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Home range size and habitat
quality affect breeding success

but not parental investment in barn
owl males

Robin Séchaud®™, Kim Schalcher?, Bettina Almasi?, Roman Bihler?, Kamran Safi®*,
Andrea Romano®® & Alexandre Roulin®

Life-history theory predicts that parents should balance their limited resources to maximize lifetime
fitness, limiting their investment in current reproduction when the fitness value of current progeny

is lower than that gained by producing offspring in the future. Here, we examined whether male

barn owls (Tyto alba) breeding in low-quality habitats increased their parental effort to successfully
complete offspring rearing or limited their investment by paying a fitness cost while saving energy for
the future. We equipped 128 males with GPS devices between 2016 and 2020 to collect information
on home range size, habitat composition, food provisioning rate to the brood and nightly distances
covered. We also recorded nestlings’ growth and survival, as well as males’ body mass variation and
future reproductive success. Males living in lower-quality habitats exploited bigger home ranges
compared to individuals whose nests were settled in prey-rich habitats. They fed their brood less
frequently, while covering longer nightly distance, resulting in a slower growth of late-hatched
nestlings and ultimately in a lower fledging success. As males did not differ in body mass variation or
future reproductive success our findings suggest that males hunting in home ranges with less prey-rich
structures do not jeopardize future reproduction by investing disproportionately larger resources to
compensate for their current low home range quality.

A central issue in life-history theory concerns how parents optimally balance their limited resources in order to
maximize their lifetime fitness?. In species with altricial progeny, rearing offspring is among the most energeti-
cally demanding activity for the parents®=°. Parental investment in current reproduction is therefore expected to
result in trade-offs against parental survival®® and future reproduction®*!. When the reproductive effort in the
current breeding event results in a considerable loss of future fitness, via a decrease in survival and/or a reduc-
tion in future fecundity, the optimal parental investment is smaller than what it would be to maximize current
offspring production'*". In practice, whenever the cost of a reduced annual fitness could be overcompensated
by a larger increase in future fitness, it can be advantageous for the parents to prudently limit their investment
in current reproduction, thus resulting in brood reduction or failure!>'.

The successful completion of offspring rearing may depend on individual quality but also on the environmen-
tal conditions experienced by both the parents and offspring. It is well-known that parents are usually limited by
food availability' which is typically related to the quality and the structure of the environment where the breed-
ing occurs and which may considerably constrain the investment in the current offspring'®!”. In particular, when
the habitat is degraded and fragmented, available resources become increasingly scattered and isolated, thus forc-
ing individuals to maintain larger home ranges'® and to forage at increasing distances from their breeding site!*?.
This has been described in different taxa, both in primary consumers*-*? and predators'®'#**2* Furthermore,
an increase in home range size has been shown to result in lower provisioning rate to the offspring!>?, longer
distances covered'*?*? and larger energetic costs to the parents®. The ultimate consequence may be a decrease
in current reproductive success?”*® or survival®’. Under limiting ecological conditions, parents have therefore to
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decide whether to compensate through an increase in their reproductive effort in order to successfully complete
offspring rearing at the expense of their future reproduction®*-*? or to limit their investment, decreasing their
current fitness, in order to improve self-maintenance and gain future reproductive chances**. There is still a
dearth of studies investigating how habitat quality can affect the amount of parental care, and how it can mediate
individual trade-offs**~.

To examine how parental investment in offspring rearing, reproductive success and future reproduction are
affected by habitat quality, we performed a GPS tracking study on a large sample of male barn owls (Tyto alba),
recording home range size and habitat characteristics. This species is a farmland nocturnal raptor of medium
size, that preys almost exclusively on small mammals®”*¢. It breeds in farms and barns, and hunts preferentially
in extensive open habitats, such as meadows and wildflower strips**~*2. However, it can also exploit more inten-
sive habitats, like grasslands and cereal crops, but shows a strong avoidance for forests and urbanized areas**~*2.
The vast majority of food delivered to the altricial offspring is provided by the male, especially from the second
week after hatching to the moment of fledging®, females in contrast can even abandon their brood to start a
second one elsewhere*".

