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Abstract

Wearable devices, such as wearable activity trackers (WATSs), are increasing
in popularity. Although they can help improve a person’s quality of life, they
also raise serious privacy issues. Although security aspects of WATSs have been
widely studied (e.g., Bluetooth security, inference of password or biometrics),
as well as privacy-related aspects such as users’ attitudes and concerns, we lack
knowledge about the privacy of WAT users. Indeed, the security aspects that
were studied in prior work are not enough to build a realistic adversary model,
as these studies focus mostly on communication protocols and not on large-
scale data collection. Furthermore, previous work related to data inference
by using WATSs focuses on only functionalities rather than on privacy (e.g.,
better monitoring of activity or health to improve user experience). Moreover,
these studies focus only on the inference of behavioral patterns (e.g., activi-
ties, consumption) or conditions (e.g., diseases), but none of them investigate
the inference of users’ personal attributes (e.g., personality, religion, political
views).

In this thesis, composed of three research papers and a literature review,
we contribute to the WAT security & privacy research field by analyzing how
the data of WAT users can be accessed at a large scale by many potential
adversaries, by evaluating how such data can be used to infer users’ personal
attributes and, finally, by proposing privacy enhancing technologies (PETS) to
protect their privacy. Concretely, after analyzing the current literature about
WAT security & privacy, we conduct a user-survey study to better under-
stand the WAT user’s behaviors towards data sharing, especially with respect
to third-party applications (TPAs) that can easily be used by adversaries to
collect data. We then use a rigorous machine-learning approach to evaluate
to what extent users’ psychological profiles (Big 5) can be inferred from WAT
data, and we discuss the related consequences on the users’ privacy and society
as a whole. Finally, to propose effective and likely-to-be-adopted protection
mechanisms, we conduct a user-centered design study by using a participatory
design methodology before analyzing and evaluating the proposed designs in
order.
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Chapter 1

Introduction

The number of users of wearable devices and, in particular, (wrist-worn) wear-
able activity trackers (WATS) increases daily. It reached 218 million in 2022
and is projected to reach over 320 million in the next five years [1], and there
are more than one billion wearable devices worldwide [2]. These devices col-
lect large amounts of physiological and contextual data, such as step counts,
heart rate (for those equipped with the appropriate sensors), activities, and
sleep. Such data can help WAT users better monitor their physical activi-
ties and health, following a quantified-self [3] approach. However, wearable
devices raise new privacy and security issues. For instance, Eberz et al. [4]
show that data collected from wearable devices can be used to bypass biomet-
ric authentication systems by using accelerometer data to impersonate users.
Furthermore, accelerometer data can be used to infer keystrokes (e.g., on pin-
pads) [, 6, 7]. Moreover, WAT data can be used to infer daily activities and
habits [8, 9, 10, 11] (e.g., eating) and drug usage [12] (e.g., cocaine), and even
to identify SARS-CoV-2 infections [13]; such inferences are highly sensitive
from a privacy perspective. Finally, WAT data, such as running routes, can
be used to infer sensitive locations (e.g., user’s home), even when they use pro-
tection mechanisms [14, 15, 16]. Aggregated location data have even been used
to locate military bases and to infer their internal structures [17], specifically
in remote areas where unusual activity patterns were observed.

In the context of the quantified-self, questioning the effect of such data col-
lection (and sharing) on people’s privacy is becoming increasingly relevant, es-
pecially as many users express concerns about the misuse of their data [18, 19].
Personal information, such as personality, socioeconomic status, sexual orien-
tation, and religion can probably be inferred from data collected by wearable
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devices, similarly to the possibilities to do the same with location and social
network data (e.g., [20, 21, 22]). Moreover, third-party entities such as adver-
tisers, marketers, health insurers, employers, and governments might have an
interest in learning sensitive information derived from the data collected by
WATsS [23]. For example, an employer could offer free WATS to their employ-
ees if they agree to share the collected data with their employer, hence the
employer could monitor their employee’s health (in US, individuals’ insurance
health plans are generally covered by their employer) and activities. Indeed,
some organizations, encouraged in particular by Fitbit (one of the market
leaders for WATSs [24, 25]), now offer their employees tracking devices through
health programs [26]. An insurance company (e.g., health insurance ) could
also directly provide tracking devices to their policyholders to better analyze
risks. For instance, Google acquired Fitbit [27] and Alphabet, Google’s par-
ent company, and their influence is growing rapidly in the health insurance
market [28]. Furthermore, they plan to force Fitbit users to migrate to their
Google accounts [29]. A government, for national security reasons, could also
gain access to the data of a WAT service provider. For example, in 2019, former
US President Trump suggested using data from wearable devices for national
security purposes, essentially to preemptively detect mass shooters [30].

1.1 Information Security & Privacy

There are multiple different concepts using the notion of privacy. The Office
of the United Nations High Commissioner for Human Rights (OHCHR) de-
fines privacy as “the ability of an individual or group to seclude themselves or
information about themselves, and thereby express themselves selectively” [31].
Whereas, Westin defines in 1967 privacy as “the claim of individuals, groups,
or institutions to determine for themselves when, how, and to what extent
information about them is communicated to others”. Such definitions corre-
spond to a privacy by control approach, hence we can claim that an entity’s
privacy is about who is authorized, by this entity, to access which personal
data. In addition to this usual approach, in this work, we invoke multiple, not
exclusive, concepts or methods related to privacy. Privacy by design is about
taking users’ privacy into consideration upstream, during the development of
an information and communications technology (ICT), by taking into account
the current state of the art and principles of data-protection [33]. Privacy by
default is about setting all the parameters of an ICT so that they guarantee by
default the maximum possible level of privacy for the users [33]. Finally, the



Chapter 1. Introduction 3

concept of privacy impact assessment (PIA) was introduced in the European
General Data Protection Regulation (GDPR) and refers to “the obligation of
the controller to conduct an impact assessment and to document it before start-
ing the intended data processing” [34]. Basically, it consists of a concept stating
that any entity that has access to personal data and intends to process this
data should evaluate how their processes can affect the privacy of the involved
individuals and use the appropriate mitigation techniques accordingly.

As for security, and in particular information security, the US National
Institute of Standards and Technology (NIST), as well as the European Union
Agency for Cybersecurity (ENISA), defines it as “the protection of information
and information systems from unauthorized access, use, disclosure, disruption,
modification, or destruction in order to provide confidentiality, integrity, and
availability”. This concept is therefore highly related to privacy, and we will
often refer to both by the expression (information) security & privacy.

1.2 Research Ethics

A large part of the research in security and privacy-related topics consists of
embodying a given adversary and conducting specific attacks in order to un-
cover vulnerabilities. Typically, in this specific thesis, we use an inferential
privacy methodology to show that WAT data can be used to infer — with some
accuracy — the personality traits of WAT users, potentially without them being
aware of it and/or against their consent. The question then becomes: What
are the ethical consequences of such an approach, particularly as discovering
and disclosing such vulnerabilities could help adversaries to conduct related
types of attacks? To address this question, experts in computer security have
developed the concept of coordinated vulnerability disclosure (or responsible
disclosure) model [35], which consists of the uncovered vulnerability being pub-
licly disclosed only when the parties involved have had enough time to proceed
to a remediation [36]. However, in a more privacy-oriented research field, we
adopt a full-disclosure model consisting of publicly disclosing an uncovered
vulnerability as early as possible. In such a way, we ensure that the knowledge
of this vulnerability is rapidly disseminated, so that as many potential targets
as possible are aware of the risks. This model has multiple advantages as, for
example, it can provide users with leverage to demand that the vulnerability
is patched when the parties involved (e.g., the service provider) have no other
incentive to do so (privacy issues are indeed often only harmful to the users).
Furthermore, vulnerabilities are often not only known by the parties who un-
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covered them and plan to disclose them, they may have been uncovered and
exploited for years by third parties who never intended to disclose them, either
publicly or to the service provider. Furthermore, many privacy risks are not
necessarily direct vulnerabilities but are just the consequences of using a given
service. Taking into consideration the concept of privacy calculus and the fact
that individuals consider the trade-off between privacy risks and receiving rel-
evant services [37], it is important that they are fully aware of the risks before
adopting a given technology.

1.3 Wearable Activity Trackers (WATS)

In the current literature, there is no consistent definition of a wearable activity
tracker (WAT). Furthermore, as there are multiple types of devices that could
be considered a WAT, we first need to define precisely the type of devices
studied in this work. Despite the multiple definitions existing in the literature,
there are many commonalities between them. Therefore, in order to create
a standardized definition, we identified the essential and optional properties
of WATS, as described in the literature. To be considered a WAT, a given
device must have all of the essential properties and can also have the optional
ones [38]. We identified essential and accidental properties of WATSs, based on
the studies of Becker et al. [39], Hoy [40], and Pingo and Narayan [41]. These
properties were initially optional in the context of a survey on WAT utility,
privacy, and security [42]. The essential properties are as follows:

be worn on the body

has sensors that record physiological /environmental data

be an electronic/digital device

provides data analysis that is available to users, without the need for a
health professional

For example, a smartphone, although corresponding to most of these criteria,
is not considered as a WAT as it is not designed to be worn on the body. The
optional properties are as follows:

e uploads data to a server or connected device (e.g., using Bluetooth)

e uses a docking station to sync with a PC, or WiFi to upload directly

e cnables users to visualize data in graphical format on a companion app
or website

e enables users to visualize some of the data on the WAT itself

e provides immediate feedback, and
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e provides general /numerical feedback (after an activity).

The most common sensors used in WAT's are accelerometers, gyroscopes,
photoplethysmograms (used for measuring heart rate and respiration), pulse
oximeters (blood oxygenation), altimeters, and GPSs. More advanced and
recent models tend to include a compass, a thermometer, a microphone, a
magnetometer, an ambient light sensor, and an electrodermal activity sensor.
Therefore, we consider smartwatches as WATs because, even if they offer more
functionalities than some fitness trackers, they still fit our definition. All the
devices that we studied in this work correspond to the aforementioned defi-
nition. Medical-connected devices (e.g., insulin pumps) and wearable devices
with very specific purposes (e.g., connected shoes or e-glasses) are not con-
sidered WATSs. Moreover, in this specific work, we focus only on wrist-worn
devices, as they are the most common types.

1.4 The WAT Ecosystem

Figure 1.1 depicts the typical WAT ecosystem. Generally, a WAT ecosystem
is composed of a WAT paired with a connected device (e.g., smartphone,
tablet). The WAT can store only data that was collected in the past few days.
The personal data is regularly transmitted from the WAT to the connected
device via a Bluetooth communication protocol, Bluetooth low energy (BLE).
A companion app provided by the WAT’s vendor (i.e., the service provider)
is installed on the connected device to monitor the pairing and to visualize
the collected data. The connected device can generally store only recent data,
as older data needs to be stored on the cloud and downloaded if needed.
Hence, to store the collected data on the cloud, the companion app regularly
synchronizes, through the Internet, with the service provider’s servers. The
servers that store the users” WAT data can process raw WAT data and perform
various analytics [45], for example, in some cases, data stored on the servers
are processed to compute further information that is automatically sent back
to the companion app. In some cases (Apple), the data stored on the service
provider’s servers is encrypted and can be accessed only by the user. The
connected device can also send data to the WAT, such as firmware updates or
notifications [46]. In a few cases (depending on the model), the WAT can use
direct communication with the service provider’s servers for firmware update
purposes. However, in most cases, the WAT does not directly transmit data
(i.e., fitness data) to the service provider servers.
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User Q \ TPA’s servers
TPA’s mobile app

IMobiIe API Web API

Web API

[ ]
SP’s mobile app

Connected Device

WAT SP’s Servers

Figure 1.1: WAT ecosystem. The user wears the WAT that transmits their data to the
service provider’s servers (SP’s servers) via their phone (connected device). The user can
grant authorization (e.g., using a protocol as OAuth2) for a given third-party application
(TPA) to access their data, generally by using a web API. The user can select the different
types of data that they agree to share with the TPA, then the TPA receives a pair of
tokens that they can use to request the user’s data through the API, either from their own
servers (TPA’s servers) or from an app (e.g., Strava) installed on the user’s phone. In some
cases (e.g., Apple), the data is directly transmitted, through a local mobile API, from the
companion app to a TPA’s mobile app installed on the user’s phone. All these APIs are
permissioned [43, 44]

Moreover, the companion app generally offers more functionalities such as
social network features and data sharing with third-party applications (TPAs).
A user can grant authorization to a TPA to access their data by using a
specific authorization protocol (e.g., Oauth2). By doing so, the TPA will
receive a token (or a pair of tokens). With this token, the TPA can request
data from the service provider’s server by using a dedicated API. This request
can come from either the TPA’s server or a TPA app (e.g., Strava) installed
on the user’s smartphone (connected device). In some cases (e.g., Apple) the
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TPA can directly access WAT data stored on the connected device by using
the app installed on it. Yet, the data collected by the mobile app can be
subsequently sent to a server. The user will then generally be able to access
their data by using the TPAs functionalities (e.g., the TPA’s app installed on
their smartphone). Such a data-sharing method can also work in the opposite
way, meaning the companion app and/or the service provider can access data
that were collected by a TPA. Most of the market leader WATSs available,
such as Apple Watch, Fitbit, and Garmin, as well as TPAs such as Strava
or MyFitnessPAL, match this model. At any moment, the user can revoke
previously granted access. Such revocation would remove the access privilege;
after which, the token can no longer be used by the TPA to access the user’s
data. However, during the period of time the token is valid (after having
granted access authorization and before revoking it), a given TPA is technically
able to store the collected data on their own server and to keep them for as
long as they want.

Beyond data sharing with TPAs, a WAT user can also share their data on
a dedicated social network (e.g., Fitbit Community). Such data sharing can
be done according to different audiences (public, friends, groups). In other
cases, a user can directly share their data with another user with the same
companion app (e.g., Apple Health).

