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A B S T R A C T

Phase correction (PC) is a preprocessing technique that exploits the phase of images acquired in Magnetic
Resonance Imaging (MRI) to obtain real-valued images containing tissue contrast with additive Gaussian noise, as
opposed to magnitude images which follow a non-Gaussian distribution, e.g. Rician. PC finds its natural appli-
cation to diffusion-weighted images (DWIs) due to their inherent low signal-to-noise ratio and consequent non-
Gaussianity that induces a signal overestimation bias that propagates to the calculated diffusion indices. PC
effectiveness depends upon the quality of the phase estimation, which is often performed via a regularization
procedure. We show that a suboptimal regularization can produce alterations of the true image contrast in the
real-valued phase-corrected images. We propose adaptive phase correction (APC), a method where the phase is
estimated by using MRI noise information to perform a complex-valued image regularization that accounts for the
local variance of the noise. We show, on synthetic and acquired data, that APC leads to phase-corrected real-
valued DWIs that present a reduced number of alterations and a reduced bias. The substantial absence of pa-
rameters for which human input is required favors a straightforward integration of APC in MRI processing
pipelines.
1. Introduction

In Magnetic Resonance Imaging (MRI) the non-Gaussian distribution
of the noise affecting magnitude images can be a major source of bias for
estimated quantities. For instance, the bias due to Rician-like noise dis-
tributions in magnitude diffusion-weighted images (DWIs) propagates to
diffusion indices (Jones and Basser, 2004; Gilbert et al., 2007; Sotir-
opoulos et al., 2013) such as those calculated with diffusion tensor im-
aging (DTI) (Basser et al., 1994a, b), diffusion kurtosis imaging (DKI)
(Jensen et al., 2005; Jensen and Helpern, 2010), mean apparent propa-
gator (MAP-MRI) (€Ozarslan et al., 2013), and others. In general, all of the
in-voxel (local) representations of the diffusion signal are affected, so that
even global techniques such as tractography and structural connectivity
are biased (Jeurissen et al., 2017). Nowadays, the quest to identify the
human connectome (Maier-Hein et al., 2017; Schilling et al., 2019) re-
quires solid processing pipelines where phase correction (PC) can play a
crucial role. The Rician-like noise distribution also induces a bias when
averaging magnitude images acquired over multiple repetitions for the
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purpose of increasing the signal-to-noise ratio (SNR), therefore averaging
is performed in the complex domain where the noise distribution is
Gaussian with mean zero. However, if phase variations occur from one
repetition to another then PC has to be used to avoid averaging complex
images having incoherent pixel intensities which would lead to un-
wanted signal cancellation.

PC allows calculating a bias-free, real-valued version of an acquired
complex DWI. The latter follows a complex Gaussian distribution (Hen-
kelman, 1985) but its image contrast – the tissue-dependent amplitude –
is split among the real and imaginary components in a way described by
the DWI's true phase. If one knew the true phase, then this could be used
to transpose the image contrast into the real component, where the noise
distribution is Gaussian, thus avoiding the calculation of the magnitude
image whose intensities are biased. However, in MRI we only have access
to a noisy version of the DWI's true phase, hence this has to be estimated.
The noisy phase is then corrected with the estimated one to generate a
new complex image having a real component that contains the image
contrast with additive Gaussian-distributed noise, and an imaginary
0 October 2019
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image that mainly contains noise with the same distribution and that can
be discarded following the assumption that the diffusion MRI signal is
real-valued. The phase estimation method is paramount for the good
outcome of PC. Bearing this in mind, our work focuses on proposing a
robust methodology and methods to automatically estimate the phase by
using measured properties of the noise affecting the images – the vari-
ance and its spatial variability – to perform adaptive phase correction
(APC).

PC was initially proposed for MRI as a way of improving the detect-
ability in low SNR images. The pioneering works include those by
Bernstein et al. (1989), Liu and Koenig (1990), and the widespread
homodyne detection by Noll et al. (1991). A strong need for it appeared
in relation with DWIs due to their inherent low SNR, since the contrast is
provided by a signal attenuation. Moreover, motion during acquisition
can produce artifacts in the phase, especially when adopting the
pulsed-gradient spin-echo (PGSE) sequence (Stejskal and Tanner, 1965),
that prevent the use of complex averaging. Phase correction/estimation
methods can be grouped into parametric and non-parametric. In the first
case, for instance, some methods assume linear or polynomial phase with
respect to the voxel location (Liu and Koenig, 1990; Hua and Hurst, 1992;
McGibney et al., 1993; Chang and Xiang, 2005; Bretthorst, 2008a).
Semi-parametric and non-parametric methods include Bayesian estima-
tion (Bretthorst, 2008b; Zhao et al., 2012), various types of filtering that
impose smoothness on the phase or on the complex image, such as
low-pass filters (Bernstein et al., 1989; Noll et al., 1991; Prah et al.,
2010), total variation (Chen et al., 2013; Eichner et al., 2015), or filters
tailored according to the image reconstruction pipeline (Sprenger et al.,
2016), though general denoising algorithms operating on the real and
imaginary images can be used, such as those based on spectral subtrac-
tion (Ertürk et al., 2013), wavelet decomposition (Wood and Johnson,
1999; Wirestam et al., 2006; Hu et al., 2016, 2018), or PCA (Manj�on
et al., 2013; Veraart et al., 2016; Cordero-Grande et al., 2019). Para-
metric methods face limitations such as phase linearity assumptions;
PCA-based methods need redundant information (generally from several
gradient directions) which could prevent their image-by-image applica-
tion for general MRI modalities and could be sensitive to phase varia-
tions. In this work, we focus on image-by-image phase correction and we
choose to adopt an image regularization strategy in the complex domain
(Eichner et al., 2015).

The major issue we tackle in this article is the choice of the amount of
regularization used for phase estimation. Indeed, we show that an
empirical choice leads to flawed phase correction. In fact, Sprenger et al.
(2016) noticed that phase correction can produce anomalies – alterations
of the true image contrast in the phase-corrected real-valued DWI –

which they identify using an outliers detection method. These anomalies
can have disruptive consequences for the intelligibility of the images and
their processing, e.g. the calculation of diffusion indices. We show that
such anomalies could be related to an excessive regularization used for
estimating the phase. Moreover, in a previous simulation study (Pizzolato
et al., 2016) we showed that if the regularization amount is too low, then
the benefit of bias reduction on the calculated diffusion indices is sub-
optimal, whereas with excessively high regularization the diffusion
indices can be subject to an even stronger bias compared to that induced
by magnitude DWIs. To overcome these issues, we propose to adopt a
noise-driven approach to automatically set the regularization amount
and obtain an optimal estimation of the phase. Particularly, we first
obtain a computationally efficient estimate of the regularization amount
by automatically matching it with the estimated noise variance following
the discrepancy criterion (Morozov, 1968; Rudin et al., 1992). This es-
timate is then used to initialize a more costly refining search that mini-
mizes the Stein's Unbiased Risk Estimate (SURE) (Stein, 1981) calculated
with aMonte Carlo procedure (Ramani et al., 2008). The regularization is
based on an Oriented Laplacian formulation of anisotropic diffusion fil-
ters operating over each complex DWI. We propose to estimate the noise
variance required for the regularization from an MRI noise map. Since
parallel imaging, homogeneity correction, and the image reconstruction
2

produce a spatially varying noise variance (Aja-Fern�andez and
Vegas-S�anchez-Ferrero, 2016), a global regularization amount is insuf-
ficient. Hence, we propose to account for the spatial variability of the
noise variance by estimating it from the noise map and including it into a
spatially varying complex regularization functional to perform adaptive
phase correction, in combination with the use of a spatially varying
adaptation of Monte Carlo SURE (Pizzolato et al., 2019).

We organize the article as follows. Section 2 describes the theory of
phase correction and the adopted regularization method. Section 3 pre-
sents the main contributions of this article, i.e. automatic (3.1) and
spatially varying (3.2) PC, as well as the use of an MRI noise map. Section
4 describes the methods, the synthetic data, and the acquired datasets.
Section 5 illustrates the body of experiments designed to validate the
proposed adaptive phase correction. Finally, Section 6 reports our con-
siderations on the proposed methodology based on the experimental
results, and Section 7 presents our final remarks.

2. Phase correction

Given a complex image I0, the purpose of phase correction (PC) is to
estimate a phase-corrected image, Ipc, whose real component, <fIpcg,
contains the tissue (image) contrast with additive Gaussian noise, such
that this can be used instead of the Rician magnitude jI0j. If bIðx; yÞ is a
good estimate of the noise-free phase of a pixel with coordinates x 2 ΩX

and y 2 ΩY , then the phase-corrected intensity is obtained by complex
rotation, subtracting such estimate from the noisy phase as

Ipcðx; yÞ¼ jI0ðx; yÞje
j

h
I0ðx;yÞ� bI ðx;yÞ i

(1)

where j ¼ ffiffiffiffiffiffiffi�1
p

. As a consequence, the real component of the phase-
corrected complex image, <fIpcg, contains the signal (image contrast)
plus zero-mean Gaussian-distributed noise, whereas the imaginary
component, ℑfIpcg, mainly contains noise with negligible signal content.
Henceforth, any classical diffusion modeling and reconstruction that
takes into account additive Gaussian noise, e.g. the least squares esti-
mation of the DT or DK models from DWIs, can be performed on <fIpcg
where the Rician bias is mitigated, e.g. the noise floor is reduced. We
calculate the phase required for the complex rotation in eq. (1) from a

regularized version of the complex image, bI . One accepted assumption is
that the phase is spatially smooth (Bammer et al., 2010). However, when
attempting to estimate the phase from the regularized complex image the
discontinuities caused by the image contrast have to be taken into ac-
count. For this reason, we decided to use a complex-domain regulariza-
tion based on an Oriented Laplacian formulation of anisotropic diffusion
filters (Sapiro and Ringach, 1996; Kornprobst et al., 1997; Tschumperl�e
and Deriche, 2007). For each complex image I0 we find the regularized
image as the output of an operator bI ¼ ρðI0; λÞ, where

ρðI0; λÞ : ¼ I s:t: inf
I2C

λ

Z
ΩX ;ΩY

��I0 � Ij2dxdyþ
Z
ΩX ;ΩY

ϕðjjrIjjÞdxdy (2)

which is parametrized by λ that expresses the amount of fidelity to the
original image I0, or the reciprocal of the regularization amount, and
where

rI¼
�
∂I
∂x;

∂I
∂y

�T
(3)

with ϕðkrIkÞ being a function of the image gradient norm. In the Ori-
ented Laplacian formulation, the second term in eq. (2) is minimized
through the following partial differential equation

∂I
∂t ¼ αðjjrIjjÞIξξ þ βðkrIkÞIηη (4)
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where Iηη and Iξξ denote the second derivatives of I along the orthogonal
directions η ¼ rI=krIk and ξ ¼ rI?=jjrIjj. In the case ϕðjjrIjjÞ ¼
krIk2=2 then α ¼ 1 and β ¼ 1 and eq. (4) corresponds to the heat
equation. When ϕðkrIkÞ ¼ jjrIjj then α ¼ 1=krIk and β ¼ 0, thus the
second term of eq. (2) corresponds to the total variation (Rudin et al.,
1992). However, eq. (4) allows for a more general choice of α and β,
decoupled from the second term of eq. (2), which can be arbitrary
functions of the image's local gradient. In the article, we test the mean
curvature flow ðα¼ 1; β¼ 0Þ (Alvarez et al., 1992).

