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Major depression, currently the world's primary cause of disability, leads to profound personal suffering and in-
creased risk of suicide. Unfortunately, the success of antidepressant treatment varies amongst individuals and can
take weeks to months in those who respond. Electroconvulsive therapy (ECT), generally prescribed for the most
severely depressed andwhen standard treatments fail, produces amore rapid response and remains themost ef-
fective intervention for severe depression. Exploring the neurobiological effects of ECT is thus an ideal approach
to better understand the mechanisms of successful therapeutic response. Though several recent neuroimaging
studies show structural and functional changes associated with ECT, not all brain changes associate with clinical
outcome. Larger studies that can address individual differences in clinical and treatment parameters may better
target biological factors relating to or predictive of ECT-related therapeutic response. We have thus formed the
Global ECT-MRI Research Collaboration (GEMRIC) that aims to combine longitudinal neuroimaging as well as
clinical, behavioral and other physiological data across multiple independent sites. Here, we summarize the
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ECT sample characteristics from currently participating sites, and the common data-repository and standardized
image analysis pipeline developed for this initiative. This includes data harmonization across sites and MRI plat-
forms, and a method for obtaining unbiased estimates of structural change based on longitudinal measurements
with serial MRI scans. The optimized analysis pipeline, together with the large and heterogeneous combined
GEMRIC dataset, will provide new opportunities to elucidate the mechanisms of ECT response and the factors
mediating and predictive of clinical outcomes, which may ultimately lead to more effective personalized treat-
ment approaches.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Depressive disorders are now the single leading cause of disability
worldwide (Whiteford et al., 2013). Though several treatments for de-
pression are available, these are not successful in all individuals (Rush
et al., 2006). Electroconvulsive therapy (ECT) is the most effective
acute treatment of major depressive episodes (Carney et al., 2003),
but remains stigmatized (Aoki et al., 2016). Clinical indications and
other criteria for ECT arewell articulated by various international scien-
tific and professional bodies (APA, 2001; Kennedy et al., 2009; NICE,
2009). Due to the potential for cognitive side-effects and limited avail-
ability, ECT is typically only considered indicated for the most severely
depressed or in otherwise treatment-resistant patients. Research
aimed at targeting changes in brain function and morphology with
ECT, which elicits a more rapid onset of action than standard therapies,
may help resolve the complex mechanisms underlying successful clini-
cal response aswell as those accounting for side-effects. Specific knowl-
edge on howECT alleviates depression, and its impact on brain anatomy
and function, should help clinicians and patientsmake informed choices
regarding the use of ECT to treat the illness, and reduce the stigma asso-
ciated with the treatment. More importantly, new knowledge may lead
to the development of better and more targeted personalized
treatments.

Longitudinal neuroimaging studies, i.e. with imaging of patients be-
fore- and after ECT, have already shown that ECT has effect on specific
brain regions and circuits. The first of such MRI-studies appeared in
the late 1980s (Coffey et al., 1988; Figiel et al., 1989; Mander et al.,
1987). Hindered by poor resolution (typical slice thickness 5–12 mm,
inter slice interval 1–2.5 mm), low field strength (0.08, 1 or 1.5 T), and
limited tools for quantification or automated image processing, these
studies were primarily focused on disproving the hypothesis that ECT
causes brain damage. Structural changes or gross evidence of harmful
effects was not found (Coffey et al., 1988; Figiel et al., 1989; Pande et
al., 1990; Puri et al., 1998). However, ECT-induced changes in tissue pa-
rameters, such as an increase in T1- and T2 relaxation times (Mander et
al., 1987; Scott et al., 1990) were reported. As these findings may be re-
lated to increased brainwater content, it was speculated that changes in
T1 relaxation time could be caused by breakdown of the blood-brain
barrier or related to anesthesia (Mander et al., 1987), but partial volume
effects with CSF, causing an apparent change in T1-or T2 relaxation
times could not be ruled out (Scott et al., 1990). Subsequent investiga-
tions showed conflicting results, confirming (Diehl et al., 1994) and
not confirming (Girish et al., 2001; Kunigiri et al., 2007) the change in
T2 relaxation times. One study also reported an increase in the number
of T2 hyperintensities, a finding related to atherosclerotic small vessel
disease, for a few elderly patients 6 months after treatment (Coffey et
al., 1991).