1.5 Adversarial Model

In this thesis, we focus on an adversary that can access some or all of a user’s
data processed by the service provider. Therefore, we focus on devices where
data are collected by the service provider and are not stored only locally. As
we will see in Chapter 2, many studies were conducted on the security of WAT's
and their communication protocols, as BLE for WAT-smartphone communi-
cation or any protocol used to transmit users data to the cloud. However,
an adversary that seeks access to users’ data in such a way (e.g., intercepting
BLE or HTTP communication) will have a very limited scope of action as
they would need, for example, to capture signals of a specific user (e.g., with a
specific antenna), or to eavesdrop on HTTP(S) traffic. Another type of adver-
sary, complementary to the previous one in the sense that they access WAT
users by different means, is the one that has direct access to already processed
data (e.g., step count, heart rates). This type of adversary constitutes, in our
opinion, a particularly realistic model as it does not necessarily require physi-
cal proximity to the device, and can therefore particularly easily collect data
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from a larger number of users. Furthermore, in the context of WATS, consid-
ering TPAs as an adversary actually brings to light a new type of adversary
model that users are not fully aware of. Indeed, whereas, it is perfectly clear
when they start using a WAT that they will, at some point, share personal
data with the service provider, users may overlook the fact that, depending on
their usage of the WAT, their data may be accessible to other companies (i.e.,
companies providing them with TPAs), who have their own terms of services.
Moreover, WAT users tend to underestimate the impact their processed data
can have on their privacy, especially related to inference threats [19, 46]. This
is the reason why, in this work, we focus on such adversaries. There exist
multiple adversaries who correspond to this description. One such adversary
is typically the service provider itself, such as Fitbit. But most of all, it can be
any TPA (or their business partners) to whom many users have granted, know-
ingly or not, access to their data (e.g., have given a token pair through OAuth
2.0 [43]). Users may want to share their data with TPAs for multiple reasons,
generally, they do it for additional functionalities not offered by the original
services or applications, but it can also be to share their data with companies
that base their business on WAT-data collection such as WeWard [47], that
offers their users to be paid according to the number of steps they take, or
Actifit [48] that offers their users to have free access to fitness-related services
as nutrition consultation according to their activity count, or other similar
companies based on cryptocurrency such as Fitcoin [49]. It could also be any
of their business partners [50]. Such an adversary (i.e., a company providing
TPAs) would have the possibility to obtain years of data collected from mil-
lions of users. For example, there were 31 million Fitbit users in 2020 [51],
and 20 million for WeWard in 2023 [47] (this includes users that use only the
step-count feature of their smartphone).

TPAs are known to ask users to access far more data than they actually
need to provide their services [52]. Such TPAs can use the data for their own
profit, either by tracking or inferring new information about the users beyond
their services, or by sharing them with other companies without notifying
the user [53, 54]. Also, it is possible that some TPAs change their privacy
policies, without the users noticing. Individuals who use a large number of
functionalities through different TPAs might simply not notice the changes
or accept the privacy change notifications, without properly reviewing them.
Previous research argued that, due to the large number and availability of
TPAs, users can easily lose track of their granted accesses [55, 56]. Finally, to
cease the data sharing, a user must actively revoke the access permissions by
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using the WAT provider’s platform; this is not necessarily easy to do for every
user, as suggested by our results.

Another way to access the data of WAT users is to use users’ (public)
profiles. Users’ PII (e.g., birth date, e-mail address), as well as, to some extent,
fitness data (e.g., average step count, list of achievements) could be publicly
available on the service provider web platform or could be accessed by using
the social functionalities of the companion app. Depending on the privacy
settings, potential adversaries can access sensitive information, without any
authorization and/or consent. FEven if leaving a given type of information
publicly available may be considered as an authorization, and is considered
as an exception to the prohibition of processing personal data under GDPR!,
it is important to highlight that privacy settings are often set to the highest
visibility by default, and many users, due to a lack of knowledge and awareness
of data sharing and privacy, do not modify them [57]. Furthermore, sometimes,
it is even not possible for a user to set the lowest visibility for a given type
of data. For example, although Fitbit offers three different modes of visibility
for their users’ public profiles (i.e., “Private”, “Friends”, “Public”), the lowest
visibility option (i.e., “Private”) is not available for daily step counts and
the user can only choose between the two other options (i.e., “Friends” or
“Public”) for that specific type of data. Moreover, as the API data access
used by TPAs—and that uses the Oauth2.0 protocol— needs only the user’s
validation (by clicking on a link) and does not necessarily require any account
creation or notification, an adversary could use social engineering techniques,
such as phishing [58], to gain access to user data.

1.6 Research Scope and Methodology

As explained above, WATSs can raise multiple security & privacy issues for
the users. Although a large amount of research studies focus on the secu-
rity aspects of WATs (e.g., Bluetooth security, inference of password and/or
biometrics), the overwhelming majority of studies about personal information
inference from WAT data are not privacy-oriented. Indeed, the studies re-
lated to, for example, inference of activities, consumption, or diseases using
WATSs are all about creating new functionalities to help the users or a related

L“Processing of personal data [...] shall be prohibited [except if it] relates to personal
data which are manifestly made public by the data subject.” https://gdpr.eu/article-
9-processing-special-categories-of-personal-data-prohibited/
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third party to better monitor their activity or health. Most studies about
inferences made by using WAT data focus on inferring behavioral data (e.g.,
activities, consumption) or conditions (e.g., diseases), but none of them are
about inferring users’ personal attributes (e.g., personality, religion, political
views).

Another research gap, more related to the HCI approach, is that, whereas
WAT users’ attitudes toward fitness-data sharing has been widely studied
(e.g., [19, 46, 59, 60]), no study has focused on the actual behaviors of data
sharing by users of WATSs.

Moreover, as most of the provided solutions related to the privacy of WAT
users are device- or data-oriented, none of them are based on a user-centric
approach, in particular, we did not find any studies with participatory design
or co-design approaches.

In this work, we intend to contribute to the WAT security & privacy re-
search field relative to these three identified research gaps. In the next chap-
ters, we will indeed (1) conduct a systematic literature review about WAT
security & privacy and highlight these three aforementioned gaps, (2) conduct
a user-survey study to better understand the actual WAT user’s behaviors
towards data sharing (assessment of the risks), (3) use a machine-learning
approach to evaluate how users’ personal attributes (i.e., personality) can be
inferred from WAT data and discuss the related consequences on the users’
privacy and society as a whole (assessment of the threats), and (4) we will con-
duct a user-centric design study by using a participatory design methodology
in order to propose effective and likely-to-be-adopted protection mechanisms
(development of draft countermeasures).

1.7 Contributions

For this thesis, three main research projects were completed. The first focused
on the data-sharing behavior of WAT users (Chapter 3) and was published at
PETS 2023 [61]; we deployed a large online survey (n=628) for polling users
about (1) the third-party applications, (2) the contacts to which the users
granted access to their WAT data, and (3) their understanding (incl. men-
tal models) regarding the way third-party applications can access their fitness
data. The second project focused on the extent to which personality (viz. Big-
5 traits, aka OCEAN [62]) can be inferred from the data collected by fitness
trackers (Chapter 4) and was published at USENIX Security 2023 [63]; for

this, we organized an in-situ experiment (n = 204) where participants were
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provided with Fitbit Inspire HR bracelets that they actively used for four
months. Finally, the third project was about designing new privacy-enhancing
technologies for WAT's with a user-centric approach; for this, we organized par-
ticipatory design sessions (n = 26) with WAT users and supervised discussions
about WAT-data sharing and the related privacy risks. Then, the participants
proposed and evaluated multiple designs that, in order to increase the privacy
of WAT users, aim to help them better manage their data sharing. This work
has been accepted as a poster at SOUPS.

Three additional research projects related to WATs and based on the in-
situ experiment described in Chapter 4 were conducted by the author of this
thesis, but he is not the first author. The first additional project is about users’
perceptions of the privacy risks related to fitness tracking and was published
at IMWUT (Ubicomp 2022) [46]. The second one is a project on the effect of
fitness trackers on self-perception and body image (in submission at the time
of writing), and the third is about WAT-data series (i.e., heart-rate series)
identification using step counts (in progress).

A part of this thesis also includes a literature survey on the costs (w.r.t.
privacy and security) and the benefits (w.r.t. utility) of wearable activity
trackers (submitted to ACM Computing Surveys). The privacy part and the
security part of this survey constitute the literature review section of this thesis
(Chapter 2).

This work, therefore, contributes to the security & privacy research field
related to WATSs in the following way. We analyze the privacy & security
literature related to WATs in Chapter 2 and identify multiple research gaps.
In Chapter 3 we motivate the work by identifying specific types of privacy risks
related to the way WAT users share their data. Then, in Chapter 4 we explore
a specific threat model and show how WAT data can be used to infer personal
sensitive information and discuss the related consequences on user privacy and
society at large. Finally, in Chapter 5 we propose different privacy-enhancing
technologies that can be used to minimize the risks, and, therefore, help the
users protect their privacy, before discussing future work and concluding in
Chapter 5.

1.7.1 List of Publications

1. L. Velykoivanenko, K. S. Niksirat, N. Zufferey, M. Humbert, K. Huguenin,
and M. Cherubini. 2022. Are Those Steps Worth Your Privacy?: Fitness-
Tracker Users’ Perceptions of Privacy and Utility, Proc. of the ACM on
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Chapter 2

Literature Review

There has been extensive research on WATSs. Therefore, conducting a system-
atic literature review is important to identify the different approaches, and
methodologies used in this research field. Moreover, it helped us to identify
research gaps and to evaluate the potential of our research projects. In the
framework on this thesis, we conducted a literature review about the utility,
privacy, and security aspects of WATSs. In this chapter, we include parts re-
lated to privacy& security. The part about WAT utility is not included in this
thesis.

To conduct this literature review about WAT privacy & security, we fol-
lowed the methodology of Kitchenham et al. [64]. After defining our keywords?,
we searched in ACM DL, IEEE Xplore, AIS library, USENIX, PoPETSs, Sci-
ence Direct, and Springer Link. We also used Google Scholar to include papers
from other databases and publishers (e.g., Taylor & Francis). During the re-
view process, we also kept track of the most recent and relevant published
proceedings (e.g., CHI 2023) to update our paper database. We excluded the
papers that (1) are not written in English, (2) were published in 2012 or ear-
lier, and (3) are not peer-reviewed (e.g., position papers, letters, editorials,
prefaces, article summaries, theses, patents, or books). We included only the
papers (1) that are about WAT's and/or have implications for WATs (accord-
ing to the definition in the introduction of this thesis) and (2) that have direct

'We used the following search strings: “physical activity data” OR “physical activity
tracker” OR “fitness data” OR “fitness tracker” OR “wearable activity tracker” OR “fitness
tracking” OR “wearable activity tracking” AND “utility” OR “privacy” OR “security” OR
“perception” OR “understanding” OR “experience” OR, “expectation” OR “sharing” AND
“system” OR “device” OR “application” OR “app” OR “service” OR “bracelet” OR “wrist-
worn”.

13
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relevance to the privacy, and/or security of WATs.2. For that last criterion,
we decided to include borderline cases (e.g., articles about inference of per-
sonal information but not explicitely privacy/security oriented). To synthesize
the findings, we followed the JBI Manual for Evidence Synthesis [65], where
we reviewed the paper summaries, identified the common patterns and ho-
mogeneity between the papers and, in terms of their findings, highlighted the
heterogeneity and diversity.

2.1 Privacy

In this section, we first review the proven privacy risks of using WATs. Then,
we delve into users’ perceptions of privacy and behaviors. We later discuss
privacy policies, regulations, the forensic use of WATSs, and ethics. Next,
we investigate the privacy consequences of using WATSs in workplaces. We
conclude the section with privacy-enhancing technologies (PETS).

2.1.1 Are WATSs Risky for Users’ Privacy?

Machine-learning (ML) models using WAT data can be used to monitor ECG
waveforms [66], post-surgery complications [67], multiple-sclerosis symptoms [68],
SARS-COV-2 infection [69], mental health states such as stress resilience [70]
or depression [71],and to predict the readmission of cancer patients [72]. Com-
bining WAT data with other resources can help build a health persona [73].
In an edge case, WAT data could help specialists better understand social en-
gagements between autistic children who have difficulties in making non-verbal
communication [74].

However, WAT data can also be used in adversarial settings with poten-
tially negative consequences for users. Especially as WAT service providers,
such as Fitbit, are known to share users’ data with their business partners [50]
and as developers do not always know how to protect users’ privacy [75].
Here, we review different types of information that can be inferred and can
violate user privacy. Studies about human activity recognition (HAR) show
how various types of activities can be inferred using data collected by WAT
sensors. Several novel algorithms and frameworks were developed for HAR
(e.g., [76, 77]). Dietrich and van Laerhoven [78] propose a typology for clas-
sifying the different contexts of WAT usage. Activities can be successfully

2The list of the reviewed papers is available on OSF
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recognized by using data collected with off-the-shelf WAT's and even for short-
duration data (i.e., short and quick movements) [79]. Such inferences are gen-
erally more efficient than using data from other common devices (i.e., smart-
phones) [80]. This is because WATSs, unlike phones that are usually in users’
purses or pockets, are worn close to the body (i.e., worn on the user’s wrist).
Although these HAR studies propose new functionalities, their findings can be
utilized by attackers.

The most frequently inferred activity types are eating and drinking.
Thomaz et al. [81] and Weiss et al. [82] explore eating/drinking detection
by using WAT data, whereas Biel et al. [83] also used contextual data (e.g.,
time, geolocation) to infer the type of meal. Also, in relation to consumption,
a model for detecting users’ drunkenness in real-time was developed Gutier-
rez et al. [84]. Shoaib et al. [85] use WAT data to detect smoking events.
WAT data can also be used for other purposes such as tracing the geometric
motion of a user’s arm [86], for recognizing objects moved by users and
the identity of the users who moved them [87], and for preventing pedestrian
distractions [88]. WAT data can also be used for more than predicting activi-
ties: to predict users’ moods and to recommend music [89]. The movement
of a user’s WAT, when using NFC payment terminals, can help to infer their
height [90]. Finally, information shared by WAT users on social media can
be used to infer personal information, such as weight [91].