Here, we investigated how habitat composition and home range size, as proxies of habitat quality, affected male
hunting behaviour and parental investment measured as food provisioning rate, nightly distance covered, and
body mass variation during the rearing period. We also measured how parental effort translated into offspring
growth and pre-fledging survival, as well as affected future reproduction. In particular, we predicted that home
range size should decrease with increasing proportion of high quality habitats surrounding individual nests'®'%4.
We consequently expected that male food provisioning rate should increase with decreasing home range size,
while the opposite should be the case for nightly distance covered. In practice, we expected males maintaining
larger home ranges to pay higher costs of reproduction. We then tested two competing hypotheses about male
investment in current reproduction. Under the “compensation hypothesis™!, males living in low-quality habitats
would increase their effort in order to maintain nestlings’ survival and maximize current reproductive success,
while paying the associated larger energetic cost including a lower probability to breed during in the following
breeding season. If this hypothesis is met, we expected a reduction in body mass and body condition®**” for
males living in large home ranges (i.e. low-quality habitats) in order to provide the amount of food needed to
successfully accomplish the rearing of all their nestlings. Such an increased reproductive effort should result in
a comparable number of offspring reared compared to males living in small home ranges, but a smaller prob-
ability of reproduction and a lower reproductive success in the following breeding season. Conversely, under the
“prudent father hypothesis™, males in low-quality habitats would limit their efforts not to compromise future
reproduction. If this hypothesis is met, we expected that males living in low-quality habitats should not pay costs
in terms of reduced body mass and condition as well as of future reproduction, but in terms of reduced current
reproductive success (i.e., brood reduction).

Materials and methods

Study area and species. The study was performed between 2016 and 2020 in an area located in Western
Switzerland, in a typical farmland landscape. Intensive crops cover the majority of the area, interspersed with vil-
lages and forests*. Recently, agri-environment schemes (AES) were implemented in the landscape to maintain
and promote biodiversity, including mainly extensively exploited meadows and pastures, wildflower strips and
hedges. These areas host high densities and diversity of small mammals compared to surrounding intensively
exploited crops, as shown by specific surveys which are periodically performed in the study area’**, and barn
owls use them preferentially when hunting*2.

Nest boxes for barn owls have been installed in the study area since 1985 to counter the loss of natural
breeding sites. Barn owl females produce an egg every 2-3 days and start incubating them as soon they are laid,
resulting in a hatching asynchrony of several days between each nestling. Barn owls lay 6 eggs on average (from
1 to 11), from which 4 fledglings (from 0 to 9) are raised successfully*.

Importantly, we focused on males only because of several reasons. First, post-hatching parental investment
varies between sexes, with males being the main prey providers (three quarters of the prey on average*>*).
Second, the female, in addition to being little involved in feeding the nestlings, may desert the brood to produce
another clutch elsewhere (up to 59% of the females in certain years*). This causes them to travel great distances
in search of a free nesting site, which they typically find relatively far from their first nest (4.6 km on average, but
up to 29.1 km**). Third, even if females do not desert their nest, they display a wide inter-individual variation
in behaviour that still require further studies, with some owls spending their nights perching close to the nest
while others wandering about for most of the time. Thus, at the time of our study, the home range of females
might depend on many other factors than habitat quality, and we therefore did not consider them in our analyses
as it was impossible to establish the relationship between their home range size and the reproductive success.

GPS tag deployment. Breeding males were captured at their nest site when the oldest nestling was 19 to
30 days old (mean of 24.8 days), using a well-established procedure (authorizations of the Department of the
consumer and veterinary affairs: VD and FR 2844 and 3213; Séchaud et al., 2021). By deploying the GPS tags
at the same nestling age, we ensured that the male’s home range size was not affected by the age of the nestlings
(Estimates (SE)=-0.076 (0.177), p=0.668; Imer with the year set as random term).

