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Summary

The early detection of relapse following primary surgery for non-small cell lung cancer and the 

characterization of emerging subclones seeding metastatic sites might offer new therapeutic 

approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary 

dynamics in ctDNA of early-stage lung cancer is not established. Here we conduct a tumour-

specific phylogenetic approach to ctDNA profiling in the first 100 TRACERx (TRAcking non-

small cell lung Cancer Evolution through therapy (Rx)) study participants, including one patient 

co-recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-

mortem study. We identify independent predictors of ctDNA release and perform tumor volume 

limit of detection analyses. Through blinded profiling of post-operative plasma, we observe 

evidence of adjuvant chemotherapy resistance and identify patients destined to experience 

recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the 

subclonal nature of lung cancer relapse and metastases, providing a new approach for ctDNA 

driven therapeutic studies
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Lung cancer is the leading cause of cancer death1–2. Metastatic non-small cell lung cancer 

(NSCLC) cannot be cured with systemic chemotherapy, yet clinical studies have shown a 

5% benefit of post-operative (adjuvant) chemotherapy on overall survival3. This modest 

survival benefit may reflect a vulnerability of low volume disease within the context of 

reduced intratumor heterogeneity4. Circulating tumor DNA (ctDNA) detection in plasma 

following resection of breast5,6 and colorectal7 tumors has been shown to identify patients 

destined to relapse post-operatively in advance of established clinical parameters. 

Identifying, monitoring and genomically characterizing residual disease following primary 

lung cancer surgery may improve outcomes in the adjuvant setting. This would create a 

therapeutic setting where only patients destined to recur would receive treatment and where 

intervention could be directed to the evolving tumor subclone that is seeding metastatic 

recurrence.

Here, we report a bespoke multiplex-PCR NGS approach to ctDNA profiling within the 

context of the prospective tumor evolutionary NSCLC TRACERx study. We address 

determinants of ctDNA detection in early-stage NSCLC and investigate the ability of ctDNA 

to identify and genomically characterize post-operative NSCLC relapse within a tumor 

phylogenetic framework.

Phylogenetic ctDNA profiling

The TRACERx study monitors the clonal evolution of NSCLC from diagnosis through to 

death8,9. Using multi-region exome sequencing (M-Seq) derived tumor phylogenetic trees 

developed through prospective analysis of a 100 patient TRACERx cohort, we conducted a 

phylogenetic approach to ctDNA profiling in early-stage NSCLC (Fig. 1). Bespoke 

multiplex-PCR assay-panels were synthesised for each patient, targeting clonal and 

subclonal single nucleotide variants (SNVs) selected to track phylogenetic tumor branches 

in plasma (Fig. 1). SNV detection in plasma was established through a calling algorithm 

employing negative control samples (see Methods). Analytical validation of the multiplex-

PCR NGS platform demonstrated a sensitivity of above 99% for the detection of SNVs at 

frequencies above 0.1% and the specificity of detecting a single SNV was 99.6% (Extended 

Data Fig. 1a). At least two SNVs were detected in ctDNA from early-stage NSCLCs 

analyzed in our published discovery cohort data10, demonstrating biological sensitivity of a 

two SNV threshold for ctDNA detection. Therefore, we prospectively selected a threshold of 

two detected SNVs for calling a sample ctDNA positive for validation within this study; to 

minimize type I error when testing up to 30 tumour-specific SNVs per time-point in a single 

patient (see Extended Data Fig. 1b for justification).

Determinants of ctDNA detection in NSCLC

We sought to identify clinicopathological determinants of ctDNA detection in early-stage 

NSCLC by profiling pre-operative plasma samples in 100 TRACERx patients. Samples from 

four patients could not be analyzed (see cohort design Extended Data Fig. 2a, patient 

characteristics Extended Table 1a-c, Supplementary Table 1). Individual assay-panels were 

designed to target a median of 18 SNVs (range 10 to 22) comprising a median of 11 clonal 
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SNVs (range 2 to 20) and a median of 6 subclonal SNVs (range 0 to 16) per patient 

(Extended Data Fig. 2b,e).

At least two SNVs were detected in ctDNA pre-operatively in 46 of 96 (48%) early-stage 

NSCLCs and a single SNV was detected in 12 additional cases (Fig. 2a). Centrally reviewed 

pathological data revealed that ctDNA detection was associated with histological subtype: 

97% (30/31) of lung squamous cell carcinomas (LUSCs) and 71% (5 of 7) of other NSCLC 

subtypes were ctDNA positive, compared with 19% (11/58) of lung adenocarcinomas 

(LUADs) (Fig. 2a). 94% (16 of 17) of stage I LUSCs were detected compared with 13% (5 

of 39) of stage I LUADs (Extended Data Fig. 3a). Passive release of ctDNA into the 

circulation may be associated with necrosis11. As expected LUSCs were significantly more 

necrotic than LUADs12 and ctDNA positive LUADs formed a sub-group of more necrotic 

tumors compared with ctDNA negative LUADs (Extended Data Fig. 3b). Necrosis, lymph 

node involvement, lymphovascular invasion, pathological tumor size, Ki67 labelling indices, 

non-adenocarcinoma histology and total cell-free DNA input predicted ctDNA detection in 

univariable analyses (Extended Data Fig. 3c). Multivariable analysis revealed non-

adenocarcinoma histology, the presence of lympho-vascular invasion and high Ki67 

proliferation index as independent predictors of ctDNA detection (Extended Data Fig. 3c). 

Since FDG-avidity on positron emission tomography (PET) scans correlates with 

proliferative indices in early-stage NSCLC13,14, we investigated tumor PET FDG-avidity 

and ctDNA detection. PET FDG-avidity predicted ctDNA detection (area under curve = 

0.84, P<0.001, n=92) (Extended Data Fig. 3d). Within LUADs, driver events in KRAS, 

EGFR or TP53 were not associated with ctDNA detection (Extended Data Fig. 3e).

We analyzed the distribution of clonal and subclonal SNVs in ctDNA positive patients. 

Clonal SNVs were detected in all 46 ctDNA positive patients and a median of 94% (range 

11% to 100%) of clonal SNVs targeted by assay-panels were detected in the ctDNA of these 

patients. 40 of 46 ctDNA positive patients had subclonal SNVs targeted by assay-panels and 

subclonal SNVs were detected in 27 (68%) of these patients. A median of 27% (range 0% to 

91%) of subclonal SNVs within individual assay-panels were detected in ctDNA positive 

patients (Fig. 2b). The mean plasma variant allele frequency (VAF) of clonal SNVs was 

higher than that of subclonal SNVs (Extended Data Fig. 4a, within patient comparison, 

Wilcoxon signed-rank test, P<0.001, n=27, Supplementary Table 2) supporting the use of 

clonal alterations as a more sensitive method of ctDNA detection than subclonal 

alterations10,15.

In ctDNA positive patients, pathologic tumor size correlated with mean clonal plasma VAF 

(Spearman’s Rho = 0.405, P=0.005, n=46, Extended Data Fig. 4b). CT scan volumetric 

analyses were evaluated in 37 of 46 ctDNA positive patients (see Extended Data Fig. 4c). 