A few studies focus on location inference have been conducted. Has-
san et al. [14] and Dhondt et al. [16] study bypassing endpoint privacy zones
(EPZs) to infer users’ locations; they could infer more than four-fifths of the
locations. EPZ is a mitigation technique that consists in defining a private
zone within which some data are not revealed (e.g., to protect users’ exact lo-
cation). Meteriz et al. [92] also showed that location inference is possible, with
certain previous knowledge and by using the elevation profile. Handwriting
recognition is a particular case of HAR, where inference is made not only to
detect the event but also to infer the written letters and words. For exam-
ple, WAT data can be used to recognize air-writing gestures (and words) [93],
finger-writing gestures [94], and gestures of writing on a whiteboard [95]. Xia
et al. [96] showed that they can infer one-third of hand-written words. Wijew-
ickrama et al. [97] replicate the four previously described studies and obtain
lower accuracy than in the original studies, thus reminding us of the necessity
of the replication studies in HAR research. Therefore, considering that HAR
literature reports handwriting-event detection accuracy is between 65% and
90% (depending on the context), and knowing that most users do not wear the
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device on their dominant hand, they concluded that handwriting recognition
is unlikely to pose an important threat to users.

In conclusion, much research has been done on WAT inference, where a
large majority of these inferences raise privacy issues. For example, all infor-
mation about consumption (e.g., eating, drinking, smoking), activities (e.g.,
sport), location (e.g., city name), or disease (e.g., cancer), can be directly used
by adversaries (e.g., health insurers, employers, and advertisers) to target their
customers and/or even to discriminate against them.

2.1.2 Research on WAT Users

We review WAT privacy studies conducted with users. This review provides a
comprehensive understanding of users’ awareness & knowledge about privacy,
their concerns, attitudes & behaviors, the roles of individual differences on
users’ perceptions, and the utility-privacy trade-offs.

WAT users’ Privacy Awareness and Knowledge

Many studies have assessed users’ awareness of and knowledge about privacy.
Overall, WAT users have limited knowledge about the privacy policies of
service providers [98, 99]. Most users are not aware of who has access to their
data, and that their data are transmitted, stored, and used [99, 100, 101].
Vitak et al. [98] find that, after they were asked to read the relevant part
of the terms of service, most users are not aware of what they have given
consent to and were surprised about the extent of access they provided to
service providers. Several misconceptions have been identified, such as not
being able to distinguish privacy from security and being overconfident about
privacy knowledge [102]. Some users think WATSs are secure because they
do not have an “input” device (e.g., a keyboard), hence users cannot input
sensitive information such as passwords [102]. Most users also cannot judge
the difference between storing data on a cloud and a device [103]. This lack
of awareness could be due to a lack of interest in learning about how their
data is used [101]. Finally, most users are not aware that data from motion
sensors could be used to infer passwords entered on WAT's and that, as people
tend to use the same code for diverse applications and devices (e.g., ATM
PIN codes), the risk of such attacks increases [104]. Privacy awareness is
negatively associated with data-sharing habits, whereas non-aware users tend
to share more [105].
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Gabriele and Chiasson [19] show that WAT users tend to believe that most
privacy risks are unlikely to materialize. Unfortunately, WAT users first
consider the likelihood of being subject to a privacy risk, and only then do they
contemplate its severity [106]. Therefore, not knowing about the likelihood of
such threats prevents them from thinking about their severity. Gerber et al.
[107] show that users perceive privacy risk scenarios as likely if they are written
in an abstract form. Many users consider privacy only from a “social privacy”
point of view and do not think how their data could be used by third parties
(e.g., advertisers, health insurance) [108]. Users’ knowledge about privacy also
depends on the type of information collected by WATSs. Rader and Slaker
[109] argue that WAT users recognize sensors that they can see and verify (i.e.,
those that are physically visible). Velykoivanenko et al. [46] show that users
think that sensitive information not directly related to a specific sensor cannot
be inferred from their data.

WAT Users Privacy Concerns

Privacy concerns affect the usage of WATs[110]. Users aware of privacy risks
tend to be more concerned about their privacy. These users use coping mech-
anisms [111] and/or contemplate abandoning their devices [112]). Therefore,
it is important to better understand their concerns. Due to low level of aware-
ness of most users, most of them are not concerned about privacy. Alghatani
and Lipford [18] show that their participants had mainly utility-related con-
cerns (e.g., to have a better self-image by data sharing) and not privacy-related
ones. Several studies [102, 106, 18, 113, 114, 115] show that most users ex-
press only minor privacy concerns. The majority perceive their WAT data as
harmless, innocuous, and not sensitive [102, 113, 115], and they report that
they would share their data, without requiring that the privacy boundaries be
managed [102, 113]. Lidynia et al. [116] show that their study participants
did not consider storing data on the server (compared to their device) as a
critical issue. However, such attitudes and (lack of) concerns could be due
to a misunderstanding about the WAT ecosystem and the lack of a correct
mental model [117].

Aktypi et al. [118] highlight that multiple factors reassure users about their
privacy, especially the fact that they tend to trust WAT companies. However,
there is no consensus about this trust. Although some studies show that users
trust companies to handle their data [113] and that they believe in companies’
technical capabilities to preventing privacy breaches [115], others [46, 102, 119]
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do not show this same confidence. Given the huge amount of data collected
from millions of individuals, some users cannot see how their data can be used
against them: “.. just a drop in the ocean” [118, p. 8]. For some WAT users,
privacy concerns evolve over time. Some start being concerned if their data is
misused or after their privacy is violated (e.g., after a privacy breach) [114].
In the workplace context (for more details, see Sec. 2.1.4), at first, some users
perceive their data as harmless; but over time, they report different concerns as
their data creates many inter-colleague discussions that reveal their private-life
activities and cause social pressure [120]. Interestingly, with the participants
of research experiments, those who usually are unconcerned about privacy
expressed their concerns about WATSs after being confronted with questions
about their private life [101, 102]. This could be due to the well-known pri-
vacy paradox [121], where users report having privacy concerns, but then they
behave as if they do not have these concerns. Finally, Vitak et al. [98] shows
that the more users perceive their WAT data as valuable for third-parties, the
more privacy concerns they have.

Earlier studies identified concerned users who prioritize their privacy
and use thicker privacy boundaries to protect their information [102, 103,
113]. Three types of concerns are recognized among such users. (1) Data
Collection and Storage: concerns about the anonymization of data [119]
and the location where the data is stored [116, 119]. (2) Control over Data:
concerns about the data being used for purposes other than for the main
purpose or being shared with third parties [102, 119]. Some users think they
have limited control over disclosing their own data [102, 122, 123]. They
also mention the forced-choice dilemma where they have to decide between
using the device (and facing the consequences) and not using it. Lastly, they
mention the post-purchase lock-in effect where privacy policies might change
after agreeing to them. (3) Storage Security: Some users are concerned
about their devices or the service providers’ platforms being hacked. They
think that security breaches could lead to negative consequences [123, 124].

WAT users’ Sharing Attitudes

WAT users’ willingness to share WAT data is strongly related to the type
of data and the audience they intend to share their data with [19, 60]. If
more data than step counts are shared, users worry. They perceive location
data to be the most sensitive data type [113, 116, 125, 117, 126]. They are
concerned about the negative consequences of sharing location-data, such as
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home burglary and bike theft [126]. But if they sell their data, they would ask
for significantly more money for their location data than for health-related
data [125]. Also, WAT users are more reluctant to share movement data,
other than step data [114]. Weight and sleep data [116] and any data related
to personally identifiable information (PII) and financial information [18] are
perceived as particularly sensitive.

However, even for the most sensitive data, WAT users change their sharing
decisions, based on the intended recipients. They generally seem willing to
share their location with their friends, whereas they do not want to share with
online advertisers [19]. Schneegass et al. [60] found that users’ willingness to
share is inversely proportional to the size of the recipient group they share the
data with. This finding is in line with other studies [19, 18, 115, 116], wherein
users would be willing to share their data with small groups of people, such as
their family, friends and colleagues, and /or with health practitioners if they ask
for it; but they would not share with the general public, employers, insurance
companies, banks, and advertisers. Finally, Alghatani and Lipford [18] study
WAT users” motivations for sharing data with different types of recipients. For
example, they share data with friends to compete or to show a positive image
of themselves, whereas they share data with family members to encourage and
motivate one another to be healthier.

Individual Differences

Individual differences play an important role in WAT users’ privacy aware-
ness, concerns, and attitudes. For example, older users tend to be more
relaxed about data sharing [60] and perceive their data as less valuable to
third-parties [98], although they give their data more personal value. Women
tend to share more data than men do [60]. Future studies should replicate
these differences due to age and gender, and they should investigate the un-
derlying reasons behind such differences. The findings of studies about the
differences between users from different regions are rather inconsistent. Ilhan
and Fietkiewicz [127] find significant differences, regarding their level of con-
cern and awareness, between WAT users from the US and Germany. Whereas,
the same group of researchers did not observe any differences between users
from the US and Europe [128].
Earlier studies categorized WAT users into different classes such as (1) non-

sensitive and (2) sensitive users [116], (1) unconcerned, (2) somewhat con-
cerned, and (3) highly concerned [102], and as (1) data protectors (i.e., those
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concerned with privacy), (2) benefit maximizers (i.e., those concerned with
utility), and (3) fact enthusiasts (i.e., those most concerned with motivational
design) [103]. Individuals can also be differentiated as users, former users, and
non-users. This can help us to understand their reasons for using technology
or abandoning it, and to understand if they would contemplate using such
technology in the future. Previous studies [129, 128] show that non-users of
WATSs are more concerned than users about the collection of WAT data. Sur-
prisingly, former users are less concerned about privacy than actual users [128].
In contrast, Bélanger et al. [130] do not find any significant difference between
privacy concerns of users and non-users. This difference may be due to the
fact that the population studied was not the same as the first study, which
is mostly about European Union citizens (~ 80% of their respondents) [128]
while the former is about US citizens only [130]. Lastly, in a more quantita-
tive approach, Fietkiewicz and Ilhan [128] show that it is possible to categorize
WAT users using clustering techniques (e.g., k-means).

WAT users’ Behaviors, before and after Privacy Violation

Overall, WAT users take limited actions to protect their privacy [113]. Coping
strategies vary depending on their concerns and threat perceptions [131].Some
report adjusting the privacy settings of their WAT's only immediately after set-
ting up their device (i.e., after unboxing), whereas others could not remember
when they changed them, and still others thought they were using the default
settings [113]. In the context of the workplace, users might consider partial
sharing if they could exclude specific parts of their data related to private situ-
ations [114]. Velykoivanenko et al. [46] unveiled that a minority of WAT users
(~ 5%) consider removing their device for privacy-related reasons (e.g., before
engaging in sexual activities). Some users reported that privacy settings are
complex and that they have difficulties adjusting them [113, 126] .

Besides the privacy management behavior, several researchers studied users
coping behavior after they faced privacy breaches. Lehto and Miikael
[115] asked WAT users what they would do if their service provider had a se-
curity breach. Surprisingly, none mentioned that they might stop using their
WAT; however, they said this might affect their future WAT purchases. Other
studies showed that though users’ privacy perceptions do not have an effect
on their avoidance motivation (i.e., privacy management behavior) [106], their
perceptions can affect their coping behavior [132]: Higher privacy concerns
increase users’ threat perception, which has an effect on an individual’s coping

Y
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behavior. Theoretical studies found that users use two main coping mecha-
nisms [111, 132, 133]: (1) emotion-focused coping when the perceived level of
threat is high and the level of efficacy is low, and (2) problem-focused cop-
ing when the perceived level of threat is low and the level of efficacy is high.
Therefore, in the event of a privacy breach, users will likely not be able to
show rational behavior and would instead seek emotional support.

Trade-Offs between Utility and Privacy

According to privacy calculus theory [37, 134], technology users always weigh
the perceived benefits and risks. Perceived utility and privacy concerns af-
fect users’ intentions to use their devices [135, 37]. Several studies [113, 124,
130, 136] found that WAT users prefer to take a utilitarian approach
and that the perceived benefits can outweigh their privacy concerns.
They usually perceive a fairly positive effect from data sharing [18, 137]. How-
ever some users, especially older adults [138], do not make rational trade-offs
by ignoring/underestimating the risks [101]. Furthermore, daily WAT users
often willingly share data, despite compromising their confidentiality, as they
find the health and social benefits worth the risk [102]. They sacrifice pri-
vacy to receive immediate financial benefits, such as a reduction in insurance
fees [126] or a higher wage [117]. Although users tend to express concerns
when they carefully read previously-agreed-to data-collection policies, they
would not change their usage behavior [100].

Following Nissenbaum [139]’s definition of privacy (a.k.a. contextual in-
tegrity), earlier studies [122, 140, 130] show that WAT users’ utility—privacy
trade-off depend on context. Ebert et al. [129] show that WAT users are
marginally concerned about privacy more than loyalty-card users are. Lehto
and Miikael [115] discuss that individuals consider their health data (collected
by their doctors) as private/sensitive, unlike data collected from WATSs; and
they consider financial information as the most sensitive. Furini et al. [125]
show that, when given a strong altruistic motivation (e.g., sharing data for con-
tact tracing for COVID-19), users tend to agree to share their data. Similarly,
research participants might be willing to share their data, as they consider it
a donation and contribution to science [117]. Finally, Velykoivanenko et al.
[46] argue that users’ concerns about the inference of certain types of informa-
tion (e.g., religion and sexual orientation) are heavily dependent on the social
norms and conditions in their country of residence.

