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coeflicients having not the largest energy in the compressed
data vector are discarded. In a third step, for each com-
pressed data vector, a compression error is determined in
dependence on the discarded coefficients in the compressed
data vector. In a fourth step, at least one of an upper and a
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1
METHOD AND DEVICE FOR DATA MINING
ON COMPRESSED DATA VECTORS

NATIONAL STAGE PRIORITY

This is a U.S. national stage of application No. PCT/
1B2013/053228, filed on Apr. 24, 2013. Priority under 35
US.C. § 119(a) and 35 U.S.C. § 365(b) is claimed from
Great Britain Patent Application No. 1207453.0, filed Apr.
26, 2012, and all the benefits accruing therefrom under 35
U.S.C. § 119, the contents of which in its entirety are herein
incorporated by reference.

FIELD OF THE INVENTION

The invention relates to a method and to a device for data
mining on compressed data vectors leveraging a certain
metric being expressible as a function of the Euclidean
distance.

BACKGROUND

A perennial problem in data analysis is the increasing
dataset sizes. This trend dictates the need not only for more
efficient compression schemes, but also for analytic opera-
tions that work directly on the compressed data. Efficient
compression schemes can be designed based on exploiting
inherent patterns and structures in the data. Data periodicity
is one such characteristic that can significantly boost com-
pression.

Periodic behavior is omnipresent, many types of collected
measurements exhibit periodic patterns, including weblog
data [1, 2, 3], network measurements [4], environmental and
natural processes [5, 6], medical and physiological measure-
ments. The aforementioned are only a few of the numerous
scientific and industrial fields that handle periodic data.

When data contain inherent structure, efficient compres-
sion can be performed with minimal loss in data quality. This
is achievable by encoding the data using only few high-
energy coefficients in a complete orthonormal basis repre-
sentation, e.g., Fourier, Wavelets, Principal Component
Analysis (PCA).

In the data-mining community, searching on time-series
data under the Euclidean metric has been studied exten-
sively, as e.g., described in [8]. However, such studies have
typically considered compression using only the first Fourier
or wavelets. The use of diverse sets of coefficients has been
studied as described in [1].

The majority of data compression techniques for sequen-
tial data use the same set of low-energy coeflicients whether
using Fourier [7, 8], Wavelets [9, 10] or Chebyshev poly-
nomials [11] as the orthogonal basis for representation and
compression. Using the same set of orthogonal coefficients
has several advantages: First, it is immediate to compare the
respective coefficients. Second, space-partitioning indexing
structures, such as R-trees, may be directly used on the
compressed data. Third, there is no need to store also the
indices of the basis functions that the stored coefficients
correspond to. The disadvantage may be that both object
reconstruction and distance estimation may be far from
optimal for a given fixed compression ratio.

Side-information may also be recorded, such as the
energy of the discarded coefficients, to better approximate
the distance between compressed sequences by exploiting
the Cauchy-Schwartz inequality [13].
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In US 2009/0204574 A1 (see [25]), the distance estima-
tion between one compressed and one uncompressed data
vector is examined.

BRIEF SUMMARY OF THE INVENTION

According to an embodiment of a first aspect, a method
for data mining on compressed data vectors by a certain
metric being expressible as a function of the Euclidean
distance is suggested. In a first step, for each compressed
data vector, positions and values of such coeflicients having
the largest energy in the compressed data vector are stored.
In a second step, for each compressed data vector, the
coeflicients having not the largest energy in the compressed
data vector are discarded. In a third step, for each com-
pressed data vector, a compression error is determined in
dependence on the discarded coefficients in the compressed
data vector. In a fourth step, at least one of an upper and a
lower bound for the certain metric is retrieved in dependence
on the stored positions and the stored values of the coeffi-
cients having the largest energy and the determined respec-
tive compression errors.

By retrieving the upper and a lower bounds for the certain
metric in dependence on the stored positions and the stored
values of the coefficients having the largest energy and the
determined compression errors, the bounds may be provided
as tight as possible. Obtaining tight bounds effects a reduc-
tion in uncertainty on data-mined similarities of the com-
pressed data vectors. Thus, data-mining on the compressed
data vectors may be enhanced.

In particular, because of the provided tightness of the
bounds, data-mining on the compressed data vectors repre-
sents a good approximation for data-mining on uncom-
pressed data vectors.

The respective compression error is determined in depen-
dence on a sum of the energy of the discarded coefficients in
the compressed data vectors.

Contrary to [25], according to embodiments of the present
scheme, the distance estimation is examined when both data
vectors are compressed using high energy coefficients.

An example for a data vector may be a high dimensional
data vector or a time-series data sequence.

According to some implementations, assuming two com-
pressed data vectors, the tightest possible upper and lower
bounds on the original distance between the uncompressed
objects may be provided. By tightest it is meant that given
the information that no better estimate can be derived.
Distance estimation is fundamental for data mining, because
the majority of mining and learning tasks are distance-based,
including clustering, e.g. k-Means or hierarchical, k-NN
classification, outlier detection, pattern matching, and the
like.

According to some implementations, the problem of tight
distance estimation may be formulated as two optimization
problems for obtaining lower/upper bounds. Both problems
can be solved simultaneously by solving a single convex
optimization program. Details are given below.

According to some implementations, the necessary and
sufficient Karush-Kuhn-Tucker (KKT) conditions for an
optimal solution are derived and the properties of optimal
solutions are provided.

According to some implementations, analysis to derive
exact algorithms for obtaining the optimal lower/upper
bounds are used.

Accordingly, the estimated lower/upper bounds on the
distance are optimally tight, so as to minimize the uncer-
tainty on the distance estimation. This implies in turn that the
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present scheme may least impact any distance-based mining
operation operating directly on the compressed data.

According to some implementations, a distinct set of
coeflicients is maintained for each sequence, and the -norm
of the compression error is recorded.

According to some implementations, the tightest provable
estimation of the -norm or the correlation is provided.
Further, the present scheme may execute at least two orders
of magnitudes faster than a numerical solution obtained by
a convex solver. The present scheme may be applicable to
periodic data, to any sequential or high-dimensional data as
well as to any orthogonal data transformation used for the
underlying data compression scheme.

In an embodiment, the metric is embodied as the Euclid-
ean distance or as a correlation or as a cosine similarity, and
the like.

In a further embodiment, the coefficients in the respective
compressed data vector having the largest energy are iden-
tified by ordering the coeflicients of the compressed data
vector according to their respective energy and by selecting
a predefined number of the top-ordered coefficients. There-
fore, a fixed, pre-determined number of coeflicients may be
stored for providing a fixed compression ratio.

In a further embodiment, the coefficients in the respective
compressed data vector having the largest energy are iden-
tified by selecting a minimum number of those coefficients
resulting in a predetermined compression error. Here, a
fixed, pre-determined compression error may be provided.

In a further embodiment, all coefficients in the respective
compressed data vector that have an energy higher than a
predefined energy threshold are stored as the coefficients
having the largest energy.

In a further embodiment, different positions of coeffi-
cients having the largest energy in either or both of the two
compressed data vectors are stored. Thus, different sets of
coeflicients having the largest energy in the compressed data
vectors are stored.

In a further embodiment, data vectors are transformed into
the compressed data vectors represented by said coefficients
by a certain lossy compression transformation having a
certain compression ratio.