Interestingly, after the first high-resolution (1mm3)MRI study iden-
tified ECT-induced structural changes by detecting increased volume of
the hippocampus (Nordanskog et al., 2010), several subsequent studies
have confirmed that ECT induces structural changes in the hippocampus
as well as other brain areas (Abbott et al., 2014; Bouckaert et al., 2016a;
Dukart et al., 2014; Jorgensen et al., 2016; Joshi et al., 2016; Ota et al.,
2015; Redlich et al., 2016; Sartorius et al., 2016; Tendolkar et al.,
2013). For example, both Tendolkar et al. and Joshi et al. found bilateral
volume increase in hippocampus and amygdala; Abbott et al., Dukart et
al. and Ota et al. demonstrated significant volume increase of the right
hippocampus only; Bouckaert et al. found volume increases in the cau-
date nucleus and in themedial and superior temporal lobe ipsilateral to
the stimulation side; Dukart et al. also reported areas of volume de-
crease. Sartorius et al. found increase in whole-brain gray matter vol-
ume after ECT, with the most prominent change in the right temporal
lobe. One study reported no ECT-induced changes (Nickl-Jockschat et
al., 2016). In summary, with improvements in imaging techniques,
ECT-induced structural brain changes have been documented, and the
focus of investigations has moved towards exploring signs of ECT-stim-
ulated neuroplasticity. Evidence for this hypothesis comes from animal
studies that show neuroplastic effects with electroshock (see e.g.
(Bouckaert et al., 2014; Segi-Nishida, 2011) for reviews). However, an-
imal models are not necessarily transferable to humans, and it is cur-
rently unclear how ECT-induced brain changes relate to treatment
outcome (Bouckaert et al., 2016b; Jorgensen et al., 2016; Redlich et al.,
2016). Further, results in humans are only partially consistent and
may depend on ECT stimulus and patient characteristics particular to
each study. Although single-site investigations tend to have carefully se-
lected samples, they struggle with limited power, andmay have limited
data analysis methods.

Major depression is a clinically heterogeneous disorder and a host of
individualized clinical, biological and treatment-related factors (e.g.,
age, severity/length of illness, particular neuropsychological profiles,
treatment parameters etc.) may account for varied therapeutic re-
sponse. Only large sample sizes can address how variations in particular
brain circuits relate to such factors and/or impact clinical outcome. Like-
wise, only large samplesmay address the relationships between chang-
es in neural structure and function to dissociate epiphenomena and
antidepressant response mechanisms. Notably, the identification of ob-
jective biological markers extracted from neuroimaging data that could
predict future clinical response could transform clinical practice. How-
ever, to train and test predictive models that incorporate and are sensi-
tive to individual differences in demographic, clinical and treatment
factors also requires large datasets.

More than 50% of scientists have experienced failure to reproduce
results, and low statistical power is reported as one of themain reasons
(Baker, 2016). Differences in sample characteristics andmethodological
approaches across single site studies combinedwith the examination of
small samples can impact the reproducibility of findings. In meta-anal-
ysis, summary measures (not individual patient data) from multiple
sites are combined for statistical analysis. Several meta-analyses of
cross-sectional MRI data in major depressive disorder (MDD) exist,
where reductions in hippocampal volume inMDDcompared to controls
appears the most consistent finding (Arnone et al., 2016; Boccia et al.,
2015; Bora et al., 2012; Campbell et al., 2004; Cole et al., 2011; Du et
al., 2014; Hamilton et al., 2008; Kempton et al., 2011; Koolschijn et al.,
2009; McKinnon et al., 2009; Peng et al., 2016; Sexton et al., 2013;
Steele et al., 2007; Videbech and Ravnkilde, 2004; Zhao et al., 2014).
However, with meta-analyses, the methodology across studies is
under less control, individual-subject level data is lacking and it is
more difficult to perform additional analyses to explore novel hypothe-
ses. In mega-analysis, on the other hand, data from each individual pa-
tient is combined in a single database for common analysis. This
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requires relative homogeneity of the data quality across studies and is
usually a more time consuming approach. However, the added advan-
tage is that all subject level data are present in the same database
which allows investigators to address amuch broader set of hypotheses,
and in studies where multivariate data is handled (eg. genetics, neuro-
imaging, clinical, etc.) refining amodel by incorporating a new covariate
(e.g. age or total intracranial volume) can be easily achieved. In addition,
studies on individual patient diagnosis, prognosis or prediction, e.g. ma-
chine or deep learning approaches, are possible. In Table 1 we summa-
rize relevant differences between single site studies, meta- and mega
analysis for the study of ECT-related brain effects.

To allow formega-analysis of the neuralmechanisms and predictors
of ECT-related clinical response, this paper describes the formation of an
international collaboration, termed the Global ECT-MRI Research Col-
laboration (GEMRIC), with the goal of creating a large database of
multi-site imaging data and clinical/behavioral/physiological andmeta-
data for analysis of the neural mechanisms and predictors of ECT-relat-
ed clinical response. Although the unique and complementary
biological information afforded by different imaging modalities (struc-
tural, functional, diffusion and perfusion MRI, and magnetic resonance
spectroscopy) is expected to provide a more comprehensive under-
standing of the mechanisms of ECT, the initial goal of the GEMRIC is to
develop analysis and datamining approaches for structural MRI data
followed with other imaging modalities in the future.

Large international multi-center research studies such as the
Alzheimers's Disease Neuroimaging Initiative (ADNI) (Jack et al.,
2008), and the wide availability of common analysis tools, such as
FreeSurfer, has paved the way for some general standardization of ac-
quisition protocols and analysis methods. That is, contemporary struc-
tural MRI data is typically acquired with high resolution 3D sequences,
which allows for standardized processing pipelines, even without addi-
tional a priori defined and standardized imaging sequence parameters.
This allows large numbers of subjects to be analyzed with consistent
analysis pipelines, which is an objective of GEMRIC. Consequently, rig-
orous testing of the relationship between the “experimental”manipula-
tion (e.g. ECT parameters), and brain and health effects may be
examined.