Although the utility-privacy trade-off is often imbalanced toward the side
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of utility, it can be further explored by researchers and designers in order to
create privacy-enhancing solutions. For instance, where users do not use a
particular feature, turning off that future (i.e., data minimization) could help
in privacy protection (see Section 2.1.5).

Monitoring Family Members

Several studies analyze users’ privacy in the context of using WATSs in fami-
lies, between different generations, and between couples. Kuzminykh and Lank
[141] show that parents are interested in monitoring their children’s health and
activity levels, but not to the extent that it would compromise their relation-
ships or prevent children from developing self-sufficiency. However, Jgrgensen
et al. [142] show that usage of WATSs by parents for monitoring their children
can deteriorate trust in both directions. Similarly, Li et al. [143] find that
younger users worry about their family members’ opinions about them, based
on their WAT data. Potapov and Marshall [144] reveal children’s concerns
about their data being misused by their teachers in a school context. In a dif-
ferent context, Leitao [145] shows that WATSs can be used by abusive partners
for stalking, threatening, and harassing (a.k.a. intimate-partner abuse).

2.1.3 Privacy Policies, Regulations, and Ethics
Privacy Policy

As a means of communication between service providers and users, privacy
policies are used to inform WAT users about the data collection and usage
practices and to obtain their permission. However, their usability and compli-
ance with users’ privacy needs and data-protection regulations (e.g., GDPR?)
is still under debate. Many studies have reviewed WAT-related privacy poli-
cies. Braghin et al. [146] argue that privacy policies are of “dubious valid-
ity.” Users report a lack of (legal) accountability in cases of privacy
breaches [118]. Paul and Irvine [147] reveal many statements that have the
potential to violate user privacy in the privacy-policy content of four market
leaders in 2012.* Several studies present heuristic frameworks for evaluating
privacy policies. Katurura and Cilliers [148] show that both Fitbit and Apple

3General Data Protection Regulation, see https://gdpr-info.eu/, last accessed: Dec.
2022.

4Note these findings are from almost a decade ago. Some of these products are no longer
sold, and some policies might have been amended.
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did not provide minimal protection for choice or consent: Before they collect
data, these companies ask for consent; but after the collection, the users were
not permitted to enforce how their data is used. Hutton et al. [149] compare
the privacy policies of self-tracking apps in different domains and show that
apps related to WATs generally met fewer heuristics compared with apps re-
lated to other types of tracking (e.g., time management, cost management).
Becker et al. [137] show that the type of statements used in privacy policies
can influence WAT users’ decisions about disclosing their health information
(e.g., policies framed positively).

Another issue with privacy policies is the usability problem. They are
lengthy, complex, and annoyingly profuse, thus users often do not read them.
Users report not reading the privacy policies of their WATSs to avoid cogni-
tive load; furthermore, they perceive their acceptance as a binary choice (i.e.,
forced choice dilemma) hence as a necessary condition to use the device [126].
Gluck et al. [150] show that shortening the privacy policies to some extent
can be an effective way to increase user awareness. Guo et al. [151] propose a
visualization tool, named Poli-see, for helping users understand WAT privacy
policies. Drozd and Kirrane [152] present CURE, a GDPR-compliant consent-
collection system that obtains users’ partial consent in a more usable fashion
and that provides the users a better explanation of the consent they have
given. Murmann et al. [153] study the adoption of privacy notifications
(e.g., notifying users when their data is stored on a cloud or when it is trans-
ferred to another country) and show that most of their respondents perceived
notifications as useful. Masuch et al. [154] show that confidence-building mech-
anisms (i.e., statements by service providers about how data will be treated
securely) resulted in an increase of the users’ expectations about the security
of the service. However, users observed a large discrepancy between expecta-
tion and reality; this negatively influenced their satisfaction and intentions to
continue using their WATs. Thuraisingham et al. [155] propose a (hypothet-
ical) privacy-aware data-management framework to enable users to manage
the collection, storage, sharing, and analysis of their own data.

Protective Law for WAT users

There have been several studies about existing regulations, laws, and poli-
cies that could protect WAT users’ privacy. Most of these works study the
regulations in the US and in Europe. In the US, there are several relevant
regulations, however, none are effective [156, 157, 158, 159]. More specifically,
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WAT users are not affected by federal legislation, such as the Health Insur-
ance Portability and Accountability Act (HIPAA) or the Health Information
Technology for Economic and Clinical Health Act (HITECH Act), as they
are not expansive enough to address WAT data. WAT data is not counted
as protected health information (PHI) because service providers are not cov-
ered entities, unlike hospitals or clinics [160]. In the case of WAT data being
stored by a covered entity, HIPAA is applicable only for data processing and
disclosure and not for data collection [161]. Similarly, the Food and Drug Ad-
ministration (FDA) classifies WATs as low-risk wellness products [158, 162].
As a result, WAT data is not protected by the US Federal Food, Drug, and
Cosmetic (FD&C) Act [156, 157]. The Privacy Act of 1974 is another rele-
vant law that regulates the collection, usage, and disclosure of PII. But the
definition of PII in this act is rather limited [157], as it includes only informa-
tion such as names, e-mail addresses, and social security numbers. Similarly,
WAT data is not protected by the Electronic Communication Privacy Act
(ECPA) [156, 157], as the ECPA does not include devices that use radio fre-
quency identification (RFID).

Researchers advocate for new WAT regulations, recommended including
WAT data in existing frameworks, such as the Privacy Act of 1974 [157],
and expanding terminologies such as “covered entities” and “third parties” to
include service providers [158]. Brinson and Rutherford [157] also developed a
portal to help users and data brokers interact and determine the use of their
data.

Several studies on legislation in other countries have been conducted.
Daly [163] discuss that the most important source of WAT regulation in Aus-
tralia is the Therapeutic Goods Administration (TGA). However, the TGA’s
regulations can be easily avoided if WAT manufacturers do not intend for their
WATS to be classified as medical devices (as defined by the TGA). Similarly,
Katurura and Cilliers [148] show that the Protection of Personal Information
Act (POPIA) in South Africa cannot force foreign manufacturers to comply.
Compared to other countries, the GDPR provides better protection for users
in the European Union (EU) [159, 161, 164]. The GDPR has several ad-
vantages. First, it forbids processing personal data, except in far-reaching con-
ditions (i.e., if they are anonymized) [159]. Second, it forbids the processing
of data concerning health, unless the patient has explicitly consented.® This

5Other exceptions include when the processing is necessary to protect the vital interests
of the patient or of another person, to perform another contract for the patient, to carry
out a task of public interest or of other legitimate interests, except when such interests are
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affects the collection of health-related data such as heart-rate data. Third,
it is an enforceable law and is applicable to foreign manufacturers who ex-
port their products to the EU [161, 164].° This is further supported by the
Privacy Shield 2.0.” Fourth, it permits the use of anonymized data for sci-
ence and research purposes and for the sake of technological development and
demonstration [159].

Use of WAT Data in Investigations

WAT data, such as profile information and activity data, can be used as ev-
idence in forensic investigations regarding, for example, suspicious deaths,
airplane crashes, malpractice [165], or even detecting police brutality [165],
especially in cases of racial injustice [166]. WAT data integrity can also be
assessed, for example, insurance companies can check whether a reported ac-
tivity was created artificially [167]. Several studies present software tools for
forensic science [167, 168] and guidelines for investigators [168, 169]. Other
studies [168, 169, 170] show the forensic soundness of their tools or guidelines
by using existing WATSs, such as Fitbit, Xiaomi, and Huawei. Only, one study
fails to recover information, after a forensic analysis [171]. It used a real-life
scenario instructing a participant (with a Fitbit) to walk to a specific location
and hit the ground several times then to return to their point of departure.
Future studies should use similar real-life scenarios to validate the reliability
of forensic methods.

Courts and forensic investigators can face several challenges that reduce
the objectivity of judicial decisions [158, 165] in order: (1) to ensure the accu-
racy of measured metrics, (2) to ensure data integrity by confirming that the
data were not changed after an incident and that WAT was not worn by other
individuals, and (3) to handle massive amounts of data and still create precise
statistical /inference models, even if part of the data is missing. Finally, it is
necessary to maintain WAT users’ privacy during forensic investigations; in
particular, in interdependent privacy situations [172]. Hassenfeldt et al. [173]
show that using web scraping and leaderboard information from Strava, they
can access other users’ information, regardless of whether their data was pri-

overridden by the interests and personal data protection rights of the patient. For details,
see Art. 6 GDPR: https://gdpr-info.eu/art-6-gdpr/, last accessed: Dec 2022.

SHere, the product includes all equipment and covers mobile devices, applications, ser-
vices, and wearable devices.

TEU-US Privacy Shield framework, see https://www.privacyshield.gov, last accessed:
Dec 2022.
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vate or public. Kumari and Hook [158] argue that courts should try to obtain
data from the users themselves, or from their acquaintances. Accordingly,
asking service providers to share data should not be the first option.

Ethics

In addition to analyzing legislation, ethical implications of using WATSs for
their users are analyzed in several studies [162, 174, 175]. Lupton [174] uses
the term “dataveillance” (i.e., digital surveillance of individuals) to explain
how WAT use can lead to “function creep” (i.e., using data for purposes other
than living a healthy and active lifestyle). Tuovinen and Smeaton [162] define
the term “wearable intelligence” as the convenience and simplicity of using
WATs. They discuss that, unlike in the context of a black box, users need to
know that the information presented to them is an approximation generated
by computational models and not absolutely accurate. Also, they warn about
a potential power imbalance between non-expert users and expert data-analyst
entities; as this imbalance can cause further privacy and trust issues. Steinberg
[175] discuss the fairness of insurance companies that use WATs as incentive
programs, where WAT users can receive a discount on their premiums if they
choose to share their data with their insurer.

In addition to taking ethics into consideration for WAT users, researchers
should be also mindful of research ethics. The collection of WAT data can
serve in the development of ML models to infer users’ states and to propose
proper interventions for them. It has become common practice to collect such
datasets and to share them with the public to support open science. Publicly
sharing such a large volume of datasets has privacy risks for the data owners
and ethical risks for designers (i.e., designing interventions based on biased
datasets). Lee et al. [117] conduct a risk-benefit assessment with WAT data
owners. The results show that financial compensation was the main incentive
for data owners. Some data owners accept to provide even more data in
order to receive even more money. Among those who refused the offer, some
mentioned they could accept, but only if the compensation amount was higher.
Less than half of the data owners thought they were subject to surveillance.
Some also mentioned a lack of trust about how data would be handled by
researchers. Given these vulnerabilities, it is important to protect WAT-data
owners after data collection. We recommend, beyond routine practices, such as
using informed consent and anonymization, researchers should consider data
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sharing with restricted access. Among the FAIR® open science repositories,
Zenodo provides an option for restricted access,’, where data can be stored
privately on the platform, and researchers can share access to it only after
certain agreements.!?

2.1.4 Health at Work or Workplace Surveillance?

In the context of workplaces, existing studies show that employers have a
vested interest in promoting the use of WATs for their employees [114, 161].
This creates a profitable business for WAT manufacturers, as they can sell more
of their products (and additional services) to companies.!! Companies intend-
ing to adopt WAT-based wellness programs follow either wellness model
or performance management model [164]. Whereas the former is used
to promote healthy lifestyle habits and to enhance the well-being of the em-
ployees, the latter aims to increase efficiency, productivity, and safety.!? The
concern with the first model is employees’ privacy. Whereas the second is even
more serious, as data can be used to monitor and detect misconduct, hence it
could have a long-term impact on employees’ careers.

Most studies focus on the first model [120, 178, 179]. Many employees
report perceiving wellness programs positively. They usually participate in
such programs to improve their awareness of their activity levels, to become
more physically active [178], or to socialize [120]. During the campaigns,
employees can become concerned about the erosion of the boundary between
their work and personal life. However, they also tend to discuss their WAT
data with colleagues (as an ice breaker for conversations during breaks). In
the workplace, discussions about step counts or activities can increase social
pressure, breach privacy boundaries, hence raise tensions. Studies show that
not all employees are happy to join such campaigns and some decide to not
join [120, 178]. Furthermore, after the end of the campaign, employees usually
return to their previous activity routines.

Given the lack of evidence of the long-term benefits of wellness campaigns
and the social distance created between participants and non-participants,

8https://www.go-fair.org/fair-principles/, last accessed: Dec 2022.

‘https://about.zenodo.org/policies/, last accessed: Dec 2022.

10For example, a data recipient must agree to not make data public and not infer data
owners’ identities.

Uhttps://healthsolutions.fitbit.com/corporatewellness/, last accessed: Dec
2022.

12T read comprehensive surveys on the use of wearables for safety at work, see [176, 177].
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Gorm and Shklovski [179] suggest reconsidering the notion of “success” in
such campaigns. Marassi and Collins [164] discuss the privacy and auton-
omy concerns of wearing WATSs in the workplace and express many reserva-
tions, especially about the employees’ right to bodily integrity, life-work
boundaries, and the power imbalance between employers and employees.
In the US, there is no legislation that protects employees’ privacy [156].1% In
the EU, GDPR does not permit employers to monitor their employees. To
address these issues, previous studies recommend (1) clarifying the terms and
implications of information disclosure to employees [156], (2) proposing new
laws that limit data collection by employers [156], and (3) using a coaching-
based approach, where employers can use third-party services as mediators
that provide health advice to their employees [164].14

2.1.5 Privacy-Enhancing Technologies (PETsS)

As an addition to Alghatani and Lipford [181]’s work that reviews existing
PETs provided by known WAT brands, our work reviews the PETSs proposed
by the literature.

Anonymization Techniques

Given the high dimension and sequential time-series nature of WAT data,
anonymizing such data-sets is challenging. Na et al. [182] show that accelerom-
eter data can be de-anonymized with high accuracy. Multiple studies focus
on methods for effectively anonymizing WAT data. Parameshwarappa et al.
[183] use a multi-level clustering anonymization technique to prevent the re-
identification of WAT users. Gong et al. [184] propose a theoretical framework
for federated learning that preserves individuals’ privacy and trains an ML
model by using multiple WATSs’ data. Garbett et al. [185] designed ThinkAc-
tive: an activity-sharing platform for classrooms that enables students to use
pseudonymized avatars to share WAT data, without exposing their identity.