The males were equipped with small GPS devices fixed on their back with a Teflon harness. In 2016 and 2017,
we used GiPSy-5 tags (Technosmart, Italy) programmed to collect location every 10 s. In the three following
years, we used Axy-Trek tags (Technosmart, Italy), with a 10-s interval sampling rate in 2018, and a 1-s interval
in 2019 and 2020. In the present study the data collected in the two last years were down-sampled to 10 s to
match the previous data. Both type of tags weighed approximately 12 g including the battery and were packed
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in a protective plastic sheath for a final size of 30 x 20 x 10 mm, with an additional 40 mm long antenna. Since
barn owls are strictly nocturnal in Switzerland, we increased the GPS battery lifespan by switching the tags to
standby during the day. The owls were recaptured on average 11 days later (range: 6 to 22 days). In total, we
obtained 161 GPS tracks (32 in 2016; 18 in 2017; 40 in 2018; 39 in 2019; 32 in 2020), recording on average for
8 nights (range: 4 to 14), from 128 males (106 tracked once, 12 twice, 9 thrice and 1 four times). Prior to any
analysis, GPS data were filtered for aberrant positions using speed (excluding locations with a speed higher than
15 m/s) and location (excluding locations outside the study area due to GPS errors). The final data set included
2'307'236 locations (out of the 2'309'883 collected in total).

Home range size and composition. For each individual, we estimated the 95% kernel home range using
the ctmm R package®! to account for the temporal auto-correlation present in our datasets®>. To calibrate the
ctmm model, we placed a GPS device on a pole in open landscape and used the data collected as User Equivalent
Range Error (UERE). The model best fit was chosen automatically with the variogram.fit function in the same
package. Variogram plots were then visually inspected, and the home range size extracted.

To investigate the quality of the habitat exploited by individual barn owls, we looked at the relationship
between home range size and the proportion and diversity of AES. The AES were specifically implemented in
farmland to promote biodiversity, and have been shown to be preferentially used by hunting barn owls*2. A vole
monitoring in the study region in the years 2015-2021 showed that AES contain a higher abundance of voles
(mean number of heaps, holes and runways along 5 m transects: 1.5+3.5 (SD), range 0.6-3.5, n= 1856 transects)
compared to intensive meadows (0.4 £ 1.9, range 0.1-0.7, n=6024) or winter cereal fields (0.3 £+ 1.7; range 0.1-0.6,
n=7143), which was also found by***. AES surveys were obtained from the Department for Agriculture, Viti-
culture and Veterinary Affairs of the Vaud canton and the Department for Institutions, Agriculture and Forestry
of the Fribourg canton, and were only available for the years 2018 to 2020. Among the 26 AES types present in
the study area (Table S1), we excluded the less abundant ones (representing < 1km?), as well as the AES types
specific to a small region of the study area (which were available to only a few breeding pairs). The six remaining
AES types were grouped in four main categories—extensive meadows, extensive pastures, wildflower strips and
hedges-representing 93% of the AES surface implemented in the study area (Table S1). These six AES types con-
stitute the vast majority of the AES present in the study area, and can be found in all of it, thus representing the
major hunting grounds for the barn owls. For the analyses, we used the proportion of AES present in the home
range, as well as its Shannon Diversity Index (hereafter called AES diversity) estimated using the vegan package™.

Breeding and individual parameters. During the breeding season, the nest boxes were visited every
month to find the ones occupied by breeding pairs. Once a clutch was found, we followed a standardized proto-
col of visits to the nest to record the following breeding parameters: number of eggs, nestlings and fledglings*.
The number of eggs was recorded a week before hatching, ensuring that all eggs were laid. The number of nest-
lings was recorded both at the installation and recovery of the GPS (see GPS tag deployment above), as well as
their wing length to estimate growth during this period. To account for differences in timespan between instal-
lation and recovery of the GPS among males, we calculated a daily wing growth rate by dividing the increase in
wing length by the time elapsed between the two measurements for each nestling. Wing length was preferred to
body mass as the latter can vary considerably with the recent consumption of a prey (e.g., the weight of a prey can
reach up to 50% of the body mass of a nestling). We considered as “fledgling” all nestlings that reached 55 days
of age, which corresponds to their first flights out of the nest*.

We measured body mass and wing length of the males at both capture sessions (GPS deployment and recov-
ery). As adults, their wing size does not change during the breeding season, so we estimated a daily body mass
variation by dividing the difference in weight by the number of days between the two capture events. Body mass
variation is a commonly used proxy of parental investment in bird studies (e.g. 6,46,47). For each individual, we
recorded its age based on ringing information (if it was previously ringed as nestling or as adult in the previous
years) or feather moulting pattern (distinguishing yearlings from old birds®*). Then, as not all birds could have
been aged precisely, we classified them in two age groups, representing their previous breeding experience:
yearlings (i.e., unexperienced) or old (i.e., experienced) individuals. Although many birds breed at one year old,
some might reproduce for the first time at an older age.