Tumor volume correlated with mean clonal plasma VAF (Fig 3a, Spearman’s Rho = 0.63, 

P<0.001, n=37). A linear relationship between log- transformed volume and log- 

transformed mean clonal VAF values was observed (Fig. 3a). The line of best fit applied to 

the data was consistent with the line fitted to NSCLC volumetric data and ctDNA plasma 

VAFs reported in previously published work16 (Extended Data Fig. 4d). Linear modelling 

based on the TRACERx data predicted that a primary tumor burden of 10cm3 would result 

in a mean clonal plasma VAF of 0.1% (95% C.I. 0.06 to 0.18%) (Fig. 3b). Tumor purity was 
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multiplied by tumor volume to control for stromal contamination to determine cancer cell 

volume corresponding to clonal plasma VAF (Extended Data Fig. 4e). On the assumption 

that 1cm3 of pure tumor contains 9.4 x 107 cells17, a plasma VAF of 0.1% would correspond 

to a primary NSCLC malignant burden of 302 million cells (Fig 3b, Extended Data Fig. 4f).

To investigate predictors of subclone detection, detected subclonal SNVs were mapped back 

to M-seq derived tumor phylogenetic trees. 35 of 57 (61%) shared subclones (identified in 

more than one tumor region through M-Seq analysis) were identified in ctDNA, compared 

with 26 of 80 (33%) private subclones (detected in a single tumor region only) (Extended 

Data Fig 4g). This suggested subclone volume influences subclonal ctDNA detection. 

Subclone volume was estimated based on mean regional subclone cancer cell fraction and 

cancer cell volume. Detected subclonal SNVs mapped to subclones with higher estimated 

volumes than subclones containing undetected SNVs (Fig. 3c) and subclone volume 

correlated with subclonal SNV plasma VAF (Fig. 3d).

Detecting and characterizing NSCLC relapse

The longitudinal phase of the study aimed to determine if ctDNA profiling with patient-

specific assay panels could detect and characterize the branched subclone(s) seeding 

NSCLC relapse. Pre- and post-surgical plasma ctDNA profiling was performed blinded to 

relapse status in a sub-group of 24 patients (cohort characteristics, Extended Table 1d-e). 

This included relapse free patients who had been followed-up for a median of 775 days 

(range 688 to 945 days, n=10) and confirmed NSCLC relapse cases (n=14) (cohort design, 

Extended Data Fig. 2c). Additional PCR assays were added to panels in this phase of the 

study to attempt to improve ctDNA detection in LUADs, a median of 18.5 SNVs (range 12 

to 20) were targeted by LUSC assay-panels and a median of 28 SNVs (range 25 to 30) were 

targeted by LUAD assay-panels (Extended Data Fig. 2d-e).

Patients were followed up with three to six monthly clinical assessment and chest 

radiographs. At least 2 SNVs were detected in 13 of 14 (93%) patients with confirmed 

NSCLC relapse prior to, or at, clinical relapse (Fig 4a-g, Extended Data Fig. 5). At least two 

SNVs were detected in 1 of 10 (10%) patients (CRUK0013) with no clinical evidence of 

NSCLC relapse (Fig. 4h, Extended Data Fig. 6). Excluding a single case where no post-

operative plasma was taken prior to clinical relapse (CRUK0041), the median interval 

between ctDNA detection and NSCLC relapse confirmed on clinically indicated CT imaging 

(lead-time) was 70 days (range 10 to 346 days). Four of 13 relapse cases exhibited lead-

times of more than six months (Fig. 4a-d). In two cases ctDNA detection preceded CT 

imaging inconclusive for NSCLC relapse by 157 days (CRUK0004, Fig 4b) and 163 days 

(CRUK0045, Fig 4d). ctDNA profiling reflected adjuvant chemotherapy resistance - 

CRUK0080, CRUK0004 and CRUK0062 had detectable ctDNA in plasma within 30 days of 

surgery. The number of detectable SNVs increased in all three cases despite adjuvant 

chemotherapy, with disease recurring within 1 year of surgery (Fig. 4a-c). In contrast, 

CRUK0013 had 20 SNVs detectable in ctDNA 72 hours after surgery and 13 SNVs 

detectable prior to adjuvant chemotherapy; 51 days following completion of adjuvant 

treatment and at post-operative days 457 and 667 no SNVs were detectable and the patient 

remains relapse free 688 days post-surgery (Fig. 4h). ctDNA profiling detected intracerebral 
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relapse; CRUK0029 had a PET scan performed 50 days prior to surgery demonstrating 

normal cerebral appearances. ctDNA remained detectable following surgery, 54 days post-

operatively the patient was diagnosed with intracerebral metastasis, no extracranial disease 

was evident on CT imaging (Fig. 4e).

We sought to resolve subclonal evolutionary-dynamics associated with NSCLC relapse. 

Subclonal SNVs displaying plasma VAFs similar to clonal SNVs from clusters confined to a 

single phylogenetic branch, were detected post-operatively in the ctDNA of four patients 

who suffered NSCLC relapse (CRUK0004, CRUK0063, CRUK0065 and CRUK0044) (Fig. 

4b,f-g, Extended Data Fig 5b). This suggested a relapse process dominated by one subclone 

represented in our assay-panel. The subclone implicated by ctDNA as driving the relapse in 

the case of CRUK0004 contained an ERRB2 (HER2) amplification event (>15 copies, 

triploid background), that may be targetable in NSCLC18 (Fig. 4b). Relapses involving 

subclones from more than one phylogenetic branch were evident in patients CRUK0080, 

CRUK0062 (Fig. 4a,c) and CRUK0041 (Extended Data Fig 5c).

Validation of phylogenetic characterization

To validate subclonal ctDNA analyses, data acquired from sequencing metastatic tissue at 

recurrence was integrated with M-seq primary tumor data (for biopsy details, Supplementary 

Table 3). Patient CRUK0063 suffered para-vertebral relapse of their NSCLC. Post-operative 

ctDNA analysis revealed the detection of the same subclonal SNV (OR5D18) on four 

consecutive occasions over a 231-day period (Extended Data Fig. 7a). The OR5D18 SNV 

traced back to a subclonal cluster private to primary tumor region three (Fig. 5a). CT-guided 

biopsy tissue was acquired from the para-vertebral metastasis at post-operative day 467. 

Exome sequencing of relapse tissue revealed the subclonal cluster containing the OR5D18 
SNV gave rise to the metastatic subclone (Fig. 5a), this supported ctDNA phylogenetic 

characterization of relapse. The para-vertebral biopsy contained 88 SNVs not called as 

present in the primary tumor including an ARID1A stop-gain driver SNV. Re-examination 

of primary tumor region M-Seq data with a lower SNV calling threshold revealed that 16 of 

88 SNVs, including ARID1A, were detectable in primary tumor region three, compared to a 

maximum of 2 of 88 in other tumor regions (Extended Data Fig. 7b). These data suggest that 

ctDNA profiling can resolve the primary tumor region from which a low frequency 

metastatic subclone derives. CRUK0035 developed two liver and one adrenal metastases 

(Fig. 5b). Sequencing of the metastatic liver deposit revealed that only 109 of 149 SNVs 

classed as clonal in the primary tumor were detectable in the metastasis. This was suggestive 

of an ancestral branching event not resolved through primary M-seq analysis (Fig 5b). Post-

operative ctDNA profiling identified clonal SNVs present in the liver metastasis biopsy but 

also revealed SNVs representing a subclone from the primary tumor (Extended Data Fig 7c). 