In a further embodiment, at least one of the compression
transformation and the compression ratio are selected.

In a further embodiment, the compression transformation
is embodied by an invertible linear transformation having a
complete orthonormal basis. Examples for such an invertible
linear transformation are Discrete Fourier transformation
(DFT), Principle Component Analysis (PCA), ak.a. Kar-
hunen-Loeve expansion, Chebyshev polynomials, and
wavelets.

In a further embodiment, the data vectors are embodied by
periodic network data transferred over a communication
network.

In a further embodiment, the upper and lower bounds are
exactly retrieved by a double water-filling algorithm in
dependence on the stored positions and the stored values of
the coefficients having the largest energy and the determined
compression errors, in particular without any approximate
numerical method.

In a further embodiment, within the double water-filling
algorithm for retrieving the upper and lower bounds for the
two compressed data vectors, first positions are used, where
the coefficients are discarded for the first compressed data
vector and stored for the second compressed data vector,
second positions are used, where the coefficients are stored
for the first compressed data vector and discarded for the
second compressed data vector, and third positions are used,
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where the positions of the coefficients are mutually dis-
carded for the first and second data vectors.

In a further embodiment, the discarded coeflicients of the
first compressed data vector at the first positions are esti-
mated by a water-filling algorithm using an optimal estimate
of the compression error of the first compressed data vector
at the first positions. Further, the discarded coefficients of the
second compressed data vector at the second positions are
estimated by the water-filling algorithm using an optimal
estimate of the compression error of the second compressed
data vector at said second positions.

In a further embodiment, the Cauchy-Schwarz inequality
is exploited for optimizing the correlations in the third
positions of the first and second compressed data vectors.

Any embodiment of the first aspect may be combined
with any embodiment of the first aspect to obtain another
embodiment of the second aspect.

According to an embodiment of a second aspect, a com-
puter program is suggested which comprises a program code
for executing the method of the above first aspect for data
mining on compressed data vectors when run on at least one
computer.

According to an embodiment of a third aspect, a device
for data mining on compressed data vectors by a certain
metric being expressible as a function of the Euclidean
distance is suggested. The device comprises a storage, a
discarder, a determiner, and a retriever. The storage is
configured to store positions and values of such coefficients
having the largest energy in the respective compressed data
vector. The discarder is configured to discard the coeflicients
having not the largest energy in the respective compressed
data vector. The determiner is configured to determine a
respective compression error in dependence on the discarded
coeflicients in the respective compressed data vector. The
retriever is configured to retrieve at least one of an upper and
a lower bound for the certain metric in dependence on the
stored positions and the stored values of the coefficients
having the largest energy and the determined compression
errors.

The storage may be any storing means. Moreover, the
discarder may be any means for discarding, the determiner
may be any means for determining, and the retriever may be
any means for retrieving.

The respective means may be implemented in hardware
and/or in software. If said means are implemented in hard-
ware, it may be embodied as a device, e.g. as a computer or
as a processor or as a part of a system, e.g. a computer
system. If said means are implemented in software it may be
embodied as a computer program product, as a function, as
a routine, as a program code or as an executable object.)

In the following, exemplary embodiments of the present
invention are described with reference to the enclosed
figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an embodiment of a sequence of method
steps for data mining on compressed data vectors;

FIG. 2 shows a schematic block diagram of an embodi-
ment of a device for data mining on compressed data
vectors;

FIG. 3 shows a diagram illustrating distance estimation
between a compressed sequence and a query represented in
a complete orthonormal basis, wherein both sequences are
compressed by storing the first coefficients;

FIG. 4 shows a diagram illustrating distance estimation
between a compressed sequence and a query represented in
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a complete orthonormal basis, wherein the highest energy
coefficients are used for one sequence and the other
sequence is uncompressed;

FIG. 5 shows a diagram illustrating a distance estimation
between a compressed sequence and a query represented in
a complete orthonormal basis, wherein both sequences are
compressed using the highest energy coefficients;

FIG. 6 shows a diagram illustrating two sequences of
uncompressed data;

FIG. 7 shows a diagram illustrating two sequences com-
pressed using the first coefficients;

FIG. 8 shows a diagram illustrating two sequences com-
pressed using the coefficients with the highest energy;

FIG. 9 shows a visual illustration of sets PO, P1, P2, P3;

FIG. 10 shows a plot of four functions, and

FIG. 11 shows a schematic block diagram of an embodi-
ment of a system adapted for data mining on compressed
data vectors.

Similar or functionally similar elements in the figures
have been allocated the same reference signs if not other-
wise indicated.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

In FIG. 1, an embodiment of a sequence of method steps
for data mining on compressed data vectors by a certain
metric being expressible as a function of the Euclidean
distance is depicted. The metric may be embodied as the
Euclidean distance or as a correlation or as a cosine simi-
larity. The data vectors may be embodied by periodic
network data transferred over a communication network.
The data vectors are transformed into the compressed data
vectors represented by coefficients by a certain lossy com-
pression transformation having a certain compression ratio.
In this regard, at least one of the compression transformation
and the compression ratio may be selected. Moreover, the
compression transformation is embodied by an invertible
linear transformation having a complete orthonormal basis,
for example by a Discrete Fourier transformation (DFT), by
Principle Component Analysis (PCA), by Chebyshev poly-
nomials, or by wavelets.

Said method has the following steps 101 to 104:

In step 101, for each compressed data vector, positions
and values of such coeflicients having the largest energy in
the compressed data vector are stored.

The coefficients in the respective compressed data vector
having the largest energy may be identified by the one of the
following three alternatives:

In a first alternative, the coefficients of the compressed
data vector are ordered according to their respective energy.
Then, a predefined number of the top-ordered coefficients
are selected.

In a second alternative, the coefficients in the respective
compressed data vector having the largest energy are iden-
tified by selecting a minimum number of those coefficients
resulting in a predetermined compression error.

In a third alternative, all coeflicients in the respective
compressed data vector that have an energy higher than a
predefined energy threshold are stored as the coefficients
having the largest energy.

Further, within said step 101, different positions of coet-
ficients having the largest energy in at least two compressed
data vectors are stored. As a result, different sets of coeffi-
cients having the largest energy in the compressed data
vectors are stored.
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In step 102, for each compressed data vector, the coeffi-
cients having not the largest energy in the compressed data
vector are discarded.

In step 103, for each compressed data vector, a compres-
sion error is determined in dependence on the discarded
coeflicients in the compressed data vector. The compression
error is reported as the L,-norm of the discarded coefficients.

In step 104, at least one of an upper and a lower bound for
the certain metric is retrieved in dependence on the stored
positions and the stored values of the coefficients having the
largest energy and the determined compression errors.

In particular, the upper and lower bounds are exactly
retrieved by a double water-filling algorithm in dependence
on the stored positions and the stored values of the coeffi-
cients having the largest energy and the determined com-
pression errors.