Below we present our process of identifying potential contributors
for this international collaboration and the roadmap for establishing
goals for future investigations and new collaborations. Finally, we char-
acterize our current GEMRIC dataset, describe the tools for common
data analysis and evaluate our initial processing pipeline for handling
data collected across MRI systems.

2. Methods

The methods for setting up the GEMRIC included 1) identifying con-
tributing investigative groups, 2) establishing collaborative and data
sharing agreements, 3) developing a commondata portal, 4) developing
and testing a structural image preprocessing pipeline, and 5) standard-
ization of multi-site clinical data.
Table 1
Research designs for studying ECT-related brain effects.

Single site Multi-site
(Meta)

Multi-site
(Mega)

Sample size 10–100a 100–1000 100–1000
Patient sample Homogeneous Heterogeneous Heterogeneous
ECT stimulus parameters Homogeneous Heterogeneous Heterogeneous
Variance in software/analysis
tools

NO YES/NOb NO

Individual-subject level
prediction

YES NO YES

Detecting rare events NO NO YES

a Numbers typical for longitudinal studies of ECT.
b Some meta-analysis, like ENIGMA, exclude this variance by using consistent analysis

pipelines across sub-studies.
To identify contributing groups, a systematic search in Medline,
Embase and PsycInfo was undertaken (September 2014) to target stud-
ies that included imaging measurements before and after ECT (see
Inline Supplementary material for exact search terms); 2153 papers
were identified of which 94 included imaging measurements both be-
fore and after ECT. Of 34 studies that usedMRI, four different modalities
were used; structural (T1, T2; 15), functional (Bold fMRI; 5), spectrosco-
py (HMRS; 11) and diffusion (DWI/DTI; 3). In total 13 studies included
volumetric T1 acquisitionswith aminimum resolution of 1.3mm in any
direction (see Inline Supplementary Fig. S1), and the 11 corresponding
authors of these papers were contacted by email in November 2014.

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2017.02.009.

To facilitate data sharing, guidelines and agreements for collabora-
tion were established under the guidance of site-specific institutional
review boards (IRBs). Next, a common data portal was created to
allow individual sites to import raw DICOM data to a common server.
An advantage of processing rawdata on a common portal (versus trans-
ferring processed data) is that differences in software installations are
eliminated, and quality control are the same across independent
datasets (Bartsch et al., 2014). A processing pipeline for automated lon-
gitudinal analysis of individual patient datawas then set up on this com-
mon analysis platform. The pipeline includes corrections for scanner-
specific effects using a gradient unwarp tool that corrects 3D T1 data
for effects of scanner-dependent gradient field non-linearities
(Jovicich et al., 2006). Then the individual brain MRI is processed
using automated FreeSurfer preprocessing steps (version 5.3; surfer.
nmr.mgh.harvard.edu/), which includes segmentation of subcortical
white matter, deep gray matter structures and automated parcellation
of the cerebral cortex (Dale and Sereno, 1993; Desikan et al., 2006;
Fischl et al., 2002; Fischl et al., 2004). Next, unbiased, within-subject as-
sessment of longitudinal changes of regional brain volumes is per-
formed using Quarc (Holland et al., 2009; Holland and Dale, 2011;
Holland et al., 2012). In summary, this pipeline builds on lessons from
prior studies (notably ADNI) by correcting for scanner-specific distor-
tions and using methods that maximize power for longitudinal change
estimation while avoiding bias (Fox et al., 2011; Holland et al., 2012;
Thompson et al., 2011).

The current GEMRIC sample is described in the results section. How-
ever, a selected sample from one site (Bergen; n=19 patients and n=
9 controls), was used to test feasibility, and to evaluate the image anal-
ysis processing pipeline. The work was carried out in accordance with
The Code of Ethics of theWorldMedical Association (Declaration of Hel-
sinki) for medical research involving human subjects. Here, 19 patients
in a major depressive episode receiving right unilateral ECT (age:
48.0 ± 16.6, 63% female) underwent the exact same research protocol
(Oltedal et al., 2015a) but twodifferent scannerswere used: Six patients
were scanned on a 3T GE Signa HDxt equipped with an 8-channel head
coil. The protocol included a T1-weighted inversion recovery spoiled
gradient echo sequence, IR SPGR (TE/TR = 2.8/6.5 ms; TI = 450 ms;
flip angle = 8°; FOV 256 mm; voxel size = 1.0 × 1.0 × 1.0 mm3), and
the remaining 13 patients were scanned on a GE Discovery MR750 3T
equipped with a 32-channel head coil. The protocol included a fast
spoiled gradient echo, FSPGR (TI = 600 ms; flip angel = 8; TE/TR =
2.9/6.7 ms; FOV256 mm; voxel size = 1.0 × 1.0 × 1.0 mm3). After
unwarping, both corrected (i.e. unwarped) and uncorrected 3D vol-
umes were analyzed manually and automatically with FreeSurfer
(n=6 subjects at each scanner). Automatic segmentation of subcortical
volumes was then statistically compared within groups, assessed by
Student's two-tailed paired t-tests. For the unbiased regional change
analysis, Quarc was ran on data both before- and after the gradient
unwarp step from all 19 subjects with scans from before- and after
ECT, and 9 healthy controls with scans at similar time intervals.
Student's two sample two-tailed t-tests were usedwhen comparing pa-
tients and controls. Cohen's d was calculated as dv/SD where dv repre-
sents the mean change estimate and SD the standard deviation of a