This subclone was not present in the metastatic liver deposit (Fig 5b). These data may reflect 

ctDNA identified from the non-biopsied metastases suggesting multiple metastatic events. 

CRUK0044 suffered a vertebral and right hilar relapse. Post-operatively the same subclonal 

SNV (OR10K1), was detected in ctDNA on two occasions 85 days apart (Extended Data 

Fig. 7d). This SNV was represented in a single subclone detected through sequencing hilar 

lymph-node metastatic tissue, supporting ctDNA findings (Fig. 5c). CRUK0041 suffered an 

intracerebral, hilar and subcarinal lymph node relapse. Four subclonal SNVs representing 
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both branches of the tumor phylogenetic tree were detectable in ctDNA at relapse. 

Consistent with these data, sequencing of subcarinal metastatic tissue revealed the presence 

of subclonal SNVs mapping to both phylogenetic branches (Fig 5d, Extended Data Fig. 7e). 

Patient CRUK0013 had detectable ctDNA 3 and 38 days post-operatively. Following 

adjuvant chemoradiotherapy for lymph-node metastases identified in the pathological 

specimen, ctDNA levels became undetectable (Fig 4h). Two involved lymph-nodes were 

sampled for exome analysis together with M-seq of the primary tumor. Four subclonal SNVs 

detected in ctDNA post-operatively mapped to an ancestral subclone (describing a subclone 

that existed during the tumor’s evolution) (Extended Data Fig. 7f). This ancestral subclone 

contained a KRAS amplification (>15 copies, triploid background) and was identified as 

present in primary tumor and sampled lymph-nodes by M-Seq (Fig. 5e). These data provide 

phylogenetic characterization of post-operative residual disease that responded to adjuvant 

chemoradiotherapy (Fig. 4h).

ctDNA profiling in the metastatic setting

Patient CRUK0063 underwent examination through the PEACE post-mortem study 24 hours 

following death. M-Seq data from the six post-mortem tumor regions (para-aortic, para-

vertebral and lung metastases, day 857), the para-vertebral relapse biopsy (day 467) and five 

primary tumor regions (day 0) were combined to infer the phylogenetic structure of this 

patient’s NSCLC (Fig. 6a). All seven metastatic tumor regions arose from a single ancestral 

subclone represented by phylogenetic cluster 8. Six metastatic regions shared a later 

phylogenetic origin, cluster 12 (Fig. 6b). The single tumor region not containing 

phylogenetic cluster 12 was sampled from the para-aortic metastasis at autopsy and 

contained a private subclone represented by phylogenetic cluster 9 (Fig. 6b).

We designed a bespoke ctDNA assay-panel to retrospectively track metastatic subclonal 

burden. 20 clonal SNVs and a median of 8 subclonal SNVs (range 4 to 15) in each of 9 

metastatic subclonal clusters were targeted by the assay-panel (Extended Data Fig. 8). Since 

103 variants per time-point were profiled, SNV detection thresholds were increased to 

maintain platform specificity (see Methods). This resulted in a predicted false positive rate 

(FPR) of 0.0011 translating to a 10.7% risk of a single false-positive SNV at each time point 

and a 0.5% risk of 2 false-positive SNVs at each time point when testing 103 SNVs.

Two clonal SNVs were detected by the 103 SNV assay-panel at day 151 post-surgery (Fig 

6c, Extended Data Fig. 8), 189 days prior to the time point ctDNA was detected using the 19 

SNV assay-panel in Figure 4f. At day 242 a single subclonal SNV was detected from 

phylogenetic cluster 8 (Fig 6c, Extended Data Fig. 8), within the context of a 10.7% false-

positive risk a single SNV call could represent type I error. At day 466, following clinical-

relapse at the thoracic para-vertebral site, 18 of 20 SNVs mapping to phylogenetic clusters 

(8,11 and 12) were detected in ctDNA, these subclonal clusters were shared between six of 

seven metastatic sites (Fig 6b-c, Extended Data Fig. 8). Single SNVs from two private 

subclones (phylogenetic cluster 5 and 9) were also detectable in ctDNA at day 466 (Fig 6c, 

Extended Data Fig. 8). These subclones were not identified in the CT guided para-vertebral 

biopsy taken at day 467 (Fig. 6b). The mean plasma VAF of the SNVs detected in 

phylogenetic clusters 11, 8, 12, 9 and 5 mirrored their proximity to the clonal cluster (light 
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blue) in the M-Seq derived phylogenetic tree (Fig. 6a,c). This suggested a tiered burden of 

subclonal disease concordant with M-seq phylogenetic inferences. Mean clonal VAF fell in 

response to palliative radiotherapy and chemotherapy, but at day 767 increased (Fig. 6c). 

Single SNVs mapping to phylogenetic clusters 5 and 9 and two SNVs mapping to 

phylogenetic cluster 2 were now detectable in ctDNA 90 days before death (Fig. 6a-c, 

Extended Data Fig 8). These three phylogenetic clusters represented subclones private to the 

para-aortic metastases (Fig 6. a-b). Consistent with these data significant para-aortic 

progression was observed at post-mortem compared with most recent CT imaging 

performed 112 days before death - which showed no evidence of para-aortic disease.

Discussion

In summary, we find predictors of ctDNA detection in early-stage NSCLC characterized by 

non-adenocarcinoma histology, necrosis, increased proliferative indices and lymphovascular 

invasion. Triple negative breast cancers display necrosis19, high proliferative indices20,21 

and are associated with increased ctDNA levels compared with other breast cancer 

subtypes6 suggesting extension of these observations beyond NSCLC.

Tumour volume correlated with the mean plasma VAF of clonal SNVs in ctDNA-positive 

NSCLCs (Fig 3a.). A primary NSCLC tumour volume of 10 cm3 predicted a ctDNA plasma 

VAF of 0.1%. The sensitivity of the multiplex-PCR NGS platform was in excess of 99% at 

VAFs of 0.1% and above, suggesting optimum platform sensitivity with tumour burdens in 

excess of 10 cm3. Low-dose CT lung screening can identify lung nodules with diameters 

from 4mm22. Assuming a spherical nodule this would translate to a tumor volume of 

0.034cm3. Based on the relationship between tumor volume and ctDNA plasma VAF 

observed in this study a tumor volume of 0.034cm3 would equate to a plasma VAF of 1.8 x 

10-4 % (95% CI, 9.8 x 10-6 to 0.0033%), at the extreme of detection limits of current ctDNA 

platforms23. Sensitivity of clonal SNV ctDNA directed early NSCLC screening may 

therefore be constrained by tumor size using current technologies.

A limitation to targeted ctDNA profiling is cost, estimated at $1750 per patient for 

sequencing a single tumor region, synthesis of a patient-specific assay-panel and profiling of 

five plasma samples. Adjuvant platinum-based chemotherapy in NSCLC improves cure rates 

following surgery in only 5% of patients and 20% patients receiving chemotherapy 

experience acute toxicities3. There is a need to increase adjuvant therapy efficacy and better 

target its use. Bespoke ctDNA profiling can characterize the subclonal dynamics of relapsing 

NSCLC and identify adjuvant chemotherapy resistance. These findings indicate that drug 

development guided by ctDNA platforms to identify residual disease, define adjuvant 

treatment response and target emerging subclones prior to clinical recurrence in NSCLC, 

with appropriate CLIA validation, are now feasible.

