayes factor is:

log10 BF = −9.0001065 ,

which is lower than 0, as expected.
As further verification, we compare the results of the Bayes factors across the

three implementations (Section 3.3.4), and an informed prior selection (where we
chose the true generating parameters as priors, being known). The comparison, shown
in Table 3.3, proves that our implementation produces Bayes factor values that are
coherent with the established hypotheses and the generated data. Moreover, we also
show that the maximum likelihood (ML) estimators constitute a good choice in a
background-dominant situation.

Table 3.3: Comparison of the value of evidence quantified through
the log10 Bayes factor computed on the same dataset using different
implementations and prior elicitation methods.

Implementation log10 BF (hp) log10 BF (hd) Prior choice
Reference (pure R) 1.1719 -9.0332 ML
Improved (pure R) 1.1923 -9.0048 ML
Ours (Rcpp) 1.1990 -9.0001 ML
Reference (pure R) 0.9902 -9.1955 Informed
Improved (pure R) 1.0265 -9.1439 Informed
Ours (Rcpp) 1.0256 -9.1634 Informed
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3.4.3 Diagnostics and sensitivity
The major computational speedups enable us to evaluate the sensitivity of the obtained
Bayes factor values to various assumptions, such as the prior parameters and the
dataset properties.

Notice that Bayes factors are difficult to “debug”, as they are rooted in a combina-
tion of three quantities (the three marginal likelihoods) that may wildly vary across
orders of magnitude. In turn, each quantity depends on the plug-in estimates for the
hyperparameters, and how the respective posteriors for the latent source parameters
relate to the chosen hyperparameters.

In a simulated scenario, one could compare how close they are to the generating
values. For example, when data is generated under hp from the source i = 1, the
posteriors for θr and θq, calculated using er and eq respectively, should be concentrated
around θ1. Analogously, the posterior for θrq, calculated using all the available er and
eq, should also be concentrated around θ1.

In some situations, however, this characterization is not possible. For example,
when data is generated under hd, θrq tries to capture the mean vector of the source
that is generating the reference and questioned samples. However, we know that
this source does not exist, as er and eq truly come from two different sources. The
computed marginal likelihood depends, therefore, on how distant these sources are in
terms of their respective mean vectors θ.

A more exhaustive sensitivity study should take into account the interplay of all
these aspects. For instance, one could develop inequalities to bound the Bayes factor,
as done in (de Zoete & Sjerps, 2018), or to bound the individual marginal likelihoods
using a Variational Bayes approach (Blei et al., 2017). In this Section we provide
only some elements of sensitivity analysis, to gain insight into the basic properties of
the developed method.

3.4.4 Convergence
Since the model parameters are known, one can check whether the Gibbs chains are
sampling near the correct values. Notice that since the computation of a Bayes factor
requires three marginal likelihoods, there will be three sets of Gibbs samples. To
simplify, we consider only the chain for the reference samples that appear in the
denominator of the Bayes factor, i.e. m(er | hd). Figure 3.7 displays the comparison
between the posterior distributions of θ and W−1 and the true values for the reference
source (respectively θr and Wr

−1), showing a good agreement between the MCMC
behavior and the model generating values.
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Figure 3.7: Histogram of the obtained posterior samples for θr and Wr
−1,

along with their true values (vertical bars). Each histogram represents
the sampling distribution of the corresponding entry.

Degrees of freedom

One open question that was highlighted in the reference article was the sensitivity
to ν, the number of degrees of freedom of the inverse Wishart distribution for the
between-writer variability.

The sensitivity to ν was investigated by choosing values of ν̂ in the range [νmin, νmax].
νmin was set to be 7 (the smallest value such that the scale matrix is invertible, see
Section 3.3.1 and Equation (3.5)), and νmax was taken to be large.

Following the previous section, the Bayes factor values were recalculated, obtaining
Figure 3.8. Results show that Bayes factor values tend to become more extreme
(i.e. |log BF| increases) as ν is taken to assume larger values. This behavior is expected,
since the prior distribution for the within-writer covariance matrix W concentrates in
a smaller region of the Rp space, attributing greater weight to the (pooled) maximum
likelihood estimates.

One can see that, concerning hd, the performance reverses as ν increases, resulting
in log-Bayes factor values greater than 0 from a certain value of ν. These two
considerations suggest choosing small values for ν (e.g. νmin), as they are more
conservative (under hp) and avoid the production of contradicting conclusions (under
hd).

Sensitivity to the dataset

One important question to answer is the sensitivity of the Bayes factor to the collected
observations. As an example, one might be interested in examining at which point er
and eq become “different enough” to obtain a Bayes factor that crosses the neutral
value of 1. Another question of interest would be to assess the dependence of the Bayes
factor (thus, the decision whether to prosecute or not) to uncertainties in laboratory
analyses. For instance, suppose that in the glass fragment example (Example 2.1),
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Figure 3.8: Sensitivity of the Bayes factor to ν. The black series is
obtained when hp is true. The gray series is obtained when hd is true.

the laboratory reports an interval on the refractive index of the fragment instead of
a point value (representing a confidence interval, a credibility interval, or any other
way to indicate values that are highly plausible according to the laboratory). If the
Bayes factor varies significantly by considering observations inside the given interval,
then the strength of the evidence eq may be weaker than expected, the model might
be wrong or incomplete2, or more observations are needed. Another output of the
sensitivity analysis to the dataset is the rate of change of the Bayes factor to small
perturbations of the casework evidence er and eq.

To continue the analysis, it would be necessary to precisely state how observations
(for instance, eq) could vary, and what is the magnitude of the variation. If evidence
is described by a number (e.g. the refractive index or a fiber count), it could be
sufficient to let it increase or decrease. However, for multivariate observations there
are infinitely many possible directions of increase and decrease.
To avoid introducing unnecessary complexity, this issue can be generically solved
by defining a notion of distance between probability distributions, in particular the
ones generating the sets er and eq: the first distribution will be indicated with p,
the second with q. Observations can be transformed by modifying the generating
distribution, for instance by translating the mean vector or rotating the covariance
matrix. One suitable notion is the Bhattacharyya distance (Kailath, 1967):

2In this specific case, a properly specified model would also include the uncertainty on the
reported eq among the random variables.
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Definition 3.1 (Bhattacharyya distance)
Let p, q be two continuous probability distributions on Ω, with densities p(x) and q(x).
The Bhattacharyya distance between distributions p and q is:

d(p, q) = − log
∫

x∈Ω

√
p(x) q(x) dx .

In our case, er has distribution p = N(θr,Wr), eq has distribution q = N(θq,Wq).
The reference and questioned sources are known, so the distance can be exactly
computed. Substituting the definitions, one obtains:

d(p, q) = 1
8(θr − θq)TW−1(θr − θq) + 1

2 log
 detW√

detWr detWq

 ,

with W = (Wr +Wq)/2. Notice that one obtains the well-known Mahalanobis distance
if the distributions have the same covariance matrices.

Next, one can apply a transformation to the distributions that generate er and eq.
For eq, we consider the case where hd is true: the sources are different.

To simplify, er is kept fixed, setting instead the questioned mean vector θq to a
new position θ̃q, leaving the covariance matrices unchanged. Moreover, a linear shift
is applied, parametrized by the coordinate α ∈ R, such that one interpolates between
θr and θq. One can thus write:

θ̃q(α) = θq + (α− 1)(θq − θr) .

By applying the same shift to the questioned samples eq, one obtains a shifted version
ẽq = ẽq(α). The effect of the geometrical transformation of er and eq is shown in
Figure 3.9.

Finally, one can compute the Bayes factor using er and ẽq. Notice that the Bayes
factor is now a function of α as well as the Bhattacharyya distance d(er, ẽq). The
behavior of the Bayes factor is shown in Figure 3.10. One can see, for instance, that
the log-Bayes factor in this case is always lower than 0: the questioned samples eq
are always sufficiently “different” than er to support hd rather than hp. Notice this is
true also when α = 0 (i.e. when their means overlap: see the first panel in Figure 3.9),
since the Bhattacharyya distance also considers the covariances of the distributions.

The first-order approximation to the curve could be used as a measure of sensitivity
of the Bayes factor to small perturbations around the observed casework data eq.
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Figure 3.9: The datasets obtained by transforming the bivariate valida-
tion dataset (Figure 3.6) at various values of α. In particular, the mean
of the questioned samples θq from the second source was linearly shifted
to the value θ̃q(α). Choosing α = 0 sets θ̃q = θr. Choosing α = 1 sets
θ̃q = θq. Choosing α > 1 sets the reference and the questioned samples
farther apart than their original positions, inflating their distance.
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Figure 3.10: The log-Bayes factor as a function of the Bhattacharyya
distance and the shift α. The dotted line is the tangent to the observed
casework data. Notice that the Bayes factor always points to hd even
when the mean vectors overlap (α = 0): this should be due to the
different covariances.
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Gibbs iterations

Another analysis that can be performed is the sensitivity of the Bayes factor to the
number of Gibbs samples, and how many of those are discarded. In Figure 3.11
we recompute the Bayes factor by exploring various combinations of the number of
burn-in samples and the number of Gibbs samples after the burn-in (from 100 up to
50000). One can see that convergence (in terms of BF value) is easily reached even
with few Gibbs samples.

3.5 Results on natural handwriting
We can now proceed to analyze the same natural handwriting dataset appearing in
the reference article (Bozza et al., 2008). Again, some differences concerning the form
of the extracted features are introduced, so the results are not directly comparable.
Nevertheless, we exploit the decreased computational load of the algorithm to provide
new insights on the same dataset.
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Figure 3.11: log-Bayes factor values as a function of the number of
Gibbs samples, burn-in iterations, and true hypothesis. Each parameter
combination was repeated 20 times (the thin lines). The thick lines
show the BF averaged over 20 trials. One can see that the BF values
are stable over a wide range of values for the MCMC parameters.
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3.5.1 Evaluative scenario
Let er be a set of character loops, parametrized by their Fourier coefficients, from the
reference writer. Let eq be a set of character loops, parametrized by their Fourier
coefficients, from the questioned writer (i.e. the writer of the questioned material,
who may or may not correspond to the reference writer).

The evaluative scenario described in Section 3.3.2 is adopted, in particular with
the same hypothesis pair:

H = hp : “the loops er and eq come from the same writer”
H = hd : “the loops er and eq come from two different writers”

As the natural handwriting dataset constitutes a background-dominant situation,
one can proceed with the scenario simulation procedure that was described in Section
2.5.5. In particular, every possible pairing between a reference and a questioned
writer is explored. Once the pair is chosen, the procedure is repeated G = 100 times,
to account for the writer’s intra-variability. Each time new er, eq and eb are sampled,
re-eliciting the priors with the new background dataset. In the end, since the dataset
contains 42 different writers, 100(

(
42
2

)
+42) = 90300 Bayes factor values are computed.

To decrease the computational cost, the symmetric comparisons (e.g. writer 2 against
writer 1, as opposed to writer 1 against writer 2) are afterward added to the list of
Bayes factor values, duplicating the opposite result.

3.5.2 Parameters and choices
The previous procedure can be modified in multiple ways. With respect to the
reference article (Bozza et al., 2008), we initially chose not to separate loops by
characters (e.g. sample only “a”s ). Also, the number of loops in the reference
and questioned sets, respectively kr and kq, is no longer fixed. Instead, a wide
range of choices for such values is explored, to approach forensic cases where the
questioned material varies in length, ranging from just a few words containing loops
to a full-length text.

One can also investigate whether the choice of using unit area loops has an impact
on the value of the evidence, by comparing the Bayes factors with and without
rescaling. Notice that this choice can always be made since it refers to the way
evidence is processed.

Finally, one can evaluate the impact on the Bayes factor of the choice of the
harmonic components forming the feature vectors. This choice entails a number
of effects. The usage of more harmonics (i.e. longer feature vectors, thus higher
dimensional features) should provide stronger evidence weights, as more information
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is used during evaluation. However, more background samples are required to keep
up with the increased number of parameters to fit. For instance, feature vectors of
length p require p free parameters for the within-writer mean vector θ, and p(p+ 1)/2
free parameters for the within-writer covariance matrix W . The between-writer
parameters µ, B, U , also increase in dimension accordingly.

All Bayes factor computations were performed by obtaining 3000 Gibbs samples,
and 1000 burn-in iterations.

3.5.3 Results
Due to the extremely large number of Bayes factor values computed in this section,
and the large amount of explored choices, we start first by showing Bayes factors
values aggregating all writer combinations together. We name this view writer-
independent, as it provides initial insight into the model performance and the dataset
characteristics, without focusing on the individual writer combinations.

This view is also useful to approach an M-open forensic casework, where none
of the writers belongs to this dataset, yet one supposes that their writing behavior
can be captured by this model. In this case, one is not able to refer to a specific
reference-questioned writer combination, but must accept the generic answer that
this view is providing.

We take the opportunity also to evaluate the impact of several choices on the
discriminative properties of our method, for instance:

1. rescaling character loops to have a unitary surface,
2. how many character loops are considered as reference and questioned sets,
3. consider only a subset of all available harmonics.

Next, the performance across the reference writers is detailed, in order to learn
if (and which) writer combinations provide contrasting evidence. We call this view
writer-dependent. This view is useful in cases where one of the writers (or somebody
whose writing is very close to his/her) belongs to this dataset, as it provides an answer
that accounts for his specific variability.

Writer-independent analysis

One can start by comparing the computed “distributions” of the Bayes factors,
aggregating on the true hypothesis, without distinguishing writer pairs. Instead,
we compare the effect of using loops with unit area against using loops with the
original scale, considering kr = kq = 20 questioned and reference loops. All harmonics
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(k = 1, 2, 3, 4) are considered along with a0 (corresponding to p = 9 variables).
Following the Validation section (Section 3.4.4), the lowest possible value for the
number of degrees of freedom of the inverse Wishart distribution is chosen, setting
ν = νmin = 27 (Equation (3.5)).

Figure 3.12 shows the comparison between these distributions using boxplots.
Statistics in tabular form are also available in Table 3.4. One first notices that
the range of the computed log-Bayes factors is extremely large, whose 5% and 95%
quantiles are approximately, respectively, 10−36 and 1016. This is expected since we
are dealing with multivariate data (p = 9), coming from continuous distributions with
support R9, with multiple observations per sample (kr = 20 for instance) (Taroni et
al., 2012).

Concerning the decision outputs, one notices that the model supports a true
hp during most replications (sensitivity of 97.76%). Under hd, however, the model
outputs a Bayes factor greater than 0 more than one trial over four (specificity of
67.29%). Another issue is that, under hd, the spread of the Bayes factor values is
much larger than those computed under hp. The key to solving these issues lies in
taking into account the variability between writers, as it will be shown later in this
Section.

Concerning the usage of loops with unitary surface, the normalization operation
has a negligible effect on the statistics, aggregated across all writers. In particular,
it tends to improve the less-than-optimal performance under hd. From now on, we
decide to keep using loops with unitary surface, as originally done in the reference
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Figure 3.12: Computed log-Bayes factors according to the true hy-
potheses and the usage of unitary area loops. The dashed line marks
BF = 1.
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Table 3.4: Comparisons between the direction of the Bayes factor and
the true hypothesis. In parentheses, the total number of trials.

True hypothesis BF > 1 BF < 1
hp 97.76% (8,212) 2.24% (188)
hd 32.71% (112,664) 67.29% (231,736)

article.
One may wish to investigate the impact of considering a different number of

reference and questioned samples, i.e. kr and kq respectively. To do so, the same
procedure is repeated first by considering the same number of reference and questioned
samples (i.e. kr = kq = krq), then by varying krq over a wide range. All loops have
unitary surface. Figure 3.13 shows again the Bayes factors distributions, according to
krq. One can appreciate that the weight of evidence increases towards the respective
direction as one takes into account more samples into the evaluative procedure. The
method increases also in discriminative capacity, as for large krq most of the log-Bayes
factors distributions stray away from the neutral value of 0. Notice again the much
larger spread under hd.

The last experiment performed within the writer-independent view is to form the
feature vectors by considering a subset of all available harmonic contributions. In
particular, one can explore the case where only one harmonic is considered, i.e. the
terms ak and bk for a given k. This produces feature vectors of length p = 2, and
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Figure 3.13: Computed log-Bayes factors according to the true hypothe-
ses and the number of reference and questioned samples.
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the degrees of freedom are adjusted accordingly to the minimum value (ν = 7). We
take h ranging from 1 to 4; the case k = 0 is always discarded since the code is not
currently able to consider unidimensional distributions. kr = kq = 30 samples for the
reference and questioned sets are considered, using only loops with unitary surface.
Figure 3.14 shows the Bayes factors distributions, distinguishing by the considered
harmonic indexes. The model using the full feature vector (using harmonics 1 to 4
plus a0) is also juxtaposed.

As expected, feature vectors of higher dimensionality are much more discrim-
inative than bivariate feature vectors, particularly under hp. Also, as previously
observed, writers tend to differentiate on h = 2, the harmonic that determine the
loop elongations. The Bayes factor partially reflects this behavior, showing slightly
more discriminative values for h = 2 as opposed to other harmonic contributions,
such as h = 1 and h = 3.

The analysis of the distributions under hd also shows that it is necessary to consider
sufficiently complex evidence (e.g. with higher dimensionality) in order to avoid a
high rate of false decisions. In fact, one can see that most of the single-harmonic
distributions at best overlap the neutral log-Bayes factor value of 0, and in some
cases the medians lie towards the “wrong” side. Under hp, however, this phenomenon
looks to be limited in magnitude.
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Figure 3.14: Computed log-Bayes factors according to the true hypothe-
ses, isolating a specific harmonic contribution. The case "all" marks the
results obtained with the complete feature vector. kr = kq = 30.
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Writer-dependent analysis

One can now “zoom” on the obtained results, taking into account the individual
writers that took place in the comparisons. For ease of visualization, we will consider
every combination of reference writer and true hypothesis, thus obtaining 2× 42 = 84
Bayes factors distributions. Considering the same parameters as Figure 3.12 (i.e. kr =
kq = 20, all available harmonics), and imposing the usage of loops with unitary
surface, one obtains Figure 3.15.