Within the double water-filling algorithm for retrieving
the upper and lower bounds for the two compressed data
vectors, first positions (P1) are used, where the coefficients
are discarded for the first compressed data vector and stored
for the second compressed data vector, second positions (P2)
are used, where the coeflicients are stored for the first
compressed data vector and discarded for the second com-
pressed data vector, and third positions (P3) are used, where
the positions of the coefficients are mutually discarded for
the first and second data vectors. Moreover, the discarded
coeflicients of the first compressed data sequence at the first
positions (P1) are estimated by a water-filling algorithm
using the optimal estimate of the compression error of the
first compressed data sequence at the first positions (P1), and
wherein the discarded coefficients of the second compressed
data sequence at the second positions (P2) are estimated by
the water-filling algorithm using the optimal estimate of the
compression error of the second compressed data sequence
at said second positions (P2). The Cauchy-Schwarz inequal-
ity is exploited for optimizing the correlations in the third
positions (P3) of the first and second compressed data
sequences.

FIG. 2 shows a schematic block diagram of an embodi-
ment of a device 20 for data mining on compressed data
vectors by a certain metric being expressible as a function of
the Euclidean distance.

The device 20 includes a storage 21, a discarder 22, a
determiner 23, and a retriever 24. The storage 21 is config-
ured to store positions and values of such coefficients having
the largest energy in the respective compressed data vector.
The discarder 22 is configured to discard the coefficients
having not the largest energy in the respective compressed
data vector. The determiner 23 is configured to determine a
respective compression error in dependence on the discarded
coeflicients in the respective compressed data vector. The
retriever 24 is configured to retrieve at least one of an upper
and a lower bound for the certain metric in dependence on
the stored positions and the stored values of the coefficients
having the largest energy and the determined compression
errors.

For illustrating the enhanced effect of tighter bounds of
the present scheme compared to conventional solutions,
FIGS. 3 to 5 are depicted.

In this regard, FIG. 3 shows a diagram illustrating dis-
tance estimation between a compressed sequence and a
query represented in a complete orthonormal basis, wherein
both sequences are compressed by storing the first coeffi-
cients. The distance in FIG. 3 is 6.4.

FIG. 4 shows a diagram illustrating distance estimation
between a compressed sequence and a query represented in
a complete orthonormal basis, wherein the highest energy
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coefficients are used for one sequence and the other
sequence is uncompressed. The distance in FIG. 4 is 4.3.

FIG. 5 shows a diagram illustrating a distance estimation
between a compressed sequence and a query represented in
a complete orthonormal basis, wherein both sequences are
compressed using the highest energy coefficients. The dis-
tance in FIG. 5 is between 5.7 and 7.2.

Moreover, FIG. 6 shows a diagram illustrating two
sequences of uncompressed data, FIG. 7 a diagram illus-
trating two sequences compressed using the first coefficients
(cl), and FIG. 8 a diagram illustrating two sequences
compressed using the coefficients with the highest energy
(c2).

The following sections Searching Data Using Distance
Estimates, Notation, Motivation and Problem Formulation,
Equivalent Convex Optimization Problem, and Exact Solu-
tions may illustrate the functional principle of the present
invention:

Searching Data Using Distance Estimates

A database DB is considered, that stores sequences as V
high-dimensional complex vectors xX?€CY, i=1, . . . V. The
examined search problem may be abstracted as follows: a
user is interested in finding the k most ‘similar’ sequences to
a given query sequence qEDB, under a certain distance
metric d:

die:R¥»C

This is the most basic and yet the most fundamental
search and mining operation, known as k-Nearest-Neighbor
(k-NN) search. It is a core function in database querying, as
well as a fundamental operation in a variety of data-mining
and machine-learning algorithms including classification
(NN-classifier), clustering, etc. Here, it is focused on the
case where d is the standard Euclidean distance, i.e., the
norm on C¥. It may be noted that other measures, for
example time-invariant matching, can be formulated as
Euclidean distance on the periodogram [14]. Correlation can
also be expressed as an instance of Euclidean distance on
properly normalized sequences [15]. Therefore, the present
scheme may be applicable on a wide range of distance
measures with little or no modification.

Search operations can be quite costly, especially for cases
where the dimension N of the sequences is high, because
sequences need to be retrieved from the disk for comparison
against the query q. An effective way to mitigate this is to
retain a compressed representation of the sequences to be
used as an initial pre-filtering step. The set of compressed
sequences could be small enough to keep in-memory, hence
enabling a significant performance speedup.

In essence, this is a multilevel filtering mechanism. With
only the compressed sequences available, the exact distance
between the query q and a sequence in the database cannot
be inferred obviously. However, it is still plausible to obtain
under-estimates and over-estimates of the distance, i.e.,
lower and upper bounds. Using these bounds, a superset of
the k-NN answers can be returned, which will be then
verified using the uncompressed sequences that will need to
be fetched and compared with the query, so that the exact
distances can be computed. Such filtering ideas are used in
the majority of the data-mining literature for speeding up
search operations [7, 8, 16].

Notation:

Consider a se x={x, X,, . . . , X,,}JERY

For compression purposes, x is projected onto an ortho-
normal basis with vect_:{E,, E,, . . ., By} S, where the
cases with or are interesting for most practical cases. The
result is:
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N
X = Z XlE[
i=1

XX Xo, ... Xy} C S is defined by:
N

Xi =<x, E)=E/x:= Zxkfij
=

where the notation <e,*> is used to denote the standard inner
product in, “*” for complex transpose, “~" for the conjugate
of a complex number and for the j-th entry of vector.

The linear mapping x—=X given by (4) is denoted by F,
and the inverse linear map X—x is given by, i.e., X=F(x)
and. Examples for the invertible linear transformation that
are of practical interest include e.g., Discrete Fourier Trans-
form (DFT), PCA, Chebyshev polynomials, wavelets Kar-
hunen-Loeve expansion, etc.

As a running example for the present scheme, it is
assumed that a sequence is compressed using DFT. The basis
consists of sinusoids with different frequencies:

R T
E = { elZﬂk_//N}
VN 0

In such a case, the pair (x,X), where X=DFT(x) and
x=IDFT(X), the inverse DFT, satisfies

N
X Zxkeihr(k—l)(l—l)/N’ [=1,... ,N

1
=

where i is the imaginary unit. The Euclidean distance is
considered between two sequences X, q i.e. the -norm of
their difference. By Parseval’s theorem, the result is:

v, q):=Ak-gl=1x-0l»

Motivation and Problem Formulation

The choice of which coefficients to use has a direct impact
on the data approximation quality. Although, it has long
been recognized that sequence approximation when using
high energy (i.e., best) coefficients is indeed superior [17,
12], there is still a barrier to overcome: accurate distance
estimation for such solution.

Consider a sequence represented using its high-energy
coeflicients; the compressed version of sequence X is
described by a set of C, coeflicients that hold the largest
energy. The vector describing the positions of those coeffi-
cients in X is denoted as p,*, while the positions of the
remaining ones as p, .

For any sequence X, the vector X(p,") is stored in the
database, which is denoted by X™: =(X,),, . The vector of
discarded coeflicients is denoted by X™: =(X,),c,, - In addi-
tion to the best coefficients of a sequence, one additional
value for the energy of the compression error, e =|[X7||,2, i.e.
the sum of squared magnitudes of the omitted coefficients,
may be recorded.

Then one needs to solve the following minimization
(maximization) problem for calculating the lower (upper)
bounds on the distance between two sequences based on
their compressed versions.
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min(max)[|X - Qll, (6.1

s.t.