Methods

Patients and samples

The cohort of 100 patients evaluated within this study comprises the first 100 patients 

prospectively analyzed by the lung TRACERx study (Clinicaltrials.gov no: NCT01888601, 
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approved by an independent Research Ethics Committee, 13/LO/1546) and mirrors the 

prospective 100 patient cohort by Jamal-Hanjani M et al9. All surgically resected primary 

tumor samples were macroscopically reviewed by a pathologist. Spatially separated tumor 

regions, documented by photography, were collected and snap frozen in liquid nitrogen for 

subsequent DNA extraction. Relapse tissue samples, excess to diagnostic requirements, were 

acquired via clinical procedures including CT guided biopsy and endoscopic bronchial 

ultrasound guided biopsy. Fresh tissue for research was snap frozen immediately following 

acquisition for subsequent DNA extraction. Post mortem examination was performed 

through the PEACE study within 24 hours of death (Clinicaltrials.gov no: NCT03004755, 

approved by an independent Research Ethics Committee, 13/LO/0972). Details on relapse 

tissue sampling available in Supplementary Table 3. Informed consent was obtained from all 

subjects in this study.

Tissue microarray creation and Ki67 immunohistochemistry

Tissue microarrays (TMAs) were created of 100 NSCLC cases for Ki67+ 

immunohistochemistry. Representative tumor areas were defined by examination of H&E 

stained sections from all 100 tissues blocks. From each NSCLC case two 2mm cores were 

selected from different regions within each specimen and re-embedded in recipient blocks, 

resulting in a TMA of 200 cores with four normal lung cores as negative control. 2-5μm 

sections from tissue-microarrays containing tumor were cut. Immunohistochemistry with 

anti-Ki67 monoclonal antibody (Dilution 1:100; clone MIB-1; DAKO Agilent Technologies 

LDA, UK Limited, Stockport, Cheshire SK8 3GR, UK) was performed using BenchMark 

Ultra (Ventana/Roche). The percentage of Ki67 positive cells were averaged across two 

tumor sections for each case. Detection was performed using the peroxidase-based detection 

reagent conjugate (OptiView DAB IHC Detection Kit; Ventana Medical Systems, Inc).

Central histopathological review

Digital images of tumor sections from all cases were reviewed in detail centrally by at least 

one pathologist, and in cases of uncertainty, by two. Percentage of necrosis and the presence 

of lymphovascular invasion were all evaluated on digital images from scanned diagnostic 

slides blinded to the ctDNA detection status of the patient in question.

Central radiology review & volume estimation

92 of 96 anonymized diagnostic PET-CT were retrospectively reviewed by a Nuclear 

Medicine Physician, blinded to the initial PET-CT reports. Scan images were not available in 

three cases (CRUK0025, CRUK0039 and CRUK0023) and in one case a pre-operative PET-

CT was not performed (CRUK0082). CT and PET images were matched and fused into 

transaxial, coronal and sagittal images and reviewed on a dedicated PET/CT software 

visualizer (AW 4.1/4.2 GE medical systems). The semi-quantitative parameter Standardized 

Uptake Value (SUV) max for the primary tumor mass was calculated and recorded along 

with SUVmax of mediastinal background uptake. Tumor-to-background ratio (TBR) was 

calculated based on SUVmax of the tumor divided by mediastinal background uptake24,25. 

Tumor volume was determined based on tumor CT scans. CT slices of the primary tumor 

were measured with 3D Slicer applying the “lung algorithm window” settings, tumor 

contours were segmented on each axial CT slice. These steps were performed by an 
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experienced resident (W.L.B.), and all contours were confirmed and edited where necessary, 

by a radiologist with 14 years of experience in cancer imaging (F.M.F.). Effective tumor 

volume was defined as tumor volume multiplied with the mean purity of the tumor based on 

M-seq, purity estimates derived from ASCAT analysis as described9. Effective subclone size 

was defined as mean cancer cell fraction (CCF) across the regions of the mutation cluster 

multiplied by tumor volume and mean tumor purity.

DNA extraction & quantification

For cell-free DNA (cfDNA) extraction, blood samples were collected in K2 EDTA tubes. 

Samples were processed within 2 hours of collection by double spinning of blood first at 10 

minutes at 1000g then plasma 10 minutes at 2000g. Plasma was stored in 1ml aliquots at – 

80°C. Up to 5ml of plasma per case was available for this study (range 1-5ml, median 5 ml). 

The entire volume of plasma was used for cfDNA extraction. cfDNA was extracted using the 

QIAamp Circulating Nucleic Acid kit (Qiagen) and eluted into 50 µl DNA Suspension 

Buffer (Sigma). The purified cfDNA was stored at -20°C until use. Genomic DNA was 

extracted from each tumor region as described9. Every cfDNA sample was QCed and 

quantified on the Bioanalyzer High Sensitivity (Agilent) using a standard curve generated 

from pre-quantified mono-nucleosomal DNA samples. Plasma cfDNA consists of a main 

mono-nucleosomal peak (~160 bp); for some samples, di-nucleosomal and tri-nucleosomal 

peaks are visible (at ~320 bp and ~500 bp, respectively). The library prep method used 

selectively amplifies the mono-nucleosomal fraction of cfDNA.

Exome sequencing and processing

Whole exome sequencing was performed on DNA purified from tumor tissue and normal 

blood as described9, with the exception of CRUK0063_BR_T1-R1. This capture was 

performed according to the manufacturer’s 200 ng DNA protocol (Agilent). Annotated SNV 

calls are available in Supplementary Table 3 in Jamal-Hanjani et al. 20179. For this study, 

one relapse sample was acquired through metastatic tissue biopsies from each of four 

patients (CRUK0035, CRUK0041, CRUK0044, CRUK0063). Additionally, six metastatic 

samples were acquired at post mortem examination of CRUK0063. Genomic DNA was 

purified from all tissue samples, and processed through the TRACERx bioinformatics 

pipeline as described9. Annotated SNV calls are available in Supplementary Table 4.

SNV assay design

The Natera assay design pipeline was used to generate forward and reverse PCR primers for 

all somatic SNVs detected in tumor samples. The assays were combined into pools such that 

any primer pair in a pool is not predicted to form primer dimers. In this way 10 balanced 

pools were created, each containing the assays for 10 patients’ SNVs. For each patient, 

assays were prioritized such that, 1) assays covering driver SNVs had highest priority, and 2) 

there was uniform sampling of phylogenetic tree. For the longitudinal cohort, up to 10 extra 

assays were generated for adenocarcinoma samples. SNV assays were ordered from IDT 

(Coralville, IA) as individual oligos in 96-well plates, desalted and normalized to 100 µM 

each. The oligos were pooled according to the pooling strategy previously described10 and 

each pool was QC-ed by running the multiplex PCR and sequencing protocol using one 

plasma cfDNA library from a healthy subject. For each pool, the sequencing data was 
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analyzed to determine the amount of primer-dimer reads and to identify drop-out assays. 

Primers contributing to dimer formation were removed from each final pool.