13For example, there was a case in California where an employee’s claim that their em-
ployer violated their privacy by linking their Apple account to a work-related device was
rejected by a court [180].

4Tn such a case, the employers should continue to be the data controller (rather than
processor), and the coaching service should be the data processor.

I5PETs for usable privacy policies [151, 152, 155] are already discussed in Section 2.1.3.
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Limited Sharing and Data Minimization

Wang et al. [186] study user preferences and sharing behavior related to partial-
data release. Epstein et al. [187] investigate if fine-grained step-count sharing
can help WAT users preserve users’ privacy while they share activities. Ve-
lykoivanenko et al. [46] assess users’ utility perceptions to inform future PET
design. They also show that there is a high potential for implementing data
minimization that can avoid certain privacy risks. Finally, Kalupahana et al.
[188] propose a framework to use random noise from WAT sensors in order to
generate noise for differential privacy protection.

Pedagogical Solutions

Torre et al. [56] model the complexity of WATs and TPAs in order to compute
the probabilities of inferring different information from WAT data. Their
model is designed to show WAT users that they can protect their privacy
by not sharing certain data. Aktypi et al. [118] design a pedagogical tool
that informs WAT users of the risks they are exposed to when sharing certain
WAT data (e.g., running route), together with other information (e.g., the
information available on their social media). Alvarez et al. [189] show that
watching a video about privacy and security risks of collecting and sharing
WAT data can significantly improve attitudes toward cybersecurity, whereas
a text version of the information has no significant effect. Sanchez et al.
[190] model the privacy preferences of WAT users and developed a system for
recommending personalized privacy settings for users in different scenarios.

Others

Data integrity is critical for healthcare providers and insurance companies
that are interested in users’” WAT data. du Toit [191] designed PAUDIT, a
decentralized data architecture that enables users to store their WAT data in
a personal online data store and permits healthcare providers to read data and
audit the logs (i.e., changes made to the access control list). Ghazinour et al.
[192] propose an access-management tool that enhances users’ decision-making
by enabling them to share their WAT data after considering four aspects:
purpose (why), visibility (who), granularity (how), and retention (when). Liu
et al. [193] propose a machine-learning framework to provide WAT users with
personalized fitness recommendations without collecting personal information.
Finally, Kazlouski et al. [50] analyzed unnecessary communication from the
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Fitbit companion app (as well as six of the most used TPAs) to their business
partners and propose an easy-to-use methodology to block them.

2.2 WAT Security

We review attacks on WATS’ Bluetooth communication and discuss various
vulnerabilities related to companion apps. Then, we investigate how WAT data
can be used to bypass security systems. We also review different authentication
methods related to WATs. Lastly, we analyze security protocols and threat
assessments. 16

2.2.1 WAT-Phone Communication

A large amount of research has been conducted on WATSs and Bluetooth secu-
rity. Multiple attacks, privacy issues, and mitigation techniques were identi-
fied. Table 2.1 shows all the studies related to Bluetooth and Bluetooth Low
Energy (BLE) security and WATs. By analyzing these studies, we identified
six main types of attacks: tracking, eavesdropping, injection, denial of service
(DoS), traffic analysis, and firmware modification.

Tracking is being able to locate or identify the presence of a specific device.
Several studies [194, 196, 202, 146] analyze how WATSs, from multiple vendors,
communicate with the companion app (generally installed on a smartphone).
They show that all of the tested WAT's use permanent BLE addresses,
which makes them vulnerable to tracking attacks. Although these
previous studies state that using address randomization should mitigate the
tracking attack, recent studies [203, 204] show how generic attribute (GATT)
profiles!” can be used to build unique fingerprints. Becker et al. [205] developed
a method to track BLE devices by using features extracted from the payload
of advertising messages.

An eavesdropping attack consists in intercepting data communication
between two devices, whereas an injection attack consists in sending addi-
tional (i.e., fake) data to a specific device. Except for one of them, all the an-
alyzed studies describing eavesdropping attacks are also about data-injection
attacks. Both types of attacks can be performed using similar techniques, such

6Note that multiple attacks that we review are not necessarily specific to WAT devices
(e.g., attacks on Bluetooth or HTTP communication).

"GATT profiles are available without any authentication and contain basic information
about features and services.
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Table 2.1: All articles about Bluetooth security and WATSs. For each paper, the table shows
what type of attacks is described and tested.
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as a man in the middle (MitM) attack. Several studies [195, 198, 146, 204]
show that multiple WATSs use un-encrypted communication, either while al-
ready paired or during the pairing process with a smartphone. They even
permit pairing without authentication. Therefore, an attacker can retrieve
information about the devices, and then they can proceed toward more so-
phisticated attacks, such as a MitM, which can lead to eavesdropping and
data injection (even after pairing). Rahman et al. [197] reverse-engineered two
WATs (Fitbit and Garmin) and built a framework that can perform various
attacks, such as injecting data into the devices. Other studies [201, 207, 208]
performed attacks that force a device to be paired with a fake companion app
that grants access to all transmitted data before redirecting it; it was also able
to inject data and commands. Mendoza et al. [202] analyze one of the most
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popular WATSs and show that its communication with a paired smartphone
does not follow the BLE security specifications and that the device accepts
connections from unknown smartphones.

Hale et al. [206] developed an open-source platform that aims to be used
by security & privacy researchers to facilitate wearable security investigations.
The platform could be used to collect data, conduct attacks, and identify secu-
rity vulnerabilities. They used their platform to analyze BLE communications
of multiple WATs and observed that all of them use encryption protocols to
communicate with their companion apps. There has been a large amount
of research on eavesdropping on and injecting data through WAT Bluetooth
communication. Overall, WAT's tend to not use any protection mech-
anisms. Most WAT'Ss do not implement protection mechanisms, such
as basic cryptographic schemes [206], and they send un-encrypted traffic,
mainly for optimization reasons (e.g., save battery). Both eavesdropping and
data injection attacks are successful.

Four of the aforementioned studies also describe denial of service (DoS)
attacks.’® Goyal et al. [196] performed a DoS attack on a Fitbit Charge by
spamming it with requests that prevent it from communicating (to synchronize
or send other data) with the companion app on a paired smartphone. Rahman
et al. [197] developed two different DoS attacks against Fitbit and Garmin de-
vices. They show that it is possible to quickly drain the WATS’ batteries by
spamming them with BLE requests. Furthermore, they show that an attacker
can overload the WAT’s storage by injecting fake data; this overloading can
cause various problems (e.g., being unable to store newly collected data, dis-
play issues, etc.). Zhang and Liang [198] also show that attackers can conduct
DoS by continuously sending fake commands (as it is possible to inject fake
commands to WAT devices as Syntrino’s TW64 and LifeSense’s Mambo HR).
Classen et al. [201] demonstrate that DoS attacks can be performed on Fit-
bit WATSs by injecting commands to enable the alarm clock or disabling the
WAT’s functionalities. They also show that it is possible to disable pairing
and data synchronization.

Traffic analysis consists in trying to bypass encryption by using meta-
data and signal treatment to infer some characteristics of the un-encrypted
message. Das et al. [194] show that, by analyzing BLE traffic patterns, it
is possible to identify individual users, with high accuracy. Fafoutis et al.
[199] analyze, by using BLE, the correlation between activity levels (based on

18DoS attacks occur when access to a service is temporarily blocked by overloading the
host machine or network with requests.
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device acceleration) and the received signal strength (RSS) in the context of
a WAT communicating with a smart home system. The results show that
the RSS and the un-encrypted data are strongly correlated. Finally, Barman
et al. [209] report that a large amount of information can be inferred
from encrypted Bluetooth traffic between a WAT and its paired
smartphone, such as the type of device, actions, and the type of data.

There are several studies about firmware modification. Shim et al. [200]
analyze a WAT and its companion app’s APK. Using reverse-engineering, they
analyzed the BLE communication (to understand the communication proto-
col) when the companion app attempts a firmware update of the WAT. This
enabled them to create a fake gateway for injecting malicious firmware updates.
Similarly, Classen et al. [201] reverse-engineered Fitbit’s firmware to study how
to modify it in order to build custom firmware. They show that attackers can
use un-encrypted BLE communication to flash modified firmware onto Fitbit
devices. As explained above, most WAT's use un-encrypted communication.

In conclusion, our review shows that WAT Bluetooth security has been
studied extensively. Studies find that the public attributes of the transmitted
packets can be used to track the devices and that communication is often not
encrypted, which can lead to eavesdropping, data injection, or firmware modi-
fication. MitM attacks can be performed to bypass (basic) encryption mecha-
nisms. An attacker can inject fake commands to conduct DoS attacks. Traffic
analysis can disclose sensitive information, even if the communication between
a WAT and its paired smartphone is encrypted. Some studies (e.g., [206]) also
provide tools that researchers and developers can use for their work, while oth-
ers conduct a comparative analysis of multiple models and brands available on
the market by testing a large number of different types of attacks [210].Finally,
whereas some studies proposed mitigation techniques, only a few of them ac-
tually evaluated those techniques.

2.2.2 Phone—Server Communication and Data Storage

Several studies analyze the security of WAT companion-apps that are usually
installed on the users’ smartphones and are paired with a WAT to process,
store, and to transfer online the data generated by the WAT. Companion apps
transfer WAT data to the server or store it on the smartphone.

Goyal et al. [196] analyze the communication protocol and the data storage
used by two models of WATs (a Fitbit Charge and a Jawbone UP Move).
They analyze the code of the companion apps, how the data is stored on
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the paired smartphone, the privacy policies, and the communication between
the app and the service providers’ servers (by sniffing the HTTP/HTTPS
communication). They show that for both devices the data stored on the
smartphone is not encrypted and some of it is even shared with third parties.
Rahman et al. [197] analyze the HTTP communication between Fitbit and
Garmin devices and their servers. They show that the data was not encrypted,
including user credentials for Fitbit. Fereidooni et al. [211] consider WAT
users as potential adversaries. Users might want to send fake data to their
service provider’s cloud for financial gain.!” They analyze multiple WATs and
successfully injected, using MitM attacks, fake data into their corresponding
servers. By reverse-engineering the companion apps, they show that multiple
companion apps that only store data on the smartphone do not encrypt the
data, which makes it easily readable and writable.

To inject fake data, Fereidooni et al. [211] also conducted MitM attacks
between the companion app and the service provider. They performed a new
attack directly on the WAT by reverse-engineering the hardware system and
directly accessing the device’s memory to inject fake data [212]. After syn-
chronization, the fake data was correctly encrypted and registered by the com-
panion app.

Mendoza et al. [202] analyze how the Fitbit companion-app communicates
with Fitbit’s servers by sniffing HTTP /HTTPS communication and how TPAs
can access data using Fitbit’s API. They show that authentication credentials
are sent un-encrypted and that the OAuth 2.0 protocol?® is not correctly imple-
mented. This creates vulnerabilities that an attacker can use to gain access to
or modify the data. Classen et al. [201] reverse-engineered the Fitbit compan-
ion app to study how to modify it. Modifying the app could enable attackers to
associate it with another account in order to download a user’s data. Finally,
Kazlouski et al. [213] analyze the communication between two well-known (yet
anonymized) WAT companion-apps and servers. They collected ground truth
by using a MitM setup and sniffed the encrypted packets by using Wireshark.
Then they computed correlations of the size and frequency of the packets with
the activities, heart rate, and step count. Their results show that activities and
meta-data of encrypted packets are strongly correlated and that it is possible
to use meta-data to identify the occurrence and duration of several activities
and even to estimate other information (e.g., estimating the heart rate). As

19This applies to cases where users participate in financially incentivized data-sharing
schemes, such as corporate wellness programs.
200Auth 2.0 is used to enable TPAs to access some of the data.
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we can see, multiple devices do not implement adequately secure
phone storage and communication with the server, which can lead
to a threat as serious as eavesdropping or data injection.

2.2.3 Side-Channel Attacks

Multiple prior studies analyzed how WAT data can be used to perform side-
channel attacks (i.e., conducting an attack based on extra available informa-
tion, instead of using vulnerabilities of the security protocols). As the main
purpose of WATS is to track users’ movements, it is possible to use the sen-
sor data to infer sensitive information, such as the words a user writes, their
typing on a keyboard, or even, their biometrics.

To this end Maiti et al. [6] studied how WAT (Samsung Gear Live) sensor
data can be used to recognize typing patterns hence to infer which words are
typed on a computer keyboard. Such attacks can be used by adversaries to
collect passwords for bypassing authentication systems. Similarly, Maiti et al.
[214] used smartwatch sensor data to infer which keys were typed on a 10-digit
keypad and a QWERTY keypad on a smartphone. They reached an accuracy
of 74% for the 10-digit keys and had a mean accuracy of 30% for the QWERTY
keypad. Sabra et al. [215] and Wang et al. [216] show how similar attacks can
be conducted to infer ATM PIN codes. The former obtains an accuracy of 80%
for 6-digit PIN codes; this increases to 93% with 5 tries. Lu et al. [104] aimed
to infer PIN codes and android pattern lock (APL) patterns. They find that it
is possible to infer the APL pattern two-thirds of the time, within the first 20
guesses. Maiti et al. [7] studied the inference of rotary combination lock pass-
codes. Their results show that WAT sensor-data (especially gyroscope data)
can be used to greatly increase the likelihood of inferring the lock combination.
In addition to password retrieval, impersonation attacks are focused on by
Eberz et al. [4], and they show that WAT sensor-data can be used to mimic an
individual’s biometrics (e.g., gait)hence to bypass such authentication systems.