1X] < min|X,1¥ [ e p;
Jjepy

1Q:il < min|Q,lV i€ p;
Jjep§

DX =e

lepy

PN

le p;

X~ ecrl g e C‘P&‘

where the decision variables are the vectors X~, Q™. The
constraints are due to the fact that the high-energy compo-
nents are used for the compression. Hence, any of the
omitted components must have energy lower than the mini-
mum energy of any stored one.

These optimization problems are complex-valued pro-
grams; the minimization problem can easily be recast as an
equivalent convex program by relaxing the equality con-
straints into =< inequality constraints. Hence, it can be solved
efficiently with numerical methods. However, evaluating an
instance of this problem just for a pair of sequences may be
not efficient in practice: it requires approximately one sec-
ond on a modern CPU. Therefore, although a solution can be
found numerically, it is generally costly and not tailored for
large mining tasks where thousands or millions of such
lower/upper bounds on compressed sequences would like to
be evaluated. Here is shown how to solve this problem
analytically by exploiting the derived optimality conditions.
An Equivalent Convex Optimization Problem

The partition P={P,, P,, P,, P,} of {1, ..., N} (see FIG.
9) is considered, where

P,=p,"Mp," are the common known components in two
compressed sequences X,Q.

P,=p, Mp,"* are the positions where the coeflicients are
unknown for X but unknown for Q in their compressed
versions.

P,=p,"Mp,” are the positions where the coeflicients of X
are known but those of Q are unknown.

P,=p, Mp,~ are the positions of the coeflicients that are
mutually unknown for X, Q.

Using the standard notation for the conjugate transpose of

a complex vector x, R to denote the real part of a complex
number, and considering all vectors as column vectors, it is
that the squared Euclidean distance is given by

IX-Ql3=x-0rx -9

= X1 +lIQII3 -2X~Q
N

=1IXI5 + QI -4 RiX,0:)
i-1

= 1IXIE + QI - 4> RiX:Q:} +

lepo

DIRIXQ}+ Y RIXQ)+

lepy lepp

DIRIXQ)

leps
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Note that |[X||,, ||Q|l, can be inferred by summing the
squared magnitudes of the known coefficients with the
energy of the compression error. Also, the term 2, p
R{X,Q,} is known, whereas the last three sums are
unknown. Considering the polar form, i.e., absolute value |¢|
and argument arg(*)

X= \Xl\eiarg(Xl)’ 0,=I Ql\eiarg(Ql),

it is that the decision variables are vectors 1X,l,arg(X,),1Ep,~
as well as 1Q,l,arg(Q)),1&p,

Observe that for x,y&C with Ixl, Ix| known, it is that
-Ix|lyl=R {xy}=Ix|lyl, where the upper bound is attained
when arg(x)+arg(y)=0 and the lower bound when arg(x)+
arg(y)=n. Therefore, both problems (5.1) boil down to the
real-valued optimization problem

min— Z aiby — Z aiby — Z ab; 6.2)

lepy lepy leps
st. O=ay <A, Viep,

Osb,sB,Vlep;

Za,zsex

lepy

Z bt < [

lep‘;
where a)b; represent, |X,l, 1Q,l respectively, and

A :=min |, B:=min '
jep;‘xj‘ ’ jept‘Qj‘

Note also that the equality constraints are relaxed to inequal-
ity constraints as the objective function of (6.2) is decreasing
in all a,b; so the optimal function has to satisfy the relaxed
inequality constraints with equality, because of the elemen-
tary property that Ip,"1A%ze,, Ip,"IBze,_. Recall that in the
first sum only are known, in the second only are known, and
in the third all variables are unknown.

The original problem has been reduced to a single opti-
mization program, which is, however, not convex unless
p. Mp,=0. It is easy to check that the constraint set is
convex and compact, however, the bilinear function f(x,y):=
Xy is convex in each argument alone, but not jointly. The
re-parametrization of the decision variables is considered

x;=a,’for i€p .~ and y;=b? for iSp,,

we set Z:=A?, Y:=B” and the equivalent problem is got:

Hﬂn—zbi\/z—zai\/y_i_zzi\/y_i ©3
iepy iepy iepy

st. O=sg <Z Viep;

O=y =Y, Viep;

ZZ;SEX

iepy

Z Vi S exg

iep‘;
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Existence of Solutions and Necessary and Sufficient Con-
ditions for Optimality:

The constraint set is a compact convex set, in fact, a
compact polyhedron. The function g(x.y):=VxXVYy is convex
but not strictly convex on R, To see this, note that the
Hessian exists for all x,y>0 and equals

and hence is positive semi-definite, which in turn implies
that g is convex [18]. Furthermore, is a strictly convex
function of x so that the objective function of (6.3) is
convex, and strictly convex only if p,"Mp, =0 it is also a
continuous function so solutions exist, i.e., the optimal value
is bounded and is attained. It is easy to check that the Slater
condition holds, whence the problem satisfies strong duality
and there exist Lagrange multipliers [18]. The technical
details for simplicity may be skipped, but it is highlighted
that this property is substantial because it guarantees that the
Karush-Kuhn-Tucker (KKT) necessary conditions [18] for
Lagrangian optimality are also sufficient. Therefore, if a
solution can be found to satisfy the KKT conditions for the
problem, an exact optimal solution and the exact optimal
value of the problem are found.

The Lagrangian for the problem is

L(y, z, A, y, @, B) = 6.4)
23 bz -2 ey -2 Ny ”(Z @ —ex>]+
iepy iepy ieps iepy
A D ime)+ Y @ =2+ Y Bi=Y)
iep; iepy iep‘;
The KKT conditions are as follows:
st. 0<z,=Z 0=y <Y, (PF) (6.5a)
ZZ;SEX, ZZ;SEQ
iepy iepy
Z yiZeg
iep;
A, ar, B 20 (PF) (6.5b)
a1(z1=2)=0,(y1 =Y)=0(CS) (6.5¢)

A @-ed=0.u) (i-e)=0

iepy iep;
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-continued
_p 0L b 00 (6.5d)
i€P, —=-—+A+a;=
Von T Vg
i€ P. oL 4 +u+pi=0
iePy, —=- utpi=
’ 9yi Vi
oLy
iEP3,—:——y+/\+oz;:0
VL
aL Nz
— =——+u+p =0,
7y o H+ B

where shorthand notation is used for Primal Feasibility (PF),
Dual Feasibility (DF), Complementary Slackness (CS), and
Optimality (O) [18].

The optimal value of (6.3) is denoted by v,,,,<0. Then the
optimal lower bound (LLB) and upper bound (UB) for the
distance estimation problem under consideration are given

by:

IB=+D+ AVopy 6.0
UB = \/D + 4o
D:=IXIE+1QI3 -4 RiXi0) 66)

lepg

Exact Solutions

In this section, algorithms for obtaining exact solutions
for the optimization problem are studied (6.3). By exact, it
is meant that the optimal value is obtained in a finite number
of computations as opposed to when using a numerical
scheme for convex optimization. In the latter case, an
approximate solution is obtained by means of an iterative
scheme which converges with finite precision. Before
addressing the general problem, a special case is briefly
recapped that was dealt with in [12], where the sequence Q
was assumed to be uncompressed. In this case, an exact
solution is provided via the water-filling algorithm, which
will constitute a key building block for obtaining exact
solutions to the general problem later on. It is then proceed
to study the properties of optimal solutions; the theoretical
analysis gives rise to an exact algorithm, see below.
Water-Filling Algorithm

The case that QQ is uncompressed is a special instance of
the problem with P "=@, whence also. The problem is
strictly convex, and (6.5d) yields

b bV (7.8)
Zi_(/\—wi] 4:)51;(/1_‘_0[‘_]

In such a case, the strict convexity guarantees the exis-
tence of a unique solution satisfying the KKT conditions as
given by the water-filling algorithm, see below. The algo-
rithm progressively increases the unknown coefficients until
saturation, i.e., until they reach A, in which case they are
fixed. The set Cis the set of non-saturated coefficients at the
beginning of each iteration, while R denotes the “energy
reserve,” i.e., the energy that can be used to increase the
non-saturated coefficients; denotes the optimal value.