Analytical validation

Synthetic spikes representing twenty SNVs randomly selected from Pool 1 were designed 

and synthesized (IDT, Coralville, IA) as 160 bp oligos with the respective SNV placed in the 

middle (position 80). These synthetic spikes were mixed at equimolar ratios and used to 

prepare a library. This library was titrated into a library prepared from mono-nucleosomal 

DNA (10,000 copies) from a normal cell line (AG16778 from Coriell, Camden, NJ). The 

library of 20 synthetic spikes was titrated into the mononucleosomal DNA library at 2.5%, 

0.5%, 0.25%, 0.1%, 0.05% and 0% (each in triplicate), and 0.01%, 0.005% and 0.001% 

(each in quadruplicate. Because preparing spiked samples at such low levels is either subject 

to sampling noise (0.01% spikes into 10,000 genomic copies background is equivalent to 

one mutant copy), or is not possible (at levels less than 0.01%), samples were mixed as 

libraries. Following library mixing and sequencing, data was analyzed to detect all the 

targets in Pool 1 using the same parameters as used for the patient samples. Targets that had 

a depth of read less than the threshold were not analyzed. The measured VAF of each spike 

for the samples with 2.5% nominal input was used to calculate an input correction factor 

(measured VAF/2.5%); that was applied to the other inputs of the corresponding spike 

titration series. The measured VAF differed from the nominal input most likely because the 

mononucleosomal fragmentation pattern is not entirely random. Because of this, the actual 

input levels differ from the nominal input levels, and the sensitivity is measured based on 

corrected input intervals (chosen such that there are a meaningful number of samples in each 

interval). Sensitivity of >99% at SNV input frequencies down to 0.1% was achieved (199 

SNVs detected out of 201 eligible positive positions), with a specificity of 99.6% for all 

negative SNV positions (19 false positive SNVs called out of 5099 eligible positions).

Plasma SNV mPCR-NGS workflow

Forty microliters of the extracted cfDNA from each case was used as input into library 

preparation using the Natera Library Prep Kit. All purified libraries were QC-ed on the 

LabChip GX 5k DNA chip. Successful libraries had a single peak at ~250 bp. The amplified 

libraries were then analyzed by mPCR-NGS. Optimal mPCR conditions were as described. 

Each PCR assay pool was used to amplify the SNV targets from the 10 corresponding 

samples and 20 negative control samples (plasma libraries prepared from healthy subjects). 

Each amplicon pool was sequenced on one Illumina HiSeq 2500 Rapid Run with 50 cycles 

paired-end reads using the Illumina Paired End v1 kit with an average target DOR of 

~40,000 per assay.

Plasma SNV calling algorithm

The set of SNVs covered by the assays in a pool were considered as target SNVs for the 

corresponding sequencing run. Target assays with <1000 reads in the plasma samples were 

considered failed and were not analyzed further. At each SNV position, an error model was 

built using all of the 20 negative control samples plus the cancer samples that were not 

expected to contain that particular SNV (based on tumor-tissue sequencing). Samples with 

high plasma VAF (>20%) among the putative negatives were considered to have possible 
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germline mutation and were excluded from the error model. A confidence score was 

calculated for each target SNV based on the error model. A positive plasma SNV call was 

made if the confidence score for that mutation in the corresponding plasma sample passed 

our confidence threshold. The SNVs called positive in plasma samples that were not 

expected to contain the given SNVs were considered ‘false positive’, the false positive rate 

under these conditions was 0.24%. Notably, there was no difference in depth of read 

between called and not called SNVs (Extended Data Fig 1c). New assays were designed for 

CRUK0063 based on M-seq of metastatic biopsy retrieved at day 467 and of metastatic 

lesions harvested post mortem. A total of 103 assays were designed compared to 19 based 

on the primary tumor alone. An updated error threshold was designed to control for false 

positives by using the original threshold to make SNV calls on the negative samples in the 

run; the rate of calls were measured and defined as false-positives. This false positive rate 

was then applied to the number of eligible positions in the positive samples. This was 

repeated with more stringent thresholds until the expected number of false positives in the 

eligible positions becomes ~1. All multiplex PCR-NGS ctDNA SNV assays are available in 

Supplementary Table 5 (Baseline, pre-operative cohort assays), Supplementary Table 6 

(Longitudinal Assays), and Supplementary Table 7 (Extended Longitudinal Assays for 

CRUK0063).

Cross-platform validation using generic PCR-NGS panel section

Cross-platform validation was performed in 28 patients with M-Seq confirmed SNV(s) 

within one or more hotspots targeted by a generic multiplex PCR-NGS panel (Extended 

Table 2a-b, Supplementary Table 8). 20ng of isolated cfDNA was used for library 

preparation using the Oncomine™ Lung cfDNA Assay (ThermoFisher Scientific), according 

to the manufacturer’s instructions. Automated template preparation and chip loading was 

conducted on the Ion Chef™ instrument using the Ion 520™ & Ion 530™ Kit-Chef 

(ThermoFisher Scientific). Ultimately, samples were sequenced on Ion 530™ chips using 

the Ion S5™ System (ThermoFisher Scientific). Sequencing data was accessed on the 

Torrent suite v5.2.2. Reads were aligned against the human genome (hg19) using Alignment 

v4.0-r77189, and variants were called using the coverage Analysis v4.0-r77897 plugin. All 

18 bespoke-panel ctDNA negative patients had no tumor SNVs detectable in plasma pre-

operatively by the generic panel supporting biological specificity of the bespoke targeted 

approach, 7 of 10 bespoke-panel ctDNA positive patients had tumor SNVs detected in 

plasma by the generic panel (Extended Table 2a-b). SNVs detected by hotspot panel not 

identified by M-Seq are displayed in Extended Table 2c.

Processing and phylogenetic analysis of relapse and primary tumor multiregion whole 
exome data

Biopsies from multiple regions from the primary tumor (n=327), metastatic biopsies (n=4) 

and matching blood germline samples (n=100) were subjected to multi-region whole exome 

sequencing and analysis including estimation of copy number, purity and ploidy, and 

phylogenetic tree construction as described9. Briefly, phylogenetic analysis was performed 

based on CCF determined for SNVs and clustered across tumor regions using a modified 

version of Pyclone9 into clusters with similar CCF values, filtered and processed as 

described9. Mutation clusters are assumed to represent tumor subclones, either current or 
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ancestral, and are used as input for construction of phylogenetic relationship. Phylogenetic 

trees were primarily constructed using the published tool CITUP (0.1.0)26. However, in a 

small number of cases, including all relapse/autopsy cases, manual tree construction was 

required and performed as described9. Complete detail of primary tumor tree construction 

can be found in Jamal-Hanjani et al. 20179. Relapse tree construction was performed as 

follow: CRUK0063: clustering was performed twice, once across 5 primary tumor regions 

and once across 5 primary, 1 relapse, and 6 autopsy regions. To ensure consistency, when 

deriving a phylogenetic tree based on all tumor regions, CCF clusters based on clustering 

only the primary tumor regions were maintained for mutations not involved in metastatic 

relapse. A phylogenetic tree was constructed based on 17 mutation clusters. CRUK0035: 

Clustering primary tumor regions with the relapse region revealed one cluster private to the 

relapse, and one cluster shared with the relapse and all other regions. CRUK0044: Clustering 

primary tumor regions with the relapse region revealed a cluster private to the relapse, 

descended from a cluster private to region 1 in the primary tumor. CRUK0041: Clustering 

primary tumor regions with the relapse region revealed cluster 4 as private to the relapse. 