In general, we can affirm that using WAT sensor-data to bypass a
security system is a potential threat that should be considered by
vendors. Several mitigation techniques are proposed. For example, WATSs
could deactivate sensors when they detect real-time activities such as typ-
ing [6]. Alternatively, WATs could add fine-grained noise to sensor data, in
such a way that activities such as walking or swimming are still recognized,
but where fine hand movements such as typing are not [216]. Or, users can
simply remove their devices when they are typing.
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2.2.4 Authentication

WAT data can be used to enhance security systems by using the collected
data to authenticate users, and by either substituting or complementing other
credentials.

Cola et al. [217] and Johnston and Weiss [218] study how gait (i.e., walking
style) can be used as an authentication factor for WAT users, and show low
error-rates (between 2% and 3% in both cases). Vhaduri and Poellabauer
[219] propose a method for authenticate the users by uniquely identifying them
based on both the physiological and activity data collected by WATs. They
show that is it possible to recognize users, with high accuracy, by using their
WAT data. Tehranipoor et al. [220] study how electrocardiogram (ECG) data
can be used to authenticate a WAT users. The results show that the average
entropy of an ECG-based key is 0.98, thus close to the maximum (i.e., 1.0).
Therefore, ECG-based keys can be effectively used to identify users. Chen
et al. [221] propose a novel authentication system that mixes credentials and
biometrics by simulating a twelve-key keypad on a user’s fingers. A user has
to type a four-digit code on this virtual keypad and is authenticated if the
code is correct and the biometrics correspond to the WAT’s owner. Their
results show this method is particularly effective and resilient against attacks.
Moreover, they conducted a user study to evaluate the usability of the system
and show that their system was most often the favorite one compared to all
other proposed authentication methods.

Li et al. [222] implemented a robust authentication system using WATS to
authenticate who is using a given IoT device. This software-oriented system
is composed of an external server that securely communicates with both the
tracker and the IoT device; and, to authenticate users, it compares movement
data collected from the tracker and some basic IoT usage input (e.g, touching
a button, turning a knob). To open a secure communication channel without
transmitting encryption keys between two WATS, Shen et al. [223] developed
a protocol based on handshaking patterns. This protocol is therefore secured,
needs minimal extra effort from the users, and is designed to run without ad-
ditional devices. Shrestha and Saxena [224] propose an authentication system
for web service accounts based on users’ activities. It uses WATSs to compare
wrist movements with the web service usage-data (e.g., keyboard and mouse
movements) and rejects non-matching users. Sturgess et al. [225] developed
an authentication system for NFC payments with smartwatches. This system
detects the intent to pay and then authenticates the user when they want to
proceed with a payment using their smartwatch and an NFC terminal. This
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system prevents attackers from paying with stolen devices or from executing
unwanted payments with unlocked devices worn by the user. However, in an-
other study, the same authors showed that an attacker of approximately the
same height as the user has a 20.6% higher likelihood of impersonating the
user [90]. Although WATSs are, by design, equipped with multiple sen-
sors, they are privileged devices for biometric authentication, either
for the WAT firmware itself or for third-party services.

2.2.5 Threat Assessment and Mitigation, and Security
Protocols

Although a large number of studies related to security are about weaknesses,
attacks, and privacy leaks, some of them are about new protocols and tools
that can help preserve the security of systems. To protect against different
attacks, Rahman et al. [197] propose an encryption protocol based on sym-
metric keys. They show that their solution has little effect on the device’s
performance. Using a system of tagged packets, Skalka et al. [226] developed
a framework to manage and filter private data at the edge-router level.

Yan et al. [227] propose an ML-based method that uses received signal
strength indicators (RSSI) to detect, with high accuracy, spoofing attacks
from peripheral devices (e.g., additional sensors worn on the foot). Finally,
Xin et al. [228] show that their new framework (SIAMESE_MIL) is effective at
detecting when data is injected in WAT sensor-data streams through specific
data variations.

A few studies aimed to identify and assess the different types of exist-
ing attacks. To classify attacks, Mnjama et al. [229] developed a conceptual
WAT threat assessment framework. They base their work on the CIA triad
(i.e., confidentiality, integrity, availability) and on Microsoft STRIDE (i.e.,
spoofing, tempering, repudiation, information disclosure, denial of service, the
elevation of privilege). They analyze different phases of WAT-data transmis-
sion and storage and the current health-wearable literature. They propose
a framework for assessing the different existing types of threats, based on
six core elements: authentication, authorization, availability, confidentiality,
non-repudiation, and integrity. Moganedi and Pottas [230] identify all known
vulnerabilities affecting WATSs, from a privacy and security perspective. They
discuss these vulnerabilities with regard to their corresponding parts of the
WAT ecosystem and to how they are classified according to various exist-
ing standards. To classify the different currently known vulnerabilities, they
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identify five main components in the WAT ecosystem (the WAT, Bluetooth,
smartphone companion app, WiFi, and cloud storage) and six control families
(access control, audit and accountability, identification and authentication,
system and communication protection, system and information integrity, and
PII processing and transparency).

2.3 Overview and Research Gaps

In this literature review, we have provided comprehensive information about
the security and privacy of WATS, and revealed several related open issues.
Interestingly, this review revealed several research streams that have been ex-
tensively studied. In particular, users privacy concerns have been substantially
covered, as well as studies related to security breaches, and, in particular, re-
lated to Bluetooth communication. The literature shows that privacy risks are
huge, diverse, and widespread, in terms of the information that can be inferred
and of the consequences. Many communications and storage protocols are still
vulnerable to different types of attacks such as eavesdropping or side-channel
attacks. Service providers tend to implement as little protection as possible.
This might be because service providers give high priority to device features
and the final price of the product rather than to implementing security and
privacy techniques that could be costly and less visible.

Whereas there are multiple studies about user concerns and attitudes to-
ward such risks (e.g., data-sharing attitudes), there is no study, to our knowl-
edge, about the actual behavior of WAT users, in particular toward data-
sharing. Furthermore, while few studies evaluate WAT users understanding of
the WAT ecosystem, they are not focused on how third parties (and in partic-
ular TPAs, which represent one of the main threats in our adversarial model)
access WAT user data. We have also reviewed many studies on human activ-
ity recognition (HAR) and inference. Most of these HAR studies are however
rather functionality-oriented in that they mainly highlight HAR benefits and
focus on achieving high performance, and therefore do not focus on the risks
related to such inferences and their consequences. Furthermore, they mainly
focus on user activities and health and none of them are about user personal
attributes (e.g., personality, religion, political views, or consumption habits).
Moreover, privacy-oriented inference papers do not even consider users’ activ-
ities or health, as most of them study the inference of data such as passwords
or other types of information that could be used for authentication, but are
not directly harmful to the users’ privacy. Finally, regarding PETS, we noticed
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that most of the provided solutions are device- or data-oriented. Moreover,
some of the proposed mitigation solutions lack proper evaluations. Conse-
quently, their effectiveness is questionable. Therefore, there is a need for more
effective PETs. Following the principles of usable security, researchers should
consider and study more user-centric solutions, as from a methodological point
of view, most of the proposed PETs are not designed in a user-centric man-
ner. In particular, we could not find any studies with participatory design or
co-design approaches [231].

To address these research gaps, in this thesis we (1) conduct a study about
the understanding and actual behavior of WAT users toward data sharing,
(2) conduct a privacy-oriented study about inferring WAT user’s personal at-
tributes (i.e., personality traits) and discuss its consequences for their privacy,
and (3) conduct a user-centered study to discuss and propose multiple solu-
tions to minimize the risks for privacy when using a WAT.






Chapter 3

“Revoked just now!” Users’
Behaviors toward Fitness-Data

Sharing with Third-Party
Applications

Abstract. Although WATSs enable their users to monitor their activi-
ties and health, they also raise new security & privacy concerns, given
the sensitive data (e.g., steps, heart rate) they collect and the informa-
tion that can be inferred from this data (e.g., diseases). In addition to
sharing with the service providers (e.g., Fitbit), WAT users can share
their fitness data with third-party applications (TPAs) and individuals.
Understanding how and with whom users share their fitness data and
what kind of approaches they take to preserve their privacy are key to
assessing the underlying privacy risks and to further designing appropri-
ate privacy-enhancing techniques. In this chapter, we perform, through
a large-scale survey of N = 628 WAT users, the first quantitative and
qualitative analysis of users’ awareness, understanding, attitudes, and
behaviors toward fitness-data sharing with TPAs and individuals. By
asking these users to draw their thoughts, we explore, in particular,
users’ practices and actual behaviors toward fitness-data sharing and
their mental models. Our empirical results show that about half of WAT
users underestimate the number of TPAs to which they have granted
access to their data, and 63% share data with at least one TPA that
they do not actively use (anymore). Furthermore, 29% of the users do
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not revoke TPA access to their data because they forget they gave access
to it in the first place, and 8% were not even aware they could revoke
access to their data. Finally, their mental models, as well as some of
their answers, demonstrate substantial gaps in their understanding of
the data-sharing process. Importantly, 67% of the respondents think
that TPAs cannot access the fitness data that was collected before they
granted access to it, whereas TPAs actually can do this.

3.1 Introduction

Attacks, and in particular inference attacks using WAT data can be mounted
by any individual and/or entity who has access to users’ fitness data. Natu-
rally, this includes the WAT service providers (e.g., Apple, Fitbit—owned by
Google—, and Garmin) that collect the data from the trackers by uploading it
to their servers, typically through companion mobile apps installed on smart-
phones paired with trackers and, by extension, their business partners with
whom they share data (e.g., advertisers, data brokers), hence even hackers. In
these last two examples, the users might not agree with or even know about
the access to their data. Beyond these usual suspects, data is often made avail-
able voluntarily by users to some individuals (e.g., family, friends, co-workers,
healthcare professionals [18, 19]) and entities (e.g., employers [26], insurance
companies [232], service providers), typically through third-party applications
(TPAs) or social network profiles. Users do so for increased social or finan-
cial benefits (e.g., projected image, decreased premiums) and/or for additional
features not offered by the original services or applications.

Understanding how users share their fitness data, and more generally who
has access to their data, is paramount to properly assessing the security &
privacy risks associated with fitness data and to developing effective privacy-
enhancing technologies (PETs). Although WAT users’ attitudes toward fitness-
data sharing has been widely studied (e.g., [59, 60, 19, 46]), users’ actual be-
haviors have so far received, to the best of our knowledge, little attention.
In particular, fitness-data sharing through TPAs has been mostly overlooked,
although it has received substantial attention in the context of social network
data [233, 234, 235, 236] and from the point of view of the security of the
associated protocols (i.e., OAuth) [237, 238].

In this work, we fill this gap by addressing the following research questions:

e RQ1. To what extent and how do WAT users use and manage the access
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of fitness-related TPAs? To what extent are they aware of the data shared
with these TPAs?

e RQ2. To what extent are users aware of the availability of their PII and fit-
ness data on their fitness-tracking profiles (data types and visibility /audience)?
Which types of data do they share, and with whom?

e RQ3. What are users’ attitudes toward existing and potential (e.g., granular
sharing) PETs for controlling their fitness data shared with TPAs?

e RQ4. What are users’ mental models regarding fitness-data collection and
sharing processes between WATs and TPAs?

We designed a questionnaire that we deployed through a large-scale sur-
vey, in the US (N = 628), of WAT users equipped with a device from Apple,
Fitbit, or Garmin. We explored users’ behaviors, especially with TPAs, to-
ward data sharing. We surveyed users’ general understandings of how data
sharing works, including an analysis of respondents’ mental models [239] by
asking volunteer respondents to draw the data flow between WATSs, TPAs,
and other components. We also assessed their understanding of how they can
monitor data sharing with their main companion app paired with their WAT
(especially access revocation). We evaluated how convenient it is for them to
use these functionalities. Last, we measured their attitudes toward different
PETs. This last point, related to RQ3, is particularly important as in this
thesis, we eventually intend to propose multiple solutions to help users in the
data-sharing process to better protect their privacy. Therefore, we aim to as-
sess (1) how users perceive the solutions that we propose in privacy research,
and (2) the potential for conducting future work about designing new PETs
related to data-sharing.

Our results show that 70% of WAT users share fitness data with at least
one TPA. About half of them underestimate the number of TPAs to which
they grant access to their data, and 63% share data with at least one TPA
that they do not actively use (anymore). Not surprisingly, 29% of users did
not revoke TPA access to their data because they forgot they had given access
to it in the first place, and 8% of them were not even aware they could revoke
access to their data. Finally, there is a substantial mismatch between the
data that users think the TPA can access and the data it can in fact access:
67% think the TPA cannot access fitness data that was collected before they
granted access to it, whereas it actually can. Such gaps in users’ understanding
were also highlighted after we analyzed their mental models.
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Outline.

The rest of the chapter is organized as follows. In Section 3.3, we detail our
methodology including participant selections, survey designs, and procedures.
We describe the results of our analysis of the survey data in Section 3.4. We
discuss the design implications of our findings in Section 3.5, and the study
limitations in Section 3.6. Finally, we conclude the study in Section 3.7.

3.2 Related Work

Data sharing and access permissions have been widely studied in other fields,
in particular with regard to online social networks and mobile permissions
(mostly on Android). In their article, King et al. [233] explored what Face-
book users understand about their data-sharing with TPAs and how they
interact with them. Wang et al. [240] analyzed a large number of Facebook
TPAs and their user-data collection behavior, then, they reviewed the permis-
sion process to show it can override users’ general privacy settings and how
the permission box dialog reflects the true app behavior. Krasnova et al. [234]
studied the users’ privacy concerns and attitudes toward data-sharing with
TPAs on Facebook, whereas Wisniewski et al. [235] focus on how their con-
cerns and attitudes are related to Facebook users engagement with their “Face-
book friends”. Arias-Cabarcos et al. [241] studied the effect of transparency on
users’ attitudes toward data sharing by confronting them to Facebook TPAs’
behavior toward data sharing. Multiple studies have proposed different protec-
tion mechanisms to improve the online social network data-sharing ecosystem.
Delgado et al. [242] developed a policy file-oriented solution to better manage
data-sharing with TPAs on Facebook. After analyzing Facebook TPA data-
collection behavior the permission user-interface, Wang et al. [240] proposed
various solutions (i.e., alternative design for the panel) and helped the user
to better manage their permissions. Shehab et al. [243], Anthonysamy et al.
[244], and Cheng et al. [245] developed solutions to enable more flexibility in
online social network data-sharing with TPAs (e.g., fine-grained data-sharing).
Kontaxis et al. [55] developed a framework to only share a minimal amount
of information with TPAs when opening a Facebook session on other web-
sites. Ahmadinejad et al. [246] developed a framework to formally quantify
the privacy and utility implications of sharing data with TPAs for online social
network users.