3. Adaptive phase correction

The experimental part in our previous work (Pizzolato et al., 2016)
discloses that phase correction has a great unbiasing potential provided
that the estimated phase is optimal. In other words, phase correction is
not effective – and can lead to more bias than that of the magnitude DWI
– if the regularization is not properly performed. Indeed, leaving the
choice of λ to empiricism, e.g. visual inspection, can lead to altered image
content and is inefficient. Here we propose to automatically regularize
based on the noise variance (3.1) and its spatial variability (3.2).

3.1. Automatic regularization

The optimal phase correction is the one allowing the estimation of a
phase image, bI , that after performing the complex rotation in eq. (1)
leads to a phase-corrected imaginary image, ℑfIpcg, with negligible
image content, i.e. ideally only containing Gaussian-distributed noise.
The phase image is calculated from a denoised version of the original
complex DWI via eq. (2). If an estimate of the noise variance is available,bσ2, the discrepancy criterion (DC) predicts that the optimal regulariza-
tion is found for λ ¼ λDC that satisfies (Morozov, 1968; Rudin et al., 1992)��ρ�I0; λDC�� I0

��2

2
¼ 2XYbσ2 (5)

where XY is the total number of pixels, X ¼ jΩX j and Y ¼ jΩY j being the
image's dimensions, and where the factor 2 comes from considering a
complex image. In order to find λDC satisfying eq. (5), Chambolle (2004)
proposed an iterative rule which we decided to practically implement by
considering an average over the real and imaginary components

λn ¼ λn�1

2
ffiffiffiffiffiffi
XY

p bσ ½jj<fρðI0; λn�1Þ � I0gjj2 þ jjℑfρðI0; λn�1Þ � I0gjj2� (6)

where n refers to the n-th cycle of iterations until convergence, since the
regularization described by eq. (2) is performed with an iterative nu-
merical procedure. As starting value, we set

λ0 ¼ 2:1237bσ þ 2:0547bσ2 (7)

as suggested by Getreuer (2012) and Duran et al. (2013). The value of λ
obtained after one minimization as described by eq. (2), i.e. after one
complete cycle of iterations, can be used as input for the next one. This
leads to a slow monotonic convergence of λn for fully converged cycles.
However, we note that in practice the rule in eq. (6) can be applied to
iterations within one cycle, meaning that only one minimization of eq.
(2) with iterative update of λ is sufficient. A similar consideration was
also made by Chambolle (2004). In this case we observe that the
convergence is not necessarily monotonic but leads to the same value of
λDC with approximately a hundred times less iterations. To avoid waiting
for useless iterations once convergence is reached, we stop the routine
when two consecutive iterations have similar norm of the residuals,
particularly when their ratio almost corresponds to one according to a
stop tolerance.

The discrepancy criterion is known to produce an over-regularized
solution (Galatsanos and Katsaggelos, 1992), i.e. it identifies a value of
3

λ that does not minimize the mean squared error (MSE) with respect to
the ground-truth image after regularization. To overcome this limitation,
it is possible to minimize an estimate of the MSE proposed by Stein
(1981), named Stein's Unbiased Risk Estimate (SURE), which we decided
to average over the real and imaginary components

φðI0; λÞ¼ 1
2XY

kI0 � ρðI0; λÞk22 � bσ2 þ bσ2

XY
ðdiv<½ρðI0; λÞ� þ divℑ½ρðI0; λÞ�Þ (8)

where we estimate the divergence terms separately for the real and
imaginary components with the Monte Carlo approach proposed by
Ramani et al. (2008).

div<½ρðI; λÞ� � 1
ε
vec½<fBXYg�Tvec½<fρðI þ εBXY ; λÞ � ρðI; λÞg�

divℑ½ρðI; λÞ� � 1
ε
vec½ℑfBXYg�Tvec½ℑfρðI þ εBXY ; λÞ � ρðI; λÞg�

(9)

with BXY being a complex image of size X � Y whose real and imaginary
components are independent and have pixel intensities that are drawn
from the standard normal distribution,Nð0;1Þ, and where “vec” indicates
vectorization. The approximation is valid for ε → 0 and, when dealing
with images that contain a small number of pixels, the estimate can be
averaged over several repetitions. The Monte Carlo SURE criterion is
computationally costly since it requires at least one additional evaluation
of the operator ρðI;λÞ, e.g. eq. (2), for each tested λ. Moreover, the range
of values for λ is unknown a priori, which could potentially lead to the
need of performing many evaluations over a large space. We overcome
this issue by using the solution obtained with the discrepancy criterion as
reference point. Indeed, the value λDC matching bσ2 according to eq. (5)
should constitute a “close enough” starting point for the λ that minimizes
eq. (8), typically a lower bound considering that λDC leads to over-
smoothing. Therefore, the search space can be restricted to ½lλDC; hλDC�,
where we set l ¼ 0:9 and h ¼ 10. To further reduce the number of
evaluations, we employed a golden section bisection method (Braun and
Murdoch, 2007) to find the minimum of eq. (8) with stopping criterion
specified by λ having precision corresponding to 1% of λDC. Experiments
proving the effectiveness of the proposed solution are presented in sec-
tion 5.

3.2. Spatially varying regularization

In order to consider the spatial variability of the noise variance we
adapt eq. (2) inspired, for instance, by the work of Gilboa et al. (2006) as

ρwðI0; λÞ : ¼ I s:t: inf
Iðx;yÞ2C

λ

Z
ΩX ;ΩY

wðx; yÞ��I0ðx; yÞ� Iðx; yÞj2dxdy

þ
Z
ΩX ;ΩY

ϕðkrIkÞdxdy (10)

where wðx; yÞ is a weighting function. We compute the weighting func-
tion from an MRI noise map and scale it such that it does not add energy
to the system. To do so, we rewrite the error term of eq. (10) using its
discretized form, and we match it to the sample variance, σ2, calculated
on the selected image of the noise map

XX
x¼1

XY
y¼1

wðx; yÞ��Iðx; yÞ� I0ðx; yÞj2 ¼ 2XYσ2: (11)

In the case of stationary noise eq. (11) is always true for wðx;yÞ ¼ 1;
8ðx; yÞ 2 ΩX � ΩY . In the case of spatially varying noise, we will find a
weighting function that locally scales the error term such that the
equality holds. At convergence the quantity jIðx; yÞ � I0ðx; yÞj2 corre-
sponds to an estimate of the local variance, 2bσ2ðx;yÞ. Hence, substitution
and normalization of the right hand side of eq. (11) leads to
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1
2

XX XY
wðx; yÞbσ2ðx; yÞ¼ 1 (12)
σ XY x¼1 y¼1

that is satisfied by calculating the weighting function as

wðx; yÞ¼ σ2bσ2ðx; yÞ (13)

which corresponds to the image's sample variance divided by its local
estimate. Note that whenever in the implementation of the method the
standard deviation is used, then the square root of eq. (13) is considered.
The solution in eq. (10) can be combined together with the automatic
selection of the regularization parameter λ presented in section 3.1.
Particularly, assuming prior knowledge of the sample variance in the
image, σ2, this can be used in eqs. (5)–(8) as bσ2 ¼ σ2 while using the
function wðx; yÞ at the same time. In order to employ the Monte Carlo
SURE criterion while using the weighting function, we propose the use of
a spatially varying version of it, svSURE (Pizzolato et al., 2019), where in
eqs. (8) and (9) ρwðI0; λÞ is used instead of ρðI0;λÞ, and BXY is replaced by
its spatially varying version Bsv

XY . By indicating with bXY the real or
imaginary component of BXY , then the corresponding spatially varying
version in Bsv

XY is obtained as

bsvXYðx; yÞ¼ bXY ðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2ðx; yÞPX

u¼1

PY
v¼1bσ2ðu; vÞXY

s
(14)

which corresponds to the stationary image component multiplied by the
square root of the ratio between the local variance and that averaged
across the slice. We validate the approach for complex images in section
5. Both the sample and the local variance required for the calculation of
the weighting function in eq. (13) can be calculated from a single reali-
zation of the noise map. We calculate the sample variance with the un-
biased sample variance estimator on a selected axial slice of the MRI
noise map for each component νðx;yÞ, real and imaginary, as

σ2 ¼ 1
XY � 1

XX
x¼1

XY
y¼1

½νðx; yÞ � ν�2 (15)

averaging the results over the real and imaginary components; here ν is
the mean value of the noise, which should correspond to zero. The local
variance σðx; y; zÞ2 is estimated with a filter that calculates the equivalent
of eq. (15) in the three spatial dimensions within a spherical footprint of
specified radius around each voxel. We take advantage of the complex-
valued nature of the noise map to include samples from both the real
and imaginary components, thus increasing the number of samples
considered at each voxel location by a factor two. Experimental results
related to the spatially varying regularization for phase correction are
described in section 5.2.