This cluster must have evolved from cluster 3 only found in the relapse and in region 4. A 

private cluster 6 in region 4 must have evolved from cluster 4. However, this conflicts with 

clusters 2 and 5, found in the relapse and regions 1-3, but not region 4. This can be 

reconciled by assuming a polyclonal relapse, seeded primarily from regions 1-3, but with 

some contribution from cluster 3, private to region 4. Cluster data is available in 

Supplementary Table 4 under “PyClonePhyloCluster”.

Statistical data analysis

Analysis was performed in the R statistical environment version 3.2.3 and SPSS version 24. 

All statistical tests were two-sided unless expressly stated. Multivariate logistic regression 

used detection of ctDNA (the dependent variable) classified as detection of 2 or more 

patient-specific variants in ctDNA and the covariates listed in Supplementary Table 1. All 

predictors were entered simultaneously into the regression. All continuous independent 

variables were found to be linearly related to the logit of the dependent variable (assessed 

via the Box-Tidwell procedure). The logistic regression model was statistically significant, 

X2(10) = 81.35, P<0.001 and the Hosmer-Lemeshow P value was 0.9858 indicating that the 

model was not a poor fit. To determine the ability of PET TBR to predict whether or not 

tumor ctDNA was identified in plasma, PET TBR estimates were analyzed by ROC curve 

analysis against binary detection of ctDNA in plasma at baseline based on at least two 

variants detected, significance test based on Wilcoxon rank sum test. For analysis involving 

longitudinally detected variants (Figure 4, Extended Figure 5), only subclonal variants from 

pyclone clusters present in phylogenetic trees were displayed, this did not affect ctDNA 

detection status of any time-points. In non-relapse cases presented in Extended Data Fig 6 

all detected subclonal SNVs were plotted. To determine the relationship between tumor 

volume and ctDNA VAF, ctDNA assays against clonal SNVs were selected. For each 

patient, the mean ctDNA VAF of the clonal SNVs was determined as baseline for 38/46 

patients with at least 2 SNVs detected in plasma. As detailed in Extended Fig. 4c, 9/46 

patients were not included in the analysis: CRUK0036 had no pre-op CT scan available, 

CRUK0087 and CRUK0096 had a large cavity inside the primary cancer, CRUK0099 had a 

collapsed lung making volume assessment inaccurate, CRUK0100, CRUK0077, CRUK0052 
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had a CT slice spacing of > 5 mm, and finally CRUK0088 and CRUK0091 had a total tumor 

volume < 3.5 cm3. Linear regression was performed on log-transformed mean VAF and 

tumor volume. The log transformation was justified as it symmetrized the residuals in the 

model. An independent analysis was performed where tumor volume was multiplied with 

tumor purity to estimate the cancer cell volume. The same log transformation and analysis 

was applied to data acquired from Newman et al.16, where ctDNA VAF was determined 

based on CAPP-seq analysis with matched tumor volume data available. To analyze clone 

size versus ctDNA VAF for subclonal SNVs, the mean CCF of the mutations within a 

subclonal mutation cluster was multiplied with tumor volume, and as a second independent 

analysis, with tumor purity.
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Extended Data

Extended Data Figure 1. Multiplex-PCR next-generation sequencing platform analytical 
validation
a) Analytical validation of the multiplex-PCR NGS platform was performed by spiking 

synthetic single nucleotide variants into control cell-free DNA. Sensitivity and specificity of 

the platform at different spike concentrations was ascertained, 95% binomial confidence 

interval displayed as error bars. b) Specificity of ctDNA detection based on a 1 SNV and 2 

SNV call threshold taking into account parallel testing of multiple SNVs. c) The median 
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depth of read across a position did not vary depending on whether an SNV position was 

called or not called using the platform error-model. Wilcoxon Test, P=0.786, median depth 

of read at uncalled positions = 45,777 (n=3,745), range: 0 to 146774, median depth of read 

at called positions = 45,478, range= 1,354 to 152,974 (n=1,124). Whiskers represent 1.5 

times the interquartile range, 2-sided test.

Extended Data Figure 2. Study construction and assay-panel design
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a) The pre-operative study phase cohort consisted of 100 TRACERx patients present in the 

first 100 patient TRACERx cohort in April 2016. Pre-operative plasma samples were 

profiled in 96 patients for reasons listed. bi and ii) Contents of patient-specific assay-panels 

designed in the pre-operative study phase. c) The longitudinal study phase cohort consisted 

of patients with confirmed NSCLC relapse and patients without relapse. d) Contents of 

patient-specific assay-panels designed in the longitudinal phases of this study. e) Single 

nucleotide variant type targeted.
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Extended Data Figure 3. Clinicopathological predictors of ctDNA detection
a) 96 patients in pre-operative cohort stratified by pathological TNM stage. b) LUSCs and 

ctDNA positive LUADs are significantly more necrotic that ctDNA negative LUADs. 

Significant differences in necrosis between groups: LUSCs (median necrosis 40%) (n=31), 

ctDNA positive LUADs (median necrosis 15%) (n=11) and ctDNA negative LUADs 

(median necrosis 2%) (n=47), Kruskal-Wallis test, P<0.001, 2-sided pairwise comparisons 

were performed using Dunn’s procedure with Bonferroni correction. c) Univariate (left) and 

multivariate analyses (right) were performed, by logistic regression to determine significant 

predictors of ctDNA detection in early-stage NSCLC. ctDNA detection was defined as 

detection of two or more SNVs in pre-operative plasma samples. Details regarding 

multivariable analysis methodology are in methods. d) Receiver operating characteristic 

curve (ROC) analysis of pre-operative PET scan FDG-avidity (normalized as tumor 

background ratio (TBR), see methods), as a predictor of ctDNA detection (92/96 PET scans 

were available for central review). Median PET TBR of detected tumors = 9.01, n=45. 

Median PET TBR of undetected tumors= 3.64, n=47. P-value based on Wilcoxon Rank Sum 

Test. e) LUAD subtype analyses based on ctDNA detection and the presence of an EGFR, 

KRAS or TP53 driver mutation.
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Extended Data Figure 4. Predictors of plasma variant allele frequency
a) Plasma variant allele frequencies of SNVs detected in plasma in 46 patients who were 

ctDNA positive (two or more SNVs detected). Clonal (blue) and subclonal (red) variant 

allele frequencies indicated, mean shown as horizontal line. Driver variants shown as 

triangles. b) Mean clonal VAF correlated with maximum tumor size measured in post-

surgical specimen (pathological size, n=46) grey vertical bars represent range of clonal 

variant allele frequency. Shaded red background indicates 95% confidence interval. c) 