As a shorthand notation, a=waterfill (b, e,, A) is written.
It has to be noted that in this case the problem (6.2) for is
convex, so the solution can be obtained via the KKT



US 10,528,578 B2

13

conditions to (6.2), which are different from those for the
re-parameterized problem (6.3); this was done in [12]. The
analysis and straightforward extensions are summarized in
the Lemma for exact solutions.

The Water-filling algorithm for optimal distance estima-
tion between a compressed and uncompressed sequence is
shown below:

Water-filling algorithm
Inputs: {b;} e, A

iepy?

Outputs: {ai}iep; , A o }[ep; > Vopt» R

1 SetR=e,C=p,~
2. while R > 0 and C = 0 do
3.
b7
e b .
set A = T’aiZI’IEC
4. if for some i € C, a; > A then
5. a A, C< C- {i}
6. else break;
7. end if
8. R=¢e, - (Ip, | - ICHA2
9. end while

Set Vopr = — Z a;b; and

iepy
0, ifa<A

@ =19 b;
K—/\, if a;=A

In the following, some details are given for the Water-
Filling-Algorithm:

Two data series X,Q are considered. a_i,b_i represent the
absolute values of coefficients X_i,Q_i respectively. X is
compressed, while Q is uncompressed (all entries known).

The set of the positions of known coefficients for X is
p +_x and the set of positions of unknown coefficients is
P -_x.

For two vectors, given a set of coefficients of one vector,
when the word “corresponding” coefficients of the other one
is used, the coefficients corresponding to the same entries are
meant.

Inputs:

{b,}: coeflicients of uncompressed series corresponding to
the discarded ones in the compressed vector X

e, energy of the discarded coefficients of X (compression
error)

A: smallest stored coefficient of X

Outputs:

{a,}: estimates of the discarded coeflicients

V¢ Optimal estimate of correlation between unknown coef-
ficients of X and corresponding coefficients of Q

R: unused energy in the water-filling process

A, {o_1}: Lagrange multipliers in the optimization program

The algorithm seeks to solve the optimization program for
the compressed-uncompressed case, i.c., estimate the dis-
carded coeflicients in X at positions p~, in compressing
vector X that give the tightest lower/upper bound in distance
between the two data series X and Q.

In this Water-Filling-Algorithm, the unknown coefficients
are estimated as follows: at each step, unknown coefficients
are increased proportionally to their corresponding coeffi-
cient in uncompressed vector, until they reach threshold A,
in which they are fixed in the estimation process. The

10

15

20

25

30

35

40

45

50

55

60

65

14

procedure repeats, and at each step the energy reserve R is
reduced by the energy of the fixed coefficients, until all
energy has been used (R=0), or all coefficients have been
fixed to the upper value A.

Lemma for Exact Solutions

L. If either Set p,”=0, or p,”=0 (i.e., when at least one of
the sequences is uncompressed) it can be obtained an exact
solution to the optimization problem (6.2) via the water-
filling algorithm.

2. If Py=p, MNp, =0, ie., when the two compressed
sequences do not have any common unknown coefficients
the problem is decoupled in a, b and the water-filling
algorithm can be separately used to obtain exact solutions to
both unknown vectors.

3. If P,_P,=0 i.e., when both compressed sequences have
the same discarded coefficients, the optimal value is simply
equal to —\/exVe_q but there is no unique solution for a, b.
Proof. The first two cases are obvious. For the third one, it
has to be noted that it follows immediately from the Cauchy-
Schwartz inequality that -2, ab Zz—VexVe_q and in this case
this is also attainable, e.g., just consider

ex eq
= [ Z b =
“ENIRPT TR

which is feasible Ip,"1A%ze,, Ip,"IB*ze, since as follows by
compressing using the high energy coefficients.

It has been shown how to obtain exact optimal solutions
for special cases. To derive efficient algorithms for the
general case, first it has to be studied end establish some
properties of the optimal solution of (6.3).

Theorem for Properties of Optimal Solutions

Let an augmented optimal solution of (6.2) be denoted by
(@, b?*); where aOP’::{aiOP’}iEPX—ﬁPq denotes the optimal
solution extended to include the known values denotes the
optimal solution extended to include the known values
1Q;lsep,- It s Turther e'.=e,~Z,,,, a/, ¢ CZier, b2 There
are:

1. The optimal solution satisfies

a®'=waterfill(b%e,, 4) (7.92)

b®'=waterfill(@®.e,,B) (7.9b)

In particular, it follows that a,%?">0 if b,*>0 as well as
that {a,%7"}, {b,”} have the same ordering. Additionally,
minge, =Max;, by zmax;., b;.

2. In the case that at optimality it holds that €' e',>0 there
exists a multitude of solutions. One solution (a, b) satisfies

V) ’
ey €,

=7, b = z
[Pl [Pl

ap =

for all €P;, whence

o [a (7.10a)
_ &

p= =

=B =0ieP, (7.10b)
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In particular, Au=1 and the values €', €', need to be

solutions to the following set of nonlinear equations

,
e

cfp26x

E mln(b,—/,
€

leps

,
f 2%

minl af —,

eX

leps

7.11a
Az] P (7.11a)

(7.11b)

2| _ ,
B]_eq—eq

3. At optimality, it is not possible to have ¢',_e',=0
4. Consider the vectors a, b with a,=IX,1,1€P, ,,=I1X,I,1EP,

and

{ar}iep=watetfill{b }icp €04) (7.12a)

{81} 1ep,~waterfill({a;}ip €, B) (7.12b)

If e<IP,IA? and e =IP,IB? whence ¢’ =¢' =0, then by
defining a,=b,=0 for IEP; a globally optimal solution (a, b)
is obtained.

Remark. One may be tempted to think that on optimal
solution can be derived by water-filling for the coefficients
of {a,}c.p,» 1b1}icp, separately, and then allocating the
remaining energies €', €', to the coeflicients in —\/e'xVe_'q
leveraging the Cauchy-Schwartz inequality, the value being
{a1s b, }ieqp,- However, the third and fourth parts of above
Theorem state that this not optimal unless ¢',=e',=0.

It is shown that there are two possible cases for an optimal
solution of (6.2): either or €',,e' >0. The first case is easy to
identify by checking whether (7.12) yields. If this is not the
case, there is the latter case and it is needed to find a solution
to the set of non linear equations (7.12).