This view clears up some of the ambiguities shown in writer-independent analyses,
such as the large spread under hd and the median log-BF shifted towards 0. In
particular, one notices that most writers produce loops that favor hp when compared
against themselves. Writers 9, 20 and 22 are exceptions to this rule, as log-Bayes
factor values lower than 0 under hp were obtained in a significant number of trials.

hd

hp

6 7 9 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 38 47 54 55 57 65 66 68 70 75 76 81 82 83 85

-60

-40

-20

0

20

-60

-40

-20

0

20

Reference writer

lo
g 1

0 
B

F

Figure 3.15: Computed log-Bayes factors according to the true hy-
potheses and the reference writer. In the upper section hp is true; in
the bottom part, hd is true. Each boxplot is the distribution of the
log-Bayes factors obtained by comparing the reference writer on the
x-axis with the reference writer (in the top panel), or all other writers
(in the bottom panel).
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Under hd, instead, performance varies greatly according to the writer who is
providing the reference samples. Some of the writers, including (but not limited to)
13, 15, 33 and 85, write dissimilarly (according to the model) when compared to
any other writer in the dataset: this results in log-Bayes factors under hd that stray
away from 0. Most of the other writers, instead, contribute to the high spread of
the distributions: some of the reference-questioned writer pairings produce values
that are closer to 1 compared to other writer combinations. To discover which ones,
one should proceed with a deeper analysis, separately considering each writer-writer
pairing.

In this case, a graphical presentation of the results is particularly complicated
due to the large amount of distributions to analyze, each one with 100 replications of
the Bayes factor: with 42 writers, one has 422 = 1764 pairs. A simplified view of the
results is given in Figure 3.16, where only the median of these distributions is shown.
One can see that on the diagonal (i.e. when hp is true), the median Bayes factor
always points to hp. The converse is often true under hd, particularly with writers
whose writing is dissimilar than most of the other writers (e.g. writers 32 and 33),
and with selected pairs (e.g. writer 13 against 15). In cases where the Bayes factor
wrongly supports hp, the evidence is weaker compared to cases where hp is true.

These considerations confirm that loop shapes can potentially constitute an
interesting feature to discriminate writers, according to the examined dataset, as
previously shown by (Marquis et al., 2005) and later works. In particular, the
hypotheses (see Section 1.3) that writers possess a master pattern (the first level of
the hierarchical model) and exhibit some degree of natural variation around it (the
second level of the hierarchical model) seem to be well-captured by the specified model.
The computed Bayes factors serve as an additional confirmation of this fact for most
of the considered writers. However, it also results that, in some cases, some writer
pairs seem to contradict these hypotheses, by providing samples that are similar (as
per their master pattern) and within the range of natural variation of the reference
writer. When it happens, however, the strength of the (contradicting) evidence is
generally weaker than the situation where only one writer provides both the reference
and the questioned samples.

The contradicting evidence can, probably, be accounted for by considering more
details into the model, such as a third level, a character-level dependence or the
position of the letter inside the word (Bozza et al., 2008).
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3.6 Results on forged signatures
In this Section we analyze the loop shapes in the forged signatures dataset (Section
3.1.2).

3.6.1 Evaluative scenario
Let er be a set of character loops, parametrized by their Fourier coefficients, from the
reference writer. Let eq be a set of character loops, parametrized by their Fourier
coefficients, from the questioned writer (i.e. the writer of the questioned material,
who may or may not correspond to the reference writer).

The evaluative scenario described in Section 3.3.2 is adopted, in particular with
the same hypothesis pair:

H = hp : “the loops er and eq come from the same writer”,
H = hd : “the loops er and eq come from two different writers”.

As opposed to the simulated dataset and the natural handwriting situation, the
interpretation of the evaluative scenario is delicate. In particular, we assume that
there exists a relevant population, i.e. there exists a set of writers that produce
character loops using the same “mechanism” followed by the reference writer. One
possible way of how this could happen is to consider the case where a set of writers,
the reference population, attempt to reproduce the reference signature as if it were
their own. Thus, the reference population is constituted by a set of forgers performing
freehand simulations (see Section 1.3.1) of the victim’s signature. Notice that, by
doing so, we disregard the differences between handwriting (where writers follow
their own master pattern) and signatures (where writers try to imitate others’ master
patterns). Thus, the applicability of the model itself may also be discussed: this is
detailed in Section 3.7.1.

Typically, as the size of the relevant population is usually very small (corresponding
to the number of alleged forgers), the scenario simulation procedure (Section 2.5.5)
is not directly applicable. As the Bayesian model for character loops (Section 3.3.1)
requires some prior knowledge on the model parameters (in particular writer’s inter-
variability parameters µ, B, U and ν), the additional samples provided by the various
forgers were used as background observations.

From this point onwards, the procedure is identical to the one followed in the
natural handwriting situation.

In this case, the total number of writers in the dataset is 7. Every possible pairing
between a reference and a questioned writer is explored. Once the pair is chosen, the
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procedure is repeated G = 100 times, to account for the writer’s intra-variability. Each
time new er, eq and eb are sampled, re-eliciting the priors with the new background
dataset. In the end, since the dataset contains 7 different writers, 100(

(
7
2

)
+ 7) = 2800

Bayes factor values are computed. To decrease the computational cost, the symmetric
comparisons (e.g. writer 2 against writer 1, as opposed to writer 1 against writer 2)
are afterward added to the list of Bayes factor values, duplicating the opposite result.

3.6.2 Parameters and choices
In the light of the results on the natural handwriting dataset, loops are always
normalized to have unitary surface. Following the Validation section (Section 3.4.4),
the lowest possible value for the number of degrees of freedom of the inverse Wishart
distribution is chosen, depending on the number of considered harmonic contributions.

The number of loops in the reference and questioned sets, respectively kr and kq,
is no longer fixed.

The number of harmonic contributions in the feature vector is allowed to vary,
from the full vector (considering harmonic terms with k = 1, 2, 3, 4 plus a0) to single
harmonic contributions (where k ∈ {1, 2, 3, 4}). The length of the feature vector p
ranges from p = 2 (when one harmonic contribution is considered) to p = 9 (when
one considers 4 harmonic contributions along with a0).

The settings for the Gibbs sampler were unchanged with respect to the natural
handwriting case: all Bayes factor computations were performed by obtaining 3000
Gibbs samples, and 1000 burn-in iterations.

3.6.3 Operative limitations
Let us indicate with m the number of writers in the dataset. It is easy to see that
m and p, the length of the feature vector, are related. This constitutes a significant
obstacle to the procedure described above when one wants to obtain an estimate
of B, the between-writer covariance matrix, by using the sample covariance matrix
B̂ (its maximum likelihood estimator). It can be proven that B̂ is not invertible if
m ≤ p (Johnson & Wichern, 2007, sec. 3.4).

This situation is encountered when considering all harmonic contributions together
(p = 9) with the m = 7 writers in the dataset. As the Gibbs sampler iterations
require the calculation of the inverse of B̂, the calculation of any Bayes factor was
not possible.

There are several ways to circumvent this problem, including, but not limited to:

1. recruit more forgers in order to increase m,
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2. use another estimator for B from the background observations, such as a
regularized or shrinkage estimator (Ayyıldız et al., 2012; Bai & Shi, 2011),

3. change the elicitation method for B, for example by considering information
coming from a related study, or

4. consider less Fourier coefficients in order to decrease p.

Single harmonic contributions (i.e. p = 2) did not pose any problem during
the estimation of the Bayes factor. As a consequence, all the following results are
presented by considering all harmonics separately (k ∈ {1, 2, 3, 4}). The problem of
achieving a combined measure of evidence is later discussed in Section 3.7.

3.6.4 Results
As in the natural handwriting dataset, one can approach the problem first in the
writer-independent view, by distinguishing upon which hypothesis is true. Also, the
influence of the choice of kr and kq is evaluated.

Afterward, the performance across the reference writers is detailed in the writer-
dependent view, in order to learn if (and which) writer combinations provide contrast-
ing evidence. Following the natural handwriting procedure, this also would include
comparing the handwriting coming from two different forgers.

In the context of forged handwriting, one could evaluate the capacity of each
person of reproducing the character loops in a consistent way. Replications of a single
person’s handwriting should not stray far from the victim’s master pattern, while
replications coming from different persons could be different. Notice, however, that
the forgers attempt to reproduce a master pattern that might be different from their
own. This could lead to inconsistencies in the reproduction, a variability that is much
larger than the true writer’s, or even completely disregard the fidelity of replication of
shape. As a consequence, one should not be surprised by any contradictory results in
terms of the value of the evidence, rather interpret them in the light of this scenario.
An alternative approach to the questioned signature problem is discussed in Section
3.7.1.

Victim-based view

A sub-problem of interest when dealing with forged handwriting consists in considering
the legitimate owner of the signature as the reference writer, and one person among
the forgers as the questioned writer. This is the victim-based view.

In this way, one could evaluate the skill of each forger in reproducing the victim’s
handwriting characteristics. Particularly, character loops coming from a skillful forger
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(hd) would be close to the victim’s master pattern and within his range of natural
variation, incorrectly supporting hp.

Notice also that if the victim’s handwriting is inconsistent (e.g. the victim’s writing
habits evolved significantly over the time of collection of the reference material, so to
disrupt the victim’s master pattern), it would be possible to obtain Bayes factor values
that incorrectly support hd, as the compared character loops coming from the victim
would be “too different” from each other. For instance, such inconsistency could be
revealed by comparing character loops written at very distant times. Notice that
this phenomenon cannot be directly revealed in this Thesis, as the ers are randomly
sampled from the available reference material. However, the resulting log-Bayes
factors distributions under hp would shift towards 0 as the number of compared loops
increases, since the distributions would include samples taken from periods where the
victim’s habits were different.

Writer-independent analysis

As opposed to the natural handwriting case, the reduced number of writers in the
dataset forces us to compute the Bayes factors for each harmonic contribution. It is
nevertheless interesting to compare these resulting values with the natural handwriting
results.

To this purpose, one might want to start by evaluating the sensitivity of the
Bayes factors to the number of considered loops, kr and kq. Figure 3.17 shows that
the second harmonic is more discriminating, as already previously noted. Results
under hp are still in accordance with the postulated hypothesis, i.e. character loops
drawn by the same person are more similar than character loops drawn by different
persons. However, the general performance of the results under hd is worse than
the one obtained in the natural handwriting case (compare against Figure 3.13 and
Figure 3.14). In particular, the median of many of the log-Bayes factors distributions
is greater than the neutral value of 0, pointing thus towards the wrong hypothesis.
This anomaly persists even if the number of considered samples kr and kq increases
up to 50. It can also be shown that the usage of loops on the original scale does not
offer any improvement.

As previously reported in Section 3.6.4, one might now consider the victim-based
view, i.e. the distributions obtained when the reference writer is the legitimate owner
of the signature. The distributions, represented in Figure 3.18, show that the victim’s
signature is consistent according to the model, resulting in log-Bayes factor values
greater than 0.

Under hd, a forger is providing the questioned character loops. The distributions
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Figure 3.17: Computed log-Bayes factors according to the true hypothe-
ses, the number of reference and questioned samples kr and kq, and the
considered harmonic contribution k. All possible writer pairings are
considered.

at a moderate amount of recovered material (e.g. kq ≤ 20) support hp most of the
times. This shows that, in general, it is not possible to formulate a judgment of
forgery using 20 reference and questioned loops under this specific statistical model.
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Figure 3.18: Computed log-Bayes factors according to the true hypothe-
ses, the number of reference and questioned samples kr and kq, and the
considered harmonic contribution k. The reference writer is the victim.

Writer-dependent analysis

Similarly to the writer-dependent analysis in the natural handwriting case (Section
3.5.3), one can detail the previous analysis by distinguishing across the reference writer
and the individual harmonic contributions. For ease of visualization, we will consider
every combination of reference writer, harmonic contribution and true hypothesis,
thus obtaining 2× 4× 7 = 56 Bayes factors distributions. Fixing kr = kq = 20, one
obtains the Bayes factors distributions shown in Figure 3.19.

The method performs as expected under hp, as most of the Bayes factors distri-
butions support hp most of the time, and across most harmonic coefficients. This
shows that every writer is consistent in his reproduction of the character loop shape.
It can be noted that the writer “F3” has a rather large spread of the Bayes factor
values concerning the first harmonic contribution: also, approximately one-fourth of
the times a log-Bayes factor lower than 0 was obtained, wrongly supporting hd. This
means that the writer was less able to reproduce the ovate contribution to the shape
in a consistent way.

Under hd, however, most distributions have a median value of the log-Bayes factor
that is greater than 0, supporting the wrong hypothesis. As happened in the natural
handwriting case, most distributions have a large spread, calling for more detailed
analyses across harmonics and writer pairings.

The victim-based view is forensically interesting, as it allows us to concretely
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Figure 3.19: Computed log-Bayes factors according to the true hypothe-
ses and the reference writer. All possible writer pairings are considered.
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Figure 3.20: Computed log-Bayes factors according to the true hypothe-
ses and the writer of the questioned material. The reference writer is
the victim.
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evaluate the skill of each forger according to this model. By considering the legitimate
owner of the signature as the reference writer, one obtains the distributions shown in
Figure 3.20. As previously said, a skillful forger would successfully be able to reproduce
the victim’s habits, expecting a log-Bayes factor close to 0. This is particularly true
for forgers “F5” and “F6”, who were able to achieve the same order of magnitude
of the log-Bayes factor as the reference writer across all shape contributions. Other
forgers are less successful in their task, in particular forger “F1” who was not able to
properly imitate the loop shapes according to the model.

The writer’s consistency can be also evaluated by allowing the number of considered
samples to vary, i.e. kr and kq, over the set {10, 20, 50}. The distributions, represented
in Figure 3.21, confirm firstly that the author is consistent in reproducing his loop
shape (under hp), as the Bayes factor does not decrease if the amount of considered
material increases. Secondly, the victim-based view confirms that there are less skilled
forgers, particularly “F1”. Even at moderate sample sizes (e.g. 20 loops), the model
is discriminating their replications from the ones coming from the victim. Thirdly,
as the sample size increases, most forgers tend to show some inconsistencies in their
reproductions, which contribute to decreasing the Bayes factor across all harmonic
contributions. Even a moderately skilled forger, such as “F6”, fails to reproduce some
aspects of the shape at high sample sizes, for instance the triangularity (the second
harmonic). Finally, the victim-based view confirms that forger “F5” is particularly
skilled, reaching the same performance as the reference writer under hp across all
shape contributions. This achievement is also stable at all sample sizes, showing that
“F5” has been able to achieve a consistent reproduction of the character loops.

3.7 Extensions
In the case of forged signatures, all harmonics were treated separately, as it was not
possible to compute the Bayes factor using all harmonic coefficients at the same time
(see Section 3.6.3).

It is a well-known fact that, given two independent evidence items e1 and e2, the
Bayes factor obtained by jointly considering e1 and e2 is the product of two Bayes
factors, one obtained when considering e1, and the other obtained when considering
e2 respectively (Taroni, Biedermann, et al., 2014, ch. 8).

Let us fix a set of reference and questioned character loops, er and eq respectively.
Let us indicate with BFk the Bayes factor calculated using the harmonic coefficients of
the k-th harmonic. By extension, BF0 is the Bayes factor calculated considering solely
a0. Let us also indicate with BFfull the Bayes factor calculated using all available
harmonic coefficients: {a0} ∪ {ak, bk}4

k=1. By supposing that harmonic contributions
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Figure 3.21: Computed log-Bayes factors according to the questioned
writer (a column), the harmonic contribution (a row) and number of
considered samples kr = kq (the x-axis). The reference writer is the
victim. In the first column, hp is true. In the other columns, hd is true.
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are independent, one could exploit the above fact to compute BFfull from the set of
BFk. In that case, one should have that

log BFfull =
4∑

k=0
log BFk . (3.7)

The independence assumption, however, needs to be verified using the full model.
For instance, if harmonic contributions are pairwise-independent, all within-writer
covariance matrices Wi can be partitioned to have blocks of 0s on rows that belong
to different harmonic contributions. Notice that Wi are latent, so an estimator is
needed. A similar reasoning should apply for all other covariance matrices such as B,
and the inverted Wishart scale matrix U .

An alternative approach can be attempted when one is able to compute the Bayes
factors using the full vector, for example in the natural handwriting case. Then, it is
possible to compute and verify Equation (3.7).

As an example, Figure 3.22 shows a graphical representation of Equation (3.7) with
the natural handwriting dataset, under the writer-independent view. In particular,
we first compute each BFk for all k, then represent the partial sums in Equation
(3.7) for k from 1 to 4, until all harmonics are considered. The value of BFfull is also
juxtaposed for comparison. Notice that it was not possible to compute BF0 since our
model implementation does not allow unidimensional vectors (i.e. those involving
only a0).

If all harmonic contributes are independent, the Bayes factor obtained by summing
all individual contributes should be equal to the Bayes factor calculated by considering
the full vector from the beginning. In the natural handwriting case, the Bayes factors
distributions overlap under hd, but not under hp. This means that the harmonics are
not independent under hp: the equality in Equation (3.7) does not hold.

If harmonic independence holds, one could exploit Equation (3.7) to calculate
the left-hand side (i.e. BFfull) by computing only the right-hand side (i.e. BFk for
every k). This could reveal useful in cases when one cannot compute the left-hand
side, for instance when the number of writers in the dataset is too small (see Section
3.6.3). However, the graphical procedure shown in this Section cannot substitute
a proper evaluation of the independence hypothesis, which should call for stronger
assumptions involving the model structure and expert knowledge.
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Figure 3.22: Computed log-Bayes factors according to the true hypothe-
ses, obtained by calculating the Bayes factors on single harmonics, then
by cumulating across k according to the x-axis labels. The case "all"
marks the results obtained with the complete feature vector (including
the contribution of k = 0).