4. Methods

Adaptive phase correction (APC) is validated experimentally in a
comparative manner on synthetic and acquired data. The experiments
are designed to test and validate the automatic selection of the regula-
rization parameter, its spatially varying adaptation, the phase estimation
performance, the absence of image contrast alterations, and the bias
reduction achieved with APC on the signal and diffusion indices as
compared to the case when magnitude DWIs are used. For APC, we
implemented the Oriented Laplacian formulation of eq. (10) numerically
based on an fixed point finite difference scheme. We set the maximum
number of iterations to 200 and chose a stop tolerance of 10�6, although
a lower value of 10�4 generally leads to similar results while leading to
reduced computational time. We fixed ε ¼ 0:01 in eq. (9) (Ramani et al.,
2008). The calculation of the diffusion indices is performed by fitting
DTI, DKI, and MAP-MRI on DWIs. To prevent negative signal
4

reconstructions, DTI was performed with non-negativity constraints on
the signal (Koay et al., 2006). For MAP-MRI, we used radial order 4,
anisotropic scaling, Laplacian regularization set to 0.05 (Fick et al.,
2016), and positivity constraints on the reconstructed ensemble average
propagator (€Ozarslan et al., 2013). We used DKI to estimate the mean
kurtosis (MK) using the ordinary least squares method. This can be an
issue on phase-corrected data due to possible negative signal intensities
in the images. To partially mitigate this problem, we smoothed the DWIs
(magnitude and real-valued phase-corrected) with at TV filter, and
limited the kurtosis values in a range between 0 and 3. In all cases, the
reconstruction was performed using Dipy (Garyfallidis et al., 2014).
4.1. Diffusion-weighted images

The regular PGSE sequence provided by the manufacturer was used
and interface parameters were modified to allow the output of complex
data. We collected two datasets from two healthy volunteers. One was
used to evaluate DTI indices at different b-values (dataset 1), and the
other was used for evaluating DKI and MAP-MRI indices (dataset 2). For
dataset 1, the complex DWIs were acquired with maximum gradient
strength Gmax � 44 mT=m, pulse separation Δ ¼ 50 ms, and duration δ ¼
32:8 ms. DWIs were acquired in two antipodal acquisitions along 7
collinear directions distributed among 4 diffusion shells, b 2 f1390;
2002; 2725; 5562g s=mm2, and 7 b ¼ 0 images were included. Dataset 2
was acquired with Gmax � 30 mT=m, Δ ¼ 47:6 ms, and δ ¼ 27:6 ms. It
includes 81 DWIs distributed over 3 diffusion shells, b 2 f1000; 2000;
3000g s=mm2 (18,27,36) according to a multi-shell electrostatic repul-
sion scheme (Caruyer et al., 2013), and with 9 images collected at b ¼ 0.
The acquisitions were implemented on a Philips 3T Ingenia scanner with
a 32-channel head coil, a 112x112 reconstruction matrix, 60 axial slices,
2.0 mm isotropic resolution, Partial Fourier factor of 0.7, NEX¼ 1, zero
filling, and an antisymmetric filter during the reconstruction (Noll et al.,
1991). For dataset 1, parallel imaging was based on SENSE (Pruessmann
et al., 1999) with in-plane parallel imaging factor of R ¼ 2. For dataset 2,
both SENSE R ¼ 2 and Multiband-SENSE¼ 2 was used. Images were
reconstructed using the method provided by the manufacturer. In both
cases, a spatially varying Rician noise distribution is expected to affect
the images. Fig. 1 illustrates a DWI of dataset 1.
4.2. Noise map

The MRI noise map was acquired using an additional diffusion vol-
ume for which all radio-frequency pulses (excitation, refocusing, and fat
saturation) are turned off, so that no excitation occurs. The acquisition
time of such a map thus corresponds to the repetition time of the
sequence, which also needs to be sufficiently long (of the order of a few
seconds at least) to ensure that all transverse magnetization from the
previous volume has relaxed completely. This effectively produces an
image of the noise through the reconstruction pipeline. The MRI noise
map is shown in Fig. 1, which also illustrates the calculated SNR map,
and the averaged b ¼ 0 image for reference. Normally, the acquisition of
multiple noise maps is recommended such that many noise realizations
can be observed and used to obtain a voxel-by-voxel value of the noise
variance with the sample estimator. However, this is often not feasible in
real practice, as it would require a long acquisition time. Therefore, we
propose an approximated solution based on a single acquisition of the
noise map where the local variance is calculated within a spherical
neighborhood of fixed radius around each voxel, as described in section
3.2. We noted that larger radii render smoother weighting functions
wðx; yÞ via eq. (13) at the cost of less fidelity to the spatial variability of
the noise variance. We chose a radius of 4 voxels, as we saw on synthetic
data that it guarantees a mean relative error on the estimated local
variance of approximately 2.5%. Illustrations of the estimated sample
variance, spatially varying variance, and weighting function calculated
for the acquired noise map are reported in Fig. 2. In the sagittal and



Fig. 1. The estimated spatial variability of the noise based on the real and imaginary components of a noise map (top). Below, a DWI of dataset 1 acquired at b ¼
2725s=mm2. On the right, an average non-weighted (b ¼ 0) image (top), and the estimated signal-to-noise ratio (bottom).

Fig. 2. On the left, the standard deviation estimated, for each axial slice, by averaging the local standard deviation estimated with a variance filter across the noise
map (red curve) or with a sample variance estimator (dots). In the center, the estimated noise variance from the MRI noise map and, on the right side, the calculated
weighting function wðx; yÞ. Note that the average standard deviation decreases as the axial slice number increases, as observed in the variance map. This is largely
driven by the distance to the receive coils: locations further away from the coils have higher noise variance.
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coronal views of the central image we notice an increasing amount of
variance as the axial slice number reduces. This behavior is well captured
by the standard deviation calculated using the sample estimator in eq.
(15) on the image (dots in the left plot), and by averaging the local
standard deviation estimates across the image (red continuous line). This
trend is mainly driven by the distance to the receive coils, as locations
further away from the coils show a lower SNR. Indeed, since the recon-
struction includes homogeneity correction the signal is relatively
spatially homogeneous, thus the noise is higher in the low SNR regions.
Since the acquisition is 2D, PC is done separately for each DWI and the
weighting function is calculated for each axial slice with eq. (13) by using
the variance map and the slice-dependent σ. Consequently, the value of
wðx; yÞ remains more uniform across slices compared to the local vari-
ance, as illustrated in the right side of the figure.
4.3. Synthetic data

The sampling of the acquired data was replicated in the synthetic
dataset, which was generated with Fiberfox (Neher et al., 2014) based on
5

the data created for the ISMRM2015 tractography challenge (Maier-Hein
et al., 2015, 2017). An artificial phase was added independently for each
DWI (Pizzolato et al., 2016). Noise was added based on that estimated
from the acquired data. Particularly, complex Gaussian-distributed noise
with zero mean and standard deviation σ

σ¼
PX

x¼1

PY
y¼1υðx; yÞMðx; yÞb¼0

SNRwm
PX

x¼1

PY
y¼1υðx; yÞ

(16)

where SNRwm � 22 as estimated from the SNR map of Fig. 1 within a
white matter mask, Mðx; yÞb¼0 being the synthetic magnitude image
without diffusion weighting, and υ 2 f0;1g a mask defined on the pairs
ðx; yÞ, e.g. a mask of the tissue-related image contrast such as the brain
mask. Eventually, the standard deviation was modified locally according
to the spatial variability map, also shown in Fig. 1, which corresponds to
that estimated on the acquired noise map (dataset 1) using a bivariate
Gaussian surface.
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5. Results

We applied the regularization described in section 3.2 in the form of
TV, Laplacian, and mean curvature flow to the synthetic data for a single
realization of noise with different SNRs, as reported in Fig. 3. In the plots,
the dashed lines represent a trend proportional to the theoretical mean
squared error (MSE), kI � ρwðI0; λÞk22=2XY, as function of λ= λoptimal for the
three different operators, whereas the dots are the svSURE estimates
“visited” by the golden section bisection method. These estimates have
been scaled for the sake of visualization such that their minimum cor-
responds to the minimum value of the corresponding MSE trend curve.
The stars represent the MSE obtained with the regularization amount
predicted by the discrepancy criterion, λDC, which is used to bound the
search of the bisection method. The visited estimates of svSURE well
overlap with the MSE as desired. Moreover, the optimal regularization is
always found at all SNRs. From these results we also conclude that TV is
the best approach among those tested, as it always renders the lowest
MSE. For this reason, we use TV in the other experiments and for
applying APC to the acquired data, although other (possibly better) op-
erators could be implemented based on eq. (4).
5.1. Importance of automatic phase correction

In this section, we show the influence of the regularization parameter
λ on the phase correction of the DWIs when considering eq. (2), and
present qualitative and quantitative results showing the benefits of using
automatic regularization. Fig. 4 reports the results related to the phase
correction of a synthetic DWI for different values of λ (light blue and
blue) and for the automatic one (red) with the discrepancy criterion. The
figure also reports the histograms of the imaginary image intensities after
PC for the corresponding correction amount, together with the histogram
of the added imaginary noise (black). Ideally, an optimal PC should
render an imaginary DWI containing noise with the same properties
(mean and variance) of the actual noise affecting the images. Indeed, the
red histogram overlaps with the black one. Conversely, a higher or lower
Fig. 3. Mean squared error (MSE) for mean curvature flow (mcf), Laplacian (lap), and
(10) (dashed lines). Dots reports the evaluation of svSURE according to the bisecti
corresponding λoptimal found as the one minimizing svSURE. For ease of visualization,
shifted vertically such that their minimum corresponds to the minimum of the corre
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λ produces a too weak or excessive correction causing the histograms
(light blue and blue) to be far from that of the noise. While in the case of
weak regularization the imaginary component has very low intensities,
suggesting that the corrected real component is similar to the Rician
magnitude, in the case of excessive regularization the imaginary
component improperly contains image contrast that should instead be
part of the real-valued DWI as indicated by the red arrows. This phe-
nomenon is disruptive for the processing and intelligibility of the images,
and is limited by the automatic selection of λ. A qualitatively similar
image is shown for dataset 1 in Fig. 5. There, we show the original phase
of a DWI, and that estimated with different values of λ, reporting the
corresponding imaginary DWIs after PC. A low amount of regularization
(high λ) renders an almost zero imaginary DWI, with the consequence
that the real-valued DWI practically corresponds to the Rician magni-
tude. On the contrary, an excessive regularization leads to an imaginary
DWI that improperly contains image contrast. The imaginary DWI in the
center corresponds to that obtained with automatic PC. In the figure, the
imaginary images after PC report stationary noise because of the lack of
adaptivity of the technique, which is the focus of the next subsection. The
experimental results show that an excessive regularization leads to
anomalies – due to image contrast improperly transferred from the real to
the imaginary DWI – that invalidate the benefits of phase correction and
prevent any further processing of the images. The use of noise properties
to set the amount of regularization, on the other hand, limits the occur-
rence of these anomalies. Indeed, in section 5.3 we show that APC re-
duces the occurrence of anomalies also for the acquired data.