To measure the long-term effects of habitat quality on males, for each individual we recorded the probability
to breed and its reproductive success in the year following the one when GPS was deployed. It is unlikely that
males leave the study area as almost only young individuals disperse, while breeding philopatry is common®.
However, barn owls regularly change nesting sites between years*®. The reproductive success of the following
year, measured as the number of fledglings produced in the first clutch (see above for details), was available for
a subset of 56 males.

Movement parameters. We measured the average nightly distance covered by each GPS tagged bird as
the mean of the sum of the distances between consecutive GPS locations per night. We excluded the night of
GPS installation (as the bird behaviour might have been altered by the capture) and the last night if not recorded
completely. Perching locations were excluded from the estimation of the nightly distance covered, as, when
birds perch, the GPS locations differ slightly and could generate wrong distances by accumulating GPS error*’.
To this purpose, we used the Expectation-Maximization binary Clustering (EMbC) method implemented in
the EMbC package to identify behaviour modes”. EMbC clusters movement data based on speed and turning
angle between locations. Perching, due to the small GPS location errors, was characterized by low speed and a
wide range of turning angles, while movement was characterized by medium to high speed and medium to high
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turning angles*2. We compared EMbC classification with a visual classification of perching locations and found
an average match of 94.5% (SE =2.3; San-Jose et al., 2019).

As a single prey is brought per nest visit**, we estimated the average nightly prey provisioning by counting
the number of visits to the nest box per night. The visits were identified using the recurse package® by setting
a radius of 150 m around the nest site and ignoring all excursions outside of the radius for less than 60 s. Using
this procedure, we found an average prey provisioning of 8.8 prey items delivered to the nest per night, which
corresponds to the previous feeding rate reported for barn owls***. To further validate the method, we compared
the visits obtained with the GPS tracks to visits assessed with camera traps installed in front of 10 nests. We found
that 98.3% (range: 95.2-100%) of the visits correctly corresponded to feeding events, and thus considered this
method as highly reliable to assess prey provisioning.

Statistical analyses. Home range size and habitat quality. 'We modelled the effects of home range compo-
sition, as well as individual and temporal parameters on the home range size using a linear mixed-effect model in
Ime4 package®, and corresponding p-values were obtained using sjPlot package®'. In all models, numeric covari-
ates were standardized (z-transformed). The proportion and diversity of AES in the home range were included in
the model as predictors of the home range size. Because the AES official mapping started in 2018, no data were
available for the two first years of our study (2016 and 2017). Hence, in this first model, we only considered the
owls tagged from 2018 to 2020 (n=127), but as the surfaces of the different AES categories were similar between
years, we expected to observe similar patterns in the previous years (Spearman’s correlation =0.99; Table SI).
Individual’s age category (yearling or old) and the laying date were also included as covariates, and the year of
the observation was set as random factor. Considering that 22 individuals were captured and deployed with GPS
in multiple years (see above) individual identity (hereafter individual ID) was also added as random factor to
all the models. However, to check whether repeated measures of the same individuals would have affected the
results, all the models were re-run using a single datum per individual (without individual ID as an additional
random factor). These analyses always provided qualitatively similar results (details not shown for brevity), and
therefore in the main text we report the output of the models including the largest sample size. For this and all
linear mixed-effect models, we first checked for collinearity between predictors and then verified the model as-
sumptions by visually inspecting residual diagnostic plots.

Reproductive success and nestling growth. We investigated breeding success in relation to home range size at
different development stages of the clutch (n=161), namely number of eggs (square root transformed) and
fledglings, using linear mixed-effect models. The laying date, and the male’s home range size and age (yearling or
old) were included as covariates. The year of observation and the individual ID were included as random factors.
The “fledglings” model also included the number of eggs laid as a covariate. Then, using the same covariates and
random factors as for the “fledglings” model, we modelled the fledging success by comparing the ratio between
the number of eggs that succeeded and failed to fledge using generalised linear mixed-effect models with a
binomial distribution.