3.7.1 Alternative models for questioned signatures
As previously shown, natural handwriting and questioned signatures are intrinsically
different situations, therefore should require different statistical approaches. Nat-
ural handwriting assumes that writers follow their own master pattern, neglecting
psychological factors and disguise attempts. From the statistical point of view, it
is reasonable to assume that under hd (samples coming from different writers), the
writers are independent, as their master patterns are not related. However, signature
forgers attempt to reproduce the victim’s master pattern, with varying degrees of
success depending on the forger’s skill, the amount of reference material available
to the forgers, and the victim’s own variability. In other terms, since forgers usually
have some knowledge of the victim’s signature, it is therefore unreasonable to assume
that the samples are independent from the victim’s under hd.

3.7.2 Non-independence
The effect of this assumption on the computed Bayes factor can be briefly investigated.
As known, the generic Bayes factor for an evaluative scenario (Equation (2.6)) can
be written as follows:

BF = Pr(er, eq | hp)
Pr(er, eq | hd) , (3.8)
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where Pr(·) indicates a probability density function or a marginal likelihood
as in the hierarchical model (Equation (2.10)). By assuming that the sources are
independent under hd and applying the methods shown in this Chapter, one computes
the following Bayes factor (indicated with BF0):

BF0 := Pr(er, eq | hp)
Pr(er | hd) Pr(eq | hd) . (3.9)

To quantify the degree of dependence between the items er and eq, it is helpful to
recur to the conflict measure introduced by Chamberlain et al. (2013):

Definition 3.2 (Conflict measure)
The conflict C between items of evidence er and eq under the hypothesis hd is:

C = conf(er, eq | hd) := log Pr(er | hd) Pr(eq | hd)
Pr(er, eq | hd)

The conflict C has the following properties:

• C = C(er, eq) ∈ R: C is itself a random variable, and depends on the observed
evidence.

• C > 0 implies conflict: evidence is less likely to be jointly seen,

– Pr(er, eq | hd) < Pr(er | hd) Pr(eq | hd),
– Pr(eq | hd, er) < Pr(eq | hd),
– C → +∞ the more er and eq are incompatible.

• C < 0 implies synergy: evidence is more likely to be jointly seen,

– Pr(er, eq | hd) > Pr(er | hd) Pr(eq | hd),
– Pr(eq | hd, er) > Pr(eq | hd),
– C → −∞ the more er and eq are dependent.

• C = 0 implies the independence,

– Pr(er, eq | hd) = Pr(er | hd) Pr(eq | hd),
– Pr(eq | hd, er) = Pr(eq | hd).

Finally, the generic Bayes factor in Equation (3.8) can be rewritten as follows:

BF = exp(C) Pr(er, eq | hp)
Pr(er | hd) Pr(eq | hd) = exp(C) BF0 . (3.10)
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Considering the situation of interest where er and eq represent handwritten
signatures, it is reasonable to assume that some information is transferred between the
random variables, for example the generic aspect of the signature. As a consequence,
it is likely that C < 0 (synergy), giving BF < BF0.

Under hp one has that BF > 1, so the independence assumption is less conservative
and over-evaluates the evidence (BF0 is stronger than BF). However, this line of
reasoning does not allow to conclude anything on the properties of BF0 under hd.

Even though the specific value of C is not easy to determine, we postulate that
C becomes larger (in absolute value) the more information can be extracted by the
questioned writer from the reference signatures. For instance if the forger has access
to good quality reference material, C should be much lower than if the forger were
only aware of the victim’s name. In the latter case it would be safe to assume the
independence between sources, thus BF = BF0.

For the same principle, if evidence is constituted by character traits that are less
apparent to the untrained eye, C should be closer to 0 than the more informative
situation when the victim’s signature is constituted by a single letter with a closed
loop: in the latter case, the forger would probably focus on imitating the loop shapes,
thereby linking er and eq.

3.7.3 Literature
Linden et al. (2021) recently raised the same considerations and developed an
alternative approach to the questioned signature problem. In particular, they proposed
to collect two kinds of background signature datasets. The first is constituted by the
study participants’ genuine signatures, each one replicated multiple times: this is
the genuine signature dataset. For the second kind, one of the participants is chosen
as the “victim”. Forgers were recruited, and were instructed to produce a set of
replications of the victim’s signature: this is the forged signature dataset. For the
sake of completeness of the article, three victims were chosen in order to evaluate the
proposed method on varying types of signatures.

As opposed to our approach (Section 3.6.1), these datasets are used separately to
elicit the background source parameters θi and Wi as well as the hyperparameters.
Under hp, the priors are updated using the genuine dataset, while under hd the forged
signature dataset is used instead.

A second major difference between the two approaches is that Linden et al. (2021)
avoid modeling the between-writer variability (B in our Equation (3.3)), putting
instead a Normal-Wishart prior on the within-writer parameter vector (θi,Wi). This
choice produces a Bayesian model that is conjugated, and the Bayes factor is available
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in closed form.
The advantages of their proposed approach are multiple: the calculation of the

Bayes factor value is much faster, and the model is far simpler to implement and
verify. However, it is necessary to collect two datasets instead of one, and their
approach could not be valid in cases where the sources are independent under hd.

Concerning the performance of decision a procedure that chooses hp if BF > 1 and
hd if BF < 1, our approach appears to perform better with two victims’ signatures
out of three, irrespective of the available number of reference signatures kr. Notice
also that the articles are not directly comparable, as our dataset is constituted by
6 forgers, while they recruited at least 16 participants. Also, the feature vectors
and operative conditions are very different: this Chapter considers off-line signatures
described with a 9-dimensional vector based on the shape of closed character loops,
while Linden et al. (2021) examined on-line signatures represented with a bivariate
descriptor that exploits simple dynamical properties of the signature (including speed,
duration, pressure and pen lift timings).

3.8 Discussion
The significant computational improvements over the original model, introduced by
Bozza et al. (2008) in the non-constant within-writer covariance form, allowed us
to apply their technique to cases that were not considered by the original authors,
such as questioned signatures. Despite the relative simplicity of the procedure, the
method offers a large number of choices that need to be made, such as the loop area
normalization or the methods for elicitation of priors. It has been shown that their
impact strongly depends on the specific case. The increased computational speed of
our implementation allows scientists to conveniently evaluate these choices, comparing
the obtained Bayes factors distributions before and after any choice is made.

Concerning the results from a forensic perspective, we confirm that the proposed
method is capable of evaluating handwritten evidence showing closed character
loops. If evidence consists of naturally handwritten material, the method shows a
performance that is comparable to results in past literature, allowing for the objective
evaluation of characteristics such as writers’ consistency and adherence to their master
pattern. If evidence involves questioned signatures, the technique allows scientists to
concretely evaluate the forgers’ skill in replicating the victim’s character loop shapes.

It is nevertheless important to note that the method may appear to show several
limitations and requirements. In this Chapter we have shown how an interested
user can possibly deal with some of them. For instance, the number of degrees of
freedom of the inverse Wishart distribution, ν, has to be set as low as possible, to
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avoid obtaining contradicting Bayes factor values.
Some limitations, such as the requirement of a background dataset, relate rather

to the general Bayesian setting of the evaluative scenario (“Is it reasonable to assume
that a reference population exists when considering questioned signatures?”).

Other limitations are intrinsic to any procedure that exploits any statistical model,
such as the appropriateness of the multivariate Gaussian model to the considered
evidence. Typically, this assumption must be motivated by a statistical test, a
graphical method, or the existence of a physical law. In the FHE context, and
given the high-dimensionality of the treated data, the verification of this assumption
is a challenging task. Future works could address and weaken the assumption on
the structure of the model, to introduce distributions that are data-driven, ranging
from the usage of kernel density estimators (Aitken & Lucy, 2004) to Bayesian
nonparametric techniques (Ghosh & Ramamoorthi, 2003).

It is promising to note that this model can easily extend to other types of evidence,
as the multivariate Normal distribution is often used to describe correlated variables
that cluster around a particular point in space (the mean).





Chapter 4

Quantifying simple signatures

This Chapter is dedicated to the analysis of handwritten evidence that does not
contain any character loop. In particular, this Chapter is inspired by real casework,
where an expert was faced with a set of questioned signatures that did not appear to
show any strongly individualizing features. The specific casework data composes the
dataset analyzed in this Chapter.

A descriptor is introduced, tuned to the specific case at hand. Following the
generic Bayesian framework of Chapters 2 and 3, a statistical model is introduced for
this specific descriptor.

The model sensitivity, behavior and specificities are first verified on fake (generated)
data, then the actual casework dataset is approached. Since this specific case does
not provide any background dataset, as opposed to Chapter 3, a novel data-driven
mathematical procedure is introduced to elicit the hyperparameters.

The Chapter ends by a discussion of the generalizability of this descriptor to
other kinds of data, such as repeated measurements of the composition of a certain
substance. This generalization will be further exploited in Chapter 5, to analyze
bacterial populations in human saliva in conjunction with handwritten characters.
The Chapter will focus on the joint evaluation of two sets of evidence.

4.1 The dataset
The dataset comprises 24 signatures of a single person, whose authenticity was
disputed. Accordingly, 44 reference signatures were collected, appearing in the same
type of document as the questioned material. Due to the confidentiality agreement,
more details on their origin cannot be disclosed. In total, the dataset comprises 68
signatures.
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An element of novelty characterizing this specific case lies in the flowing nature
of all signatures in the dataset. A questioned specimen is shown in Figure 4.1. No
letters can be identified, all signatures (reference and questioned) are constituted
by a single pen stroke, and a paraph at the end. One of the dominant features of
these signatures is the presence of a number of “peaks” (and corresponding “valleys”),
whose numbers and shapes may vary across the seized material. For instance, the
signature shown in Figure 4.1 has four peaks and four valleys. The stroke can be
self-intersecting, eventually drawing small loops at some of the upper peaks. The pen
motion is always continuous and smooth, except for the peaks.

The FHE postulated that the peaks can be exploited for the purpose of conducting
a forensic handwriting examination under the Bayesian framework introduced in
Chapter 2. The challenges are manifold. Firstly, one needs to translate these features
to numerical vectors, for quantitative comparison. Secondly, one needs a suitable
statistical model to conduct this analysis. As it has already been seen in Chapter 3,
this model must deliver a statistical description of the evidence that is defensible, for
instance by appealing to a physical law or to expert knowledge. Lastly, the model
must allow for a feasible computation of the Bayes factor.

Another feature that could be exploited is the position of the small paraph at
the end of the signature. It was not considered in this analysis, as it belongs to a
different stroke than the main one, and it has a less pronounced appearance than the
signature peaks.

4.2 Features
To begin the extraction of the peak-based features, all signatures were digitalized at
600 dpi, then converted to a black and white uncompressed format.
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Figure 4.1: A questioned signature.
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The main stroke was manually traced with a piecewise spline curve, then
parametrized with the curve representation γ(t):

γ : t 7→ (x(t), y(t)) t ∈ [0, 1] , (4.1)

where t is the “time” coordinate, running from the starting point (t = 0) to the end
(t = 1).

Notice that the term “time” is conventionally used to describe curve representa-
tions, even if it bears no relation with the concept of physical time. In our setting,
the coordinate t simply indicates one mapping from [0, 1] to the position of the pen
on the paper.

In principle, it is possible to parametrize a stroke with a parametric curve γ(t)
such that the pen stops for a certain amount of time, yet the same stroke is traced
as t spans the interval [0, 1]. Since the Chapter concerns off-line signatures, those
possibilities are excluded to avoid introducing ambiguities in the definitions.

4.2.1 Curvature representation
One wishes to locate the positions of the “peaks” and the “valleys” along the signature
stroke. A useful tool is the (signed) curvature:

Definition 4.1 (Curvature)
Given a curve γ(t) = (x(t), y(t)), the signed curvature κ(t) ∈ R is:

κ(t) := x′(t) y′′(t)− y′(t) x′′(t)
(x′(t)2 + y′(t)2)

3
2

,

where x′(t) = dx/ dt and x′′(t) = d2x/ dt2.
κ(t) has a precise geometrical definition: the quantity R(t) = 1/κ(t) is the (signed)

radius of the osculating circle at time t. Intuitively, the circle has the smallest radius
when the stroke abruptly changes direction. The objective definition of “peak” and
“valley” used in the rest of the Chapter involves R(t) through its reciprocal κ(t):

Definition 4.2 (Peak and valley)
When |κ(t)| has a local maximum in t ∈ (0, 1), t is either a peak or a valley.

As κ(t) is signed, one has κ(t) > 0 (equivalently, R(t) > 0) if the tangent vector
to the curve rotates counterclockwise when t increases.
In stroke terms (for non-intersecting strokes going from the left to the right), one has
a peak if κ(t) < 0, or a valley if κ(t) > 0. Moreover, the behavior of R(t) near any
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minimum point enables us to characterize peaks and valleys according to their shape.
The definition of the curvature is graphically clarified in Figure 4.2.

If κ(t) = 0, the stroke is straight at time t, and a corresponding definition could
be given to identify these points. However, experiments show that it is difficult to
precisely locate the straight points, as they are sensitive to small perturbations of the
curve (such as those stemming from the spline fitting procedure). Also, the peaks and
valley appear to be more prominent to the eye rather than the location of straight
sections. For these reasons, we will only consider peaks and valleys in this Chapter.

For technical reasons that will be explained in the next Section, it is forbidden
to have peaks and valleys at the beginning (t = 0) or at the end (t = 1) of the
stroke. Intuitively, the curvature is not defined at the stroke endpoints. This is not a
significant limitation, as all signature peaks and valleys of interest occur inside the
stroke.

Curvature maximization

According to the definition of peak and valley (Definition 4.2), we are interested in
locating the points t where |κ(t)| reaches a local maximum. The definition of κ(t)
requires the computation of the first and second derivatives of the quantities x(t) and

1

2

3

(x(t), y(t))

Figure 4.2: A 2D curve (black, thick) with three example points, along
with the tangent vectors (i.e. (x′(t), y′(t))), the tangent circles (gray),
and the radiuses of those circles (gray, dotted). The curvature is the
reciprocal of their lengths. It is evident how broader curves imply a
longer radius of curvature, thus a smaller curvature κ(t).
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y(t).
x(t) and y(t) are obtained by fitting a piecewise spline curve over a relatively small

number of pixels. This process might introduce spurious turns at the interconnections
between these splines. Another source of error might be the slight inconsistencies
brought in by the manual process of spline fitting, for instance if the source image
provides a very low number of data points. For convenience, we refer to these sets of
perturbations of x(t) and y(t) with the term “noise”.

This noise is almost invisible to the naked eye, but its presence is greatly amplified
in a naively computed κ(t), severely affecting the identification process of peaks and
valleys.

A very useful technique to compute κ(t) whilst being robust to the noise involves
a Gaussian smoothing of x(t) and y(t) prior to the curvature computation (Lowe,
1989):

x̃(t) := (Gσ ⊛ x) (t)
ỹ(t) := (Gσ ⊛ y) (t) ,

where ⊛ is the convolution operator:

(f ⊛ g) (t) :=
∫ ∞

−∞
f(τ)g(t− τ) dτ ,

and Gσ is the probability density function of a Gaussian random variable with 0
mean and standard deviation σ.

Then, one computes κ(t) using the smoothed x̃(t) and ỹ(t). It can be shown that
the local minimum and maximum points of the smoothed κ(t) match those in the
original κ(t). In stroke terms, peaks (valleys) appearing in the smoothed stroke will
also appear in the original stroke, and at the same “time” value t (provided that σ is
small). The converse is not true, as the spurious peaks (valleys) are removed in the
smoothed stroke.

The smoothing of (x(t), y(t)), however, alters slightly the shape of the curve as
well as the values for κ(t) and R(t). For instance, if a curve γ : t 7→ (x(t), y(t)) is a
circle, the smoothed curve γ̃ : t 7→ (x̃(t), ỹ(t)) is a circle with a smaller radius. The
distortion effect can be corrected, but the locations of the minima and maxima are
not affected (Lowe, 1989). Figure 4.3 shows a plane curve along with its smoothed
version: the distortion effect “shrinks” the curve towards the centers of the turns,
but the maximal (minimal) curvature points are reached at the same “time” as the
original curve.

The standard deviation of the Gaussian filter σ is chosen by a grid-search and a
visual comparison between the original stroke and its smoothed version, seeking to
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Figure 4.3: A 2D curve (in black) along with its smoothed versions (in
gray) for increasing values of the smoothing factor σ. It is appreciable
how the smoothing affects the shape of the signature, in particular by
reducing the total length.

identify the most prominent peaks and valleys. It can be shown that the procedure is
not particularly sensitive to the choice of σ, once all spurious peaks are removed.

Once κ(t) is computed, one can then easily proceed to find its local extrema points,
i.e. the positions of the peaks and valleys. The process, applied to the signature in
Figure 4.1, is represented in Figure 4.4.

Curvature absolute value

Although peaks and valleys can be precisely located with this method, Figure 4.4
also suggests that the absolute value of κ(t), mathematically related to the radius of
curvature, seems to be weakly correlated with the shape of the peak (or valley). In fact,
the curvature κ(t) does not correctly behave near turn points that become sharper
and sharper since the radius of curvature tends to 0, or, equivalently, |κ(t)| tends
to +∞. Rigorously, the curvature κ(t) is not defined in corners, as the coordinate
functions x(t) and y(t) are not differentiable.

Operatively, those functions are approximated by discretizing over an equispaced
grid of “time” points (e.g. (xi, yi) = (x(ti), y(ti)) for i = 1, . . . , n), so that the
derivatives of x(t) and y(t) can be numerically computed. However, this approximation
greatly amplifies the noise contributions introduced by the spline fitting process. If
the approximation improves (e.g. the number of points n is increased), it is expected
that κ(t) explodes in sharp turns.
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Figure 4.4: (a) The main stroke of the questioned signature of Figure
4.1; (b) Values of the curvature as a function of “time” t. 9 local maxima
and minima are highlighted, corresponding to the peaks and valleys.

Notice that the locations of the peaks and valleys (the quantities of interest in this
Section) are unaffected, as the curvature κ(t) is well-defined outside of the critical
points.