Consider the mapping TR ,>—R _? defined by

(7.13)

Tl x2) o= |es = Y mm(b?i—;, A)eg= mm(a?i—f, )

iePy iePy

The set of non linear equations of (7.11) corresponds to a
positive fixed point of T, ie., &, &' =T (¢,e'), €,.e',>0.
Since this problem is of interest only if at optimality, it is
known that it is not been in the setup of Theorem, therefore
the additional property is had that either, or both. It is defined

! 7.14
ya:zmjn{yzo:z mir{alz;,Bz)Seq} ( )

iePy
Vp = max{y > O:Z min(blz% Al = ex}
lePy

Clearly if then and for any

A2
Y = maXep 5
bl
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we have 2;p min(b 2 A)=IP,|A” similarly, if then, and for
any

o
Y = Milyep, Bs

we have

!
> miai . 5) = Pais?
y

Lepy

the exact value of analytically by sorting

2
—Z}ZEPI

A
b) . _
{71 : v

in increasing order and considering h,(y):=%;cp, min
(b,7,P, A% e and v,:=h,(y,*). In this case, v,< ... <v ,
vip,>0; and there are two possibilities: 1) whence, or i)
there exists some i such that whence. For both ranges of v,
the function h becomes linear and strictly increasing, and it
is elementary to compute its root. A similar argument applies
for calculating if is strictly positive, by defining.

In this regard, FIG. 10 shows a plot of functions h , h,, h.
Regarding the top of FIG. 10, h, is a bounded decreasing
function, which is piecewise linear in 1/y with non-increas-
ing slope in 1/y h, is a bounded increasing piecewise linear
function of y with non-increasing slope. Regarding the
bottom of FIG. 10, h is an increasing function, the linear
term y dominates the fraction term which is also increasing,
see bottom right.

Theorem for Exact Solution of 7.11

If either e >IP,IA* or eq>IP2IAB2, or both, then the
non-linear mapping T has a unique fixed point ', &' >0. The
equation

e min(bfy, A%) .15
lePy
——T— =7
eq— me(a,z;, BZ]
lePy

has a unique solution y with y <y and y =y, when y,<+. The
unique fixed point of T (solution of (7.11) satisfies

e =e, - Z min(b}y, A?) (7.16)

lePy

1
€ =e;— Z min(alz% 32]

lePy

Proof. Existence of a fixed point is guaranteed by exis-
tence of solutions and Lagrange multiplies for (6.3), since by
assumption it is been in the setup of above Theorem. Define
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a fixed point (¢',, €'))=T((¢,, €',)), €', €', >0, corresponds to
a root of
e, — Z min(b,zy, AY) (7.17)
lePy
M) — =T+
eq — Z min(a,z > BZ]
lePy

For the range y=y, and y=y,, if y,<+oo, it is had that h(y) is
continuous and strictly increasing. The facts that limy\‘ va

h(y)<0,1im7| +» 1(y)>0 show existence of a unique root y of
h corresponding to a unique fixed point of T cf. (7.16).
Remark for Exact Calculation of a Root of h

It is sought to calculate the root of h exactly and effi-
ciently. In doing so, consider the {Y;};p,~p», Where

2

Y= lePl,yl——,lePz.

b2

Then note that for any y=y,, 1€P, it is had that min(by,
A*)=A? Similarly, for any y=y,, IEP,, it is had that

All such points are ordered in increasing order, and the
resulting vector y:={y,} is considered excluding any points
below vy, or above y,. It is defined h,:=h(y,)

If for some i, h,=0 it is done. Otherwise there are three
possibilities: 1) there is an i such that h,<0<h,, ,, 2) h,>0 or
3) h,<0. In all cases both the numeration (denominator) of
h are linear in

for the respective ranges of y; v is obtained by solving the
linear equation

(7.18)

ey — Z min(b}y, A%) = y[eq mln(a, Bz]]
leP2

lePy

and using the elementary property that for a linear function
fon [x4, x,] with f(x,)f(x,)<0 the unique root is given by

X1

YR E i

X =xp—

Algorithm for Optimal Distance Estimation

In this section, an algorithm is presented for obtaining the
exact optimal upper and lower bounds on the distance
between the original sequences, when fully leveraging all
information available given their compressed counterparts.
First, a simple numerical scheme is presented using a convex
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solver such as cvx [20] and then the theoretical findings are
used to derive an analytical algorithm which is called
‘double water-filling’.

Convex Programming

is let, and the non-trivial case M>0 is considered. Following
the discussion above, the 2Mx1 vector v=({a, };=p,p,n Py
{b,} iep,npynpy) 18 set and the following convex problem is
considered directly amenable to a numerical solution via a
solver such as cvx:

min EIEPIQPZQP3(al_bI)2
s.t. as4,VIEp,”,bsB Ve,
Ziep,—a lzsepEIEPq_b 7se,

a=\X, VIEP, b=IQ, VIEP,,

The lower bound (LB) can be obtained by adding
D'3:ZZEPO|X1—Q1|2 to the optimal value of 5.1 and taking the
square root; then the upper bound is given by, cf. (6.6).

Double water-filling algorithm
Inputs: {bi};epl 5 {ai};epza €x, €4, A B
Outputs: {25, @3k » 105 Ak A 4 Vope

1. If p,” N p,” = Othen use water-filling algorithm
(see Lemma 7.1 parts 1,2); return; endif

* i then set LI S
if p_=p_thenseta;= |— ,byj= [—,
P =Pg SRRVAT IRV

a;= ;=0 forall 1 € p,", v,,, = Ve, Ve
return: endif
3 ife, = [PIA” and e, < |P,|B? then

{ardiep, = waterfill ({bl}[ePl , €x, A)

{bricp, = waterfill ({aj}cp, . ¢, B)
with optimal values Vopt("),
4. Seta;=b;=0;,=p;=
for all | € P,

Vop,(b) respectively

Vopr = Vop,(") - Vop,(b); return;

5. endif

6. Calculate the root as in Remark 7.2 and define
e, e, as in (7.16).

7. Set
{adiep, = waterfill ({b)yep, » ex — €}, A)
{biycp, = waterfill ({a,},e,,z, -¢}.B)

with optimal values v, 9, Vop P respectively

e’ [=4

Setaj= | —— L ay=p=0,1eP
et ay TR |P3|,011 pi=0,1€eP;

-V Ve]

and set v,,,, = -v,,

Double Water-Filling

Leveraging the theoretical analysis, a simple efficient
algorithm is derived to obtain an exact solution to the
problem of finding tight lower/upper bound on the distance
of two compressed sequences; this is called the “double
water-filling algorithm.”

The idea is to obtain an exact solution of (6.2) based on
the results of above Theorems and Remarks; then the
lower/upper bounds are given by (6.6), (6.7).

In the following, some details are given for the Double-
Water-Filling-Algorithm:

Two data series X,Q are considered. a,b,, represent the

absolute values of coefficients X,,Q,, respectively. Both
series are compressed with high energy coefficients,



US 10,528,578 B2

19

where the positions of known coefficients for X is p*,
and the positions of unknown coefficients p~, and
similarly p*,, p~, are defined. It is further defined:
(“\cap” is used to symbolize set intersection)

P,:=p~,\cap p*,, the positions where the coeflicients are

unknown for X but known for Q in their compressed
versions.

P,:=p* \cap p~,, the positions where the coefficients of X

are known but those of Q are unknown.

P;:=p~,\cap p~, are the positions of the coeflicients that

are mutually unknown for X, Q.
Coeflicients a,b,, correspond to absolute values of coet-
ficients X,,Y,.