http://dx.doi.org/10.1016/j.nicl.2017.02.009
http://dx.doi.org/10.1016/j.nicl.2017.02.009
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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given region of interest (ROI). Results were considered statistically sig-
nificant at the P b 0.05 level. Data are presented asmean±StandardDe-
viation (SD). Sample size was estimated by using the software package
G ∗ Power (version 3.1.9.2) (Faul et al., 2007), and for these analyses
Cohen's d was calculated from the mean of the estimated regional ana-
tomical change from the left and right hemisphere.

Finally, since different sites included different mood rating scales
from completed or current investigations, methods were implemented
to allow for the standardization of multi-site clinical data for GEMRIC.

3. Results

3.1. Forming the collaboration

After identifying potential contributors to the GEMRIC through the
literature search described above, 7 of the 11 contacted authors joined
the collaborative group. Through additional contacts within this set of
investigators, an additional 8 sites agreed to participate so that currently
15 independent groups - including the imaging core at UCSD - make up
the GEMRIC (Fig. 1). Three of the sites are currently pending final ap-
proval for data sharing, and recently another 5 sites have been identified
and have been invited to participate.

Following initial verbal agreements for collaboration, the GEMRIC
was formally established at the first multi-site collaborative meeting
in Bergen in June 2015. The GEMRIC was defined as a Global network
for determining themechanisms of action of Electroconvulsive Therapy
using Magnetic Resonance Imaging through Collaboration. During the
first meeting, a data sharing agreement was developed that outlines
the terms for contributing data to GEMRIC, policies for data storage/ac-
cess and analysis. How to initiate new analysis of combined data was
also established. A board was created consisting of lead researchers
(e.g. Principle Investigators) from projects/studies participating in the
collaboration. The GEMRIC board holds quarterly meetings to discuss
projects and research in the network. The collaboration is coordinated
from the University of Bergen, Norway, under the directorship of Dr.
Leif Oltedal, where the Data Portal is located.

3.2. MRI data, clinical measures and common sample characteristics

A prerequisite for participating in the GEMRIC is that all contributing
sites must have acquired and be willing to share longitudinal high-res-
olutionMRI data in patients before and after receiving ECT. An overview
of the current GEMRIC data set is given in Table 2. The combined
Fig. 1. Currently 15 sites are contributing to GEMRIC andmore are expected to join, in line
with growing interest in neuroimaging research in ECT. The UCSD site provides the
Imaging Core and is responsible for tools for image processing at the common server
located in Bergen.
number of patients is 345 with individual patient age ranging from 19
to 86 years (~60% female, ~85% unipolar depression). Nine of the sites
also acquired control group(s). Six sites included three clinical and neu-
roimaging assessments (before, during, and immediately after the ECT
series), and three sites included a fourth clinical and neuroimaging as-
sessment up to six months post-ECT index. Eight sites obtained blood
samples for analysis of genetic, genomic and other depression-related
blood biomarkers during and after the ECT index. In addition, eight
sites included longitudinal changes in cognition with neuropsychologi-
cal assessments that includedpre-morbid intelligence, cognitive screen-
ing, attention, language, memory, visuospatial, fluency, executive, and
motor functions.

Neuroimaging data was obtained at field strengths from 1.5 to 7 T
using scanner hardware from three different vendors (GE, Philips, and
Siemens). All sites included a volumetric T1-sequence in their protocol.
Other imagingmodalities included T2, fluid attenuated Inversion recov-
ery (FLAIR), diffusion weighted imaging (DWI), resting state fMRI, task
based fMRI, susceptibility weighted imaging (SWI) and magnetic reso-
nance spectroscopy (MRS). In line with international guidelines, de-
pressive symptoms were rated by the 17- or 24-item Hamilton
Depression Rating Scale (HAM-D), or the Montgomery-Åsberg Depres-
sion Rating Scale (MADRS). For sites that used one depression rating
scale, a validated equation converted HAM-D-17 to MADRS (Heo et al.,
2007). Specific neurocognitive measures (semantic fluency, verbal list
learning) may be compatible across sites for pilot data. Nine sites used
mainly right unilateral stimulation (RUL), one site used bitemporal
(BT) stimulation only, three sites used bilateral (BL) stimulation only,
and one site used bifrontal (BF) stimulation only. The number of treat-
ments perweekwas two or three for five andnine sites, respectively. In-
formation on the mean number of treatments, pulse width, applied
current, frequency and train duration is shown in Table 2.