4.2.2 Arc-length parametrization
It is possible to compute the stroke length L(t) from the start to time t by integration:

L(t) =
∫ t

0

√
x′(s)2 + y′(s)2 ds . (4.2)

L(1), thus, is the total length of the main stroke.
Note that to compute L(t) it is required to use the unsmoothed x(t) and y(t),

since the total length of the curve may significantly change, as already shown in
Figure 4.3. Figure 4.5 illustrates how L(t) is measured on a signature, from the
beginning to a generic point at “time” t̃ = 0.25.

4.2.3 Peak and valley dataset
One non-trivial feature that can be compared between signatures in the dataset is
the rectified distance between the start of the main stroke, and the point where a
specific peak or a valley is located. Without loss of generality, such points will be
named points of interest.
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Figure 4.5: How the signature length L(t̃) is measured by tracing the
curve from the start (t = 0) to the point t̃ = 0.25.

To be able to compare these quantities across signatures with varying lengths,
these distances need to be normalized by the total length of the signature. The
previous sections introduced the tools to accomplish this procedure.

Let us consider the main stroke of the i-th signature, with total length Li (given
by Equation (4.2)).

Let t0 be the “time” coordinate of a point of interest, for instance where |κ(t0)|
reaches a local maximum. According to Definition 4.2, t0 is either a peak or a valley.
The i-th signature will have ni of such points: let us tik indicate the k-th point, with
k ∈ {1, . . . , ni}.

From the Equation (4.2), the distance from the beginning of the stroke to tik is
lik = L(tik).

One may want to compare lik across all signatures in the dataset. As signatures
will have different total lengths, we define the normalized distance of the k-th point
in the i-th signature:

sik = lik
Li

∈ (0, 1) .

The i-th signature will be described and quantified by the set of features {sik}ni

k=1.
Notice that the length of this vector varies with i (the signature).
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4.2.4 Peak and valley count
The number of detected peaks and valleys may alone be considered as a feature. In
Figure 4.6 we show how their count varies in the dataset. In particular, the signatures
in the reference dataset appear to have a greater number of peaks and valleys, on
average. Also, both distributions appear to be bimodal.

To evaluate this information according to the Bayesian framework (Chapter 2), one
would require to establish two statistical models for the evidence, one per hypothesis.
As previously said, these models must be defensible, for instance by appealing to
a physical law or to expert knowledge. In this case, the bar plots of Figure 4.6 do
not suggest any known statistical distribution for the number of peaks and valleys,
preventing us to define the Bayes factor.

4.2.5 Delay parametrization
Let us consider the i-th signature, with ni peaks and valleys. The k-th point of
interest of the i-th signature occurs at position sik, where k ∈ {1, . . . , ni}. It holds
that sik ∈ (0, 1), but it is difficult to describe the relations between two points of the
same curve, i.e. sik and another sij.

Instead of measuring its position from the beginning of the stroke, we measure
the rectified distance from the previous point. In other terms, the (distance) delay
between one point of interest, and the previous. We also add one entry to the vector,
the distance from the last point to the end.

The new measure will be indicated as tik. It can be defined as follows:
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Figure 4.6: Distributions of the number of peaks and valleys in the
dataset. On the x-axis, the number of peaks and valleys of a signature.
On the y-axis, the proportion of signatures with a given number of
peaks and valleys, respective to the source.
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tik =


sik if k = 1
sik − si,k−1 if k = 2, . . . , ni

1− si,ni
if k = ni + 1

(4.3)

Notice that now k spans from 1 to ni + 1 (although the last term is determined
by the previous ni terms).
The i-th signature is described by the feature vector (tik)ni+1

k=1 .
The following properties hold:

1. tik ∈ (0, 1) ∀i, ∀k

2. ∑ni+1
k=1 tik = 1 ∀i, ∀k

The set of (ni + 1)-dimensional vectors satisfying these properties is called a (ni)-
simplex. As their entries must sum to 1 (property 2), the (ni)-simplex is contained
into Rni .

Graphical display

The previous Figure 4.5 can be modified to illustrate the current geometric
parametrization. This is shown in Figure 4.7: only the first two points of interest are
shown. Notice also that, compared to the previous Figure, all measurements are now
relative to the length of the full stroke.
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Figure 4.7: The delay parametrization applied to the Figure 4.5.
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4.3 Statistical model
In this section we introduce a model for the peak and valley positions starting from
the peak and valley dataset (Section 4.2.3). It is first necessary to introduce some
notation and definitions.

4.3.1 The Dirichlet distribution
First, the peak and valley positions are represented using the delay parametrization
(Section 4.2.5): tik is the normalized distance in the i-th signature between the
k-th point of interest and the previous one. This characterization has multiple
consequences:

1. tik indicates how much “space” is taken up by the k-component compared to
all ni + 1 entries.

2. (tik)ni+1
k=1 is a partitioning of the segment (0, 1) into ni + 1 non-overlapping

intervals.
3. (tik)ni+1

k=1 are probabilities: tik is the probability that a discrete random variable
with ni + 1 possible values assumes the k-th value.

If the signature had only one peak (ni = 1), the resulting feature vector would
be entirely characterized by the single parameter (ti1, ti2). A common distribution
that is often chosen to model random variables with the same constraints as ti1 is
the Beta distribution. Its two parameters allow for a wide range of shapes as well as
bimodality whilst being mathematically tractable.

The natural generalization of the Beta distribution to any number of points ni is
the Dirichlet distribution. Firstly, it reduces to the Beta distribution when ni = 1.
Secondly, its allows to model a wide range of distributions on the (ni)-simplex, from
the uniform one (where no tik has more weight than the other components) to ones
which are heavily concentrated (where one of the tik dominates the others). Lastly, it
is mathematically tractable for Bayesian purposes, as it is the conjugate prior of the
multinomial distribution (although this fact is not exploited in this Chapter).

The Dirichlet distribution is formally defined in Definition 4.3:

Definition 4.3 (Dirichlet distribution)
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Let α = (αk)n+1
k=1 ∈ Rn+1, with αk > 0. Let X = (Xk)n+1

k=1 be a random variable in
the n-simplex. X has the Dirichlet distribution (X ∼ Dir (α)) if it has density:

p(X = x) = 1
β(α)

n+1∏
k=1

xαk−1
k ,

where β(·) is the Beta function (Jackman, 2009).

It is now useful to introduce a few mathematical properties of the Dirichlet
distribution, as they will be exploited later within the casework model in Section
4.3.2.

Properties

The vector parameter α can be split in a scalar component α(0) > 0 (the concentra-
tion parameter) and a vector parameter ν = (νk)n+1

k=1 (the base measure):

α = α(0)ν ,

where α(0) = ∑n+1
k=1 αk. As ν = α

α(0) , ν belongs to the same n-simplex as X.
Two useful properties are:

E[Xj] = αj∑n+1
k=1 αk

= νj

Var[Xj] = 1
α(0) + 1νj(1− νj) .

(4.4)

νk is thus the expected value for the k-th Dirichlet component. The variance of
each component can be adjusted according to α(0), but “certain” or “impossible”
components (i.e. those whose νk is close to 1 or 0, respectively) are unchanged.
Moreover, if all αk are equal to 1 (i.e. ν is uniform and α(0) = n+ 1), the Dirichlet
distribution is uniform on the n-simplex. From the modeling point of view, α(0) has
an attractive or repulsive effect on the samples toward ν, representing the average
composition of X. These mechanisms are shown in Figure 4.8 when n = 2: in that
case, the 2-simplex is the filled triangle with vertices (0, 0, 1), (0, 1, 0), (1, 0, 0).

These facts as well as the above decomposition allow us to consider any available
information on peak and valley distances during the prior elicitation procedure.

4.3.2 The Dirichlet model
Given the definition of the Dirichlet distribution (Definition 4.3), it is possible to
specify a model for the peak and valley distances. The approach follows the one
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Figure 4.8: Samples from the Dirichlet distribution over its support, the
2-simplex (the shaded area), for various values of the parameters α(0)

and ν = (1
3 ,

1
3 ,

1
3). Each point is the realization of a possible repartition

of the interval (0, 1) in three parts of lengths x1, x2 and x3 = 1−x1−x2
(in our case, the distances between points of interest in the signatures).
As x3 is known given x1 and x2, only the first two components x1 and
x2 are shown. (a) α(0) = 3 = n + 1: uniform sampling, all partitions
are equally likely; (b) α(0) = 30: sampling concentrates around ν; (c)
α(0) = 0.3: sampling concentrates on the borders, where one of the
components vanishes.

theoretically introduced in Section 2.5, further adapted in Section 3.3.1 to the Fourier
loop shape descriptors.

Consider the j-th signature with nj points of interest, described as before (Section
4.2.5) using the elapsed distances tjk, with k ∈ {1, . . . , nj + 1}. To shorten the
notation, all points for the j-th signature are collected in the vector dj = (tjk)nj+1

k=1 .
By construction, the vectors dj share the same properties as the realizations from

the Dirichlet distribution (4.3.1). Similarly to the model for character loops, the
distribution of the dj will depend on the writer through the Dirichlet parameter α.
By indicating with dij the feature vector of the j-th signature written by the i-th
writer, one would have:

dij ∼ Dirichlet(αi) .

Each αi might be assumed known for each writer, for instance from expert knowledge.
Alternatively, we suppose to have a background dataset, constituted by m writers,

to obtain information on the αis. Assuming that the peak and valley features exhibit
variability between writers, a between-writer level could be added:

αi ∼ g(ψ) ,
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where g is a density function that describes the between-writer variability,
parametrized by ψ.

The Dirichlet-Dirichlet-Gamma model

Choices for g and ψ can take advantage of the decomposition of αi in a measure
component νi and a scalar concentration parameter α(0)

i (see Section 4.3.1).
In this thesis we propose to model the components separately, with a Dirichlet and a
Gamma distribution respectively:

αi = α
(0)
i νi

α
(0)
i ∼ Gamma(α0, β0)
νi ∼ Dirichlet(ν0) .

The Dirichlet distribution for the within-writer parameters νi sets the “average”
proportion of peak and valley distances around ν0, and the Gamma distribution for
the within-writer concentration parameters α(0)

i allows us to tune the between-writer
variability around the common mean ν0. The Gamma distribution has been chosen
since it has a positive support, and can represent a wide variety of prior beliefs using
only two scalar parameters. With this parametrization, ψ is the vector (ν0, α0, β0),
and g is its joint probability density function.

The Dirichlet-Dirichlet-Gamma model is the following:

dij ∼ Dirichlet(αi)
αi = α

(0)
i νi (4.5)

α
(0)
i ∼ Gamma(α0, β0)
νi ∼ Dirichlet(ν0) .

To resume the evaluative inferential scheme described in Section 2.5, evidence
e from the i-th writer and j-th signature is represented by the random vector dij.
f is the density of a Dirichlet distribution, parametrized by αi in the i-th writer
(previously indicated with θ in Section 2.5). The between-writer hierarchical level
models the distribution of the within-writer parameters αi through the density
function g, parametrized by ψ.

Variability in number of points

One element that further complicates this model with respect to the one introduced,
e.g. for the Fourier descriptors in Section 3.3.1, lies in the fact that signatures differ in
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the number of points of interest nj, both within and across the writers. Accordingly,
the feature vectors dij would vary in dimension (length) according to i and j. Since
the parameter of the Dirichlet distribution has the same dimension as the data
vector, for a given writer i one would have multiple within-writer parameters, say αil,
describing the distributions of all signatures from writer i with l points of interest.

This element of variability could raise issues concerning the treatment of “missing
data”: for instance, in cases when a certain writer never provided signatures with
a certain number of points l̃, yet the questioned material contains signatures with l̃
points.

Concerning the modeling approach, one may wish to describe the dependence of
all αil by referring to a common αi. However, the task is not trivial as the addition
of a new point of interest could influence the distribution of the remaining points.

Some situations could support to pad all αil with zeroes, up to a common length.
In this case, this would be consistent with the idea of adding overlapping points of
interest at the end of signature, so that their rectified distances are 0. We believe that
this is an inappropriate extension, as it is not possible to have overlapping points
according to our approach (see Section 4.2).

The simplest workaround is to consider only signatures with the same number of
points. This reduces the amount of data that is used to update the beliefs on the
random variables, but also decreases the number of latent random variables, and the
number of equations to describe their distributional links.

This situation does not happen in the general compositional case when the length
of the feature vector is constant for all observations and all sources. For instance,
assume that the vectors dij represent the repeated measurements of the composition
of a given substance across sources i in terms of a set of elements. Their lengths would
be constant if the set of searched elements does not change across all observations,
and the instrument is always reporting their measured quantity, even if under the
limit of detection.

Background parameter elicitation

If a background dataset is available, one can apply the plug-in approximation (Section
2.5.3) to elicit values for ψ, as done in Section 3.3.1.

The simple signature dataset does not contain a sufficient number of writers. We
fix ψ = ψ̂ using a data-driven approach, based on stochastic simulation. More details
are given in Section 4.5.1 when the practical implementation is discussed.
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4.3.3 Evaluative scenario
The same evaluative scenario and the evaluative hypotheses of Chapter 3 can be
introduced. The reference material, provided by the putative writer, is represented
by a feature vector indicated with er. In particular, er is a collection of dj coming
from the reference writer. Without loss of generality, we consider signatures with the
same number of points of interest.

The evaluative hypotheses of interest are:
H = hp : “the signatures er and eq come from the same writer”
H = hd : “the signatures er and eq come from two different writers”

Under hp, er and eq are samples from the same source, supposed parametrized with
αrq.
Under hd, er and eq are two independent random vectors: the source for er is
parametrized by the αr, the Dirichlet parameter for the reference source. The source
for eq is parametrized by the αq, the Dirichlet parameter for the questioned source.

Source parameters are further modeled as being sampled from the between-writer
distribution g, parametrized with ψ. The Dirichlet-Dirichlet-Gamma model provides
definitions for g and ψ (Equation (4.5)).

The Bayes factor value can be computed using Equation (2.10) as a ratio of
marginal likelihoods:

BF = m(er, eq | hp)
m(er | hd)m(eq | hd) , (4.6)

where each m(e• | h•) involves the integration over the latent parameters α• as
in (2.11), conditioned on the between-writer parameters ψ, supposed known and
assuming value ψ̂:

m(e• | h•) =
∫
f(e•;α•) g(α•; ψ̂) dα• . (4.7)

4.3.4 Bayes factor computation
The Bayes factor value can be obtained by computing the required marginal likelihoods,
as done in Chapter 3 (see Section 3.3.3).

Similarly to the model for the character loops, the marginal likelihood distributions
cannot be computed in closed form, so a numerical method is required.

In this Chapter, however, setting up a Gibbs sampler is unfeasible, as the required
full conditionals are difficult or impossible to isolate. Instead, we first describe
the model in the probabilistic language Stan (Carpenter et al., 2017) to obtain
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posterior samples using a particular Markov Chain Monte Carlo (MCMC) method,
the Hamiltonian Monte Carlo (HMC).

Secondly, we use the so-called bridge sampler on its output to estimate the value
of the marginal likelihood (Gronau et al., 2017). The bridge sampler is based on an
identity obtained by rewriting Equation (4.7), introducing a bridge function and a
proposal distribution. More information can be found in (Gronau et al., 2017).

4.3.5 Implementation
Stan allows to specify models using a language that is very close to the probabilistic
description, reducing the need of doing calculations at hand. Among the advantages
of Stan compared to other BUGS languages, Stan enforces automated checks on the
mathematical constraints on the sampled parameters (e.g. bounded parameters or
simplex constraints) and facilitates the specification of prior and posterior predictive
quantities, useful to perform model diagnostics. Moreover, the particular sampler
used by Stan is reportedly much more efficient than traditional BUGS languages at
exploring the sampling space, requiring less iterations, thus less time to fit (McEl-
reath, 2015, sec. 8.2). The sampler fails destructively if the model is ill-specified,
producing the so-called divergent iterations: in these cases the user is encouraged to
re-parametrize the model. Classical MCMC samplers, instead, keep drawing samples
that are, possibly, correlated, and the user is not made aware of the phenomenon
unless diagnostic procedures are run.

Among the disadvantages, Stan is unable to sample discrete distributions: this
does not pose any problem within this Chapter. Also, the sampling speed is much
slower than the optimized Gibbs sampler implemented in Chapter 3, specifically
tailored to the problem at hand, representing the trade-off between sampling speed
and flexibility in terms of modeling specifications.

Concerning the bridge sampling, it is performed in R by the package
bridgesampling (Gronau et al., 2017), itself implementing the method as formulated
in (Meng & Wong, 1996). Particularly, the package takes an output of any Markov
Chain Monte Carlo method (such as Stan) and computes the marginal likelihood
value for the supplied data. Very few parameters are needed: the proposal function
has been set to the multivariate Normal distribution, and the bridge function is
obtained by an iterative method. Furthermore, the package also provide an error
estimate for the marginal likelihood value, provided that the posterior samples
represent well the posterior distribution of the parameters.

To resume, the computation of one Bayes factor value requires the specification of
two statistical models, one for each competing hypothesis. Stan runs the MCMC chains
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in the numerator and in the denominator of the Bayes factor, then bridgesampling
independently computes the respective marginal likelihood values. Finally, the Bayes
factor value is obtained by computing their ratio.

As this procedure introduces significant overhead in the model fitting workflow,
the R package rstanBF (Gaborini, 2020a) has been created within the scope of this
thesis to wrap the workflow steps to a set of functions. As in Chapter 3, further
benefits include the increased reproducibility of the analyses, the facilitated creation
of package documentation, and the establishment of an automated suite of tests.

4.4 Model validation
With the available package, we first proceeded to verify its behavior in a situation
where the generating model is known, and a large set of background samples are
available (a background-dominant situation: see Section 2.5.5).

For the sake of simplicity, we consider the case where the true generating model
is a Dirichlet-Dirichlet:

dij ∼ Dirichlet(νi)
νi ∼ Dirichlet(ν0) .

The Dirichlet-Dirichlet-Gamma model is more general, as it encompasses the
Dirichlet-Dirichlet model when:

α
(0)
i = 1 ∀i = 1, . . . , n .