As for mobile permission, Felt et al. [247] examined how Android permis-
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sions are efficient in helping users to be attentive and to understand data access
authorization during the installation of an app. Kraus et al. [248] analyzed
how statistical information (e.g., the number of requested permissions com-
pared to other apps) can help users in the privacy-utility trade-off. Shklovski
et al. [249] conducted a qualitative study about users’ reactions when con-
fronted with the data-collection behavior of their smartphone apps. Andriotis
et al. [250] studied how users reacted and adapted to Android permission-
system change. Liu et al. [251], Olejnik et al. [252], and Wijesekera et al. [253]
developed frameworks to automatically assess new permissions according to
those the user has granted in the past to help users in the permission-granting
process, whereas Tsai et al. [254] used a user-centered approach to propose a
feedback system to better involve users in the process of automatic permis-
sion and correct possible errors. Olejnik et al. [252] also propose a solution
for fine-grained sharing related to mobile permission. Finally, Cao et al. [255]
measured the actual behavior of Android users toward permissions.

Despite the previously cited work, there are still missing related works
specifically about WAT users. The highly numerical and physiological aspect
of WAT data opens the door to new threats that may require different types
of PETS that can not be used for online social networks on mobile phone
data. Furthermore, as a WAT is worn on the body, it collects data “passively”
(without the user actively using the device) as long as the user keeps wearing
it and thus collects more (and different types of) data than mobile phones or
online social networks which (in most of the case) only collects data related
to active usage. This is why, it is crucial to extend scientific knowledge about
user behavior to WAT users.

3.3 Methodology

In order to answer our research questions, we collected quantitative and quali-
tative data about WAT users’ data-sharing practices, through a questionnaire
we designed and deployed in an online user survey (N = 628). Given the
exploratory nature of the study, we did not run any statistical power analy-
ses a priory to set the number of respondents. However, considering previous
survey studies published on fitness-data sharing (e.g., Liao [59], N = 553), we
recruited around 600 individuals. Furthermore, we ran an a posteriori power
analysis which revealed a high level of power (1.0). The study was approved
by the institutional review board (IRB) of our university.
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3.3.1 Recruitment

We recruited our survey respondents via Prolific that was assessed as a
reliable crowdsourcing platform for scientific research [256]. We first ran a
screener survey to select the respondents eligible for our main survey. We
relied on Prolific’s native screening feature to target individuals who (a) use
a WAT (i.e., either a fitness tracker or a smartwatch) and (b) live in the US
and speak English fluently. We asked respondents four screening questions:
(1) the brand of their WAT, (2) the operating system of the smartphone paired
with their WAT (if any) (3) the frequency at which they wear their WAT (i.e.,
number of days per week), and (4) whether they ever shared their fitness data
with TPAs. We collected the data of N = 2504 respondents. This enabled us
not only to select eligible respondents but also to compute general statistics
on the market shares of WAT brands and on the use of TPAs.

For our main survey, we selected the respondents who reported using a
WAT manufactured by Apple, Fitbit, or Garmin, paired with an Android or
i0S smartphone with the official companion app (i.e., Apple Health, Fitbit,
and Garmin Connect, respectively). We chose these manufacturers as they
are the three market leaders in the US.! We excluded those who reported not
wearing their devices at least one day per week. We further excluded those
who reported having never granted access to their fitness data to a TPA. The
screener took 53 sec on average. Following Prolific’s recommendations, we
paid the respondents USD 0.12. We selected 1461 eligible respondents that we
contacted for participating in the main survey.

3.3.2 Design of the Survey Questionnaire

We designed the questionnaire to collect various information about WAT users’
behavior, awareness, understandings, and attitudes toward fitness-data shar-
ing. In addition to demographics and general WAT usage data, we collected
information related to fitness-data sharing with individuals and TPAs and
information about their general understandings of the fitness-data sharing
ecosystem and the respondents’ willingness to use new features that could help
them better preserve their privacy in the data-sharing process with TPAs. The
questionnaire was composed of between 40 and 51 items spread over seven sec-
tions. For some sections of the survey, the number of items varied depending

LApple is the leader in the US WAT market with a share of 37.6% in terms of sales
volume. Fitbit is second with 19.3%, followed by Garmin with a 8.1% [257]. This was
confirmed by the results of our screener survey.
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on the respondent’s WAT brand, smartphone operating system, and previous
answers. The questionnaire was designed to take around 30 minutes to com-
plete. Next, we explain each survey section in detail. The questionnaire is
available in Appendix A.1.2

Sec. A: Introduction. The respondents had to confirm consent to partic-
ipate in the study and they had to meet all the requirements. For a quality
check, they were asked to answer again the same (small) set of questions as in
the screener survey. Next, we asked a question about their WAT’s utility. The
respondents were asked which functionalities of their device they generally use
(i.e., related to the data collected by their WAT)), such as step tracking, sleep
tracking, or stress monitoring.

Sec. B: Data Sharing Using TPAs. We polled the respondents’ be-
haviors concerning and awareness of data sharing with TPAs (see RQ1). To
assess the respondents awareness regarding their own data-sharing behavior,
we repeated several questions in the survey (what they think they do vs. what
they actually do). The first time, we asked the respondents to answer the
question “off the top of their heads”, and the second time, we asked them to
answer the same question after checking their mobile apps (i.e., Apple Health,
Fitbit, or Garmin).

We asked them to answer “off the top of their heads” about the num-
ber of TPAs they currently use and about the names of the TPAs. Then we
asked them to answer the same question after checking the privacy settings of
their apps. To facilitate answering these questions and to reduce their cogni-
tive effort, we provided a step-by-step visual guideline to help them navigate
through their apps to find the requested information. We also provided the
respondents with a list of well-known TPAs that we selected by using the
ranking from data.ai (i.e., formerly App Annie). For each mobile platform
(i.e., Android or i0S), we selected the ten apps in the “Health & Fitness” cat-
egory with the highest number of active users at the time when we deployed
the survey. In order to reduce the respondents’ cognitive effort, we limited
the number of proposed options to ten. We did not include either the fitness-
tracker companion apps (i.e., Fitbit, Garmin, and Apple Health) in the app
list, or the apps that do not use data collected with Apple, Fitbit, or Garmin
WATS (e.g., Oura can be only linked to a specific connected ring).

Finally, we asked the respondents about their general usage of these TPAs

2Note that, as some questions can directly provide information about the data-sharing
process hence about prime the respondents, they are not displayed in the same order as
presented herex and are not necessarily ordered by information type.



48 3.3. Methodology

(e.g., whether they still use them actively). We also asked them how they
generally choose which data to share, among those requested by the TPAs.
Indeed, during the data-sharing process (i.e., granting access to a TPA), the
user has to select, for each data type requested by the TPA, which ones they
agree to grant access to. Because some TPAs request access to more data types
than they actually need to provide their services [52], we asked our respondents
if they usually share all requested data types, if they share everything only
when it is necessary to use the app, or if they share selectively.

Sec. C: Data Sharing via Public Profile. We also probed the respon-
dents’about their behaviors concerning fitness-data sharing via their public
profile? and their awareness regarding the types of information that are ac-
cessible via their public profile (see RQ2). Similarly to the previous section
about data sharing using TPAs, we asked the respondents to select, from a
list, the types of data that are publicly available on their fitness companion
app profiles. We explicitly asked them to do it “off the top of their heads”,
then we asked them to check their apps’ privacy settings. Thus, we could
estimate the difference between what they think they are publicly sharing and
what they actually share. Finally, we asked the respondents if they had ever
modified the default privacy settings of their app to change the availability of
some of the data on their profile.

Sec. D: Data Sharing with Others. We asked if they share their fit-
ness data with other individuals or entities such as their friends, employer,
and health insurers (see RQ2). We asked the respondents to check their apps
and to select the types of data that they share with other individuals, the
number of individuals they share with, and the types of relationships with
those individuals. We selected the following types of data recipients based on
a previous study [18]: friends, family, strangers, physicians (or health pro-
fessionals), co-workers, and financial-incentive programs. We replaced the
“financial-incentive program” with “employer” as most of these programs are
set up in collaboration with employers [258], especially in the US where em-
ployers pay for health insurance. Furthermore, an employer is more likely to
represent a natural person, compared to an organization that represents a le-
gal person. Hence, we also asked the respondents if they share their fitness
data in the framework of any health programs (e.g., with employer or health
insurers) [120, 164, 175].

30nly applicable for Fitbit and Garmin users, as Apple Health does not provide any
public profile functionalities.
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Sec. E: Attitudes toward Privacy-Enhancing Technologies. We eval-
uated the willingness of the respondents to use new PETs for data-sharing
practices with TPAs (see RQ3). We present three different functionalities:
(1) reduce time granularity, (2) to reduce spatial granularity (i.e., data preci-
sion), and (3) remind users to monitor TPA access to their data (i.e., “privacy
checkup reminder”). For each of these functionalities, we asked them to eval-
uate how likely they would use it on a seven-point Likert scale from extremely
unlikely to extremely likely.

The first solution (i.e., time-granularity reduction) enables users to choose
the level of time granularity with which their fitness data should be shared.
The second solution (i.e., data-precision reduction) enables users to choose
the level of precision with which their fitness data are shared. The solutions
are illustrated in Figures 3.1 and 3.2. The solution lets users choose to share
data as it is, rounded to the tens, rounded to the hundreds, or rounded to the
thousands. The last solution (i.e., access-monitor reminder) is shown in Fig-
ure 3.3. It sends users recurrent privacy notifications reminding them to check
and revise their previously granted access to TPAs. Users can customize the
notification period to receive it either weekly, monthly or every three months.
To the best of our knowledge, none of these functionalities were currently
tested in the earlier studies or implemented in the existing fitness platforms
(Although, Facebook and Google do encourage—with reminders— their users
to conduct so-called security /privacy checkups). However, since version 11,
a similar mechanism is used by Android to revoke the permission granted to
apps that are no longer used [259].

For the respondents who answered that they are not using actively all their
installed TPAs, we also included an open-ended question: “Why did you not
revoke their access ?7 We asked them to evaluate how easy did they find the
whole data-sharing process. Finally, we asked one last open-ended question
about the usability of the data-sharing monitoring process in order to collect
respondents’ suggestions.

Sec. F: Understanding of Data Sharing. We assessed the respondents’
understandings of the data-sharing process (see RQ4). We asked them to
evaluate (i.e., mark as true/false) different statements about what happens to
their shared data (from technical and legal aspects) after they grant access to
TPAs and after they revoke it.

Furthermore, we probed respondents’ mental models by asking them to
draw their thoughts. Mental models are explanations of individuals’ subjective
and implicit assumptions (i.e., tacit knowledge) about how they perceive and
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( Back Connect Fithit

- fitbit

Fitbit + Strava by Strava. Inc, would like the ability to
access and write the following data in your Fitbit
account.

Allow Al
Steps
() Mot Aggregated (steps taken every minute)
[ Aggregated by hours
] Aggregated by days
) Aggregated by weeks

It you allow only some of this data, Fitbil + Strava may not function as
intended. Learm more about these permissions here,

Figure 3.1: Tllustration of the time granularity feature where a user can choose the aggre-
gation level of the data they share with TPAs. “Not Aggregated (every minute)” is the
default option on most WAT apps.

conceptualize different phenomena [260] and how they think different technolo-
gies work [239]. Given that verbalizing such tacit knowledge might be difficult
for individuals (respondents in our case) [261], recent studies on security & pri-
vacy [262, 263, 46, 261, 264] asked their participants to draw their thoughts.
Following these studies, we asked the respondents to “Draw a picture repre-
senting how you think the access granting to TPAs is processed, and how your
fitness data is transferred between different entities.” We recommended they
consider including all relevant elements in their drawing, including their WAT,
their smartphone, the WAT providers’ servers, the TPAs, and any other el-
ements they deemed relevant. We also instructed them to use lines/arrows
to connect these entities (i.e., typically for data flows) and to use text to la-
bel them. We did not provide any template drawings so as to avoid priming
respondents’ and limiting their creativity.

The respondents were asked (1) to not spend more than five minutes on
the drawing, (2) to take a clean sheet of paper and a pen or pencil, and (3) to
take a good-quality photo with their smartphone. Last, they were informed
that their drawing skills would not be judged or evaluated by the researchers.



Chapter 3. “Revoked just now!” 51

( Back Connect Fithit

- fitbit

Fitbit + Strava by Strava. Inc, would like the ability to
access and write the following data in your Fitbit
account.

Allow Al
Steps
[J Mot rounded (e.q., 6243 steps)
[J Rounded to the tens (e.g., 6240 steps)
[] Rounded to the hundreds (e.g., 6200 steps)
() Rounded to the thousands (e.g., 6000 steps)

It you allow only some of this data, Fitbil + Strava may not function as
intended. Learm more about these permissions here,

Figure 3.2: Illustration of the time granularity feature where a user can choose the aggre-
gation level of the data they share with TPAs. “Not Aggregated (every minute)” is the
default option on most WAT apps.

Making the drawing was optional, and the respondents were informed that by
submitting a drawing they would automatically be enrolled in a lottery for an
extra 10$ bonus payment (1 bonus per 5 participants). We collected a total of
142 drawings.