For two vectors, given a set of coefficients of one vector,
when the word “corresponding” coefficients of the other one
is used, the coefficients corresponding to the same entries are
meant.

Inputs:

{b,}: stored coefficients of Q corresponding to P,

{a;}: stored coeflicients of X corresponding to P,

e,, €,0 compression errors

A, B: smallest stored coefficients of X, Q respectively
Outputs:

a,b,: estimates of discarded coefficients of X, Q

Vop: Optimal estimate of correlation between unknown

coeflicients of X and corresponding coefficients of Q

A, W, o P Lagrange multipliers in the optimization

program

The algorithm seeks to solve the optimization program
(3.1), i.e., estimate the discarded coefficients in compressing
vectors X,Q that give the tightest lower/upper bound in
distance between the two data series; this is equivalent to
maximizing/minimizing their correlation.

Given compression errors e,, €,, the algorithm seeks to
optimally decompose these into:

e,=e.(P)+e(P3)

e, =€, (Py)ve q(P3)

so that their distance is minimized/maximized.

Steps 1, 2 are trivial cases where this decomposition is not
needed.

Step 3 gives e, (P;3)=e, (P;)=0

The general case is handles in Step 6, where the decom-
position is performed via solution of a set of equations;
details can be found in the paper.

Once the decomposition is done, the algorithms uses the
water-filling algorithm to estimate:

coefficients of X in P,, using energy e, (P,)

coeflicients of Q in P,, using energy e, (P,)

and uses the Cauchy-Schwarz inequality for maximizing

(minimizing) the correlation in P;. See steps 3, 7, 8.

Computerized devices can be suitably designed for imple-
menting embodiments of the present invention as described
herein. In that respect, it can be appreciated that the methods
described herein are largely non-interactive and automated.
In exemplary embodiments, the methods described herein
can be implemented either in an interactive, partly-interac-
tive or non-interactive system. The methods described
herein can be implemented in software (e.g., firmware),
hardware, or a combination thereof. In exemplary embodi-
ments, the methods described herein are implemented in
software, as an executable program, the latter executed by
suitable digital processing devices. In further exemplary
embodiments, at least one step or all steps of above method
of FIG. 1 may be implemented in software, as an executable
program, the latter executed by suitable digital processing
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devices. More generally, embodiments of the present inven-
tion can be implemented wherein general-purpose digital
computers, such as personal computers, workstations, etc.,
are used.

For instance, the system 900 depicted in FIG. 9 schemati-
cally represents a computerized unit 901, e.g., a general-
purpose computer. In exemplary embodiments, in terms of
hardware architecture, as shown in FIG. 9, the unit 901
includes a processor 905, memory 910 coupled to a memory
controller 915, and one or more input and/or output (1/O)
devices 940, 945, 950, 955 (or peripherals) that are com-
municatively coupled via a local input/output controller 935.
The input/output controller 935 can be, but is not limited to,
one or more buses or other wired or wireless connections, as
is known in the art. The input/output controller 935 may
have additional elements, which are omitted for simplicity,
such as controllers, buffers (caches), drivers, repeaters, and
receivers, to enable communications. Further, the local
interface may include address, control, and/or data connec-
tions to enable appropriate communications among the
aforementioned components.

The processor 905 is a hardware device for executing
software, particularly that stored in memory 910. The pro-
cessor 905 can be any custom made or commercially avail-
able processor, a central processing unit (CPU), an auxiliary
processor among several processors associated with the
computer 901, a semiconductor based microprocessor (in
the form of a microchip or chip set), or generally any device
for executing software instructions.

The memory 910 can include any one or combination of
volatile memory elements (e.g., random access memory)
and nonvolatile memory elements. Moreover, the memory
910 may incorporate electronic, magnetic, optical, and/or
other types of storage media. Note that the memory 910 can
have a distributed architecture, where various components
are situated remote from one another, but can be accessed by
the processor 905. For example, the device 20 may be
embodied in the processor 905.

The software in memory 910 may include one or more
separate programs, each of which comprises an ordered
listing of executable instructions for implementing logical
functions. In the example of FIG. 9, the software in the
memory 910 includes methods described herein in accor-
dance with exemplary embodiments and a suitable operating
system (OS) 911. The OS 911 essentially controls the
execution of other computer programs, such as the methods
as described herein (e.g., FIG. 1), and provides scheduling,
input-output control, file and data management, memory
management, and communication control and related ser-
vices.

The methods described herein may be in the form of a
source program, executable program (object code), script, or
any other entity comprising a set of instructions to be
performed. When in a source program form, then the pro-
gram needs to be translated via a compiler, assembler,
interpreter, or the like, as known per se, which may or may
not be included within the memory 910, so as to operate
properly in connection with the OS 911. Furthermore, the
methods can be written as an object oriented programming
language, which has classes of data and methods, or a
procedure programming language, which has routines, sub-
routines, and/or functions.

Possibly, a conventional keyboard 950 and mouse 955 can
be coupled to the input/output controller 935. Other I/O
devices 940-955 may include sensors (especially in the case
of network elements), i.e., hardware devices that produce a
measurable response to a change in a physical condition like
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temperature or pressure (physical data to be monitored).
Typically, the analog signal produced by the sensors is
digitized by an analog-to-digital converter and sent to con-
trollers 935 for further processing. Sensor nodes are ideally
small, consume low energy, are autonomous and operate
unattended.

In addition, the /O devices 940-955 may further include
devices that communicate both inputs and outputs. The
system 900 can further include a display controller 925
coupled to a display 930. In exemplary embodiments, the
system 900 can further include a network interface or
transceiver 960 for coupling to a network 965.

The network 965 transmits and receives data between the
unit 901 and external systems. The network 965 is possibly
implemented in a wireless fashion, e.g., using wireless
protocols and technologies, such as WiFi, WiMax, etc. The
network 965 may be a fixed wireless network, a wireless
local area network (LAN), a wireless wide area network
(WAN) a personal area network (PAN), a virtual private
network (VPN), intranet or other suitable network system
and includes equipment for receiving and transmitting sig-
nals.

The network 965 can also be an IP-based network for
communication between the unit 901 and any external
server, client and the like via a broadband connection. In
exemplary embodiments, network 965 can be a managed IP
network administered by a service provider. Besides, the
network 965 can be a packet-switched network such as a
LAN, WAN, Internet network, etc.

If the unit 901 is a PC, workstation, intelligent device or
the like, the software in the memory 910 may further include
a basic input output system (BIOS). The BIOS is stored in
ROM so that the BIOS can be executed when the computer
901 is activated.

When the unit 901 is in operation, the processor 905 is
configured to execute software stored within the memory
910, to communicate data to and from the memory 910, and
to generally control operations of the computer 901 pursuant
to the software. The methods described herein and the OS
911, in whole or in part are read by the processor 905,
typically buffered within the processor 905, and then
executed. When the methods described herein (e.g. with
reference to FIG. 7 or 8) are implemented in software, the
methods can be stored on any computer readable medium,
such as storage 920, for use by or in connection with any
computer related system or method.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects. Further-
more, aspects of the present invention may take the form of
a computer program product embodied in one or more
computer readable medium(s) having computer readable
program code embodied thereon. Any combination of one or
more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable
signal medium or a computer readable storage medium. A
computer readable storage medium may be, for example, but
not limited to, an electronic, magnetic, optical, electromag-
netic, infrared, or semiconductor system, apparatus, or
device, or any suitable combination of the foregoing. More
specific examples (a non-exhaustive list) of the computer
readable storage medium would include the following: an
electrical connection having one or more wires, a hard disk,
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a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable
compact disc read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this docu-
ment, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device. Program code
embodied on a computer readable medium may be trans-
mitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the unit 901, partly thereon,
partly on a unit 901 and another unit 901, similar or not.