3.3. Ethical, practical and technical challenges in forming the collaboration

Retrospective analysis of multi-site data poses several challenges.
Local institutional review board (IRB) approvals may not have included
data sharing and common analysis a priori, and equipment, scanners
and software used for data acquisition, as well as patient inclusion and
exclusion criteria, vary across participating sites.

3.3.1. Measures to ensure patient integrity
The fundamental first step for the GEMRIC collaboration is to ensure

the relevant approvals from host institutions, institutional review
boards, ethical committees or data protection authorities (collectively
referred to as IRB). Details of rules and regulations differ between insti-
tutions and countries.While some sites had consent forms that included
information about sharing of de-identified data and already had the
necessary approvals, others needed to contact their local IRB. A stan-
dard, generic consent-form thatmaybeused for sharingdata toGEMRIC
was developed. This form is used when local IRBs require new consent
from each study participant. However, re-consent from patients is not
always possible or necessary, and several other steps were suggested
that could help fulfill local IRB requirements. Currently, for GEMRIC a)
individual data is provided with new patient-IDs, b) each site retains
the right to their own rawdata, c) information about study site is hidden
on the common server and in data analysis. In this large multi-site col-
lection of subjects, the possibility of re-identifying individual study par-
ticipants is thus very diminished. In such situations, data may for
practical purposes be considered anonymous (Helsedirektoratet, 2013).

The Regional Ethic Committee South-East in Norway approved the
inclusion of data from 500 individuals to the GEMRIC server located at
the University of Bergen (2013/1032 ECT and neuroradiology, June 1st
2015). All data must be de-identified, and all collaborating sites must
have a local IRB approval allowing them to share data with the server
in Bergen. Although we regard more open data sharing as a future



Table 2
Characteristics of studies contributing to GEMRIC.
Overview of study specifics, patient characteristics, MRI protocol, ECT parameters, baseline and post-ECT measurements and blood biomarkers.

Center, key
reference

Bergen,
Norway
(Oltedal et
al., 2015a)

Amsterdam,
the
Netherlands
(Dols et al.,
2017)

Leuven,
Belgium
(Bouckaert
et al., 2016a)

Copenhagen,
Denmark
(Jorgensen
et al., 2016)

Lund,
Sweden
(Nordanskog
et al., 2010)

Linköping,
Sweden
Nordanskogb

Albuquerque,
NM USA
(Abbott et al.,
2014)

Nijmegen, the
Netherlands
(van
Eijndhoven et
al., 2016)

Los
Angeles,
CA, USA
(Joshi et
al., 2016)

Cleveland,
OH, USA
(Beall et
al., 2012)

Utrecht, the
Netherlandsb

Lausanne,
Switzerland
Berlin,
Germany
(Dukart et
al., 2014)

Glen Oaks,
NY, USA
(Argyelan
et al., 2016)

Munster,
Germany
(Redlich et al.,
2016)

Study specifics
N 24a 34 34 19 12 11 41 23 43a 6 37a 10 23 28
MRI time
points

4 3 3 3 4 3 2 2 4 2 2 3 3 2

Control
group

+ + − − − − + + + − + + + +

Patient characteristics
Mean age,
range

43.7 (14.6)
24–77

71.3 (9.8)
55–90

72.7 (7.6)
56–86

52.3 (11.3)
31–66

40.0 (16.0)
19–67

43 (14.7)
19–64

64.1 (9.1)
50–86

50.7 (8.5)
37–67

41.1 (14.2)
19–74

39.0 (5.4)
32–46

50.5 (13.9)
19–74

53.9 (10.7)
40–72

48.9 (13.8)
27–74

46.2 (10.2)
21–63

% female 67 59 65 68 83 55 63 65 61 33 68 62 35 61
% unipolar 75 100 100 68 50 100 100 100 86 100 86 50 87 100
MRI protocol
Vendor
Field
strength

GE 3 T GE 3 T Philips 3 T Siemens 3 T Siemens 3 T Philips 3 T Siemens 3 T Siemens 1.5 T Siemens
3 T

Siemens
3 T

Philips 7 T Siemens1.5 T GE 3 T Philips 3 T

sMRI, voxel
(mm)

1.0 × 1.0 ×
1.0

1.0 × 1.0 × 1.0 1.0 × 1.0 ×
1.2

1.0 × 1.0 ×
1.0

1.0 × 1.0 ×
1.0

0.6 × 0.5 × 0.5 1.0 × 1.0 ×
1.0

1.0 × 1.0 × 1.0 1.0 × 1.0 ×
1.3

1.0 ×
1.0 × 1.2

1.0 × 1.0 ×
1.0

1.0 × 1.0 ×
1.0

0.9 × 0.9 ×
1.0

0.5 × 0.5 × 0.5

Multimodal + + + + − − + + + + + − + +

ECT parameters
RUL, BL, BT,
BF

RUL 32 RUL, 14
RUL–BL, 2 BL

34 RUL, 6
RUL-BL

BT 10 RUL, 2
RUL-BL

RUL 31 RUL, 10
RUL-BT

BL 37 RUL, 6
BL

BL BL RUL BF 25 RUL, 3
RUL-BL

Sessions per
week

3 2 2 3 3 3 3 2 3 3 2 2 3 3

# sessions in
index

11 (3.6) 12.5 (7.8) 11.1 (3.1) 11.1 (3.2) 10.2 (2.9) 7.6 (2.7) 11.2 (3.2) 16.9 (6.2) 11 (3.8) 8.8 (3.9) 18.7 (9.9) Until
remission