5.2. Importance of spatially varying phase correction

The error committed by using stationary instead of spatially varying
APC is illustrated in the plot of Fig. 6 using synthetic data. The plot re-
ports the ratio between the mean squared error with respect to the
ground truth complex DWI obtained with stationary and with spatially
varying regularization. The difference is explained by the unsuited use of
the regularization of eq. (2) rather than that of eq. (10). At low SNRs,
where phase correction is more needed, the MSE obtained with
total variation (tv) regularizations based on the operator defined in eqs. (4) and
on search. The values of λ for each method were scaled by the inverse of the
as svSURE provides approximations to the actual MSE, the svSURE curves were
sponding MSE curve.



Fig. 4. Outside the frame, the magnitude, phase, real, and imaginary components of a DWI of the synthetic dataset. Inside the frame, the real and imaginary
components of the DWI after phase correction using different regularization amounts, values of λ, which increase along the direction indicated by the arrows, ranging
between low and excessive regularization. If properly corrected, the imaginary DWI should mainly contain noise. In the plot, we report the image intensity histograms
of the imaginary DWI, for different values of λ (color codes), to be compared with that of the noise (black). The red histogram corresponds to the automatic selection of
λ with the discrepancy criterion as discussed in section 3.1: this well overlaps with that of the noise. A higher (light blue) or lower (blue) values of λ render histograms
which are far from the black one, corresponding to low and excessive corrections. In the latter case, parts of the image tissue contrast are transferred to the imaginary
image creating anomalies in the real-valued DWI; this phenomenon is indicated by the red arrows. On the other hand, when the regularization is too low the corrected
real-valued DWI is very similar to the magnitude one.
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stationary regularization can be up to 25% higher.
Fig. 7 shows the comparison between stationary and spatially varying

phase correction (APC), and their influence with respect to magnitude
data. On the left, we note that APC adapts to the higher noise intensities
located in the center of the image, leading to a stronger unbiasing of the
signal intensities as reported by the histograms calculated within the
ventricular mask (right side). Compared to the stationary PC (gray), the
spatially varying one (blue) shifts the intensities of the phase-corrected
real-valued DWI towards the negative axis, indicating a stronger
unbiasing that is explained by the higher noise variance in the ventricular
region compared to the mean variance in the image. As expected, the
magnitude signal (black) shows the typical Rician-like distribution. Using
the same mask, we calculate the histograms of the imaginary DWIs cor-
rected with APC for each b-value shell of dataset 1. These well overlap
with that the corresponding histogram of the noise map intensities
(black). These comparisons show the relevance of accounting for the
local nature of the noise in order to perform phase correction, indicating
the importance of using the formulation described in section 3.2 in
7

combination with the noise map.

5.3. Outliers detection

To better address the importance of adaptive phase correction, we
implemented an outliers detection method as in the work of Sprenger
et al. (2016) where phase-corrected real signal intensities are consid-
ered outliers if the difference from the original magnitude is larger
than a threshold equal to twice the noise standard deviation, i.e. when
jjI0ðx; yÞ

��� RfIpcðx; yÞg
�� > 2bσðx; yÞ. We report the results in Fig. 8 for

two different regularization amounts, λ 2 f10�4;5 �10�4g, tuned manu-
ally to produce a noise-like imaginary component, and for APC. The
standard deviation used as threshold corresponds to that calculated from
the noise map and for fairness of comparison the weighting function was
used even in the case where the regularization was manually tuned
(which would not normally be possible). In the figure, we illustrate DWIs
acquired at four different b-values, while selecting those corresponding
to the axial slice where the maximum number of outliers was detected.



Fig. 5. The original and the estimated phase, with different values of λ, for a DWI of the acquired dataset 1 (first row), and the corresponding imaginary components of
the phase-corrected DWI. Note how a too smooth estimation of the phase renders an imaginary component containing tissue contrast, thus a contrast loss in the
corrected real-valued DWI. Images are here processed without considering the spatial variability of the noise variance.

Fig. 6. The mean and standard deviation of the ratio between the mean squared
error (TV regularization) obtained with the stationary and the spatially varying
methods, i.e. eq. (2) and eq. (10), as function of the signal-to-noise ratio (results
account for 100 different realizations of the noise).
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We count 6.7% of outliers with 1:78σmean leftover beyond the threshold
for λ ¼ 10�4, 1.6% with 1:05σ mean leftover for λ ¼ 5 � 10�4, and 0.3%
with mean leftover of 0:54σ for APC on dataset 1 (0.27% with 0:48σ on
dataset 2). We note that outliers percentages are likely to be higher in the
case in which the manually tuned regularization amounts are not
informed about the spatial variability of the noise variance. We also note
that a minimal presence of outliers should be expected. The results show
the importance of accounting for the noise properties when regularizing,
as a wrong choice of λ could invalidate the benefits of phase correction.
APC allows signal unbiasing as illustrated in Fig. 7 while minimizing the
number of outliers at the same time. The performance of APC is explained

by the adaptivity of the value of bλ. In particular, as shown in the bottom
of Fig. 8, the adaptive regularization leads to more smoothing (less data
8

fidelity) at lower SNRs and less at higher SNRs. Indeed, in average bλ
decreases when the b-value increases.
5.4. Phase estimation and noise correlation

We compare the adaptive phase estimation used for APC with other
filtering strategies and assess the influence of the noise spatial correlation
that may arise due to the use of Partial Fourier (PF) during image
acquisition. In order to do this, we selected an average non-weighted (b ¼
0) magnitude image and a phase image from one of the corresponding
DWIs (dataset 1). Both images were independently smoothed with Lap-
lacian regularization to eliminate most of the noise: in particular, the
magnitude image was highly over-smoothed and the phase image was
smoothed such that abrupt changes were still visible. With these two, we
created an artificial complex image characterized by the anatomical
resemblance of the non-weighted magnitude image and by a realistic
phase typical of a DWI. These are shown in the top left side of Fig. 9. This
ground truth image was corrupted with correlated and uncorrelated
spatially varying noise. In the first case, 33 of the 112 lines of the k-space
of the randomly generated noise were zero-filled to simulate PF � 0:7.
This produces a noise image with a noise variance reduced proportionally
to the PF factor when compared to the uncorrelated case. For this reason,
we generated two different versions of uncorrelated noise: the original
one, which has higher variance compared to the correlated noise
derived from it, and a scaled version having a sample variance that
matches exactly that of the correlated noise image. The figure
illustrates the mean absolute errors and the error standard deviation
over 30 repetitions with different noise realizations of the phase esti-
mation using different methods, where the noise variance was added
considering mean SNRs on the image of 2.5 and 5. We implemen-
ted two low-pass filters, a boxcar filter (B3) as used by Prah et al.
(2010) with kernel ½½1; 1; 1�,½1; 1;1�,½1;1;1��=9 and a Gaussian one
(G3F1) as described by Sprenger et al. (2016), with kernel
½½0:0625; 0:125;0:0625�,½0:125;0:25;0:125�,½0:0625;0:125; 0:0625��.
Inspired by the indications in the same reference, we tested a “hole



Fig. 7. Differences between magnitude and real-valued phase-corrected versions (stationary and APC) of a DWI (b ¼ 2725s=mm2). Below, the pair-wise differences.
Note the signal contrasts around in the encircled ventricular region. On the right, the histograms of the corresponding signal intensities computed within a ventricular
mask. Note the typical positive Rician-like distribution of the magnitude DWI (black). Compared to stationary (automatic) PC, the histogram obtained with APC
(spatially varying) is shifted towards the negative axis, indicating a stronger correction due to the higher noise variance in the center as compared to the sample
variance across the whole DWI. In the bottom, the histograms of the imaginary DWIs corrected with APC, each one accounting for the samples (within the ventricles)
of the DWIs belonging to the same b-value shell. In black, the corresponding histogram of the noise map computed using the same bins.
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mean” filter (HM) with kernel ½½0;0:25; 0�; ½0:25;0;0:25�; ½0;0:25;0�� and
our implementation of the decorrelated filters “G3F1H”, with kernel
½½0:0147;0:2353; 0:0147�,½0:2353;0; 0:2353�, ½0:0147; 0:2353; 0:0147��,
and “OPT3” with kernel ½½0:192;0:058; 0:192�, ½0:058; 0;0:058�, ½0:192;
0:058; 0:192��. We should note that the actual kernels and the corre-
sponding filter implementation may actually differ from the originally
proposed ones; moreover, the OPT3 filter was optimized for a a specific
acquisition pipeline thus it is not optimal for the experimental setup here
adopted. Nevertheless, these filters are designed bearing in mind that the
noise is spatially correlated (we note that other filter designs could be
implemented with this regard). Indeed, the term “decorrelated” suggests
that the filter attains a lower sensitivity with respect to the correlation
between the noise realizations affecting adjacent pixels. In principle, a
straightforward way of reducing such sensitivity consists in avoiding to
process together the intensities of pixels that are adjacent one another
along the direction where the correlation occurs (typically the
phase-encoding direction).