Finally, to study the daily nestling wing growth rate (between GPS installation and recovery, n=>592 indi-
viduals), we fitted a model including laying date, the brood size, the nestling rank in the brood age hierarchy
(continuous variable; rank number 1 is assigned to the oldest nestling), and the home range size and age of the
father as covariates. We included the interaction between the home range size and the nestling rank as home
range size might differently correlate with early- or late-hatched nestlings growth rate. Brood identity and year
were included as random factors. As high ranks can be found only in large broods, we ran the same analysis
considering only broods with a maximum of 5 nestlings in order to check that these results were not affected
only by the presence of few very large broods.

Parental investment. To study potential mechanisms explaining the effect of habitat quality on fitness, we
looked at the father’s average nightly prey provisioning rate, average nightly distance covered and body mass
variation (n=161 GPS tracks; 128 males). The “prey provisioning rate” was square root transformed, and the
“distance covered” log transformed, to meet the model assumptions. All three models included laying date, home
range size, age and the number of nestlings as covariates, while the year of observation and individual ID were
set as random factors.

Probability to breed and future reproduction. To examine the effect of habitat quality and the reproductive effort
on the males’ long-term fitness, we investigated their probability to breed and their future reproduction success
(i.e., number of fledglings produced) the year following the one when the GPS was deployed. We modelled the
“probability to breed” using generalised linear mixed-effect models with a binomial distribution, and the “future
reproduction” using linear mixed-effect models. Both models included laying date, home range size, male age
and the number of nestlings as covariates, while the year of observation and individual ID were set as random
factors.

Results

Home range size and habitat quality. The home range size of the male barn owls tracked ranged from
1.1 to 19.8 km? (mean = 6.0 km? SD=3.7). We found that smaller home ranges contained higher proportion of
AES than bigger ones. In contrast, bigger home ranges included a higher Shannon diversity of AES. We did not
detect any effect of male age or laying date on the size of home ranges (Table 1).
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Predictors Estimates (SE) t P

(Intercept) 1.651 (0.113) 14.644 <0.001
Male age (old) 0.007 (0.111) 0.059 0.953
Laying date —0.047 (0.058) -0.823 0.412
AES proportion —0.137 (0.062) -2.201 0.030
AES diversity 0.182 (0.061) 2.970 0.004

Table 1. Male home range size in relation to male age, laying date and home range AES composition.

Results of a linear mixed-effect model with the year of observation and the individual identity set as random
factors, including 127 home ranges measured between 2018 and 2020. Home range size was log-transformed.
Standardized estimates (z-transformed) are provided. AES stands for agri-environment schemes, habitat types
implemented in the study area to promote biodiversity. Significant values are highlighted in bold.

Number of eggs Number of fledglings Fledging success
Predictors Estimates (SE) |t P Estimates (SE) |t P Estimates (SE) |t P
(Intercept) 2.518 (0.052) 48.147 | <0.001 | 3.839 (0.145) 26428 | <0.001 | 0.579 (0.109) 5288 | <0.001
Male age (old) —0.023 (0.048) | —0.488 0.627 | 0.155 (0.204) 0.758 0.450 | 0.116 (0.147) 0.790 0.430
Laying date 0.078 (0.023) 3.341 0.001 | -0.014 (0.103) | —0.131 0.896 | —0.006 (0.072) | -0.079 0.937
Home range size —0.026 (0.023) | -1.172 0.243 | —0.214 (0.097) | —2.201 0.029 | —0.166 (0.073) | —2.281 0.023
Number of eggs 0.261 (0.101) 2.582 0.011 | —0.424 (0.074) | -5.719 <0.001

Table 2. Number of eggs, number of fledglings and fledging success in relation to male home range size,

male age and laying date. Results of two linear (number of eggs and number of fledglings) and one generalised
linear (fledging success) mixed-effect models with the year of observation and the individual identity set

as random factors, including 161 home ranges measured between 2016 and 2020. The number of eggs was
square root transformed, and the fledging success model compared the number of eggs laid to the number of
fledglings produced. Standardized estimates (z-transformed) are provided. Significant values are highlighted in
bold.
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Figure 1. Number of fledglings produced in relation to male home range size (n=161). The continuous line
represents the predicted number of nestlings in relation to male home range size, and the grey area the 95%
confidence intervals associated (from the model reported in Table 2).
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Predictors Estimates (SE) t P