6.3 (3.0) 14.1 (4.9)

Charge Age and
gender

Titration Titration Age and
gender

Age and
gender

Age and gender Titration Titration Titration Titration Titration Titration 1.5 seizure
threshold

Age and
gender

Pulse width 0.25–0.5 0.5–1.0 0.5–1.0 0.5–1.0 0.3–0.6 0.3–0.6 0.36–1.0 0.5–1.0 0.3–0.5 0.5 0.5 − 1.0 0.5
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(ms)
Current
(mA)

900 –1000 –1000 900 800 800–900 900 ‐900 800–900 − 900 − 800 900

Frequency
(Hz)

20–70 30–70 30–70 30–140 30–90 40–90 30–140 10–70 20–120 − 10–70 − 30–50 5–170

Stimulus
duration
(s)

6–8 2–10 2–10 2–8 6–8 6–8 2–8 2.8–8 1–8 − 6–8 − 0.5–2.3 2.8–8.0

Baseline measurements
MADRS
mean,

range

32.6 (5.9)
18–44

33.9 (10.4)
14–50

35.2 (7.6)
22–50

37.8 (6.1)
29–50

35.5 (6.5)
26–49

38.1 (8.0)
22–54

30.68 (7.9)
17–52

HAM-D
mean,

range

27.6 (4.8)*
20–39

32.8 (7.8)
21–53

21.9 (5.3)*
12–32

25.2
(4.7)*
21–32

21.8 (7.2)*
10–37

21.8 (5.9)
10–29

28.7 (5.5)
21–45

21.7 (4.8)
13–35

Post index measurements
MADRS
mean,

range

15.6 (8.7)
0–33

11.9 (9.6)
0–33

8.6 (10.1)
0–44

13.0 (10.5)
0–38

16.4 (11.0)
0–35

18.1 (11.4)
9–40

18.0 (10,7)
3–42

HAM-D
mean,

range

13.0 (6.5)*
0–25

8.8 (9.9)
0–35

12.6 (7.1)*
3–26

9.3 (3.7)*
5–14

14.9 (7.1)*
3–34

7.8 (7)
0–25

12.7 (8.9)
2–34

10.9 (6.6)
3–27

Blood draw
time
points

5 4 4 3 − 3 − − 4 − 2 − − 1

a)These sites are still including patients. b) Not published.
RUL: right unilateral, BL: bilateral, BT: bitemporal, BF: bifrontal, RUL-BL: changed from RUL to BL during treatment, MADRS: Montgomery Asberg Depressing Rating Scale, HAM-D: Hamilton Depression Scale using 24 items, * using 17 items. mm:
millimeter, ms: milliseconds, mA: milliAmpere, Hz: Hertz, s: seconds.
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goal, GEMRIC data is currently, due to IRB restrictions, only sharedwith-
in the collaboration via the GEMRIC common analysis platform.
3.3.2. Common server and secure data storage
The GEMRIC dedicated server at the University of Bergen sits behind

university firewall and requires two-factor authentication and VPN ac-
cess for login. Data are analyzed on the server and displayed in a brows-
er window through a Remote desktop connection. Raw data cannot be
downloaded, but analysis and testing of hypotheses can be done online
as the system has a powerful interface for statistical analysis with the R
software package, version 3.3.1 (R Core Team, 2016). For details on the
functionality of Data Portal see (Bartsch et al., 2014). The security level
of our system, to our knowledge, exceeds that of similar systems, and
the Data Portal software has been successfully used in other studies,
Fig. 2. A) Coronal images before (uncorrected; left panel) and after (corrected; right panel) ima
“uw”), scanner 1. Change in FreeSurfer ROI (ΔVol)was calculated as the difference between ROI
□) and corrected data (filled symbols;▲,■). B) Change in hippocampal volume induced by ECT
increasedmean effect size and reduced variance after distortion correction. C) Change in total intra
■,−) unwarping step. There was no statistically significant change. Notice a tendency to reduce
compression (blue) or expansion (red) between MRI time points. Upper panel; MRI ~2 h before
treatment and 7–14 days after ended treatment (multiple sessions). Notice larger changes afte
reduced volume of the ventricles. E) Manual measurements done in Osirix MD from the axial pla
of the genu corpus callosum. Superior: Halfway between the apex of the dura mater and the mid
further divided by three lines which were used for the measurements. One halfway between the
the middle line and the anterior or posterior boundaries respectively. The lines were measu
conference poster ISMRM 2015 abstract 705 (Oltedal et al., 2015b)]. (For interpretation of the refe
e.g. the Pediatric Imaging, Neurocognition, and Genetics (PING) study
(Jernigan et al., 2016).