We applied the methods while considering correlated noise. As
reference results, we also evaluated the TV-based regularization in the
presence of uncorrelated noise without (Ref 1) and with scaling (Ref 2).
In the case of the proposed adaptive method (TV), at each repetition the
weighting function was estimated on a different noise realization
compared to that used to create the noisy image, thus simulating a real
case scenario. The results shown in Fig. 9 and summarized in Table 1
indicate that the TV-based adaptive method (APC) is the best among
those tested. TV seems to render lower errors, especially in the areas
corresponding to white matter, probably because of its edge-preserving
characteristics and minimal footprint size. The other filters reveal a
9

marked performance loss compared to the proposed method, with a
mean absolute error up to 11:66∘, at mean SNR¼ 2.5, as opposed to the
7:75∘ of the TV method. For these filters, the error does not seem to
decrease with the increasing SNR, around the ventricles for instance,
indicating the presence of a stronger bias in the presence of edges.
Moreover, the error standard deviation maps clearly depict the white
matter region, indicating a larger error variability in that area. Among
the linear filters, the best performing one seems to be that based on the
Gaussian kernel G3F1. It is possible that the level of correlation simulated
is not high enough to favor the tested decorrelated filters. Finally, the
performance of the proposed adaptive method in its TV formulation does
not seem to be substantially influenced by the presence of noise corre-
lation, as the results are both visually and quantitatively very similar to
the reference “Ref 1” and only slightly worse compared to “Ref 2”. The
experiments suggest that the TV formulation of eq. (10) provides a good
regularization for performing APC, and that the simulated amount of
noise correlation does not significantly affect the procedure.
5.5. Bias reduction characterization

Phase correction's main purpose is to make complex averaging
possible in order to boost the SNR of DWIs over repetitions, but also to
reduce the bias of estimated quantities, such as the diffusion indices. In
order to characterize the importance of unbiasing, we adopted a simu-
lation setup to quantify the statistical bias reduction obtained with APC
compared to whenmagnitude DWIs are used, as illustrated in Fig. 10. For
each voxel we have calculated the noisy magnitude diffusion signal along
different directions and for diffusion weightings, b 2



Fig. 8. Outliers detected with different regularization amounts (first two rows) and with APC (third). For a given slice, b-value, and gradient direction (the sixth is
shown) voxels containing outliers are those revealing a difference between their magnitude and real-valued phase-corrected intensities that exceeds a threshold equal
to twice the local noise standard deviation, thus characterizing an “anomaly”. The proximity of the two values of λ chosen after visual inspection demonstrates the
difficulty in manually tuning such parameter to render a low number of outliers. The colorbar indicates the “leftover” from the threshold 2bσðx; yÞ and is saturated at
three times the image's maximum noise standard deviation. For fairness of comparison, results only account for differences in λ as in all cases the regularization was

informed of the noise spatial variability. For APC, the estimated bλ is reported in every case. In the bottom, a view of the selected data (from slice 20 to 30) averaged

per-shell (left), and the mean and standard deviation of the estimated bλ calculated for such selected data for each shell.

M. Pizzolato et al. NeuroImage 206 (2020) 116274

10



Fig. 9. Mean absolute errors and error standard deviation maps (degrees) after 30 iterations of phase estimation with different noise realizations and for different
methods. At the top, the ground-truth magnitude and phase images and examples of correlated noise maps (PF � 0:7) and uncorrelated ones. The last two columns
report the “reference” errors obtained by estimating the phase as the angle of the result of the image regularization based on TV when considering the ground-truth
image affected by uncorrelated noise (Ref 1), eventually scaled (Ref 2). Please refer to section 5.4 for more details.

Table 1
Average values of the mean absolute error in degrees (m.a.e.) and of the error standard deviation (std) in the images accounting for 30 noise realizations. Values refer to
results in the presence of spatially correlated noise. “Ref 1” and “Ref 2” refer to the error values obtained when using the TV-based adaptive method in eq. (10) on
uncorrelated and on scaled uncorrelated noise respectively. Please refer to section 5.4 and Fig. 9 for more details.

HM G3F1H OPT3 G3F1 B3 TV Ref 1 Ref 2

mean SNR 2.5 m.a.e. 11.66 11.32 11.37 9.64 9.69 7.75 7.96 7.33
std 13.86 13.56 13.52 11.05 11.78 9.48 9.80 9.07

mean SNR 5.0 m.a.e. 7.71 7.62 8.48 6.35 7.04 5.51 5.79 5.24
std 11.28 11.25 12.00 8.65 10.28 6.28 6.76 5.98
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f1390;2002;2725;5562g s=mm2. We then calculated the corresponding
phase-corrected real intensities and the reference bias-free intensities
corrupted with additive Gaussian noise. For the magnitude, phase-
corrected, and Gaussian signals we have calculated the diffusion
indices based on DTI. The whole operation was repeated for 3000
different noise realizations thus obtaining, for each voxel, a histogram of
the desired quantities, i.e. signal, axial diffusivity (AD), and fractional
anisotropy (FA). In each voxel, and for each specific quantity such as AD,
it was then possible to compare the magnitude-derived histogram, and
11
the phase-corrected one, with that of the corresponding Gaussian refer-
ence. By calling Jm, JPC, and JG the voxel-specific magnitude, phase-
corrected, and Gaussian normalized histograms of a specific quantity,
we calculated the bias reduction as HðJm; JGÞ � HðJPC; JGÞ with H being
the distance defined as (Hellinger, 1909)

HðA;BÞ¼ 1ffiffiffi
2

p
��� ffiffiffi

A
p

�
ffiffiffi
B

p ���
2

(17)

where 0 � HðA;BÞ � 1 with 1 meaning maximum distance. In Fig. 10,



Fig. 10. The amount of bias removed with APC with respect to the case in which magnitude DWIs are considered. The reduction is reported in a scale between 0 and 1,
where 1 indicates the highest reduction (see section 5.5). The b-value, inverse SNR, and bias increase with the rows along the direction indicated by the arrow. The
first three columns report the bias reduction on the DWI signal intensities for three different gradient directions, where the RGB color code represents the underlying
tissue fiber orientation, obtained from the color FA map, and where the intensity is scaled from a minimum of 0 to a maximum of 1: note how the color intensity
increases with the b-values, indicating a higher bias reduction. Moreover, different gradient directions are associated with different main colors: red for the first, green
for the second, and blue for the third, since the bias is higher for voxels where the underlying tissue fibers are more aligned with the gradient direction itself. The last
two columns report the bias reduction for indices calculated with DTI, such as fractional anisotropy (FA) and axial diffusivity (AD).
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the brightness of the images indicates the amount of statistical bias
reduction – bounded between 0 and 1 – that one would obtain by per-
forming APC instead of using magnitude DWIs. The figure reports results
related to a different quantity for each column, where the contrast is
restricted within a white matter mask for the sake of clarity. The first
three columns from the left are related to signal intensities measured
along three distinct diffusion gradient directions, with color code based
on the colored FA map (Pajevic and Pierpaoli, 1999). In this way it is
possible to identify the directional nature of the bias reduced using APC,
which is highest in areas of the DWIs where the underlying fiber tracts
are in close alignment with the considered gradient direction. For
instance, in the first column the main selected color is red (see for
example b ¼ 2002 s=mm2), green in the second, and blue in the third. In
the last two columns of Fig. 10 we report the bias reduction for FA and
AD. These quantities are calculated using DWIs from the 7 different
12
directions, therefore they do not directly show directional dependencies.
However, in some regions we note values close to 1 occurring at already
relatively low b-values. For instance, AD is particularly affected already
at b ¼ 2002 s=mm2 that is about the typical diffusion weighting adopted
for HARDI tractography.
5.6. In vivo bias reduction on the diffusion signal and indices

We quantified the bias reduction obtained with phase correction on
the diffusion signal and on diffusion indices based on the acquired DWIs
of the two datasets. The phase-corrected, unbiased, real-valued image
intensities are expected to be lower than the magnitude ones. Moreover,
it is also expected that the amplitude of such difference increases with the
decreasing SNR, i.e. with increasing b-values. To assess the validity of
these considerations we calculated the difference between the phase-



Fig. 11. Differences between phase-corrected real-valued image intensities (obtained with APC and with G3F1) and the magnitude ones, averaged across the different
DWIs belonging to the same b-value shell, and normalized by the local standard deviation of the noise as estimated from the noise map. The third column reports the
difference between the maps of the second column, obtained with the Gaussian filter (G3F1), and those in the first column (APC). Note, for APC, how the amount of
signal reduction increases with the b-value, i.e. with decreasing SNR, as expected (being almost zero in the absence of diffusion weighting). On the contrary, when
G3F1 is used, there is no adaptivity. The comparison in the third column clearly indicates that APC performs a higher correction at high b-values (the dominance of the
blue color) whereas the Gaussian filter leads to increased correction at low b-values (red color) and in correspondence of regions with a high content of image details.
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corrected image intensities obtained with APC and the corresponding
magnitude ones. Fig. 11 illustrates such differences accounting for the
average of the DWIs across the different directions of each shell of dataset
1 (left column). In the figure, these have been scaled by the local noise
standard deviation as estimated from the noise map. The colorbar is
therefore limited between approximately �1 and 0, where �1 indicates
that the voxel-specific intensity of the phase-corrected real image is, in
13
average, one standard deviation lower than the corresponding magni-
tude. We can appreciate the adaptive amount of bias correction provided
by APC, where the correction is almost zero in the non-weighted image
and gradually increases with the b-value. These results are in line with

the trend of the estimated bλ illustrated at the bottom of Fig. 8. Similar
results are obtained also for dataset 2 (in the Supplementary Fig. 1). This
does not hold true for the phase-corrected real images obtained with the
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G3F1 low-pass filter, which was chosen as comparing method as it scored
the best results among the linear filters (Table 1). Indeed, such filter does
not have an adaptive behavior since the amount of filtering performed is
constant and does not depend on the underlying image. The difference in
the behavior of the two strategies, APC and low-pass filtering, is illus-
trated in the third column of Fig. 11, where a blue color depicts a stronger
signal reduction in favor of APC (as opposed to a red color) which be-
comes predominant at high b-values. Moreover, the use of the low-pass
filter leads to a strong signal reduction in the correspondence of the
boundaries between cortical and sub-cortical regions, and in regions that
are likely containing image details and edges. Note that in the non-
weighted image the SNR is much higher than that used for the experi-
ments in Fig. 9 (as illustrated in Fig. 1) which can explain the different
behavior of the low-pass filter in the white-matter region compared to the
synthetic results.