This is true when the Gamma distribution is degenerate, i.e. α0 = β0 and
α0 → +∞, resulting in a distribution with unitary mean and vanishing variance.
While recovering the hyperparameters from sample data, we expect to obtain a
well-behaved estimate of ν0, and large estimates of α0 and β0.

The simulated background data consists of n = 100 samples from m = 10
4-dimensional Dirichlet distributions, representing three different sources,
i ∈ {1, . . . ,m}. In total, 1000 samples are available. The true ν0 was set to (1, 1, 1, 1).

We consider i = 1 to mark the reference source. We want to evaluate the hypothesis
pair:

H = hp : “the samples er and eq come from the source 1”,
H = hd : “the samples er and eq come from sources 1 and 2, respectively”.

The scenario simulation procedure (Section 2.5.5) is applied twice, to evaluate
the behavior of the model in two different scenarios:
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1. under hp, we deal kr = 20 samples from the reference source (i = 1) and kq = 20
samples from the reference source (i = 1),

2. under hd, we deal kr = 20 samples from the reference source (i = 1) and kq = 20
samples from the questioned source (we pick i = 2)

The remaining 960 samples constitute the background dataset, which is used to
elicit the hyperparameters using the plug-in estimation procedure.

4.4.1 Hyperparameter elicitation
This is done in three steps:

1. for each source i we estimate the Dirichlet parameters αi = α0
i νi using all

observed dij. We indicate the point estimate with α̂i:

α̂i = fMLE(dij),

2. for each source i we normalize the obtained α̂i, allowing the estimation of the
base measure νi and the concentration parameter α0

i :

α̂i = α̂0
i ν̂i,

3. finally, the hyperparameters ν0, α0 and β0 are estimated by applying the
respective MLE:

ν̂0 = fMLE(ν̂i)
(α̂0, β̂0) = gMLE(α̂0

i ),

where fMLE(x) gives the MLE for the parameter of the Dirichlet distribution given
observations x, and gMLE(x) gives the MLE for both parameters of a Gamma dis-
tribution given observations x. These are commonly available in the literature as
iterative methods, for instance implemented in R by the package sirt (Minka, 2000;
Robitzsch, 2020) for the Dirichlet MLE, the package MASS (Venables & Ripley, 2002)
for the Gamma MLE.

In this case we obtain:

ν̂0 = (1.1605139, 1.772515, 1.8833803, 1.9907211) .

The Gamma hyperparameters are estimated to be very large, as predicted:

(α̂0, β̂0) = (157.4391182, 149.2058713) .

Notice that this procedure requires a background dataset.
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4.4.2 Bayes factors
By plugging in our point estimates for the prior hyperparameters, one can compute
the two Bayes factor values for the two scenarios using the rstanBF package.

For the Hamiltonian Monte Carlo (HMC) procedure, 10000 iterations are per-
formed, whose 1000 are dedicated to the burn-in process. Six HMC chains are ran in
parallel, giving a total of 54000 samples.

For the first scenario (hp is true), er and eq have been sampled from the same
source. The obtained Bayes factor is:

BF = 3.6636522 ,

which is greater than 1, as expected.
For the second scenario (hd is true), er and eq have been sampled from two different

sources. The obtained Bayes factor is:

BF = 1.8775933× 10−8 ,

which is lower than 1, as expected.
Concerning the computational requirements for the computation of a single Bayes

factor value, the HMC sampling requires 13 seconds, not including the bridge sampling
iterations. This is noticeably longer than the ad-hoc Gibbs sampler shown in Chapter
3.

4.4.3 Convergence
Since the model parameters are known, one can check if the posterior distributions are
concentrated near the known values, to make sure that the HMC chains are correctly
exploring the sample space. In particular, under the first scenario (hp is true), the
posterior for α1 should capture the Dirichlet parameter of the reference source i = 1.
Likewise, under the second scenario (hd is true), the posterior for α2 should capture
the Dirichlet parameter of the questioned source i = 2. As the Figure 4.9 shows, the
model seems to be able to capture the generating values.
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Figure 4.9: Posterior density distributions for the components of α along
with their true values (the vertical line): a) hp is true and the reference
source is shown; b) hd is true and the questioned (different) source is
shown. See Section 4.3.3 for details on the notation.

4.5 Results

4.5.1 Evidence-only situation

We can now proceed to analyze the simple signature dataset with the developed
package. With respect to the validation scenario, the casework offers no background
dataset that could help eliciting the required hyperparameters (ν0, α0, β0). This is an
evidence-only operative condition (2.5.5).

As the hyperparameters try to capture the variability of selected handwriting
features in a reference population, one could approach this problem by creating a
forgery dataset. Multiple forgers should be recruited, then instructed to deliver
simulated signatures following the same psychomotor patterns and variability shown
by the casework material. For instance, if the questioned signatures have been written
in an unusual standing position, the adjoint forgers should try to reproduce the
same circumstances, to enable a comparison on a “like-by-like” basis. The validity of
this approach ultimately rests on the hypothesis that the recruited forgers are well
representing the reference population: this could require a large number of participants
in the study. Also, each participant should be made aware of the full-range of reference
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signatures, potentially disclosing sensitive information.
Hyperparameters can also be elicited by appealing to forensic literature, related

studies or some degree of technical expertise on the collected data. For instance,
forensic scientists working with glass fragments may exploit physical knowledge on
the range of variation of glass used in common household objects. This is infeasible
when one deals with evidence that does not possess a uniform quantitative body of
knowledge that is easily transferrable between cases, such as signatures.

A weaker form of elicitation is to exploit the fact that Bayesian models are
generative in nature: given any hyperparameter, it is easy to generate synthetic data
since the distributions are defined by the probabilistic model. One could identify a
range of hyperparameter values that produce data that “look plausible”, possibly
encompassing the casework material (and more).

Clearly, this task is easier if the statistical model is very close to the casework
data, introducing as less transformations as possible. For instance, in the questioned
handwriting context, it would be desirable to have a model capable of reconstructing
the ink path traced by the signature: the “acceptable” hyperparameters would produce
signatures with a behavior comparable to the casework material, that a FHE could
examine.

As one goes towards a more elaborated representation to find a suitable statistical
description of the evidence, one typically focuses on some aspects of it, discarding
content not relevant to the statistical model. For instance, in this Chapter we first
extract the main stroke of the signature, discarding the paraph, then the distance
between peaks and valleys is considered. Since the shape of the line is no longer
predictable, it becomes difficult to assess whether a set of generated distances could
appear in the written material. Even if the model were able to generate main strokes,
their relative position with the paraph would not be considered, potentially producing
strokes that would overlap the paraph.

The decision to “accept” or “reject” a hyperparameter, thus, may ultimately rest
on the ability of the forensic scientist to interpret this latter elaborate representation,
disregarding most aspects of the evidence that lie on a larger scale. Despite this
limitation, this paradigm is rather easy to implement, and could offer a good starting
point to begin formulating and discussing a Bayes factor.

4.5.2 Approximate Bayesian Computation
The notion of “acceptable” (hyper)parameters generating “plausible” data can be
made more precise, resulting in the family of statistical methods called “Approximate
Bayesian Computation” (ABC for short) (Tavare et al., 1997). Particularly, these
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methods are used when it is easier to generate data rather than evaluate the likelihood
function, for instance by repeating an experiment, or performing simulations.

First, ABC methods sample (hyper)parameters from a distribution or a grid,
then generate a dataset conditioning on the sampled (hyper)parameter. Generated
datasets are “plausible” when they are close to the observed dataset according to some
criterium, usually by computing a distance metric between two summary statistics.
Those (hyper)parameters that generate “plausible” data are accepted and form the
posterior samples, as if they were sampled with a traditional MCMC method.

Under appropriate assumptions, ABC methods can deliver good approximations
to the posterior distributions (Robert et al., 2011), but their usage for model selection
(in particular, the computation of Bayes factors) is controversial (Marin et al., 2014;
Robert et al., 2011). ABC methods are commonly used in genetics and population
dynamics (Leuenberger & Wegmann, 2010; Pritchard et al., 1999; Tavare et al., 1997;
Weiss & Haeseler, 1998), and some early results in forensic science are available
(Hendricks et al., 2020).

In the next Section we introduce a method strongly inspired by the ABC approach
to elicit the hyperparameters, required to compute the Bayes factor.

4.5.3 ABC in practice
In short, ABC works by generating a dataset (indicated with xgen), then comparing
it with the observed one (indicated with xobs = (dij)ij , the set of all observed feature
vectors, where i is the index of the writer, j is the signature index for the writer i),
and deciding whether xgen is close to xobs.

We assume that there are two independent writers that generate the dataset,
consistently with hd. The hyperparameters (ν0, α0, β0) are set to a value we wish to
evaluate its “plausibility”. Generation of xgen follows the Dirichlet-Dirichlet-Gamma
model (Section 4.3.2), first by choosing the hyperparameters, then by sampling the
conditional distributions. Notice that the identifier assigned to the writer (e.g. whether
the sample has been provided by the reference writer, the alleged questioned writer,
or some other synthetic source) is not considered, as we are interested in evaluating
whether the generated dataset could represent any background dataset, regardless of
the truth of the evaluated hypothesis.

The datasets xgen and xobs can be organized as matrices with the same number of
rows (the number of observed feature vectors, here indicated with n) and the same
number of columns (here indicated with p = ni + 1, where ni is the number of points
of interests contained in the signature).
By considering only signatures with the same number of points (following the as-
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sumption introduced in Section 4.3.2, in order to have feature vectors of the same
length p), we have that n = 28 and p = 5.

According to ABC, all datasets are resumed through a set of summary statistics.
The model and the framework do not suggest any summary statistic that is relevant
to the task, so we considered a set of measures of central tendency, dispersion and
shape:

• smean: mean
• ssd: standard deviation
• skurtosis: kurtosis
• sskewness: skewness

In particular, all summary statistics are computed for each column, and are
therefore 5-dimensional.

Afterwards, ABC computes the distance between the summary statistics of xgen

and xobs: the distance is taken to be the L1 norm of their difference vectors:

∥x− y∥1 :=
p∑

k=1
|xk − yk| .

Finally, if this distance is lower than a given threshold, the hyperparameters
(ν0, α0, β0) are accepted.

To resume, the ABC algorithm proceeds as follows:

1. choose the (hyper)parameters (ν0, α0, β0),

2. compute the observed summary statistics sobs
mean, s

obs
sd , s

obs
kurtosis, and sobs

skewness,

3. generate one dataset xgen,

4. compute its summary statistics sgen
mean, s

gen
sd , s

gen
kurtosis, and sgen

skewness,

5. compute the distances between the generated and the observed summary statis-
tics:

• dgen
mean = ∥sgen

mean − sobs
mean∥1

• dgen
sd = ∥sgen

sd − sobs
sd ∥1

• dgen
kurtosis = ∥sgen

kurtosis − sobs
kurtosis∥1

• dgen
skewness = ∥sgen

skewness − sobs
skewness∥1,

6. accept the ABC sample if all distances are under the acceptance threshold ϵ:

(dgen
mean < ϵ) ∧ (dgen

sd < ϵ) ∧ (dgen
kurtosis < ϵ) ∧ (dgen

skewness < ϵ)
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7. go to step 3 and repeat nABC times.

The number of times an ABC sample is retained indicates how often the chosen
hyperparameters (ν0, α0, β0) generate “plausible” data: in particular, the ratio between
this number and nABC is the so-called acceptance ratio. To this purpose, the ABC
procedure is repeated by varying (ν0, α0, β0) over a very large space. Particularly, α0
varies in [0.01, 105], β0 varies in [0.01, 105], while ν0 is set to the value recovered by
the ML estimators (as during the model validation, Section 4.4.1).

The acceptance threshold has been set to ϵ = (0.1, 0.4, 10, 6) by visual inspection:
this choice selects datasets whose marginal distributions seem to be similar to the
observed ones, yet without being too restrictive. The number of ABC repetitions has
been set to nABC = 1000000.

The “plausible” choice for (ν0, α0, β0), indicated with (ν⋆
0 , α

⋆
0, β

⋆
0), is the one that

maximizes the acceptance ratio over the explored combinations of hyperparameters.
Figure 4.10 shows the acceptance ratios obtained over a regular grid of choices for

(α⋆
0, β

⋆
0). In principle, ν0 should also be allowed to change. However, this revealed to

be difficult, as ν0 is multivariate. Also, when the dimensionality becomes high, ABC
might suffer from the so-called “curse of dimensionality”, resulting in an extremely
low acceptance ratio and in an inefficient sampling (Blum & François, 2010; Hendricks
et al., 2020). For instance, the best solution in this case has an acceptance ratio of
approximately 2%.

Figure 4.11 shows an example of a synthetic dataset, generated using the hyperpa-
rameters that maximize the acceptance ratio. The visual inspection of the shape of the
generated distributions was particularly important to define the summary statistics
leading to a “correct” acceptance: otherwise it would have been possible to select
datasets that are close to xobs according to the summary statistics, yet completely
different when observed in their full complexity1. For instance, by considering only
the mean and the standard deviation, it was possible to generate datasets that would
have been accepted under strict values for the tolerance ϵ, but degenerate in their
distributions (i.e. where the distribution masses were concentrated in very small
regions, unlike the observed data). The solution was found by introducing more
summary statistics that would account for the shape of the datasets.
Remark. Compared to the other approaches that can be found in literature, ABC is
only used in this Chapter to elicit an informed data-driven choice for the values of the
hyperparameters (ν0, α0, β0). Once the choice is made, the computation of the Bayes
factor is performed using more traditional methods such as the bridge sampler. ABC

1Another famous example of this phenomenon is the Anscombe’s quartet, where four datasets
are visually very distinct but share the same descriptive statistics (Anscombe, 1973).
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Figure 4.10: The ABC acceptance ratio for different choices (the plusses)
of the hyperparameters α0 and β0. The white cross marks the accepted
combination of (α⋆

0, β
⋆
0).

methods, instead, would retain all samples of the latent writer parameters (e.g. all
αis) that would generate acceptable datasets. However, given the very low acceptance
ratio, this approach would be extremely inefficient, possibly incurring also limitations
raised by Robert et al. (2011).

Implementation

The R package rdirdirgamma has been created to perform the whole ABC procedure
for the specific Dirichlet-Dirichlet-Gamma model, from the dataset generation to the
acceptance step. As in Chapter 3.3.4, all code has been optimized for speed using
Rcpp (Eddelbuettel & François, 2011). This package is open source and available on
request (Gaborini, 2020b).

4.5.4 Bayes factor
Now that the ABC method provides the values for the hyperparameters (ν⋆

0 , α
⋆
0, β

⋆
0),

the single Bayes factor for the evaluative scenario (Section 4.3.3) can be computed.
This can be performed with a bridge sampler, as in the Model validation procedure
(Section 4.4.2).
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Delay 5

Delay 4

Delay 3

Delay 2

Delay 1

0.0 0.2 0.4 0.6

ABC

Observed

One dot = one signature

Figure 4.11: Comparison between the observed data xobs and one of
the generated datasets xgen that is accepted by the ABC criterium
using the best hyperparameter combination (ν⋆

0 , α
⋆
0, β

⋆
0). Each panel

is one component of the distribution (a specific point of interest). As
each dot represents one feature vector (a signature), the y-axis is not
relevant. In this case, the distances between the summary statistics are:
(dgen

mean, d
gen
sd , d

gen
kurtosis, d

gen
skewness) = (0.092, 0.356, 8.040, 3.022).
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For the Hamiltonian Monte Carlo (HMC) procedure, 10000 iterations are per-
formed, whose 2000 are dedicated to the burn-in process. Six chains are ran in
parallel, giving a total of 48000 HMC samples.

The obtained Bayes factor is:

BF = 1.4454577× 104 ,

which gives a strong support for the prosecution hypothesis.

4.6 Extensions
This model can be noticeably improved under many aspects.

Firstly, the Dirichlet likelihood can be substituted with any likelihood that has
support on the simplexes. In fact, the Dirichlet distribution, despite its nice mathe-
matical properties, has been reportedly been difficult to use to describe compositional
data, most notably since it contains a number of independence assumptions between
the components (Aitchison, 1982). An alternative modeling has been proposed by
Gelman, Bois, et al. (1996), where each component is first separately modeled as a
log-Normal distribution, then the whole vector is normalized (Gelman, Bois, et al.,
1996).

Secondly, the need to consider signatures with the same number of points of
interest is particularly restricting (Section 4.3.2). A prior distribution on the number
of points could be introduced. However, the dimensions of the feature vectors and
the latent writer parameters would change across MCMC iterations. Notice that
this issue is similar to the computation of Bayes factors using a model indicator (see
Section 2.6.4), therefore it could share the same solutions such as the introduction of
pseudopriors, and the usage of a sampling algorithm that can sample from spaces of
varying dimensions, such as the Reversible-Jump Markov chain Monte Carlo sampler
(Green, 1995).

Once the model is determined, the method to elicit the hyperparameters could
also be improved. As previously said, this could be done by creating a background
dataset constituted by request forgeries (see Section 4.5.1), or by refining the ABC
approach (see Section 4.5.2).

4.6.1 Non-independence
Like any scenario involving questioned signatures, the assumption of independence
between sources under hd could be undermined. This has already been encountered
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and discussed in the Section 3.7.1, and the same conclusions apply to the case at
hand, including the over-evaluation of evidence under hp. However, the approach
shown in this Chapter does not attempt to solve the problem.

4.7 Epilogue
The case has been further blindly evaluated by a Forensic Document Examiner using
the traditional appproach. The FDE ultimately concluded that the evidence supports
the defense hypothesis, as opposed to the Bayes factor computed in Section 4.5.
However, the conclusion was based on the relative position of the main stroke and
the paraph, whereas in this Chapter only the main stroke was studied.

This fact further stresses the importance of properly assessing evidence using
the general-to-specific pattern, and the difficulty of combining evidence coming from
multiple sources, items, or levels of detail of the same item.