(Intercept) 5.491 (0.058) 94.809 <0.001
Male age (old) —-0.036 (0.081) —-0.448 0.655
Laying Date 0.019 (0.040) 0.480 0.632
Home range size —-0.059 (0.039) -1.533 0.127
Number of nestlings —0.042 (0.041) -1.030 0.305
Nestling’s rank (Rank) —0.085 (0.034) —-2.470 0.014
Home range size x Rank —0.102 (0.039) -2.619 0.009

Table 3. Nestling growth rate in relation to its position in the brood age-hierarchy (rank), male home range
size, male age and laying date. Results of a linear mixed-effect model including 740 nestlings, with the year
of observation and the brood identity set as random intercepts. Standardized estimates (z-transformed) are
provided. Significant values are highlighted in bold.
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Figure 2. Nestling daily growth rate (n=>592 nestlings) in relation to its rank and male home range size. The
continuous lines represent the predicted nestling’s growth rate in relation to its hatching rank, and the shaded
areas the 95% confidence intervals associated (from the model reported in Table 3). The red line represents
the smallest (1.0 km?) and the blue line the biggest (19.8 km?) home ranges, respectively. This division was
arbitrarily chosen to facilitate the visualisation of the result.

Reproductive success and nestling growth.  Although the number of eggs laid was not related to home
range size, the number of fledglings and the fledging success were higher for males with smaller home ranges
(Table 2; Fig. 1). The number of eggs increased with laying date, while we could not detect any effect of laying
date on the number of fledglings and fledging success. We did not find any effect of male age in any of the models
(Table 2).

When investigating nestling wing-length growth, we found a significant effect of the interaction between
nestling rank and home range size (Table 3). Specifically, while growth rate of early-hatched nestlings was similar
in broods reared by males with different home range size, late-hatched nestlings reared by males with large home
range size suffered from a slower growth compared to those reared by males maintaining small or intermediate
home ranges (Fig. 2). In addition, we did not observe any effect of neither laying date nor male age or the number
of nestlings on nestling growth (Table 3). The complementary analysis considering only broods with a maximum
of 5 nestlings (to account that high ranks can only be found in large broods) presented similar results (Table S2).

Parental investment. Home range size correlated negatively with nightly prey provisioning rate and posi-
tively with nightly distance covered (Fig. 3; Table 4). Thus, males with smaller home ranges provided more prey
to the nest, while covering shorter distances than males with larger ones. However, home range size did not
explain male body mass variation. Brood size predicted positively nightly prey provisioning rate and distance
covered, but not the male body mass variation (Table 4). Laying date did not affect prey provisioning nor male
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Figure 3. Male prey provisioning rate and nightly distance covered in relation to their home range size. The
continuous lines represent a) the predicted prey provisioning rate and b) the predicted distance covered per
night in relation to male home range size, and the grey area the 95% confidence intervals associated (from the
models reported in Table 4).

Prey provisioning Distance covered Body mass variation
Predictors Estimates (SE) | ¢ P Estimates (SE) |t P Estimates (SE) |t P
(Intercept) 2.922 (0.160) 18.269 <0.001 | 3.285 (0.100) 32.985 <0.001 | -0.500 (0.620) | —0.806 | 0.422
Male age (old) —0.049 (0.074) | —0.660 0.510 | —0.076 (0.045) | —1.692 0.093 | —0.076 (0.319) | -0.237 | 0.813
Laying date 0.031 (0.036) 0.840 0.402 | —0.054 (0.022) | —2.440 0.016 | 0.206 (0.159) 1.297 0.197
Home range size —-0.119 (0.035) | —3.366 0.001 | 0.159 (0.022) 7.186 <0.001 | 0.035(0.152) 0.232 0.817
Brood size 0.113 (0.036) 3.184 0.002 | 0.229 (0.025) 9.256 <0.001 | 0.139 (0.115) 1.212 0.227

Table 4. Male average nightly prey provisioning rate, average nightly distance covered and daily body mass
variation in relation to its home range size, age, laying date and brood size. Results of linear mixed-effect
models with the year of observation and the individual identity set as random intercepts, including 161 home
ranges measured between 2016 and 2020. The prey provisioning rate was square root transformed, and the
distance covered was log-transformed. Standardized estimates (z-transformed) are provided. Significant values
are highlighted in bold.

body mass variation, but the distance covered significantly decreased with laying date although the effect was
small. Male age was not statistically significant in these models.