Filtering steps taken to define a group of ctDNA positive patients with volumetric data 
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considered adequate to model tumor volume and plasma variant allele frequency. d) Scatter 

plot showing mean clonal VAF relative to tumor volume for TRACERx (blue dots and fitted 

blue line, n=37) and VAF relative to volume for previously published data based on CAPP-

seq analysis of ctDNA (orange dots and orange fitted line, n=9). Orange shaded background 

indicates 95% confidence interval based on CAPP-seq data. e) Mean clonal VAF correlated 

with tumor volume × tumor purity (cancer cell volume), n=37. Shaded red background 

indicates 95% confidence interval. f) Association between number of cancer cells and VAF 

of clonal SNVs in plasma based on linear modelling of Extended Data Fig 4f. g) Detected 

subclonal SNVs were mapped back to M-Seq derived tumor phylogenetic trees (process 

illustrated in graphic). Detected private subclones (subclones identified within only a single 

tumor region) are coloured red. Shared subclones (subclones detected in more than one 

tumor regions) are light blue. Subclonal nodes were sized based on the maximum recorded 

cancer cell fraction (CCF). The top row of phylogenetic trees represent subclonal nodes 

targeted by primers within that patient’s assay panel, the bottom row represent subclonal 

nodes detected in ctDNA, within this row grey subclonal nodes represent subclones not 

detected in ctDNA.
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Extended Data Figure 5. Longitudinal ctDNA profiling, remaining relapse cases.
a) Kaplan-Meier curve demonstrate relapse free survival for patients in whom ctDNA was 

detected versus patients in whom ctDNA was not detected. b-h) Longitudinal cell-free DNA 

profiling. Circulating tumor DNA (ctDNA) detection in plasma was defined as the detection 

of two tumor-specific SNVs. Relapse was based on imaging-confirmed NSCLC relapse, 

imaging performed as clinically indicated. Detected clonal (circles, light blue) and subclonal 

(triangles, colors indicates different subclones) SNVs from each patient-specific assay-panel 

are plotted on graphs colored by M-Seq derived tumor phylogenetic nodes. Mean clonal 

(blue) and mean subclonal (red) VAF are indicated on graphs. Pre-operative and relapse M-

Seq derived phylogenetic trees represented by ctDNA are illustrated above each graph in 

cases where subclonal SNVs were detected.
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Extended Data Figure 6. Longitudinal ctDNA profiling, non-relapse cases
a-j) Detected clonal (circles, light blue) and subclonal (red triangles) SNVs from each 

patient-specific assay-panel are plotted on graphs. Mean clonal (blue) and mean subclonal 

(red) VAF are indicated on graphs.
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Extended Data Figure 7. Heatmaps illustrating detection of SNVs in bespoke panel at each 
sampled time point
a, c-f) Bespoke assay panels for CRUK0063, CRUK0035, CRUK0044, CRUK0041 and 

CRUK0013. Colors indicate originating subclonal cluster based on the phylogenetic trees 

above the heatmap. Light blue indicates clonal mutation cluster. Full panel with cluster color 

shown below each heatmap. Filled squares indicates detection of a given variant in plasma 

ctDNA. Y-axis shows day of sampling, y-axis labels appended with [R] indicates day of 

clinical relapse. b) Re-examination of primary tumor regions from CRUK0063 with lowered 

threshold to potentially identify SNVs private to the sequenced relapse biopsy. 16/88 
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variants were found at very low VAF in region 3, indicating this region from the primary 

likely gave rise to the metastasis.

Extended Data Figure 8. Heatmap illustrating detection of SNVs in bespoke panel based on M-
seq of metastatic tumor regions for patient CRUK0063 for all sampled time points.
Colors indicate originating subclonal cluster based on the phylogenetic trees above the 

heatmap. Light blue indicates clonal mutation cluster. Full panel with cluster color shown 

below each heatmap. Filled squares indicates detection of a given variant in plasma ctDNA. 

Y-axis shows day of sampling.
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Extended Table 1a
Patient characteristics

Clinical characteristics 96 patient pre-operative cohort

table of clinical characteristics describing the 96 patient pre-operative cohort

Characteristic Total

Age <60 19

≥60 77

Sex Male 60

Female 36

ECOG PS 0 49

1 47

Histology Adenocarcinoma 58

Squamous cell carcinoma 31

Carcinosarcoma 2

Large cell carcinoma 1

Adenosquamous carcinoma 3

Large cell neuroendocrine carcinoma 1

TNM stage Ia 24

Ib 35

IIa 12

IIb 11

IIIa 13

IIIb 1

Lymph node metastasis Yes 24

No 72

Pleural involvement Yes 27

No 69

Vascular invasion Yes 41

No 55

Resection margin R0 91

R1 5

Smoking status Never smoked 11

Recent ex-smoker 30

Ex-smoker 48

Current smoker 7

Ethnicity White British 85

White-other 4
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Characteristic Total

White-Irish 4

Caribbean 3

Extended Table 1b

demonstrating distribution of stage and whether the patient received adjuvant chemotherapy

No adjuvant therapy Adjuvant therapy

TNM Stage Ia 24 0

Ib 31 4

IIa 3 9

IIb 4 7

IIIa 6 7

IIIb 0 1

Extended Table 1c

Details regarding timing of pre-operative blood sample

Demonstrating the time-points at which pre-operative plasma was acquired for patients 

within the cohort

Days pre-surgery Number Details

Within 24 hours 91

24-72 hours 2 CRUK0051, 0003

8 days 2 CRUK0073, 0096

31 days 1 CRUK0089

Extended Table 1d

Clinical characteristics 24 patient longitudinal sub-cohort

table of clinical characteristics describing 24 patient longitudinal cohort

Characteristic Total

Age <60 5

≥60 19

Sex Male 16

Female 8

ECOG PS 0 12

1 12

Histology Adenocarcinoma 16

Squamous cell carcinoma 8
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Characteristic Total

TNM stage Ia 3

Ib 7

IIa 3

IIb 7

IIIa 3

IIIb 1

Lymph node metastasis Yes 9

No 15

Pleural involvement Yes 7

No 17

Vascular invasion Yes 12

No 12

Resection margin R0 23

R1 1

Smoking status Never smoked 1

Recent ex-smoker 5

Ex-smoker 16

Current smoker 2

Ethnicity White British 21

White-other 2

Caribbean 1

Extended Table 1e

demonstrating distribution of stage in the longitudinal cohort and whether the patient 

received adjuvant chemotherapy.

No adjuvant therapy Adjuvant therapy

TNM Stage Ia 3 0

Ib 6 1

IIa 0 3

IIb 2 5

IIIa 1 2

IIIb 0 1
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Table 2a
Cross platform validation using a generic approach to 
ctDNA profiling

Bespoke panel detected NSCLCs - cross platform validation

a) 7/10 (70%) of bespoke-panel ctDNA positive patients had tumor SNVs detectable in 

plasma preoperatively by a generic hotspot PCR-NGS lung panel (Lung Oncomine, 

Thermofisher). The three bespoke-panel ctDNA positive patients undetected by the generic 

panel had mean clonal plasma variant allele frequencies lower than the 0.1% plasma variant 

allele frequency (VAF) limit of detection reported for the generic panel (shaded yellow). b) 

Based on CT volumetric assessment of each patient’s primary tumor we predicted plasma 

VAF corresponding to a tumor of that size (see Figure 3 and Methods for details of 

approach). This allowed us to infer platform sensitivities for each patient within the 

bespoke-panel non-detected cohort. Six LUADs (shaded green; CRUK0037, CRUK0051, 

CRUK0004, CRUK0039, CRUK0025 and CRUK0048) had tumor volumes approximating 

to a plasma VAF of more than 0.1%. This suggested that these tumors resided within the top 

platform sensitivity bracket of both the generic and bespoke-panel ctDNA platforms. No 

ctDNA was detected by either platform in these cases, suggesting biological specificity of 

the bespoke-panel.