Following a similar criterion for comparison, in Fig. 12 we report the
differences between diffusion indices calculated on the phase-corrected
real-valued DWIs – based on APC and on the Gaussian low-pass filter –
and those computed on the magnitude DWIs. For fairness of comparison,
we considered the original magnitude for the non-weighted (b ¼ 0)
images. In general, we believe that this is good practice as there should
virtually be no bias in such images (provided that the SNR is sufficiently
high), and any additional processing (such as APC) might just introduce
unwanted artifacts. No further processing was applied to the DWIs such
that the differences in the results only account for the use of phase
correction while being affected by the same biases arising, for instance,
from subject motion. In the left frame, we see that the bias reduction on
axial diffusivity (AD) maps increases with the b-value: for the DTI fitting,
14
all the DWIs of dataset 1 with b-value lower or equal than that indicated
were considered. The bias reduction manifests itself with increased AD
values that are mainly located in the white matter region. The fact that
AD computed on magnitude DWIs is always underestimated as compared
to that computed after APC suggests that APC allows Rician noise floor
removal thus entailing a larger axial signal attenuation. In some cases,
changes after APC accounts for values above 5%. Although DTI becomes
more andmore invalid as the b-value increases beyond 2000s=mm2, these
relative differencemaps well characterize the expected consequences of a
reduced bias. The results for the Gaussian low-pass filtering method
reveal regions where AD is lower (red) compared to that calculated from
magnitude images. These regions are scattered but mainly located in the
correspondence of the boundaries at the interface between gray and
white matter, the interface with the ventricles, and in sub-cortical areas.
Moreover, a strong relative increment of AD is found inside the ventri-
cles, although this seems excessive since in that region the highest values
of diffusivity are typically found.

In a similar manner, we used dataset 2 to perform multi-shell
reconstruction to compute the mean kurtosis (MK) with DKI, and the
mean squared displacement (MSD) and return to origin probability
(RTOP) withMAP-MRI. The mean kurtosis gives an indication of the non-
Gaussianity of the diffusion process in a voxel, whereas MSD and RTOP
are q-space properties related, in first approximation, to the amount of
detected diffusion. For instance, the MSD (Cheng, 2012) is expected to be
high in the ventricles and the RTOP is expected to be low (€Ozarslan et al.,
2013; Fick et al., 2016). In the right frame of Fig. 12 we note that MK
values computed on APC data are lower than the corresponding
magnitude-based ones, suggesting that non-Gaussianity in magnitude
Fig. 12. Difference between phase-corrected
(with APC or low-pass Gaussian filter) and
magnitude quantities (relative to magnitude
values where the symbol “%” is indicated). In
the first column, the axial diffusivity has an
increased value after APC: this is more
evident as the maximum b-value considered
in the DTI fit increases (all the DWIs with b-
value lower or equal than that indicated are
considered). Mean kurtosis (MK) is generally
lower after APC, suggesting that part of the
kurtosis in the magnitude images might be
explained by the presence of the noise floor
(note that non-negativity constraints were
not enforced, refer to section 4). The mean
squared displacement (MSD) is higher after
APC, whereas the return to origin probability
(RTOP) is lower. These factors indicate the
detection of a more prominent diffusion
process compared to magnitude images.
Similar trends are globally obtained for the
indices based on the DWIs filtered with the
low-pass Gaussian kernel G3F1, however
there are regions where the global trend is
locally inverted, which is more evident in the
AD maps and in the MSD and RTOP ones.
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images is detected, at least in part, because of the presence of the noise
floor. Differences are mainly localized at the interface between white
and gray matter, and in regions containing cerebrospinal fluid such as
the ventricles. After APC, the MSD has increased while the RTOP has
decreased, which is particularly evident in the ventricular region. This
indicates the detection of a more prominent diffusion process after
APC. These results suggest that APC has an impact on multi-shell
modeling and on the estimation of non-Gaussianity of the diffusion
decay at high diffusion weighting regimes. In this case, the differences
with the results obtained using the Gaussian low-pass filter are less
evident. However, MK values are less reduced in the ventricular region
compared to APC, whereas scattered regions of inverted trend are found
for both MSD and RTOP maps. We note that, unlike the comparison in
Fig. 11, the results of Fig. 12 likely include influences from the various
models/representations and from the behaviors of the corresponding
optimization methods, therefore care must be taken when drawing
conclusions.

6. Discussion

The results suggest that adaptive phase correction (APC) reduces the
bias on signal and diffusion indices, as illustrated in Figs. 4, 7 and 10 to
12. As expected, the bias reduction increases with the diffusionweighting
since the SNR decreases. However, some brain regions are affected
already at relatively low b-values such as 1390 s=mm2. In addition, some
indices are more affected than others. For instance, Fig. 10 reveals that
AD is more biased than FA, which is likely related to the fact that the
calculation of FA involves using the diffusivities along directions that are
orthogonal to that along which AD is measured, i.e. the direction along
which the signal displays the highest attenuation and consequently the
largest Rician bias. The reduction of the noise floor achieved by APC
could also help the mitigation of other known artifacts in the calculation
of the diffusion tensor, such as the shifting of the eigenvectors and the
overestimation/misordering of the eigenvalues (Laun et al., 2009). Re-
sults in Fig. 12 show that the effect of APC is relevant also for multi-shell
signal representations such as DKI and MAP-MRI. Similar results are
expected for other signal representations tailored for high diffusion
weighting regimes, such as Diffusion Spectrum Imaging (Wedeen et al.,
2005). Moreover, the differences between magnitude-based and
phase-corrected local indices, especially considering the orientational
nature of the bias illustrated in Fig. 10, suggest that streamline propa-
gation in tractography would also benefit from APC. This would likely
have an impact on the calculation of the structural connectivity, as the
effect of tractography propagates on a global scale (Jeurissen et al.,
2017). With regard to signal unbiasing, we mention that there exist also
methods, alternative to phase correction, that only use the information of
the Rician magnitude and of the noise variance (Koay et al., 2009a;
Kaden et al., 2016). However, these require in-voxel approx-
imation/interpolation of the diffusion magnitude signal implying choices
like the number of basis functions and the amount of regularization. If
approximation/interpolation is not used, then the unbiased signal can
present statistical suboptimalities. A phase correction approach, on the
other hand, can be applied to any kind of data, for instance to
multi-dimensional sequences (Westin et al., 2016), without the need of
resorting to representations or modeling of the diffusion signal.

The results discussed in sections 5.1 and 5.2, and illustrated in
Figs. 4–7, show the importance of adopting a noise-driven approach for
phase correction and bias reduction. Indeed, we showed that when the
phase is over-regularized – low λ – important image contrast is left on the
imaginary component of the corrected DWIs (Figs. 4 and 5). This contrast
would be lost when working with the real-valued DWI as result of the
phase correction procedure, which would lead to outliers that identify
“anomalies”. Sprenger et al. (2016) proposed the outliers detection/re-
placement method to counteract the effects of erroneous correction.
However, results in section 5.3 show that APC leads to a low number of
outliers (Fig. 8), while still performing an adequate correction (Fig. 7).
15
These results are indicative of the fact that APC is suitable also for
enabling complex averaging when the phase of the image changes across
repeated acquisitions.

In this work, particularly, we propose the use of a global regularizer
that operates locally via a weighting function calculated from the local
noise variance. This is achieved by calculating an initial amount of reg-
ularization with the discrepancy criterion that is then refined by using a
spatially varying Monte Carlo SURE method. The latter was validated for
complex images in Fig. 3 for very low SNRs, demonstrating that APC is
suitable for high b-value and high spatial resolution diffusion-weighted
images. This setup allows obtaining an adaptive amount of correction,
as illustrated in Fig. 11, where the signal correction gradually increases
with the decreasing SNR (increasing b-value). On the contrary, a standard
low-pass filtering approach does not enable such a desired behavior. On
the other hand, APC comes at the expense of the computational cost. In
our implementation, it took 98min to process the multi-shell dataset 2,
composed of 4860 images, using 12 threads on an Intel® Xeon(R) CPU
E5-1650v4 at 3.60 GHz (0.1% precision on λ and stop tolerance of 10�6).
The computational time largely depends on the desired precision and
tolerance values, and is inherently connected to the Monte Carlo calcu-
lation of SURE that constitutes a computational bottleneck. Because of
this, the present implementation of APC can only be used as an offline
processing. However, some strategies could be explored in the future.
One possibility consists on running APC on a subset of the data to extract
the values of λ to be used for correcting the rest of it. However, this option
needs a thorough feasibility assessment and is left to future work.

Although many methods could potentially be used to characterize the
properties of the noise (Koay et al., 2009b; Pieciak et al., 2017; St-Jean
et al., 2018), we proposed to acquire an MRI noise map, as described in
section 4.2, since it offers the advantage of a straightforward estimation
of the local variance. Moreover, the acquisition time of the noise map is
equivalent to that necessary for the acquisition of an additional gradient
direction, thus entailing a minimal time penalty of a few seconds. We
note that noise statistics could be obtained by knowing some parameters
of the image reconstruction (Liu et al., 2008) or through the use of the
generalized pseudo-replica method (Wiens et al., 2011), however we find
that the use of a noise map is more convenient for practical purposes
while it allows accounting for the most relevant component for noise
modeling after reconstruction. We should note, however, that the use of a
single noise map leads to approximation. In our results, we estimated the
local variance with a filter that accounts for a spherical neighborhood of
4 voxels radius over the complex-valued noise map. However, similarly
to other local methods, the choice of a radius implements a trade-off
between fidelity to the variance’ spatial variability and smoothness of
the estimated variance map, which constitutes a limitation. This problem
could potentially be solved by representing the spatial variability with a
parametric surface such as that used in our synthetic results and shown in
Fig. 1. Alternatively, the radius could be reduced by acquiring more than
one noise map.