Chapter 5

Combining evidence

Let us focus on the impact of relatives in evidence evaluation. The most extreme
case where two persons are related is when they are mono-zygotic twins. As twins
share most of their genetic material, such situation bears great interest in forensic
disciplines other than DNA, for instance handwriting (Srihari et al., 2008), speaker
recognition (Loakes, 2008), fingerprints (Jain et al., 2002), bitemarks (Sognnaes et
al., 1982) and hair analysis (Bisbing & Wolner, 1984).

In this Chapter we consider a hypothetical situation where handwritten and
biological evidence (a salivary stain) is recovered from the crime scene or a relevant
object (e.g. an envelope), and the defense hypothesis involves a mono-zygotic twin of
the person of interest (POI). This case could arise when a POI provides a handwritten
ransom note on a sheet of paper, showing many characters with closed loops, and an
item with salivary traces of the suspect is seized, constituted for instance by a glass
item, a bottle or the envelope that contained the letter. As the DNA is not easily
exploitable due to the genetic constraint (Gringras & Chen, 2001), the microbiome
(the composition of the salivary bacteria) can be analyzed instead (Leake, 2014; Leake
et al., 2016).

The scenario is approached first by treating evidence separately: handwriting
evidence is discussed by applying the character loop model from Chapter 3, while
biological evidence exploits the same model introduced in Chapter 4 to evaluate
compositional data. The results of these separate evaluations are then combined to a
single Bayes factor using a Bayesian network.

This Chapter involves experimental data collected in collaboration with the
Institute of Microbiology (CHUV) of the University of Lausanne. The analytical
methodology of the laboratory has already been satisfactorily conducted and validated
in past experimental research (Leake, 2014; Leake et al., 2016). In this Chapter we
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propose an evaluative framework that could potentially integrate these results with a
Bayesian (forensic) approach.
Remark. Due to major time constraints and the sudden appearance of the SARS-CoV-
2 pandemic, only handwritten evidence has been considered in full detail, although
on a reduced set of participants and visits. The microbiome data (not available at
the time of writing) and the problem of combination of evidence is only introduced as
a theoretical device, without relying on any experimental data. Future works could
address this part by building over the proof of concept given in this Chapter.

5.1 Research design
The research involved 8 pairs of twins at the time of writing. All twins were proven to
be mono-zygotic through DNA analyses. To reduce age and learning factors influence,
all twins pairs were at least 18 years old, learned to write in French as their first
language, grew up and were living in Switzerland.

All research participants were required to visit the collection infrastructures at
times t0, t1 = t0 + 1 month, t2 = t0 + 12 months, t3 = t0 + 13 months. Data from
visits t2 and t3 was not available at the time of writing.

Participants were given a form containing 3 lower-case single letters (“a”, “d”,
“o”) and 11 lower-case words, containing said letters in various positions inside the
words. In each form, every letter was replicated 10 times in isolated form, and
every word was replicated 2 times. On the page only a horizontal-printed guide was
provided. Participants were told to write in their usual sitting position, and the
writing conditions were standardized across all sessions, with a unique blue ball-point
pen on a standardized surface.

Concerning the biological evidence, during each visit participants provided salivary
samples for microbiotic analyses. The collection procedure and the subsequent
analyses were conducted by the Institute of Microbiology (CHUV) of the University
of Lausanne. All twins also filled a form containing health-related questions to control
for changes in environmental factors, antibiotics, medications and diseases, that were
postulated by Leake (2014) to be potential confounders.

5.2 Handwritten evidence
An aspect of importance to consider in large-scale studies on handwriting — as
underlined by (Huber & Headrick, 1999) — is the characterization of the relevant
population. Among the elements that could contribute to the variability of handwrit-
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ing across persons of interest, the genetic factor has been frequently discussed in past
literature.

Available studies which involve the handwriting of twins (Ahuja et al., 2018;
Dziedzic et al., 2007; Gamble, 1980; Srihari et al., 2008; Thorndike, 1915) conclude
that twins can be discriminated from unrelated persons, albeit at a higher error rate.
Of these studies, only (Ahuja et al., 2018; Srihari et al., 2008) used a quantitative
characterization of handwriting. Moreover, (Srihari et al., 2008) involves a global
description of handwriting, rather than the variability of specific features.

5.2.1 Digitalization
All acquired handwritten forms were digitalized at 600 dpi resolution, then pre-
processed in MATLAB to separate written content from the paper. After binarization,
the extraction of loops from the word skeletons was performed using Topological
Data Analysis. This is a mathematical framework that aims to provide a robust
description of the structure of a point cloud (represented by the pixels where ink was
detected), in particular where “holes” are located (Chazal & Michel, 2017). In our
application, holes in the topology represent closed loops in characters. This enabled
us to segment multiple loops at once, still under human supervision, but greatly
decreasing the need for manual intervention. Results are comparable to those that
could have been obtained by manually tracing the loop contours. This was carried
out using R package TDA (Fasy et al., 2015).

Only closed loops were retained. Also, strokes crossing the loop but not belonging
to it were eliminated, to comply with our goal of targeting the analysis on the main
loop of the characters only. Table 5.1 reports the material for analysis used for this
study.

Next, the character loops were parametrized and modeled using the Fourier
descriptors as done in Chapter 3. In particular, only the harmonic contributes from
order k = 1 to order k = 3 were kept, as they were sufficient to characterize loop
shapes1, thus describing each loop with a vector of length p = 7. Consequently,
Fourier coefficients were rescaled in order to describe loops with unit area.

Notice that additional metadata are available for each character loop, such as
its containing character (“a”, “d”, “o”) and its position inside the word (beginning,
middle, end, or isolated letter). In this Chapter only the character information has
been used. Other characteristics could be exploited in future works to investigate
forensically interesting questions such as the relation between the shape of the loop

1The number of retained contributes differs from Chapter 3 due to the different handwriting size
(not controlled in the printed forms) and the usage of a different flatbed scanner.
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Table 5.1: Number of closed character loops across characters and
writers.

Character
Writer code a d o Total
1A 41 23 47 111
1B 45 13 60 118
2A 46 32 57 135
2B 41 12 48 101
3A 58 62 59 179
3B 58 56 59 173
4A 59 42 58 159
4B 53 62 57 172
5A 56 53 55 164
5B 57 62 53 172
6A 59 63 58 180
6B 60 63 59 182
7A 59 55 54 168
7B 33 35 58 126
8A 43 48 51 142
8B 56 59 51 166

Total 824 740 884 2448

and its position inside the word.

5.2.2 Dimensional reduction
The Uniform Manifold Approximation and Projection for Dimension Reduction
(UMAP) technique (McInnes et al., 2018) was first applied to the dataset, to evaluate
whether the Fourier descriptors offered information to discriminate writers based on
their shape, as supposed in Marquis et al. (2005) and Chapter 3. The same UMAP
Python implementation was used as described by the above article. The Euclidean
distance was chosen as a distance metric, while the UMAP parameters were set to
min_dist = 0.8 and n_neighbors = 5 to visually obtain a good trade-off between
writer discrimination and preservation of the local structure; this choice bears no
relation to the experimental design of the study, such as the number of twins.

The results of applying the UMAP technique to the dataset are reported in Figure
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5.1. It can be seen that writers tend to cluster together. In Figure 5.2, the features
learned by UMAP discriminate loops based on their shape: however, the loops are
not well discriminable across the character they belong to, as Figure 5.3 shows.

To further investigate the genetic influence on handwriting, one can highlight the
UMAP representations for each pair of twins in the study, as shown in Figure 5.4. It
can be seen that some twins tend to write similarly, while others are set apart by
UMAP.

5.2.3 Statistical model
The same general statistical model developed in Section 3.3 was applied to the set of
Fourier coefficients. In particular, the collected dataset can be considered to be the
set of background observations.

Maintaining the same notation, let Xij ∈ Rp denote the set of p = 7 Fourier
coefficients of the j-th character loop written by the i-th participant. The model for

Participant

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B

6A

6B

7A

7B

8A

8B

Figure 5.1: UMAP 2D representation of the Fourier twins dataset. Each
character is represented as a single point in the 2D plane, colored by
participant.



138 Chapter 5. Combining evidence

Participant

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B

6A

6B

7A

7B

8A

8B

Figure 5.2: Projected dataset on the learned UMAP representation.
The original loop shapes are superimposed onto the 2D plane, with the
barycenters in their UMAP coordinates, colored by participant. To
avoid overplotting, only 400 loops are represented.
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Figure 5.3: UMAP 2D representation of the Fourier twins dataset. Each
character is represented as a single letter in the 2D plane, also colored
by letter. To avoid overplotting, only 600 loops are represented.
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5 6 7 8

1 2 3 4

Figure 5.4: Projected dataset on the learned UMAP representation.
The original loop shapes are superimposed onto the 2D plane, with the
barycenters in their UMAP coordinates. The UMAP representation
is replicated for each pair of twins in the dataset, highlighting both
participants. To avoid overplotting, only 400 loops are represented.

the background is given by Equation (3.3), repeated here for clarity:

Xij ∼ Np(θi,Wi)
θi ∼ Np(µ,B)
Wi ∼ IW (U, ν) ,

where θi is the mean vector of the i-th writer, Wi is the non-constant within-writer
covariance matrix, µ is the mean vector between writers and B is the between-writers
covariance matrix.

Background parameter elicitation

Since the dataset contains a sufficient number of participants, it is possible to use
the plug-in approximation as in Section 3.3.1 to obtain point estimates for µ, B and
Wi using the background dataset. Known p, ν is set to be as small as possible as in
Section 3.3.1.
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5.2.4 Evaluative scenario
As this is a background-dominant operative condition (see Section 2.5.5), the back-
ground dataset can be exploited to simulate a real casework. The character loops
found in the questioned handwritten material are indicated with eq. The character
loops found in the putative writer’s corpus are indicated with er. Notice also that
the truth of the hypothesis is known since it is known which participants are twins.

The evaluative scenario introduced in Section 3.3.2 can be applied. However,
in this case it is interesting to consider two defense hypotheses, depending on the
relation between the suspect and the true writer of the questioned material.

The hypotheses of interest are:
H = hp : “the character loops er and eq come from the same writer”
H = hu : “the character loops er and eq come from two unrelated writers”
H = ht : “the character loops er and eq come from two twins2”.

As the evaluative framework requires two hypotheses, we will discuss two scenarios:

1. hp against hu

2. hp against ht

Once the scenario is defined, for convenience, we indicate with hd the defense
hypothesis, chosen among hu or ht. Finally, one can compute the respective Bayes
factor value for the chosen scenario by applying the scenario simulation procedure,
theoretically defined in Section 2.5.5 and implemented on character loop data in
Section 3.4.

The procedure was repeated 100 times for each unique combination of reference
and questioned writers, thus producing 100× 162 = 25600 Bayes factors. The effect of
the choice of the sample sizes kref and kquest was also investigated by sweeping over the
range {5, 10, 20, 30, 50}. The analysis was limited to cases involving kref = kquest = k.

5.2.5 Results
Given the large number of available character loops, results are discussed under two
perspectives:

• character-independent: all characters (“a”, “d”, “o”) are pooled together,
2This abuse of notation includes all situations where the suspect and the true writer share the

same DNA: twins, triplets, quadruplets and so on. Notice that among the analyzed participants
there were only twin couples.
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• character-dependent: all characters (“a”, “d”, “o”) are considered separately
during the scenario simulation procedure.

In addition, each perspective can be discussed in turn under the writer-independent
and writer-dependent views, defined in Section 3.5.3. These are, respectively, by
aggregating the distributions of the Bayes factors over all possible reference writers,
or by detailing each reference writer separately.

Character-independent results

In the character-independent view, the obtained Bayes factors are summarized by
the hypothesis that has generated the data.

Figure 5.5 reports the “distributions” of the log-Bayes factors across combinations
of reference and questioned writers, as the number of samples k grows. At first, the
writers relationship is considered. It is expected that the strength of evidence increases
with the number of samples under comparison, as the model better approximates
writers’ patterns. In particular:

1. when comparing material coming from the same writer, it is expected that
evidence correctly supports the hypothesis hp.

2. when comparing material coming from unrelated writers, it is expected that
evidence correctly supports the hypothesis hu.

Notice that these results are in accordance with the ones obtained using an
independent corpus of unrelated writers (Section 3.5.3), thus providing a further
verification of the model.

The comparison of material from twin pairs results in log-Bayes factor values which
are distributed around the neutral value of 0, with a spread increasing with k. This
result supports the importance of writer choice: results seem to be writer-dependent.
This is consistent with what has been reported in (Bozza et al., 2008).
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5 samples 10 samples 20 samples 30 samples 50 samples

Same Twin Unrelated Same Twin Unrelated Same Twin Unrelated Same Twin Unrelated Same Twin Unrelated
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Figure 5.5: log-Bayes factor values across hypotheses and the number
of samples k.

Table 5.2: Bayes factor values across all scenarios as a function of the
relationship between writers and the number of samples k.

k Questioned writer BF < 1 BF > 1 Total

Same 694 906 1600
Twin 1274 326 16005
Unrelated 20900 1500 22400

Same 108 1492 1600
Twin 886 714 160010
Unrelated 19050 3350 22400

Same 0 1600 1600
Twin 752 848 160020
Unrelated 18084 4316 22400

Same 0 1600 1600
Twin 836 764 160030
Unrelated 18932 3468 22400

Same 0 1600 1600
Twin 980 620 160050
Unrelated 20662 1738 22400



5.2. Handwritten evidence 143

Table 5.3: Number of times a contradictory Bayes factor value has been
obtained across 100 trials, with k samples from each writer combination.
In bold, the reference writer and the questioned writers are the same
person (hp is true), “T” marks pairs of twins (ht is true), in the other
entries the participants are unrelated (hu is true).

Questioned writer

k
Reference
writer 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B

1A 57 7T 6 3 0 0 1 1 0 3 0 0 20 10 0 0
1B 7T 38 10 28 22 0 31 30 0 3 0 0 15 12 1 2
2A 6 10 43 1T 0 0 1 1 0 0 0 0 3 2 0 0
2B 3 28 1T 33 8 1 45 47 0 0 1 1 12 10 27 15
3A 0 22 0 8 43 4T 31 20 1 0 1 6 2 2 8 7
3B 0 0 0 1 4T 47 4 1 1 0 17 21 0 0 14 9
4A 1 31 1 45 31 4 36 38T 0 0 8 6 5 5 16 24
4B 1 30 1 47 20 1 38T 40 0 0 1 2 2 15 21 21
5A 0 0 0 0 1 1 0 0 40 15T 0 0 1 3 0 0
5B 3 3 0 0 0 0 0 0 15T 45 0 0 9 10 0 0
6A 0 0 0 1 1 17 8 1 0 0 14 29T 0 0 9 10
6B 0 0 0 1 6 21 6 2 0 0 29T 34 0 0 17 33
7A 20 15 3 12 2 0 5 2 1 9 0 0 61 28T 2 1
7B 10 12 2 10 2 0 5 15 3 10 0 0 28T 68 5 7
8A 0 1 0 27 8 14 16 21 0 0 9 17 2 5 53 41T

5

8B 0 2 0 15 7 9 24 21 0 0 10 33 1 7 41T 42

1A 5 13T 28 0 1 0 0 2 0 8 0 0 59 42 0 0
1B 13T 4 4 64 48 0 50 56 0 0 0 0 38 39 4 5
2A 28 4 11 0T 0 0 0 0 0 0 0 0 3 1 0 0
2B 0 64 0T 3 28 0 78 85 0 0 0 1 19 25 36 45
3A 1 48 0 28 5 7T 57 46 0 0 3 11 4 16 23 36
3B 0 0 0 0 7T 5 1 4 3 0 30 46 0 1 46 25
4A 0 50 0 78 57 1 5 78T 0 1 2 4 5 8 42 37
4B 2 56 0 85 46 4 78T 6 0 0 1 3 20 50 59 57
5A 0 0 0 0 0 3 0 0 5 52T 0 0 2 3 1 0
5B 8 0 0 0 0 0 1 0 52T 11 0 0 29 28 0 1
6A 0 0 0 0 3 30 2 1 0 0 3 50T 0 0 20 24
6B 0 0 0 1 11 46 4 3 0 0 50T 7 0 0 53 69
7A 59 38 3 19 4 0 5 20 2 29 0 0 12 68T 1 0
7B 42 39 1 25 16 1 8 50 3 28 0 0 68T 11 16 18
8A 0 4 0 36 23 46 42 59 1 0 20 53 1 16 10 89T

10

8B 0 5 0 45 36 25 37 57 0 1 24 69 0 18 89T 5
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Table 5.3: Number of times a contradictory Bayes factor value has been
obtained across 100 trials, with k samples from each writer combination.
In bold, the reference writer and the questioned writers are the same
person (hp is true), “T” marks pairs of twins (ht is true), in the other
entries the participants are unrelated (hu is true).