Bespoke-panel Generic-panel

Case Volume cm3 Plasma 
VAF 

(mean 
clonal)

ctDNA positive Histology Hotspot SNVs tumor Hotspot SNVs detected

CRUK0029 38.51 2.10 Yes LUAD 1 1

CRUK0009 69.01 1.71 Yes LUAD 1 1

CRUK0062 58.48 1.41 Yes LUSC 1 1

CRUK0081 16.41 0.21 Yes LUSC 1 1

CRUK0089 17.39 0.16 Yes LUSC 1 1

CRUK0022 17.20 0.08 Yes LUAD 1 0

CRUK0067 6.64 0.07 Yes LUSC 1 0

CRUK0052 43.69 0.06 Yes LUAD 2 1

CRUK0064 9.24 0.05 Yes LUSC 1 0

CRUK0034 10.59 0.01 Yes LUAD 1 1

2 b - Bespoke panel non-detected NSCLCs - cross platform validation

Bespoke-panel Generic-panel

Case Volume cm3 Predicted plasma VAF ctDNA positive Histology Hotspot SNVs tumor Hotspot SNVs detected

CRUK0037 197.42 2.96 (1.01 to 8.67) No LUAD 1 0

CRUK0051 27.28 0.32 (0.21 to 0.49) No LUAD 1 0

CRUK0004 23.30 0.27 (0.18 to 0.41) No LUAD 1 0

CRUK0039 21.68 0.25 (0.16 to 0.38) No LUAD 2 0

CRUK0025 19.06 0.22 (0.14 to 0.33) No LUAD 2 0

CRUK0048 17.00 0.19 (0.12 to 0.29) No LUAD 2 0
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CRUK0026 7.45 0.08 (0.04 to 0.14) No LUAD 1 0

CRUK0030 7.28 0.07 (0.04 to 0.14) No LUAD 2 0

CRUK0057 5.95 0.06 (0.03 to 0.12) No LUAD 1 0

CRUK0018 4.65 0.04 (0.02 to 0.10) No LUAD 1 0

CRUK0027 4.61 0.04 (0.02 to 0.10) No LUAD 1 0

CRUK0007 4.18 0.04 (0.02 to 0.09) No LUAD 1 0

CRUK0049 3.61 0.03 (0.01 to 0.08) No LUAD 1 0

CRUK0035 3.31 0.03 (0.01 to 0.08) No LUAD 1 0

CRUK0058 2.76 0.03 (0.01 to 0.07) No LUAD 1 0

CRUK0021 2.70 0.02 (0.01 to 0.07) No LUAD 2 0

CRUK0093 0.73 0.01 (0.001 to 0.03) No LUSC 2 0

CRUK0014 0.90 0.01 (0.002 to 0.03) No LUAD 1 0

Multiplex-PCR NGS

Targeted panel >99% sensitivity at 0.1% VAF and 
above

Platform sensitivities predicted based on tumor 
volume and analytical validation data in Extended 
Data 1

84% sensitivity at 0.05% to 0.1% 
VAF

46 % sensitivity 0.01% to 0.05% 
VAF

4.2% sensitivity <0.01%

Generic panel 90% sensitivity at 0.1% VAF and 
above

Oncomine lung panel sensitivity data reported at 
https://www.thermofisher.com/order/catalog/product/
A31149
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Figure 1. Phylogenetic ctDNA tracking
Overview of the study methodology. Multi-region sequencing of NSCLC was performed as 

part of the TRACERx study. PCR assay-panels were designed based on phylogenetic 

analysis, targeting clonal and subclonal single nucleotide variants to facilitate non-invasive 

tracking of the patient-specific tumor phylogeny. Assay-panels were combined into 

multiplex assay-pools containing primers from up to 10 patients. Cell-free DNA was 

extracted from pre- and post-operative plasma samples and multiplex-PCR performed, 

followed by sequencing of amplicons. Findings were integrated with M-Seq exome data to 

track tumor evolution.
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Figure 2. Clinicopathological predictors of ctDNA detection
a) Heatmap showing clinicopathological and ctDNA detection data, continuous variables 

quartiled. Raw data and patient IDs in attached worksheet. b) Detection of clonal and 

subclonal single nucleotide variants within 46 patients with two or more single nucleotide 

variants detected in plasma. Histology indicated in panels as LUSC, LUAD and Other.
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Figure 3. Tumor volume predicts plasma variant allele frequency
a) Tumor volume (cm3) measured by CT volumetric analysis correlates with mean clonal 

plasma VAF, n=37, grey vertical lines represent range of clonal VAF, red shading indicates 

95% confidence intervals. b) Predicted mean clonal VAF at hypothetical volumes ranging 

from 1 to 100cm3 based on model in panel a, predicted cancer cell number based on model 

in extended data 4e. c) Estimated effective subclone size, defined as mean CCF of subclone 

multiplied by tumor volume and purity, influences subclonal SNV detection. For negative 

calls, median effective subclone size was 1.70 cm3, range= 0.21-24.11, n=163, for positive 

calls, median effective subclone size = 4.06 cm3, range = 0.31 – 49.20, n=109. Wilcoxon 

rank sum test, P<0.001, data from 34 patients (passed volumetric filters with subclonal 

SNVs represented in assay-panel). d) Estimated effective subclone size correlates with 

subclonal plasma VAF, n=109 subclonal SNVs, data from 34 patients (passed volumetric 

filters with detected subclonal SNVs in plasma).
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Figure 4. Post-operative ctDNA detection predicts and characterizes NSCLC relapse
a-h) Longitudinal cell-free DNA profiling. Circulating tumor DNA (ctDNA) detection in 

plasma was defined as the detection of two tumor-specific SNVs. Detected clonal (circles, 

light blue) and subclonal (triangles, colors indicates different subclones) SNVs from each 

patient-specific assay-panel are plotted on graphs colored by M-Seq derived tumor 

phylogenetic nodes. Mean clonal (blue) and mean subclonal (red) plasma VAF are indicated 

on graphs as connected lines. Pre-operative and relapse M-Seq derived phylogenetic trees 

represented by ctDNA are illustrated above each graph.
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Figure 5. Phylogenetic trees incorporating relapse tissue sequencing data
Phylogenetic trees based on mutations found in primary and metastatic tissue (a-d), or 

primary tumor and lymph node biopsies (e). Colored nodes in phylogenetic trees indicate 

cancer clones harboring mutations assayed for in ctDNA, grey indicates a clone not assayed. 

Branch length is proportional to number of mutations unless crossed. Dashed red lines show 

branches leading to metastatic relapse. Colored bars below show the number of assays per 

sample detected preoperatively and at relapse (a-d) or in the absence of relapse, post-surgery 
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(e). Thin colored bar shows number of assays in total. Colors match clones on the 

phylogenetic trees.
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Figure 6. ctDNA tracking of lethal cancer subclones in CRUK0063
Phylogenetic analysis of one relapse biopsy (day 467) and five metastatic biopsies (post 

mortem) a) To-scale phylogenetic tree of CRUK0063 including M-seq based on metastatic 

and primary tumor regions. Branch length is proportional to number of mutations in each 

subclone. b) Phylogenetic trees matching metastatic lesions, colored nodes represent 

mutation clusters found at each site and assayed for in ctDNA. Open circles represent 

mutation clusters not detected in ctDNA. c) Tracking plot showing mean VAF of identified 

mutation clusters in ctDNA. Size of dots indicates number of assays detected. Colors 

correspond to mutation clusters and match panels a) and b).
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