The proposed APC is designed to be used on a image-by-image basis in
order to be applicable to different MRI modalities for phase correction/
estimation purposes. This choice forced us to adopt an image operator
approach which can suffer from the intrinsic limitations of the chosen
regularization method and whose effects can propagate to the phase-
corrected real-valued DWIs. Indeed, Fig. 9 shows that the TV regulari-
zation, although performing better than the other tested methods, is not
free from errors in the phase estimation. Nevertheless, the proposed
Oriented Laplacian formulation allows for quite some flexibility: an
optimal regularization method could be chosen based on additional
synthetic experiments, by visual inspection, or following an outliers
minimization criterion for the specific dataset. Indeed, although results
were presented for TV regularization, the proposed methodology can be
generalized to other operators. We note that another possible way of
improving the phase estimation consists in including information about
the correlation of the phase over consecutively acquired images. We also
note that although the method seems to be only marginally affected by
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the spatial correlation of the noise – arising, for instance, from the use of
Partial Fourier – the development of decorrelation strategies and/or
adaptations of eq. (10) is desirable.

Although APC improves over more conventional methods, care must
be taken when processing the phase-corrected real-valued images, and
visual inspection is recommended especially when dealing with
clinically-relevant data. In fact, the computed maps of diffusion indices
after phase-correction may contain “impurities” that may have not been
present in the corresponding maps derived from the magnitude DWIs,
thus the calculation of differential maps could help their identification.
Perhaps, the adoption of an outliers replacementmethod along the line of
the work by Sprenger et al. (2016) should still be employed and could be
extended to the calculated diffusion indices in order to check for extreme
differences and/or structural changes. Finally, as a general rule, because
of the negative signal intensities that are present in the phase-corrected
real-valued images, the compatibility with subsequent image and
signal processing should also be verified from case to case.

7. Conclusion

In this article we proposed adaptive phase correction, a noise-driven
methodology for phase correction/estimation and a method based on
criteria to automatically set the amount of regularization required to
estimate the phase, thus overcoming the issues related to low or excessive
regularization. The local variance estimated from an MRI noise map, or
potentially with other methods, is integrated within a spatially varying
operator based on an Oriented Laplacian regularization in the complex
domain. This is used to regularize the DWIs in order to estimate their
phase, in combination with the discrepancy criterion and a spatially
varying version of Monte Carlo SURE. Adaptive phase correction renders
a bias reduction of the diffusion signal that fulfills the expected behavior
as function of the SNR, allowing for a progressively stronger correction as
the b-value increases. This in turn allows unbiasing the diffusion indices
calculated from the phase-corrected real-valued DWIs, although visual
inspection should always be performed to validate the results. We finally
note that the proposed method is a suitable preprocessing to perform
complex averaging, and that some aspects of what presented could be
adopted for the processing of images acquired with other MRI modalities
where there is a need for phase estimation.

Ethics statement

Data was acquired on healthy volunteers based on a protocol
approved by the Centre de Recherche CHUS, Sherbrooke, Qu�ebec,
Canada.

Acknowledgments

We thank Tom Dela Haije, Alexis Reymbaut, Michael Paquette,
Samuel St-Jean, and Timoth�e Boutelier for the constructive discussions.
Marco Pizzolato is supported by the Swiss National Science Foundation
under Sinergia grant number CRSII5 170873. Guillaume Gilbert is an
employee of Philips Healthcare. Thanks to the Pr Descoteaux Institu-
tional Research Chair in NeuroInformatics. Rachid Deriche is supported
by the ERC Advanced Grant agreement No 694665:CoBCoM under the
European Union's Horizon 2020 research and innovation program.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.116274.

References

Aja-Fern�andez, S., Vegas-S�anchez-Ferrero, G., 2016. Statistical Analysis of Noise in MRI.
Springer.
16
Alvarez, L., Lions, P.L., Morel, J.M., 1992. Image selective smoothing and edge detection
by nonlinear diffusion. ii. SIAM J. Numer. Anal. 29, 845–866.

Bammer, R., Holdsworth, S.J., Aksoy, M., Skare, S., 2010. Phase errors in diffusion
weighted imaging. Diffusion MRI: Theor. Methods Appl. 218–249.

Basser, P.J., Mattiello, J., LeBihan, D., 1994a. Estimation of the effective self-diffusion
tensor from the NMR spin echo. J. Magn. Reson., Ser. B 103, 247–254.

Basser, P.J., Mattiello, J., LeBihan, D., 1994b. MR diffusion tensor spectroscopy and
imaging. Biophys. J. 66, 259.

Bernstein, M.A., Thomasson, D.M., Perman, W.H., 1989. Improved detectability in low
signal-to-noise ratio magnetic resonance images by means of a phase-corrected real
reconstruction. Med. Phys. 16, 813–817.

Braun, W.J., Murdoch, D.J., 2007. A First Course in Statistical Programming with R.
Cambridge University Press.

Bretthorst, G.L., 2008a. Automatic phasing of MR images. part i: linearly varying phase.
J. Magn. Reson. 191, 184–192.

Bretthorst, G.L., 2008b. Automatic phasing of MR images. part ii: voxel-wise phase
estimation. J. Magn. Reson. 191, 193–201.

Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R., 2013. Design of multishell sampling
schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69, 1534–1540.

Chambolle, A., 2004. An algorithm for total variation minimization and applications.
J. Math. Imaging Vis. 20, 89–97.

Chang, Z., Xiang, Q.S., 2005. Nonlinear phase correction with an extended statistical
algorithm. IEEE Trans. Med. Imaging 24, 791–798.

Chen, N.k., Guidon, A., Chang, H.C., Song, A.W., 2013. A robust multi-shot scan strategy
for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-
encoding (MUSE). Neuroimage 72, 41–47.

Cheng, J., 2012. Estimation and Processing of Ensemble Average Propagator and its
Features in Diffusion MRI. Ph.D. thesis. Universit�e Nice Sophia Antipolis.

Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A.N., Hajnal, J.V., 2019. Complex
diffusion-weighted image estimation via matrix recovery under general noise models.
Neuroimage 200, 391–404.

Duran, J., Coll, B., Sbert, C., 2013. Chambolle's projection algorithm for total variation
denoising. Image Process. Line 2013, 311–331.

Eichner, C., Cauley, S.F., Cohen-Adad, J., M€oller, H.E., Turner, R., Setsompop, K.,
Wald, L.L., 2015. Real diffusion-weighted MRI enabling true signal averaging and
increased diffusion contrast. Neuroimage 122, 373–384.

Ertürk, M.A., Bottomley, P.A., El-Sharkawy, A.M.M., 2013. Denoising MRI using spectral
subtraction. IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. 60, 1556–1562.

Fick, R.H., Wassermann, D., Caruyer, E., Deriche, R., 2016. MAPL: tissue microstructure
estimation using laplacian-regularized MAP-MRI and its application to HCP data.
Neuroimage 134, 365–385.

Galatsanos, N.P., Katsaggelos, A.K., 1992. Methods for choosing the regularization
parameter and estimating the noise variance in image restoration and their relation.
IEEE Trans. Image Process. 1, 322–336.

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M.,
Nimmo-Smith, I., 2014. Dipy, a library for the analysis of diffusion MRI data. Front.
Neuroinf. 8, 8.

Getreuer, P., 2012. Rudin-osher-fatemi total variation denoising using split bregman.
Image Process. Line 2, 74–95.

Gilbert, G., Simard, D., Beaudoin, G., 2007. Impact of an improved combination of signals
from array coils in diffusion tensor imaging. IEEE Trans. Med. Imaging 26,
1428–1436.

Gilboa, G., Sochen, N., Zeevi, Y.Y., 2006. Variational denoising of partly textured images
by spatially varying constraints. IEEE Trans. Image Process. 15, 2281–2289.

Hellinger, E., 1909. Neue begründung der theorie quadratischer formen von
unendlichvielen ver€anderlichen. J. für die Reine Angewandte Math. (Crelle's J.) 136,
210–271.

Henkelman, R.M., 1985. Measurement of signal intensities in the presence of noise in MR
images. Med. Phys. 12, 232–233.

Hu, K., Cheng, Q., Gao, X., 2016. Wavelet-domain TI Wiener-like filtering for complex MR
data denoising. Magn. Reson. Imag. 34, 1128–1140.

Hu, K., Cheng, Q., Li, B., Gao, X., 2018. The complex data denoising in MR images based
on the directional extension for the undecimated wavelet transform. Biomed. Signal
Process. Control 39, 336–350.

Hua, J., Hurst, G.C., 1992. Noise and artifact comparison for Fourier and polynomial
phase correction used with Fourier reconstruction of asymmetric data sets. J. Magn.
Reson. Imaging 2, 347–353.

Jensen, J.H., Helpern, J.A., 2010. MRI quantification of non-Gaussian water diffusion by
kurtosis analysis. NMR Biomed. 23, 698–710.

Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K., 2005. Diffusional kurtosis
imaging: the quantification of non-Gaussian water diffusion by means of magnetic
resonance imaging. Magn. Reson. Med. 53, 1432–1440.

Jeurissen, B., Descoteaux, M., Mori, S., Leemans, A., 2017. Diffusion MRI fiber
tractography of the brain. NMR Biomed.

Jones, D.K., Basser, P.J., 2004. “Squashing peanuts and smashing pumpkins”: how noise
distorts diffusion-weighted MR data. Magn. Reson. Med. 52, 979–993.

Kaden, E., Kruggel, F., Alexander, D.C., 2016. Quantitative mapping of the per-axon
diffusion coefficients in brain white matter. Magn. Reson. Med. 75, 1752–1763.

Koay, C.G., Chang, L.C., Carew, J.D., Pierpaoli, C., Basser, P.J., 2006. A unifying
theoretical and algorithmic framework for least squares methods of estimation in
diffusion tensor imaging. J. Magn. Reson. 182, 115–125.