Questioned writer

k
Reference
writer 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B

1A 0 17T 36 0 1 0 0 0 0 5 0 0 90 65 0 0
1B 17T 0 0 81 70 0 65 89 0 0 0 0 49 52 3 2
2A 36 0 0 0T 0 0 0 0 0 0 0 0 3 1 0 0
2B 0 81 0T 0 28 0 99 100 0 0 0 0 18 39 55 51
3A 1 70 0 28 0 5T 91 70 0 0 0 2 1 17 33 49
3B 0 0 0 0 5T 0 2 0 0 0 29 50 0 0 47 42
4A 0 65 0 99 91 2 0 92T 0 0 0 2 2 9 55 67
4B 0 89 0 100 70 0 92T 0 0 0 0 0 24 61 78 81
5A 0 0 0 0 0 0 0 0 0 59T 0 0 4 4 0 0
5B 5 0 0 0 0 0 0 0 59T 0 0 0 62 45 0 0
6A 0 0 0 0 0 29 0 0 0 0 0 54T 0 0 13 21
6B 0 0 0 0 2 50 2 0 0 0 54T 0 0 0 84 86
7A 90 49 3 18 1 0 2 24 4 62 0 0 0 97T 0 0
7B 65 52 1 39 17 0 9 61 4 45 0 0 97T 0 9 16
8A 0 3 0 55 33 47 55 78 0 0 13 84 0 9 0 100T

20

8B 0 2 0 51 49 42 67 81 0 0 21 86 0 16 100T 0

1A 0 8T 21 0 0 0 0 0 0 0 0 0 90 61 0 0
1B 8T 0 0 80 62 0 62 80 0 0 0 0 30 43 0 0
2A 21 0 0 0T 0 0 0 0 0 0 0 0 0 0 0 0
2B 0 80 0T 0 9 0 100 99 0 0 0 0 4 12 46 43
3A 0 62 0 9 0 0T 83 64 0 0 0 0 1 1 11 20
3B 0 0 0 0 0T 0 0 0 0 0 10 37 0 0 34 21
4A 0 62 0 100 83 0 0 98T 0 0 0 0 1 3 59 57
4B 0 80 0 99 64 0 98T 0 0 0 0 0 8 61 64 71
5A 0 0 0 0 0 0 0 0 0 35T 0 0 1 0 0 0
5B 0 0 0 0 0 0 0 0 35T 0 0 0 45 52 0 0
6A 0 0 0 0 0 10 0 0 0 0 0 41T 0 0 0 3
6B 0 0 0 0 0 37 0 0 0 0 41T 0 0 0 80 94
7A 90 30 0 4 1 0 1 8 1 45 0 0 0 100T 0 0
7B 61 43 0 12 1 0 3 61 0 52 0 0 100T 0 6 5
8A 0 0 0 46 11 34 59 64 0 0 0 80 0 6 0 100T

30

8B 0 0 0 43 20 21 57 71 0 0 3 94 0 5 100T 0
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Table 5.3: Number of times a contradictory Bayes factor value has been
obtained across 100 trials, with k samples from each writer combination.
In bold, the reference writer and the questioned writers are the same
person (hp is true), “T” marks pairs of twins (ht is true), in the other
entries the participants are unrelated (hu is true).

Questioned writer

k
Reference
writer 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B

1A 0 0T 0 0 0 0 0 0 0 0 0 0 83 24 0 0
1B 0T 0 0 31 22 0 35 69 0 0 0 0 3 4 0 0
2A 0 0 0 0T 0 0 0 0 0 0 0 0 0 0 0 0
2B 0 31 0T 0 0 0 100 99 0 0 0 0 0 0 2 5
3A 0 22 0 0 0 0T 79 29 0 0 0 0 0 0 0 0
3B 0 0 0 0 0T 0 0 0 0 0 0 5 0 0 5 0
4A 0 35 0 100 79 0 0 89T 0 0 0 0 0 0 11 18
4B 0 69 0 99 29 0 89T 0 0 0 0 0 0 18 28 34
5A 0 0 0 0 0 0 0 0 0 6T 0 0 0 0 0 0
5B 0 0 0 0 0 0 0 0 6T 0 0 0 17 5 0 0
6A 0 0 0 0 0 0 0 0 0 0 0 16T 0 0 0 0
6B 0 0 0 0 0 5 0 0 0 0 16T 0 0 0 60 83
7A 83 3 0 0 0 0 0 0 0 17 0 0 0 99T 0 0
7B 24 4 0 0 0 0 0 18 0 5 0 0 99T 0 0 0
8A 0 0 0 2 0 5 11 28 0 0 0 60 0 0 0 100T

50

8B 0 0 0 5 0 0 18 34 0 0 0 83 0 0 100T 0

T Twins

Table 5.2 reports the number of replications supporting the hypotheses under the
three above scenarios. The errors across 100 comparisons and k samples are detailed
in Table 5.3 in the writer-dependent view.

The direction of the log-Bayes factor with respect to the neutral value of 0 could,
in principle, be used in a decision theory framework, to “choose” which one of the
hypotheses hp and hd is more supported by the evidence. The resulting decisions
taken based on the obtained Bayes factors can be, then, analyzed with the usual
metrics (that is, sensitivity and specificity) from a classification perspective:

Definition 5.1 (Sensitivity)
Sensitivity is the relative frequency across 100 comparisons in which a Bayes factor
value is greater than 1 when the prosecution hypothesis hp is true.

Definition 5.2 (Specificity)
Specificity is the relative frequency across 100 comparisons in which a Bayes factor
value is lower than 1 when the defense hypothesis hd is true.



146 Chapter 5. Combining evidence

Table 5.4: Bayes factor performance: hp vs. hd (ht or hu), according to
the reference writer and the number of samples k. Notice the reduced
specificity for twins even when large sample sizes are considered.

k hd Sensitivity Specificity
Twin 0.57 0.805 Unrelated 0.57 0.93
Twin 0.93 0.5510 Unrelated 0.93 0.85
Twin 1.00 0.4720 Unrelated 1.00 0.81
Twin 1.00 0.5230 Unrelated 1.00 0.85
Twin 1.00 0.6150 Unrelated 1.00 0.92
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Figure 5.6: Bayes factor performance: hp vs. hd (ht or hu), according
to the reference writer and the number of samples k.
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The performance of the decision criterium across hypothesis pairs and the number
of samples k is reported in Table 5.4 and in Figure 5.6 (distinguishing by reference
writer). This confirms what has been seen in the past figures: results are dependent on
which writers are considered. However, the Bayes factor supports the true hypothesis
as k increases.

Note that we are not attempting to classify the items of evidence er and eq, but
only assessing the performance of this method, to understand how often a misleading
Bayes factor is obtained. A classification using the Bayes factor would imply choosing
between hp and hd, disregarding their prior probabilities, the utility/loss function
and violating our understanding of Bayesian reasoning, expressing our conclusions in
absolute terms. (Morey et al., 2016; Taroni et al., 2010)

The full distributions of the Bayes factor values across reference writers are shown
in Figure 5.7. Concerning the hypotheses hp and hu, one can observe the same
conclusions already shown in Figure 5.5 (not distinguishing writers). The support
for/against ht strongly depends on the selected twin pairs. In particular, some of the
writers produce false identifications when compared with their twin (ex. writers 4A,
7A, 8A). Other twins write differently, as if they were unrelated (ex. writers 2A, 3A).
Across k we observe the same trend as in the preceding figure: evidence strength
increases (in absolute value) as more data is compared.

Character-dependent results

For a character-dependent analysis, collected data was first split across the characters
“a”, “d”, “o”. Then, the same protocol as in the previous section was followed inside
each split.

A major side effect is that it is no longer possible to investigate large sample sizes,
as the sampling with replacement was forbidden by the scenario simulation protocol.
Available character counts, thus, greatly reduce the amount of obtainable results, to
only those where writers provided a sufficient number of closed loops. The range of
the sample sizes to consider has also been reduced.

The same statistical analysis as the one performed in the previous character-
independent case was repeated. In particular, the values of the Bayes factors are
shown in Figures 5.8 and 5.9, conditioning by the given character of interest.

These figures did not show any significant difference between the previously
obtained results, confirming what UMAP suggested in the exploratory data analysis
section.
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Figure 5.8: Distributions for the log-Bayes factor values across reference
writers and number of samples, character-dependent. Notice that it is
not possible to compare performances in many of the investigated cases
due to the insufficient number of samples.

5.2.6 Discussion and conclusion

Evaluative findings are consistent with previous results presented in (Bozza et al., 2008)
and Chapter 3, and support the hypothesis that different persons write differently. In
particular, Tables 5.2 and 5.4 show that one needs at least 20 closed loops in evidence
sets to be able to correctly support the source of a written material coming from a
reference writer.

Concerning material coming from different writers, it is interesting to note that
the error rate may not improve by collecting more samples if questioned writers are
aggregated. However, Table 5.3 and Figure 5.6 show that this phenomenon can be
mostly attributed to the performance of particular pairs of twins who write similarly.
The phenomenon, however, does not appear when comparing unrelated persons,
despite the number of comparisons being much greater. This implies that care must
be taken when comparing handwriting coming from different writers, as some of them
may show similar behaviors in terms of the analyzed features.

The limited number of twins in this study is a serious limiting factor, thus it
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is not possible to make any strong claim on the similarity of handwriting across
twins as a general principle. However, Figure 5.7 shows that many log-Bayes factor
values obtained considering twin pairs tend to lie closer to the neutral value of 0
than those across unrelated writers. Also, the decisionalization performance (in terms
of “error rate”) is bad when comparing twins instead of unrelated persons. These
phenomena suggest that twins may reproduce more similar character loops than
unrelated persons.

5.3 Microbiome evidence

In addition to the handwritten specimens, study participants also provided salivary
samples that were afterwards analyzed by the Institute of Microbiology (CHUV),
in order to characterize the salivary microbiome. Among the various possibilities
for giving a quantitative description of the bacterial population in the saliva, the
model described in Chapter 4 could be exploited if the laboratory reports the relative
abundance of each taxon, as done in (Leake et al., 2016). We suppose that the
laboratory is consistently searching for the same taxa across all samples, and no result
is censored (e.g. under the limit of detection, therefore reported as ”0”).

5.3.1 Statistical model

Let us adopt the notation of the model for simple signatures in Section 4.3.2. Let p
be the total number of taxa that the laboratory is able to detect (p = 31 according
to the study design), and let tk be the relative abundance of the k-th taxon, where
tk ∈ [0, 1]. The vector of relative abundances can be written as d = (tk)p

k=1, with∑p
k=1 tk = 1.

Additionally, d will generally differ across the participants and the visits: let us
indicate with dij the relative abundance vector of the i-th participant obtained at the
j-th visit. By noticing that dij belongs to the (p− 1)-simplex, the model in Section
4.3.2 is directly applicable.

Particularly, one may introduce the parameters αi to govern the bacterial variability
across visits, and the parameter ψ to model the between-participants variability.
The Dirichlet-Dirichlet-Gamma model (Section 4.3.2) could be further exploited to
associate αi and ψ to tractable distributions.
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Background parameter elicitation

Depending on the structure of the between-participant level, one could obtain point
estimates for the hyperparameters αi and ψ either using the plug-in approximation
(Section 4.4.1) or the ABC-like algorithm (Section 4.5.1). The choice between the
methods will also depend on the number of observations (i.e. visits) for each participant:
it might be possible that the plug-in estimators require a large number of visits to
deliver stable estimates.

However, the structure of the microbiome dataset should be similar to the one
used to validate the model for the simple signatures (Section 4.4). If the Dirichlet-
Dirichlet-Gamma model is chosen, the plug-in estimators performed well.

In particular, the collected dataset can be considered to be the set of background
observations.

5.3.2 Evaluative scenario
As this is a background-dominant operative condition (see Section 2.5.5), the back-
ground dataset can be exploited to simulate a real case. The evaluative setting is
identical to the one already set for the handwritten data (Section 5.2.4).

The salivary traces (in terms of relative abundances) found on the crime scene
are indicated with eq. The reference salivary samples are indicated with er.

The evaluative hypotheses of interest are:

H = hp : “the salivary traces eq and er come from the same person”
H = hu : “the salivary traces eq and er come from two unrelated persons”
H = ht : “the salivary traces eq and er come from two twins”.

Once one of the two defense hypotheses is considered (indicated with hd), one can
compute the Bayes factor value for hp against hd by applying the scenario simulation
procedure, theoretically defined in Section 2.5.5 and implemented for the Dirichlet-
Dirichlet-Gamma model in Section 4.4.2. Notice that the usage of a bridge sampler
allows a much larger flexibility in the choice for the between-participant model rather
than an ad-hoc Gibbs sampler.

5.3.3 What to expect
The same limitations discussed in Section 4.3.2 and in Section 4.3.2 could also
potentially apply to this situation.

Particularly, it is desirable that the feature vectors dij do not change their length
p. In other terms, the laboratory must search for the same taxa at all visits, and
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report their abundances in the same order. We believe that this is not a significant
limitation, as the laboratory processes must have been calibrated and standardized
prior to the data collection.

The intra-variability of the taxa for a given participant must be estimated using
at most 4 observations (the number of visits). If the number of taxa is large and if
their distributions are uncorrelated, the problem is underdetermined, and the amount
of observations will deliver broad credibility intervals unless one adopts very strong
priors. This problem could be reduced if one reduces the dimensionality of the feature
vector space, for instance by applying a suitable dimensionality reduction algorithm.
However, the compositional model could lose its applicability unless one guarantees
that the reduced vectors still belong to a simplex.

Notice that the relatively low number of visits might not be an issue if the intra-
variability is lower than the inter-variability. To extremes, if the microbiota were as
stable as the DNA, only one visit would suffice to completely define the participants’
microbiota “profile”. However, the stability can only be evaluated after multiple
sample collection sessions.

The Dirichlet distribution could also be a problematic choice. Firstly, one should
verify that the Dirichlet model is a good description of the taxa distributions, both
theoretically and by validating it against the laboratory results. Secondly, it has been
noticed that the Dirichlet-Dirichlet-Gamma model seems to be numerically sensitive
when dealing with very small parameter values. This reflected not only during the
sampling and background estimation procedures, but also to the computational
stability of the Bayes factor value calculation. Alternative and less opinionated
models are available (Section 4.6).

5.4 Combining evidence
In the first part of this Chapter, two separate Bayesian models are introduced for
the handwritten and the salivary evidence, respectively. Once the available prior
information is integrated, each model allows expressing the value of “its” evidence in
the form of a Bayes factor. However, no connection between these models was made,
and the combined evaluation of the evidence is not possible without introducing two
additional assumptions.

Consider the hypothetical crime scene depicted at the beginning of this Chapter,
where two kinds of evidence (a salivary stain and a ransom note) are recovered from
the crime scene. Depending on the particular situation, one could consider several
potential donors of the recovered traces. For instance, it might be reasonable to
suppose that the glass item may have been stained by a third person that was able
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to access the crime scene.
The first assumption is that all crime scene traces have been left by the

same donor, whose identity (i.e. the suspect, a twin of the suspect, or another
unrelated person) is disputed. This greatly simplifies the mathematical model for
the combination of evidence, as it is not necessary to describe two putative sources
(one for the handwritten evidence, the other for the salivary trace). By doing so, the
hypotheses of the joint model can be easily composed by the hypotheses of the two
sub-models.

The second assumption is the independence between the handwritten characters
and the salivary stain, conditioned on the fact that they came from the same donor.
In other terms, knowing the microbiome of a certain person’s saliva does not inform
how that person writes.

5.4.1 Evaluative scenario

Let us introduce some notation. Every variable appearing in the handwriting model
(Section 5.2.4) and in the microbiome model (Section 5.3.2) will be indicated as •H

and •B, respectively. The crime scene traces are indicated with eq =
(
eH

q , e
B
q

)
, while

the reference material is indicated with er =
(
eH

r , e
B
r

)
. The same will also apply to

the evaluative hypotheses of each model.
The first assumption will influence how the evaluative hypotheses are specified.
In this case, the hypotheses of interest are:

H = hp : “the traces eq and er come from the same person”,
H = hu : “the traces eq and er come from two unrelated persons”,
H = ht : “the traces eq and er come from two twins”.

Notice that hu is strictly contained into the intersection of hH
u and hB

u : to be more
precise, hu implies that er will all come from donor Dr, while all crime scene traces
eH

q and eB
q will all come from Dq, unrelated to the donor Dr. The same reasoning

also applies to ht: er will all come from donor Dr, while all crime scene traces eq will
all come from donor Dq, a twin of Dr.

The second assumption, instead, allows one to compute the value of the combined
Bayes factor for a hypothesis pair (say, hp versus hd) by exploiting the available
methods for the separate models.

Recall from Equation (2.10) that the Bayes factor for a hierarchical model can be
written as a ratio of marginal likelihoods:
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BF = m(er, eq | hp)
m(er | hd)m(eq | hd) .

Notice that the second assumption allows splitting each conditional probability as
a product:

m(er, eq | hp) = m(eH
r , e

B
r , e

H
q , e

B
q | hp) = m(eH

r , e
H
q | hp)m(eB

r , e
B
q | hp) .

Also, since hp implies both hH
p and hB

p , one has that

m(eH
r , e

H
q | hp) = m(eH

r , e
H
q | hH

p ) .
This is also true for any other hypothesis, as traces coming from different sources

are always conditionally independent. As a consequence, the Bayes factor can be
written as the product of the Bayes factor values of the separated models:

BF =
m(eH

r , e
H
q | hH

p )
m(eH

r | hH
d )m(eH

q | hH
d )

m(eB
r , e

B
q | hB

p )
m(eB

r | hB
d )m(eB

q | hB
d ) = BFH BFB .

Finally, the values BFH and BFB can be computed by following the algorithms
presented in the related Chapters.

5.4.2 A Bayesian network for the combination of evidence
The joint evaluation of items of evidence can be graphically represented with a
Bayesian network, starting from the one introduced for the generic two-level hierar-
chical model (Section 2.5.2). A similar model is also given in (Taroni, Biedermann,
et al., 2014, ch. 4).

To simplify the diagrams that will be shortly shown, assume that all available
prior information (e.g. background observations, literature search, expert advice) is
already integrated into the model. For instance, if the background observations eb

are available, the between-source parameter ψ should be distributed as ψ | eb. By
doing so, it is safe to omit the nodes corresponding to the background eb and θb.

Consider the generic hypothesis H = hi, where i ∈ {p, d}. Figure 5.10 shows
a simple Bayesian network for the problem where a trace eq is recovered from the
crime scene, coming from the true source with parameters3 θq. The reference material

3From now on, we identify a source with its parameters whenever no ambiguity is introduced:
for instance, we will indicate “the source θq” instead of “the source parametrized by θq”.
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er is available, coming from the known donor θr. The node θq represents the true
source of the questioned material: as it is never observed, θq becomes θr under hp,
and the defense source θd under hd (e.g. a twin or an unknown person). Notice the
reduced graph contains enough elements to calculate the Bayes factor by applying
the previously described procedures.

This Bayesian network is the basic building block for the one that could describe
the problem of combination of evidence. By considering evidence of two different
kinds {H,B}, the network in Figure 5.10 can be duplicated and juxtaposed, adding
the evidence superscripts where necessary. The hypothesis pair for the combined
evidence H can be introduced as an additional node: H = hp implies HH = hH

p

and HB = hB
p , and H = hd implies HH = hH

d and HB = hB
d . Graphically, this is

represented with a divergent connection HH ← H → HB. The obtained Bayesian
network is shown in Figure 5.11.