3.3.3. Structural imaging preprocessing, FreeSurfer and Quarc analysis
In the pilot data described above used to test multi-site image pre-

processing, the effect of distortion correction (Fig. 2A; single subject;
scanner 1)was largest towards the apex of the skullwhere themanually
measured dura-dura distance changed by ~8% (p=0.003) and 2% (p=
0.005) for scanner 1 and 2, respectively (Fig. 2D). The calculated ECT-in-
duced hippocampal volume change, based on automated FreeSurfer
analysis, before and after correction was (μl, n = 12) 254 ± 304 (p =
0.01) and 339 ± 232 (p = 0.0004), representing a relative change of
3.4% and 4.7%, respectively. The reduced SD after corrections suggests
reduced variance, which can also be appreciated in Fig. 2B. While ECT-
induced hippocampal volume change was expected, the estimated
ge processingwith algorithm that corrects for gradient non-linearities (indicated by arrow
volume between the before- and after treatment scans for uncorrected (open symbols;△,
, estimated from data before- (Uncor.;△,⋯) and after (Cor.;▲,−) unwarping step. Notice
cranial volume from before to after treatment for data before- (Uncor.;□,⋯) and after (Cor.;
d variance after corrections. D) Example of voxel based method (Quarc) showing areas of
and ~2 h after first ECT treatment (single session). Lower panel; MRI ~2 h before first ECT
r ended treatment (lower panel) with increased volume of the medial temporal lobe and
ne at three different levels. The levels were: Inferior: The apex of pons. Middle: Ventral part
dle level. These levels were determined from the sagittal series. Then, the three levels were
anterior and posterior boundaries of the dura mater. The two other lines halfway between
red in cm. Significance (P-value) assessed by two-tailed t-test. [Fig. 2D is adapted from
rences to color in this figure legend, the reader is referred to the web version of this article.)



Table 3
Sample size estimates.
Sample size neededper study arm todetect differences inmorphologybetween groups for
selected ROIs. Cohen's dwas calculated asmean change/SD. Power calculations were per-
formed (G ∗ Power version 3.1.9.2) for t-tests of difference between to independentmeans
for groups with identical size. The error probability (α) was set to 0.01 and the power (1-
β) was set to 0.8.

ROI, methodology Mean Change Sample size needed per arm

(%) SD Cohen's
d

100% of
d

25% of
d

10% of
d

Hippocampus, Quarc 2.43 1.77 1.37 15 204 1194
Hippocampus, FS long 1.63 1.42 1.15 20 280 1933
Caudal ant cingulate, Quarc 2.15 1.04 2.07 8 89 532
Caudal ant cingulate, FS
long

1.94 1.77 1.10 22 323 1933

Sup temp gyrus, Quarc 1.99 1.68 1.18 19 280 1624
Sup temp gyrus, FS long 1.61 1.94 0.83 36 532 3652
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intracranial volumewas not changed after treatment. However, the var-
iance seemed somewhat reduced after correction with an SD (in μl) of
26,921 and 17,838 before and after correction, respectively (Fig. 2C).

Regional anatomical change in longitudinal brain scan studies can be
estimated using several available software packages. We have imple-
mented Quarc which compares favorably with other methodologies
for estimating structural change (Holland et al., 2012). An example is
shown in Fig. 2D, illustrating regional change at the single subject
level. This example corresponds with results found with FreeSurfer,
and agreeswell with visual inspection of accurately rigid-body co-regis-
tered slices from intra-individual T1 volumes before- and after ECT (not
shown). Estimates of ECT induced volumetric change was further eval-
uated and compared to a group of healthy controls. The effect size
(Cohen's d) of Quarc estimated regional cortical and subcortical change
were typically in the range 0.5–2 (Fig. 3, Table 3). The pattern of change
was broadly distributed, but the larger effect sizes were lateralized to
the side of the ECT stimulus (all patients received right unilateral
ECT); e.g. the volume change of the left and right temporal pole was
2.6% (p b 0.05) and 4.9% (p b 0.001), respectively (n = 19), compared
to controls (n = 9). The mean standard deviation of change across
ROIs for healthy controls (i.e. the “noise level”), scanned at time inter-
vals similar to patients was ~0.8%. If scan corrections were not per-
formed this value was ~0.9%; however, all controls were scanned on
scanner 2, which has less geometric distortions than scanner 1, and
this estimate will vary with scanner type. For the patient group both
scanners were used, and we noticed that the effect of scan correction
was larger for scanner 1 compared to scanner 2; themean standard de-
viation across ROIs was 2.0 and 2.6% (n = 6) versus 1.8 and 1.9% (n =
13), for datawith andwithout scan correction for scanner 1 versus scan-
ner 2, respectively.

Based on the data from the Bergen sample (Fig. 3) we estimated
sample sizes that will be needed to detect differences between groups
for a few selected ROIs for effect sizes equal to Cohen's d, 25% of d and
10% of d. Estimates based on results fromQuarcwere comparedwith es-
timates based on corresponding results from the FreeSurfer longitudinal
pipeline (Table 3).