Koay, C.G., €Ozarslan, E., Basser, P.J., 2009a. A signal transformational framework for
breaking the noise floor and its applications in MRI. J. Magn. Reson. 197, 108–119.

Koay, C.G., €Ozarslan, E., Pierpaoli, C., 2009b. Probabilistic identification and estimation
of noise (PIESNO): a self-consistent approach and its applications in MRI. J. Magn.
Reson. 199, 94–103.

https://doi.org/10.1016/j.neuroimage.2019.116274
https://doi.org/10.1016/j.neuroimage.2019.116274
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref3
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref3
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref3
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref5
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref5
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref7
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref7
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref12
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref12
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref12
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref13
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref13
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref13
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref13
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref16
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref16
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref16
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref19
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref20
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref20
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref20
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref20
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref23
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref23
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref23
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref23
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref25
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref28
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref28
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref28
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref28
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref32
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref32
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref35
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref35
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref35
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref35
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref37


M. Pizzolato et al. NeuroImage 206 (2020) 116274
Kornprobst, P., Deriche, R., Aubert, G., 1997. Non-linear operators in image restoration.
In: CVPR. IEEE, p. 325.

Laun, F.B., Schad, L.R., Klein, J., Stieltjes, B., 2009. How background noise shifts
eigenvectors and increases eigenvalues in DTI. Magn. Reson. Mater. Phys. Biol. Med.
22, 151–158.

Liu, B., Abdelsalam, E., Sheng, J., Ying, L., 2008. G-factor maps of conjugate gradient
SENSE reconstruction. In: Proceedings of ISMRM 16th Annual Meeting, p. 16.

Liu, J., Koenig, J.L., 1990. An automatic phase correction method in nuclear magnetic
resonance imaging. J. Magn. Reson. 86, 593–604.

Maier-Hein, K.H., Neher, P.F., Houde, J.C., Caruyer, E., Daducci, A., Dyrby, T.,
Stieltjes, B., Descoteaux, M., 2015. http://doi.org/10.5281/zenodo.572345.

Maier-Hein, K.H., Neher, P.F., Houde, J.C., Côt�e, M.A., Garyfallidis, E., Zhong, J.,
Chamberland, M., Yeh, F.C., Lin, Y.C., Ji, Q., et al., 2017. The challenge of mapping
the human connectome based on diffusion tractography. Nat. Commun. 8, 1349.

Manj�on, J.V., Coup�e, P., Concha, L., Buades, A., Collins, D.L., Robles, M., 2013. Diffusion
weighted image denoising using overcomplete local PCA. PLoS One 8, e73021.

McGibney, G., Smith, M., Nichols, S., Crawley, A., 1993. Quantitative evaluation of
several partial Fourier reconstruction algorithms used in MRI. Magn. Reson. Med. 30,
51–59.

Morozov, V.A., 1968. The error principle in the solution of operational equations by the
regularization method. USSR Comput. Math. Math. Phys. 8, 63–87.

Neher, P.F., Laun, F.B., Stieltjes, B., Maier-Hein, K.H., 2014. Fiberfox: facilitating the
creation of realistic white matter software phantoms. Magn. Reson. Med. 72,
1460–1470.

Noll, D.C., Nishimura, D.G., Macovski, A., 1991. Homodyne detection in magnetic
resonance imaging. IEEE Trans. Med. Imaging 10, 154–163.

€Ozarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., _Irfano�glu, M.O., Pierpaoli, C.,
Basser, P.J., 2013. Mean apparent propagator (MAP) MRI: a novel diffusion imaging
method for mapping tissue microstructure. Neuroimage 78, 16–32.

Pajevic, S., Pierpaoli, C., 1999. Color schemes to represent the orientation of anisotropic
tissues from diffusion tensor data: application to white matter fiber tract mapping in
the human brain. Magn. Reson. Med. 42, 526–540.

Pieciak, T., Aja-Fernandez, S., Vegas-S�anchez-Ferrero, G., 2017. Non-stationary rician
noise estimation in parallel MRI using a single image: a variance-stabilizing
approach. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2015–2029.

Pizzolato, M., Deriche, R., Canales-Rodríguez, E.J., Thiran, J.P., 2019. Spatially varying
Monte Carlo SURE for the regularization of biomedical images. In: 2019 IEEE 16th
International Symposium on Biomedical Imaging (ISBI 2019). IEEE, pp. 1639–1642.
https://infoscience.epfl.ch/record/265384.

Pizzolato, M., Fick, R., Boutelier, T., Deriche, R., 2016. Noise floor removal via phase
correction of complex diffusion-weighted images: influence on DTI and q-space
metrics. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (Eds.),
Computational DIffusion MRI. MICCAI 2016. Mathematics and Visualization.
Springer, Cham, pp. 21–34.

Prah, D.E., Paulson, E.S., Nencka, A.S., Schmainda, K.M., 2010. A simple method for
rectified noise floor suppression: phase-corrected real data reconstruction with
application to diffusion-weighted imaging. Magn. Reson. Med. 64, 418–429.

Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., et al., 1999. SENSE:
sensitivity encoding for fast MRI. Magn. Reson. Med. 42, 952–962.
17
Ramani, S., Blu, T., Unser, M., 2008. Monte-carlo sure: a black-box optimization of
regularization parameters for general denoising algorithms. IEEE Trans. Image
Process. 17, 1540–1554.

Rudin, L.I., Osher, S., Fatemi, E., 1992. Nonlinear total variation based noise removal
algorithms. Phys. D Nonlinear Phenom. 60, 259–268.

Sapiro, G., Ringach, D.L., 1996. Anisotropic diffusion of multivalued images with
applications to color filtering. IEEE Trans. Image Process. 5, 1582–1586.

Schilling, K.G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y., Neher, P.,
Aydogan, D.B., Shi, Y., Ocampo-Pineda, M., et al., 2019. Limits to anatomical
accuracy of diffusion tractography using modern approaches. Neuroimage 185, 1–11.

Sotiropoulos, S., Moeller, S., Jbabdi, S., Xu, J., Andersson, J., Auerbach, E., Yacoub, E.,
Feinberg, D., Setsompop, K., Wald, L., et al., 2013. Effects of image reconstruction on
fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor
using SENSE. Magn. Reson. Med. 70, 1682–1689.

Sprenger, T., Sperl, J.I., Fernandez, B., Haase, A., Menzel, M.I., 2016. Real valued
diffusion-weighted imaging using decorrelated phase filtering. Magn. Reson. Med.

St-Jean, S., De Luca, A., Viergever, M.A., Leemans, A., 2018. Automatic, fast and robust
characterization of noise distributions for diffusion MRI. In: Frangi, A.F.,
Schnabel, J.A., Davatzikos, C., Alberola-L�opez, C., Fichtinger, G. (Eds.), Medical
Image Computing and Computer Assisted Intervention – MICCAI 2018. Springer
International Publishing, pp. 304–312.

Stein, C.M., 1981. Estimation of the mean of a multivariate normal distribution. Ann. Stat.
1135–1151.

Stejskal, E.O., Tanner, J.E., 1965. Spin diffusion measurements: spin echoes in the
presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292.

Tschumperl�e, D., Deriche, R., 2007. Anisotropic diffusion partial differential equations for
multichannel image regularization: framework and applications. Adv. Imag. Electron.
Phys. 145, 149–209.

Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., Fieremans, E., 2016.
Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406.

Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M., 2005. Mapping
complex tissue architecture with diffusion spectrum magnetic resonance imaging.
Magn. Reson. Med. 54, 1377–1386.

Westin, C.F., Knutsson, H., Pasternak, O., Szczepankiewicz, F., €Ozarslan, E., van
Westen, D., Mattisson, C., Bogren, M., O’donnell, L.J., Kubicki, M., Topgaard, D.,
Nilsson, M., 2016. Q-space trajectory imaging for multidimensional diffusion MRI of
the human brain. Neuroimage 135, 345–362.

Wiens, C.N., Kisch, S.J., Willig-Onwuachi, J.D., McKenzie, C.A., 2011. Computationally
rapid method of estimating signal-to-noise ratio for phased array image
reconstructions. Magn. Reson. Med. 66, 1192–1197.

Wirestam, R., Bibic, A., L€att, J., Brockstedt, S., Ståhlberg, F., 2006. Denoising of complex
MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted
imaging. Magn. Reson. Med. 56, 1114–1120.

Wood, J.C., Johnson, K.M., 1999. Wavelet packet denoising of magnetic resonance
images: importance of Rician noise at low SNR. Magn. Reson. Med. 41, 631–635.

Zhao, F., Noll, D.C., Nielsen, J.F., Fessler, J.A., 2012. Separate magnitude and phase
regularization via compressed sensing. IEEE Trans. Med. Imaging 31, 1713–1723.

http://refhub.elsevier.com/S1053-8119(19)30865-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref40
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref40
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref41
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref41
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref41
http://doi.org/10.5281/zenodo.572345
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref45
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref45
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref45
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref45
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref48
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref48
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref48
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref51
https://infoscience.epfl.ch/record/265384
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref57
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref57
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref57
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref66
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref66
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref66
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref68
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref69
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref69
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref69
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref69
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30865-1/sref72

	Adaptive phase correction of diffusion-weighted images
	1. Introduction
	2. Phase correction
	3. Adaptive phase correction
	3.1. Automatic regularization
	3.2. Spatially varying regularization

	4. Methods
	4.1. Diffusion-weighted images
	4.2. Noise map
	4.3. Synthetic data

	5. Results
	5.1. Importance of automatic phase correction
	5.2. Importance of spatially varying phase correction
	5.3. Outliers detection
	5.4. Phase estimation and noise correlation
	5.5. Bias reduction characterization
	5.6. In vivo bias reduction on the diffusion signal and indices

	6. Discussion
	7. Conclusion
	Ethics statement
	Acknowledgments
	Appendix A. Supplementary data
	References