Notice that the two assumptions are incorporated into the graph. By the first
assumption, the handwritten and biological evidence have been deposited by the same
donor. Graphically, the nodes θH

q and θB
q both refer to the donor d. If the true source

of the handwritten material differed from the one of the biological evidence, two nodes
θH

dH and θB
dB should have been respectively introduced to allow this possibility. The

second assumption, instead, states that different types of evidence are conditionally
independent. Graphically, the hypothesis nodes d-separate the left and the right part
of the network: in other terms, whenever any hypothesis is instantiated (for instance
when evaluating a Bayes factor), information cannot flow from one type of evidence
to the other.

θr θq

θdψ

er eq

H

Figure 5.10: The basic Bayesian network for the problem of combination
of items of evidence, described with a two-level hierarchical model. er is
the reference material, eq is the questioned material coming from the
true source θq (latent). Shaded nodes are observed.



5.4. Combining evidence 157

θHr θHq

θHdψH

eHr eHq

HH HB θBq θBr

θBd ψB

eBreBq

H

Figure 5.11: A Bayesian network for the problem of combination of
evidence of types H and B. The node H is the hypothesis pair for the
combined model. Shaded nodes are observed.

5.4.3 What to expect

As frequently happening when combining information from multiple items of evidence,
one can expect to encounter several issues that are not present when analyzing the
items separately.

One of these issues is the need for a probabilistic description of the relation
between the items (in this case, the handwritten material and the biological trace).
The model shown in this Chapter is fully specified by introducing the aforementioned
first and second assumptions, thus rendering the items of evidence independent,
conditionally on the donor. We believe that these assumptions are fit for the purposes
of this Chapter. If these assumptions do not hold, one may encounter situations
where the observations may lead to different conclusions if they are considered jointly
rather than separately: this fact is generally known as “the problem of conjunction”.
The interested reader may refer to (Taroni, Biedermann, et al., 2014, ch. 8) for more
details.

Another issue is the fact that the items of evidence may convey strongly different
information in terms of the order of magnitude of the respective Bayes factor. This
can be problematic if the model is not sufficiently complex, as the “stronger” item
may overcome the “weakest” observations. For instance, assume that a ransom
note and a blood stain (both supposed independent, but coming from the same
source) are recovered from a crime scene, and a suspect is available. The separate
analyses both support the hypothesis that the suspect is the source of the trace: the
DNA profile matches the suspect’s DNA profile with a Bayes factor of 109, while a
forensic document examiner reports a Bayes factor value of 100. It is evident how
the handwritten evidence vanishes compared to the DNA analyses, since the FDE’s
conclusion has a limited value on the joint model. However, it is known that DNA
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evidence frequently leads to large values of the Bayes factor, potentially shadowing
problems (e.g. contaminations, traces left for innocent reasons) that might not be
relevant at the source level, or may not appear in other “weaker” items of evidence.
A properly stated Bayesian model should account for these possibilities, for instance
by addressing multiple propositions in a hierarchical form (Cook et al., 1998a). Even
if the model is well-posed and the results properly interpreted, the shadowing effect
may still incur if a verbal scale for the Bayes factor is used.

Concerning this Chapter, we expect this second issue to be particularly concerning.
All evidence items are mathematically translated to a high-dimensional representation
that escapes intuition (the “curse of dimensionality”). As a consequence, the Bayes
factor is computed only through numerical simulations, with no analytical insights
available. Its range and its behavior are potentially sensitive to a number of parameters
that must be set each time new casework is considered (e.g. the number of recovered
items), and other parameters that relate to the computational procedures. The
respective Bayes factors will, thus, strongly depend on how these parameters are
set, and computational4 and epistemological5 inaccuracies may result in Bayes factor
values that do not correctly represent the reality (see i.e. (Hopwood et al., 2012;
Kaye, 2009)).

As further complication, the handwritten material and salivary traces have clearly
different characteristics in terms of observations and number of variables. For instance,
it may be reasonable to suppose that the handwritten material might show a large
number of closed character loops (e.g. a ransom note), but only one salivary stain is
available, providing no information on the salivary intra-variability. Moreover, each
character loop is described by a vector of length pH = 7 (the number of retained
Fourier harmonics, and the mean radius), while the salivary profile has a length that
depends on the test kit used (pB = 31 according to the study design). A more familiar
although unrealistic6 situation would be the comparison of two DNA profiles with
pH and pB matching loci. Consequently, it might be possible that the handwritten
evidence may overcome the salivary observations or vice versa, depending on the
complete model obtained once the laboratory results will be made available.

4E.g. how well the calculated posteriors converge, or the sensitivity of the model on a particular
(hyper)parameter.

5E.g. how different is the model from the reality, or whether the model is capable of correctly
evaluating the evidence under both hypotheses.

6DNA evidence has zero intra-variability, neglecting laboratory errors, drop-outs, spurious
contaminations and significant degradations.
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5.5 Epilogue
The situation encountered in this Chapter offers many opportunities for reflection,
further improvements, as well as novel discoveries.

The handwriting part shares the same approach as Chapter 3 (natural handwriting)
and is therefore subject to the same limitations and observations. Some of them
concern the intrinsic characteristics of the model, such as its sensitivity on various
parameters (e.g. the degrees of freedom of the inverse Wishart distribution) and
the dependence on a background dataset. Others relate to the issue of combining
evidence, the central theme of this Chapter.

In Chapter 3, it has been shown how a model can assess multiple items of evidence
of the same kind (Section 3.7) whenever a joint description is available (i.e. a model
encompassing multiple harmonic contributes). However, Chapter 4 has stressed that
a proper assessment is required, and it would be desirable to consider evidence as a
whole. For example, one of the handwritten features (the position of the paraph) was
not quantified by our model, yet it revealed to bear a large evidential value by an
FDE (Section 4.7).

The present Chapter, instead, considers a situation where multiple kinds of
evidence are jointly evaluated. As this task is significantly different than the previous
instances, the solution should also be built using a different strategy. In this case,
by pairing two additional model assumptions with a Bayesian network (Section 5.4),
we have been able to consider each kind of evidence separately, falling back to the
previous situation. However, domain expertise is required in order to criticize and
verify the additional assumptions: failure to address this aspect would lead to an
incorrect joint evaluation of the evidence, such as in People v. Collins7, no matter
how sophisticated is the statistical model.

7People v. Collins, 68 Cal.2d 319.





Chapter 6

Conclusion

6.1 Outcomes

The primary goal of this thesis was to strengthen the way handwritten evidence is
quantified and reported in an evaluative setting. We focused on giving quantitative
descriptions of handwritten material consisting of natural handwriting samples and
a particular instance of a forged signature by considering two types of quantitative
descriptors: one exploits the presence of characters with closed loops, the other
seeks to quantify certain proportions between line lengths. Evidence was evaluated
following the ENFSI guidelines for evaluative reporting (Willis et al., 2015), notably
by adopting a Bayes factor approach to translate the observations to a measure of
support towards contrasting hypotheses of interest.

The first concrete situation, encountered in Chapter 3, involved questioned hand-
written material exhibiting characters with closed loops, for instance a ransom letter,
along with material coming from a reference writer. The approach was based on the
Fourier descriptors first introduced by Marquis et al. (2005), and the Bayesian hierar-
chical model introduced by Bozza et al. (2008). An optimized ad-hoc implementation
was developed, allowing for a much deeper exploration of the properties of the model,
in particular of its Bayes factor. The implementation was first validated using fake
(generated) data, as recommended by recent Bayesian practices (Gabry et al., 2019;
Gelman et al., 2009). Results in past literature have been successfully reproduced by
considering data collected under similar circumstances. Also, it has been possible to
obtain several bounds on quantities of forensic interest, for instance the minimum
number of samples needed in order to obtain a Bayes factor value with a given order
of magnitude. Additionally, the Fourier descriptors were extended to a novel situation,
notably the comparative analysis of a particular forged signature exhibiting closed
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loops. In this case, the model appears to be able to correctly support the “same
writer” hypothesis; when the questioned material has been written by someone else
than the reference writer, results are mixed, strongly depending on the writer.

The second situation of forensic interest, encountered in Chapter 4, considered
another signature that did not appear to show strongly discriminating features except
for the presence of “peaks” and “valleys”. The subjectively flowing character of the
signature’s master pattern has been translated to a novel quantitative descriptor, more
properly characterizing the ratio between various distances between these peaks. A
Bayesian hierarchical model is introduced, simultaneously leveraging on the framework
of Chapter 3 and adapting it to the alleged quantitative properties of the observations.
The model has been implemented using the Stan modeling language, and the Bayes
factor is computed with a bridge sampling approach, trading off computational speed
for flexibility. As before, the implementation has been validated against fake data,
to make sure that the model is able to recover the generating parameters. Since the
casework lacked a background dataset and quantitative expert knowledge, a strategy
to elicit the hyperparameters has been devised inspired by ABC methods. To our
knowledge, this result, although purely data-driven, is an entirely novel development
in Bayesian methods applied to forensic science. Also, it should not suffer from the
limitations raised by Robert et al. (2011) when ABC is used to compute a Bayes
factor, since the Bayes factor is computed with a bridge sampler.

As the Bayesian methodology is not tied to any specific situation, any development
could potentially have a transdisciplinary scope, bridging more complex scenarios
involving various kinds of evidence. In this thesis, the model that described the forged
signatures in the latter Chapter revealed to be applicable to compositional data.

A challenging and forensically interesting situation was considered in Chapter
5: a case where handwritten material and a salivary trace are recovered on a crime
scene, a suspect is available for comparison, and the suspect claims that a twin was
implied (to preclude the exploitation of DNA).

First, evidence was separately considered: Chapter 3 has been used to describe
the handwritten material, while the model for compositional data developed in
Chapter 4 has been proposed to be adapted to the salivary stain. Then, a third
model for the combination of evidence has been introduced. Operatively, Chapter 5
involved experimental data collected in collaboration with the Institute of Microbiology
(CHUV) of the University of Lausanne, in the form of handwritten specimens as well
as salivary samples from twin pairs. However, the sample collection and analysis have
been disrupted by the COVID-19 pandemic.

The handwritten material has been analyzed in full detail, although on a limited
cohort. Results support the same conclusions as Chapter 3, namely that a writer’s
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intra-variability is generally smaller than inter-variability, so that the developed model
can discriminate between the competing hypotheses. Interestingly, the performance
is mixed when twins are considered: this supports the hypothesis that twins tend to
write more similar than unrelated persons. However, a follow-up study is required on
a much larger cohort, to further confirm or disprove these results.

The salivary samples have been collected and sequenced by the partner institution,
but were not further statistically analyzed. Instead, Chapter 5 discussed how the
previously developed methods could be exploited for the purpose of the study. To
end the Chapter, a simple model for the combination of the two types of evidence is
devised based on two assumptions that should hold on the complete dataset. Since a
number of problems were possibly expected to arise once the analyses resume, the
corresponding arguments and solutions were put forward as an effort of anticipating
and leading future works.

6.2 Major issues and their solutions
Bayesian statistics is the common thread that underpins our understanding of un-
certainty in forensic science, thus linking together all premises and results in this
thesis. As a consequence, many difficulties of different nature have arisen, and the
corresponding solutions were sought.

6.2.1 Theoretical issues
The first class of issues concerns the more theoretical aspects of the Bayesian frame-
work. It is always assumed that two (or more) competing models are available, both
explaining the evidence according to the prosecution and the defense hypothesis. The
Bayes factor is a measure of the value of evidence, restricted to those models. However,
to our knowledge, only few practitioners investigated the possible implications if one
of these models is “incorrect” (meaning that it misrepresents the probability of a
hypothetical set in the evidence space), thus also raising the question if a “correct”
model even exists. Bernardo & Smith (1994) introduced the terms M-closed and
M-open, respectively whether one of the evaluated models is “correct” or whether no
attempt at searching for a correct model is made. The extent of these consequences
on probability assignments, for instance, the numerator and the denominator of
the Bayes factor, is currently an open problem (see Section 2.6.5), and the issue
worsens once their ratio is computed. A related phenomenon can happen due to
measure-theoretical reasons when the model and the hypothesis pair are defined
such that the Bayes factor is not mathematically well-posed (Wetzels et al., 2010).



164 Chapter 6. Conclusion

Notice that this situation might not appear pathological at first glance, but can arise
when one of the hypotheses involves an exact equality constraint between continuous
variables (see Section 2.6.4).

Since realistic data never perfectly “fit” any statistical model, very recent Bayesian
developments consider the model specification issue to be unavoidable, advocating
instead for a simulation-based approach, including the choice of the prior among
its steps (Gelman et al., 2017; Vanpaemel & Lee, 2012). However, this results in
considerable friction between Bayesian statisticians and forensic scientists, notably
concerning the usage of the Bayes factor. The formers see the Bayes factor as a
way to choose one model out of a set of alternative explanations: to that purpose,
there are far better tools, such as the aforementioned simulation-based approach
(Gelman et al., 2017; Vanpaemel & Lee, 2012). Forensic scientists, instead, consider
the Bayes factor as the measure of choice, since it is the value that translates prior
odds to posterior odds. To this purpose, it could be interesting to explore new ways
to obtain theoretical bounds on the Bayes factor, for instance whether developing a
more complete model of the casework is too costly (whilst being, perhaps, practically
useless) (de Zoete & Sjerps, 2018).

To the more theoretical issues, one should also include the debate on which
information is used to infer the values of the (hyper)parameters, and how the elicitation
is performed. As already seen in Section 2.5.3, casework data can be used together
with the background observations, or the process could be split into two distinct
steps, first by eliciting the priors using background data alone, then by evaluating
the casework evidence. In both cases, Bayesian reasoning should translate the
updated belief to a probability distribution on the (hyper)parameters, to feed the
algorithm that computes the Bayes factor. This step can be further simplified or
approximated, depending on the statistical model or the chosen algorithm. In this
thesis the aforementioned probability distribution on the (hyper)parameters (namely,
the generic inter-variability parameter ψ) was collapsed to a single point estimate,
as designed by the hierarchical model. Alternatively, one could have added another
level to the hierarchical model, assigning a probability distribution to ψ.

6.2.2 Operative issues
Even if the theoretical underpinnings were completely understood, most situations
considered in this thesis involve many assumptions that are difficult to verify. As
it is known, the Bayesian framework uses probability distributions to represent the
uncertainty on available measurements. The lack of empirical research and a strong
reason (e.g. a physical law) to select the model’s probability distributions implied that
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the chosen model should be verified using data-oriented procedures (“goodness-of-fit”).
However, most of these measurements are highly dimensional, so classical tools to
check model assumptions (e.g. Q-Q plots) are either not applicable or are currently
under active research. Additionally, analogously to the previous section, the key
question should not be whether the specified model is “correct”, rather whether the
unavoidable deviations of the data from the model have a strong impact on the
resulting inferences, the Bayes factor among them. In this thesis, these issues have
been investigated by conducting sensitivity analyses of the Bayes factor to selected
model or casework parameters, for instance the number of recovered specimens or
the number of degrees of freedom. Notice that a more thorough analysis should also
evaluate the dependence of the inferences of interest to the model itself, for example
by supplying data generated by a process that is markedly different (“wrong”) from
the fitted one.

Another instance of an operative issue consisted in the situation where a large
background dataset was not available at the time of analysis for the reasons given in
Section 4.5.1. A data-driven algorithm was developed by exploiting the generative
properties of Bayesian models, analogously to the commonly known Approximate
Bayesian Computation methods: instead of relying on the background observations,
parameter beliefs were updated by comparing the casework data to the generated
one. We believe that this procedure is novel in this context, and could be used as a
starting point during the case pre-assessment, as well as offering a number of future
research opportunities.

6.2.3 Computational issues
The third class of issues relates to the notoriously difficult computation of the Bayes
factors. A large number of methods are available in the statistical literature, each
one with its own strengths and weaknesses (Section 2.6.4). However, no method
is clearly superior to all the others, but they dramatically differ in terms of ease
of implementation, assumptions, operative conditions, stability and flexibility. To
give an example, in this thesis we used an ad-hoc Gibbs sampler for the model
in Chapter 3 and a bridge sampler in Chapter 4. The Gibbs sampler has been
thoroughly optimized for the problem at hand to allow extremely fast calculations:
however, this step required months of work, and the obtained algorithm cannot be
easily adapted to another model, for instance by introducing another parameter. The
bridge sampler, instead, rests on the Stan modeling language: inference is slower,
sampling from discrete variables is forbidden, but model specification is far more
flexible, allowing parameters to be introduced or removed at will. Also, one does not
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need to worry about implementation details, such as checking that all distributions
have been correctly parametrized.

Notice that having a fast computational algorithm is not useless: on the contrary,
it allows conducting much deeper sensitivity analyses to assess the performance of
the model, that the Bayes factor is well-behaved, and that the evidence is robustly
assessed. Moreover, the Bayesian workflow should be a closed loop, where a model is
evaluated against its predictions, then eventually refined (Gabry et al., 2019).

6.3 Future research directions
As discussed in this Chapter, this thesis has explored various forensic scenarios,
each one coupled with its own issues, challenges and the proposed approach to the
interpretation of evidence. Notice that the Bayesian models hereby developed are
by no means restricted to handwritten material, as demonstrated by the proposed
application of Chapter 4 to the study of microbiological populations, or the features
in Chapter 3 originating from the field of anthropology (Schmittbuhl et al., 1998). At
the same time, Bayesian statistics has been enjoying lively and vivid developments
while this thesis was being written, from its theoretical foundations (see, for instance,
Section 2.6.5) to the available computational tools (e.g. the recent diffusion of the
Stan modeling language (Carpenter et al., 2017)). Forensic science did not enjoy
the same luxury: future research could address the integration of the novel Bayesian
practices into all forensic disciplines. On the other hand, many of the open problems
are still standing, such as the understanding and the communication of Bayes factors
in complex scenarios. We believe that the adoption of these new tools and paradigms
could bring novel interest to the matter, stimulating new developments in all forensic
disciplines.
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