3.3.4. GEMRIC projects
The common processing pipeline described above is used for initial

harmonization and processing of GEMRIC imaging data. As specified in
the GEMRIC data agreement, all board members can suggest projects
of secondary data analysis by providing a one-page summary, including
a timeframe. The suggestions are discussed by the board for consensus.
By engaging the board, the proposal may get valuable feedback to
Fig. 3.Volumetric changemap (Quarc;mean of n=19) for lateral (upper row) andmedial
(lower row) aspect of left (left) and right (right) hemispheres. Scale bar represents
Cohen's d effect size.
improve impact. If future projects require other processing tools than
the ones outlined here, this can be implemented on the server. The com-
plete analysis pipeline, i.e. the computation, should then be packed in a
Docker container (https://www.docker.com) which can be installed on
the server.

4. Discussion

Though smaller hypothesis-driven studies are still considered useful
to the field, several recently developed research initiatives (e.g., ENIG-
MA, the National Institute of Health Big Data to Knowledge (BD2K) ini-
tiative) emphasize the power of larger datasets to harvest diverse
biomedical information for better understanding disease and treatment
of disease. For example, by combining data from multiple origins one
can account for site-specific effects and assess the relationship between
individual factors and health outcomes while simultaneously offering
greater generalization. Such datamining approaches, particularly those
that combine different types of data (e.g., multimodal MRI measures,
behavioral, clinical and demographic information aswell as information
of gene function), appear more likely to resolve the biological mecha-
nisms accounting for successful antidepressant response and side ef-
fects. Likewise, sophisticated computational models applied to these
datasets may identify biological markers extracted from imaging data
that might predict future clinical response, risk of side effects or subse-
quent relapse to therapy, which would be of great translational value.
Towards this end, the current paper describes the formation of GEMRIC
and demonstrates the first common image processing pipeline. This in-
ternational, multisite collaboration aims to leverage high-dimensional
neuroimaging data combined with clinical and physiological data
sources to determine the mechanisms and predictors of clinical re-
sponse to ECT, mechanisms that are expected to overlap with other an-
tidepressant treatments. Furthermore, in a large sample, patients who
experience rare side effects may be captured – and such effects could
possibly be related to imaging findings.

Several international collaborations that include neuroimaging data
repositories have been formed recently (Eickhoff et al., 2016). These col-
laborations were used as a model to systematically establish the
GEMRIC, the first international collaboration for longitudinal investiga-
tions of ECT that utilizes MRI. Our goal is to increase the knowledge
about themechanisms of action of ECT. To better understand the conse-
quences and full width of structural brain changes with ECT, large sam-
ple sizes are needed. The current combined data pool is approximating a
ten-fold increase relative to that of any single participating study, and
more sites are expected to join in the near future. In our multi-site
data set with individual-subject level data, we take advantage of stan-
dardized image processing and statistical tools to eliminate image anal-
ysis methods as a source of variance.

To reduce variance and scanner artefacts, the use of standardized
processing streams is critical for pooled analysis of multi-centre data

https://www.docker.com
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(Cannon et al., 2014). One of the main causes of spatial distortions in
MRI scans is non-linearity in the gradient fields that is used for spatial
encoding. For longitudinal studies, correcting for gradient field distor-
tions is important even for single-site studies, as the distortions depend
on the position of the head within the main magnetic field. We have
adapted automated correction procedures, developed at the Multi
Modal Imaging Laboratory at UCSD, to correct for scanner specific ef-
fects (Jovicich et al., 2006) which may otherwise introduce bias and/or
variance in the measures of anatomical change (Jernigan et al., 2016).
Analysis of data from one site suggests that this processing step will re-
duce noise in measurements of longitudinal change. Themethod for es-
timating longitudinal change (Holland and Dale, 2011) calculates
displacement maps bidirectional with respect to imaging time point,
and avoids the inherent bias subject to some longitudinal change anal-
ysis methods (Fox et al., 2011; Holland et al., 2012; Thompson et al.,
2011). By applying the pipeline to data from one site we show that
large effect sizes of ECT-induced structural changes are achieved, with
Cohen's d in the range 0.5–2. For comparison, the largest cross sectional
meta-analysis of major depressive disorder to date found an effect size
of −0.14 for patients' hippocampus volume relative to that of controls
(Schmaal et al., 2016). In line with prior investigations (Holland and
Dale, 2011; Holland et al., 2012), we use unbiased methods that maxi-
mizes the power for longitudinal anatomical change estimation. Using
these methods, the current GEMRIC sample size should allow detection
of differences in volume change that are at or above 25% of the effect
sizes found in the Bergen sample (which is compared to healthy con-
trols). Hence, we can take advantage of the heterogeneity of the sample
(e.g. stimulus and treatment parameters, age, comorbidities, gender) to
assess how site- or subject specific factors can modulate brain changes
and health effects seenwith ECT.We have presented our initial process-
ing pipeline for structural data, but intend to include othermodalities as
well as alternative analysis approaches in the future.

Finally, the large combined sample size, with individual-subject data
will be available to the collaboration and allowa rich set of hypothesis to
be tested. Individual-subject data is a prerequisite for future investiga-
tions of ECT outcome prediction (Redlich et al., 2016), which may im-
pact clinical patient care (Abbott et al., 2016), possibly enabling a
more personalized approach to treatments.
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