Probability to breed and future reproduction. Home range size did not predict the probability to
breed in the following year nor the future reproductive success (Table 5). None of the other variables (male age,
laying date, and brood size) included in the models showed a significant effect.

Discussion

In the present study, we investigated how the quality of breeding environment, as gauged by home range size,
predicted individual reproductive success and parental effort in a large number of barn owl males. We found
that individuals breeding in high-quality habitats, which include a large proportion of prey-rich AES habitats,
maintained smaller home ranges than individuals in low quality habitats. Not surprisingly, these habitats are
associated with a large presence of the main prey of the barn owl in the study area®*. This is consistent with a
large body literature on birds and mammals, spanning from primary consumers®"* to top predators®, including
other raptor species'®'8**%2, In practice, in high-quality habitats organisms are able to find more resources in the
proximity of their breeding site, without the need to cover long distances to hunt, which may result in a smaller
energetic and metabolic expenditure compared to those individuals that are forced to forage further®%*. This is
particularly important during the rearing of altricial offspring, which need a large food supply to be sustained
until fledging. We also found that males having large home ranges cover a larger distance every night in order to
provide food to their broods, which, however, are fed less frequently than those reared in high-quality habitats. A
reduced feeding rate corresponds to fewer food items received, since barn owl parents provide a single prey item
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Probability to breed Future reproduction
Predictors Estimates (SE) t P Estimates (SE) t P
(Intercept) —1.433 (1.191) ~1.203 0.229 5.250 (0.423) 12.422 <0.001
Age (old) 0.624 (0.576) 1.083 0.279 0.144 (0.507) 0.285 0.776
Laying date —0.009 (0.296) -0.030 0.976 0.328 (0.245) 1.336 0.181
Home range size 0.412 (0.281) 1.464 0.143 —-0.023 (0.241) —-0.094 0.925
Brood size -0.026 (0.276) —-0.094 0.925 -0.159 (0.233) —-0.683 0.495

Table 5. Male probability of breeding in the year following the one when the GPS was deployed and future
reproduction (number of fledglings produced the next year) in relation to its current home range size, age,
laying date and brood size. All predictors (age, laying date, home range size and brood size) relate to the
current reproduction, whereas response variables (probability to breed and future reproduction) to the
following year. Results of a generalised linear mixed-effect models with a binomial distribution (probability
to breed model) and a linear mixed-effect model (future reproduction model, measured as the number of
fledglings produced the next year) with the year of observation and the individual identity set as random
intercepts, including respectively 129 and 56 home ranges measured between 2016 and 2019. Standardized
estimates (z-transformed) are provided. Significant values are highlighted in bold.

only per feeding visit. The reduction in feeding rate was the main candidate to explain why the fledging success
of broods reared by males in large home ranges was smaller despite equal numbers of eggs laid. Several previous
studies showed a negative relationship between home range size/habitat quality and feeding rate'®'***?, as well
as reproductive success'®**%> and distance covered!***?°.