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams can be implemented by one or more
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). It should also be noted that, in some alternative
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implementations, the functions noted in the blocks may
occur out of the order noted in the figures. For example, two
blocks shown in succession may, in fact, be executed sub-
stantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved and algorithm optimization. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

More generally, while the present invention has been
described with reference to certain embodiments, it will be
understood by those skilled in the art that various changes
may be made and equivalents may be substituted without
departing from the scope of the present invention. In addi-
tion, many modifications may be made to adapt a particular
situation to the teachings of the present invention without
departing from its scope. Therefore, it is intended that the
present invention not be limited to the particular embodi-
ments disclosed, but that the present invention will include
all embodiments falling within the scope of the appended
claims.
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The invention claimed is:

1. A method for data mining on compressed data vectors
by a certain metric being expressible as a function of the
Euclidean distance, the compressed data vectors including a
first compressed data vector and a second compressed data
vector, the method comprising:

storing, for the first compressed data vector, a first set of

coeflicients having the largest energy in the first com-
pressed data vector;

storing, for the second compressed data vector, a second

set of coeflicients having the largest energy in the
second compressed data vector;

discarding, for the first compressed data vector, a third set

of coeflicients having not the largest energy in the first
compressed data vector;

discarding, for the second compressed data vector, a

fourth set of coefficients having not the largest energy
in the second compressed data vector;

determining a first compression error corresponding to the

first compressed data vector and a second compression
error corresponding to the second compressed data
vector in dependence on the discarded third set of
coeflicients and the discarded fourth set of coeflicients,
respectively; and

retrieving an upper bound and a lower bound for the

certain metric based at least in part on the stored first set
of coeflicients having the largest energy and the stored
second set of coefficients having the largest energy and
the determined first compression error and second
compression error, wherein retrieving the upper bound
and the lower bound comprise:
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storing a first set of positions corresponding to a subset of
coeflicients that are discarded from the first compressed
data vector and a subset of coefficients in-that are stored
from the second compressed data vector;

storing a second set of positions corresponding to a subset
of coeflicients that are stored from the first compressed
data vector and a subset of coefficients that are dis-
carded from the second compressed data vector and

storing a third set of positions corresponding to a subset

of coefficients that are mutually discarded from the first 10

compressed data vector and from the second com-
pressed data vector;

exploiting the Cauchy-Schwarz inequality to optimize

correlations in the third set of positions of the first
compressed data vector and the second compressed
data vector, and

wherein retrieving the upper bound further comprises

increasing unknown coefficients in each of the first
compressed data vector and the second compressed
data vector proportionally to corresponding coefficients
in a respective uncompressed data vector until a thresh-
old value is reached, fixing the unknown coefficients to
the threshold value, and reducing an energy reserve by
a combined energy of the fixed coefficients until the
energy reserve has been used.

2. The method of claim 1, wherein the metric is embodied
as one of the FEuclidean distance, a correlation, or a cosine
similarity.

3. The method of claim 1, further comprising determining
the first set of coefficients in the first compressed data vector
by ordering coefficients of the first compressed data vector
according to their respective energy and selecting a pre-
defined number of the top-ordered coefficients.

4. The method of claim 1, further comprising determining
the first set of coefficients in the first compressed data vector
by selecting a minimum number of coefficients in the first
compressed data vector that result in a predetermined com-
pression error.

5. The method of claim 1, further comprising determining
the first set of coefficients in the first compressed data vector
by coeflicients in the first compressed data vector having an
energy higher than a predefined energy threshold.

6. The method of claim 1, further comprising transform-
ing a first uncompressed data vector into the first com-
pressed data vector using a lossy compression transforma-
tion having an associated compression ratio.

7. The method of claim 6, further comprising selecting at
least one of the lossy compression transformation or the
compression ratio.

8. The method of claim 7, wherein the compression
transformation is embodied by an invertible linear transfor-
mation having a complete orthonormal basis comprising at
least one of a Discrete Fourier transformation (DFT), a
Principle Component Analysis (PCA), Chebyshev polyno-
mials, or wavelets.

9. The method of claim 1, wherein retrieving the upper
bound and the lower bound further comprises estimating the
discarded coefficients of the first compressed data vector
corresponding to the first set of positions using an optimal
estimate of the first compression error of the first com-
pressed data vector at the first set of positions and estimating
the discarded coefficients of the second compressed data
vector corresponding to the second set of positions using an
optimal estimate of the second compression error of the
second compressed data vector at the second set of positions.
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10. A computer program comprising a program code for
executing the method of claim 1 for data mining on com-
pressed data vectors when run on at least one computer.

11. A device for data mining on compressed data vectors
by a certain metric being expressible as a function of the
Euclidean distance, the compressed data vectors including a
first compressed data vector and a second compressed data
vector, the device comprising:

a storage for storing positions and coefficients having the
largest energy in the first compressed data vector and
the second compressed data vector;

a computer processor; and

a memory storing instructions executable by the computer
processor to,

store, for the first compressed vector, a first set of coef-
ficients having the largest energy in the first com-
pressed data vector;

store, for the second compressed data vector, a second set
of coeflicients having the largest energy in the second
compressed data vector;

discard, for the first compressed data vector, a third set of
coeflicients having not the largest energy in the first
compressed data vector;

discard, for the second compressed data vector, a fourth
set of coeflicients having not the largest energy in the
second compressed data vector; determine a first com-
pression error corresponding to the first compressed
data vector and a second compression error correspond-
ing to the second compressed data vector based at least
in part on the discarded third set of coefficients and the
discarded fourth set of coefficients, respectively;

retrieve an upper bound and a lower bound for the certain
metric based at least in part on the stored first set of
coeflicients having the largest energy and the stored
second set of coefficients having the largest energy and
the determined first compression error and second
compression error, wherein retrieving the upper bound
and the lower bound comprises:

storing a first set of positions corresponding to a subset of
coeflicients that are discarded from the first compressed
data vector and a subset of coefficients that are stored
from the second compressed data vector;

storing a second set of positions corresponding to a subset
of coeflicients 4n that are stored from the first com-
pressed data vector and a subset of coefficients that are
discarded from the second compressed data vector and

storing a third set of positions corresponding to a subset
of coefficients that are mutually discarded from the first
compressed data vector and from the second com-
pressed data vector, and

exploiting the Cauchy-Schwarz inequality to optimize
correlations in the third set of positions of the first
compressed data vector and the second compressed
data vector

wherein retrieving the upper bound further comprises
increasing unknown coefficients in each of the first
compressed data vector and the second compressed
data vector proportionally to corresponding coefficients
in a respective uncompressed data vector until a thresh-
old value is reached, fixing the unknown coefficients to
the threshold value, and reducing an energy reserve by
a combined energy of the fixed coefficients until the
energy reserve has been used.
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