We also showed that the reduced fledging success is likely mediated by the death of the smallest nestlings of
the broods raised by males with large home ranges. Indeed, although growth rate of the early-hatched nestlings
was similar among broods, that of the late-hatched nestlings was considerably faster in broods reared by males
with high-quality home ranges compared to those reared by males with low quality home ranges. Such an obser-
vation suggests that under food shortage fathers may favour the offspring of higher reproductive value**® and/
or, more likely, larger and highly-competitive nestlings may monopolize the scarce resources to the detriment
of their smaller siblings, as commonly observed in avian species®”~*, including barn owls”. Therefore, males
maintaining small high-quality home ranges were able to rear a larger number of nestlings, without appar-
ently incurring increased energetic costs. This was not the case for males hunting in large home ranges, which,
because of the large distance they had to cover, would have had to considerably increase their hunting effort
in order to provide enough food for all their offspring to successfully fledge. However, we could not detect any
increased costs in terms of body-mass variation during rearing in males with large home-ranges. When breed-
ing in low-quality habitats, barn owl males seem not to increase their hunting effort to compensate for the lower
prey abundance, and thus pay a cost in annual reproductive success (i.e., smaller number of fledglings), possibly
saving their limiting energies for future reproduction. An alternative interpretation is that males breeding in
low-quality habitats, despite covering more distance in search of food, are not able to find enough prey to rear
all their nestlings successfully. This last hypothesis seems less likely as we would have expected a negative effect
on the males’ body mass variation during this period. We thus interpret this finding as an evidence consistent
with the “prudent father hypothesis”, with males trading-off their current versus future breeding opportunities.
This argument is also compatible with a previous study of the same population, where an experimental increase
in brood size resulted in smaller nestling growth and pre-fledging survival, but in a lack of any long-term effect
on parental fitness®. In many birds of prey, when broods require an extra parental effort, for example due to a
suboptimal environmental condition (this study) or an increased number of nestlings to be fed***>7”2, parents
do not jeopardize their future reproduction, and do accept a brood reduction. An additional piece of evidence
in line with the above reasoning is that males breeding in large home ranges did not pay any long-term cost
in terms of future breeding opportunities, as they have the same likelihood of reproducing as well as a similar
reproductive success than the other males in the breeding season following the one for which we measured
breeding habitat quality.

The correlative nature of the present study prevented us from inferring causality and some of the obtained
results could be partly affected by confounding factors. Indeed, without an experimental manipulation linking
food abundance and home range size'®, we can only hypothesize that variation in home range size, annual fit-
ness and reproductive investment were due to prey availability in different habitats. In addition, considering that
male previous breeding experience (i.e. age) did not predict any of the variables under investigation (including
fledging success and the probability of reproducing in the following breeding season), we cannot rule out the
possibility that intrinsic individual quality might have affected both hunting ability and annual fitness, with
high-quality individuals being more efficient in capturing prey in the proximity of their nest and feed their brood
more frequently, or simply being better able to occupy a good-quality breeding habitat. However, preliminary
analyses failed to find associations between male phenotypic traits previously associated with quality and home
range size (e.g., wing length and plumage colour; details not shown), thus making this possibility an unlikely
one. However, even if our results would have been affected by individual quality, we note that the relationships
between habitat quality, parental effort and reproductive success are still maintained. Finally, although female
contribution to nestling feeding is much lower than that of males*, with the present data we could not account
for maternal effort in hunting, and therefore in fledging success. On the one hand, females might have contributed
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more to parental care in low-quality habitats in order to compensate the lower male feeding rate”>-”. Under such
circumstance, female behaviour would have therefore masked the observable effects of habitat quality, thus mak-
ing our results very conservative. On the other hand, females might have contributed more to feed nestlings in
good-quality habitats, because of a lower cost of providing food to their broods. In such a case, a larger female
investment would have exacerbated the effects. However, an eventual increase of maternal effort would have
been a consequence of habitat quality in the surrounding of the nest.

A final consideration is that, irrespectively of the mechanisms determining reproductive success, from a con-
servation point of view, our results show that AES, adopted to limit the strong decrease in farmland biodiversity,
seems to be beneficial for the barn owl. Interestingly, while high quality home ranges (i.e., small home ranges)
contained a higher proportion of AES than low quality ones, the AES diversity was larger in the latter. Although
this is a matter of speculation, this last result can be explained by the scarcity of the AES in the landscape, imply-
ing that larger home ranges are more likely to contain different AES types. Generally, these results are novel
findings and important for conservation actions beyond the species studied here. Indeed, despite documented
positive effects on plant, insect and small mammal density and species richness’®””, the effects of AES for larger
vertebrates remained uncertain. The present results therefore enforce the conviction that proper conservation
policies involving stakeholders (i.e., farmers) can have a positive effect on the entire natural communities.

In conclusion, this study, performed on a large sample of individuals, showed that habitat quality, gauged by
the proportion of agri-environment schemes (AES), affects annual reproductive success and individual trade-offs
in the barn owl. Males breeding in low-quality habitats did not increase their parental investment to compensate
for the lower prey abundance near the nest, and, by favouring brood reduction, traded-oft their current fitness
against future breeding opportunities.

Data availability
The GPS datasets analyzed in the current study are available in Movebank (www.movebank.org), under the
project named “Barn owl (Tyto alba)” (ID 231,741,797).
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