Sec. G: Additional Questions. We included some questions that were not
directly related to data sharing. These questions were asked either to collect
demographic information that is not provided by Prolific, to verify that the
respondents correspond to all the criteria (i.e., screening questions), or to
personalize the survey (e.g., questions about the device usage and companion
app).

Finally, we measured the data-collection concern by using the Collection
part (four items) of the Internet Users’ Information Privacy Concerns (IUIPC),
as well as the Global Information Privacy Concern of the respondents by using
three items (i.e., items 2, 3, and 6) of the corresponding scale described in
Malhotra et al.” article on IUIPC [265]. Figure 3.4 show the score distributions.
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Touch to monitor and revise fitness-data access
granted to third-party applications.

E/; Privacy Checkup! 4:24 PM

This notification is posted once a month. You can set the frequency
in the settings of your main fitness application

Figure 3.3: Picture presented to the respondents to illustrate the proposed TPA access
monitoring reminder.
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Figure 3.4: Global information privacy concern (IUIPC) w/ fit.

3.3.3 Procedure

Before deploying the survey, we conducted cognitive pretests in order to ad-
dress potential problems in the survey design. We asked five researchers, who
were not involved in this research project, from our university to take the sur-
vey. They were all WAT users (2 Apple, 2 Fitbit, 1 Garmin), and all met our
selection criteria. One pretest was conducted in person, whereas the others
were conducted remotely via Zoom. For each pretest, the main investigator
carefully observed the test subject taking the survey. The test subject was
instructed to rephrase the questions, in their own words and out loud, to de-
scribe what they think was asked, then to answer it. At the end of the pretest,
the main investigator and the test subject were debriefed about the subject’s
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understanding and answers. The pretests showed that the survey instructions
and questions were overall clear. A few understanding issues were raised and
addressed. For example, we removed the negative forms in some questions,
put some important elements in bold, and added instructions to specify when
the respondents could validate a multiple choice question without selecting
any options.

Out of the 1461 eligible (potential) respondents we contacted (from the
screener), 745 started the main survey. To reach our objective, we contacted
them in batches. Ultimately, 660 completed the main survey (slightly above
our objective). It took, on average, 16 min and 14 sec to complete (SD: 10 min
and 28 sec, Min: 3 min and 33 sec, Max: 86 min and 17 sec). The respondents
were paid USD 5.

3.3.4 Data Reliability

Although Prolific is a reliable crowdsourcing platform, it cannot prevent un-
desirable behavior from some respondents, such as speeders and straightliners.
Thus, we applied some strategies to clean the data. First, the individuals who
answer “no” to the question on the use of TPAs in the main survey and “yes”
in the screener survey were redirected to the end of the survey and their data
was discarded (as they gave inconsistent information). Second, we analyzed
the answers of the speeders who completed the survey in less than five min-
utes. We decided to consider such respondents as reliable only if their answers
were consistent and if their answers to the open-ended questions made sense
[266]. Third, we analyzed inconsistent answers, where the answers to some
questions contradict the answers to other questions. For example, some Apple
Watch users indicated that they share some type of data with their family but,
in the subsequent question, they indicated that they share data with no one
from their family. As this inconsistency suggests that they may have answered
randomly, we decided to remove such answers. Yet we kept their mental model
if they submitted one (and potentially removed it during the coding process
as explained in the next sub-section). As a result, we removed the answers of
32 respondents.

3.3.5 Coding Process

We collected 142 drawings that represent the respondents’ mental models. We
first applied a quality check to ensure that all the drawings have proper quality



54 3.3. Methodology

and include (relevant/meaningful) content. We excluded 6 drawings (4.2%):
those whose photos were of low quality, did not include any relevant content,
or were copied from the Internet. For the remaining 136 drawings, we focused
on two aspects. First, we studied the technical understanding and correct-
ness of respondents, in terms of the information flow within the ecosystem
of WATs and TPAs. Second, we studied the contextual information, such as
their understanding of data-sharing and privacy concerns, they included in
their drawings. The mental model dataset is available in Appendix A.2 (i.e.,
all drawings?) and two codebooks (i.e., technical codebook and contextual
codebook) are available in Appendix A.3 and A.4 respectively.

For the respondents’ technical understanding, we excluded 4 drawings
(2.9%), as the respondents illustrated high-level abstract drawings and did
not represent the low-level details. Among the remaining 132 drawings, we
checked the types of the elements (WAT, smartphones, connected devices,
WAT servers, TPAs, etc.) depicted in the drawings and the way these el-
ements were connected to each other. Accordingly, we clustered the mental
models and identified the main types of models. Also, following previous stud-
ies [267, 263, 261, 268, 46], we labeled respondents’ mental models as either
correct, inaccurate, or incorrect.

For the contextual information displayed in the drawings, we reviewed
(1) the textual information and labels that indicate users’ actions, attitudes,
and understanding (e.g., access revoking, reporting privacy consequences),
(2) the recipient types (e.g., advertisers, hackers, public), and (3) the data
types (e.g., step, location, heart rate). Out of 136 drawings, we identified 73
(53.7%) that illustrate contextual information. We developed a codebook by
using open coding [269], where we coded 113 elements in the drawings. In
total, we identified 20 distinct codes categorized in four themes.

Finally, for the analysis of the answers to the open-ended questions, we
used the affinity diagramming method [270] to organize and sort the ideas
and thoughts raised in the answers. One of the researchers working on that
project proceeded to the coding of open-ended questions, then the main inves-
tigator reviewed and provided feedback. The codebooks for three open-ended
questions are available in Appendix A.5, A.6, and A.7 respectively.

4We removed all sensitive content (e.g., location information from the phone).
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Figure 3.5: Data collection privacy concern (IUIPC) w/ fit.

3.3.6 General Statistics

Regarding the WAT brand, 53% of our respondents own an Apple Watch,
38% own a Fitbit device, and 9% are Garmin users. Regarding gender, 61%
of our respondents are women, 37% are men, and 2% are non-binary. This
roughly corresponds to the general population of fitness-tracking users [271].
The average age of the respondents was 35 years old (SD: 11, Min: 18, Max:
73) distributed in the following ranges: 18-29: 37%, 30-39: 34%, 40-49: 16%,
50-59: 9%, 60+: 4%.°> The respondents reported that they wear their devices
6.4 days a week on average (SD: 1.1, Min: 1, Max: 7), and daily for 1-6 hours
(7%), 7-12 hours (24%), 13-18 hours (30%), 19-24 hours (39%). 17% of the
respondents reported that they have had their current device for less than a
year, 41% for 1 to 3 years, 28% for 3 to 5 years, and 14% for 5 years or more.

As for their privacy concerns (assessed using IUIPC items), the collection
scores are the closest to a truncated normal distribution (IUIPC Collection
score: 4 = 54,0 = 2.3,a = —0.05,b = 6.05; the Global Information Privacy
Concern score: = 3.5,0 = 1.6,a = —0.05,b = 6.005), with x the mean score,
o the standard deviation, and a and b the bounds. Figure 3.5 shows the score
distributions.

5The age information for three respondents was not available in Prolific’s statistics.
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Figure 3.6: Distribution of the number of users in terms of the difference between the number
of TPAs they really have and the number of TPAs they think they have. A positive difference
means that they underestimated the number of TPAs, whereas a negative difference means
that they overestimated it.

3.4 Results

In this section, we present the results and findings from our survey, according
to the ordering of the questions as presented in Section 3.3.2.

3.4.1 Users tend to forget about their TPAs.

The data collected in the screener survey shows that the majority of the US-
based WAT users (70.2%) share some of their fitness data with TPAs. Using
TPAs for fitness data is therefore a common practice and it is paramount that
users understand the functioning of this ecosystem (WAT-TPA) and its privacy
implications. Among the respondents of the main questionnaire, “MyFitness-
PAL”, “Strava”, and “Achievement” were the three most frequently installed
TPAs with fitness-data access. Figure 3.6 shows the distribution of the re-
spondents’ errors when estimating the number of their TPAs that have access
to their fitness data. The error is computed for each respondent and is defined
as the difference between the actual number of TPAs that have access to their
fitness data (obtained by asking the respondents to verify in their companion
app settings) and the estimated number of their TPAs that have, according
to them, access to their fitness data (“off the top of their heads”, before veri-
fication). We can see that the number of such TPAs is clearly underestimated
by respondents (the difference is significant with ¢(627) = 12.85,p < .001,
Cohen’s d = 0.51, paired sample t-test), which confirms Torre et al. [56]’s
statement that, due to the large number and availability of TPAs, users can
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Most (21%)

Some (32%)
All (37%)

None (10%)

Figure 3.7: Ratio of respondents who (still) actively use all, most, some, or none of their
TPAs.

easily lose track of the TPAs to which they granted access to their fitness data.
Although one-third of the respondents (35%) correctly estimated the number
of TPAs, almost half of them (49%) underestimated it, and only 16% over-
estimated it. As shown in Figure 3.7, two-thirds of the respondents reported
that they do not actively use some of their TPAs. Such behavior confirms that
a large proportion of WAT users share their data with service/app providers,
without benefiting from the service/app (as they do not use it), and sometimes
even without being aware of it. Moreover, 64% of the respondents reported
that they have never revoked data access, and 8% did not even know it was
possible.

In order to better understand how WAT users share their fitness data with
TPAs, we looked at the type of data that they agreed (by selecting them,
when asked) to share with their TPAs. As explained in Chapter 1, when
giving access to a TPA, the user can choose the type(s) of data they want to
share among those that are requested by the TPA (the types are defined by the
companion app). TPAs are known to ask for far more data than they really
need to provide their services [52]. 32% of the respondents declared that they
share everything; 45% of them share only the data necessary for the use of the
TPA; and 23% share selectively, despite a potential decrease in the utility of
the TPA. Note that the number of users who agree to share all the requested
data is substantially higher among owners of Apple devices (39%), compared
to owners of Fitbit (25%) and Garmin (21%) devices.

We looked at the reasons the respondents who reported not actively using
some of their TPAs did not revoke their access. Table 3.1 shows the results.
First, some respondents reported they usually do not bother with access man-
agement. They reported that they have never thought about such actions, and
some of them mentioned they do not perceive fitness data as sensitive hence
would not care about doing any privacy-preserving actions. [Man, 30-39 y.o.,
Apple]:  “T just never think about it and do not think it is an issue to leave
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Category | Freq.
comfortable to share data (not interested in access management) | 29.7%
forgot about installed TPAs (might revoke later) | 29.4%
contemplate using the TPA (actively) again in the (near) future | 26.7%
not familiar with data sharing and access management | 18.7%

perceive access management as complex / difficult (hassle) | 3.9%

want to get more benefits (health or monetary) | 1.1%

trust TPAs | 0.8%

others | 2.7%

Table 3.1: Main reasons respondents do not revoke access to their data to the TPAs that
they no longer use actively.

them on.” Second, many respondents simply did not revoke any accesses, as
they forgot that they had installed these TPAs. A few of them mentioned
they remembered their TPAs, only after answering our survey, and they plan
to revoke their access later. [Woman, 18-29 y.o., Apple|]: “I forgot and didn’t
realize the apps had access until completing this survey.” This confirms the
aforementioned findings that using many TPAs and forgetting them is a com-
mon (privacy) issue among WAT users. Third, several respondents did not
revoke access as they thought they might use the TPA later in the future.
Fourth, around one-fifth of the respondents reported they did not know that
TPAs collect their data or did not know how to manage these accesses. Finally,
a few respondents perceived access management as a hassle. [Man, 18-29 y.o.,
Apple]: “I find it troublesome to revoke their access.” This is confirmed by
the results in Figure 3.8 that shows that around one-fifth of the respondents
consider the TPA data-sharing monitoring process as moderately difficult to
very difficult.

Conversely, we looked at the reasons the respondents who reported revoking
access did so. More than four-fifths of the respondents reported revoking access
after not using their TPAs. 64.9% did not use the app for a long time hence
stopped the data collection, 13.5% were not satisfied with the app or had
technical issues, and 2.3% used a new TPA and revoked the access of the older
one. A total of 27 respondents (15.8%) reported revoking access due to privacy
concerns as they felt uncomfortable with data collection. [Woman, 30-39 y.o.,
Garmin|: “I was nervous about the data they were accessing.”
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Figure 3.8: Evaluation of the complexity / difficulty of the TPA fitness-data sharing moni-
toring process.

3.4.2 Users generally overestimate the amount of data
they share on their public profiles.

Unlike Apple, Fitbit and Garmin include social network functionalities in their
applications, where users have a public profile on which they can share certain
personal data. In its settings, Fitbit defines nine different types of data for
which the users can choose three privacy levels: “private”, “my friends”, or
“public.” However, since a recent update, a user’s average daily steps can no
longer have the “private” level . Garmin defines four different types of data for
which the users can choose four privacy levels: “only me,” “my connections,”
“my groups and connections,“ and “everyone.” A fifth level is available for
activities (namely “custom”), but none of our respondents used it. Moreover,
the users can also select among nine types of data that one can be displayed
on their profile.

Figure 3.9 shows, for each type of data that can be made available on
Fitbit and Garmin user profiles, the proportion of users that selected each
level of privacy. Here, we refer to concepts of both service providers: We used
(1) Garmin’s labels (e.g., “Badges” and “Badges and Trophies”), (2) Fitbit’s
privacy labels, and (3) both Garmin’s “my connections” and “my groups and
connection” as “friends”. We also removed all types of information that are
not available in both Fitbit and Garmin profiles. More details are available
in Figure A.1 of Appendix A.8. It can be observed that, in general, Fitbit
users tend to share more information via their public profile. This might be
caused by the difference of the default privacy settings in both apps. Indeed,
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Figure 3.9: Privacy level of different profile information for Fitbit and Garmin users. We
show only the types of data that are available on both Fitbit and Garmin users’ profiles.

whereas all profile information are by default set to “Only me” (i.e., private)
for Garmin, Fitbit set the privacy level of most types of data to “Friends” and
the privacy level of “Average Daily Step Count” (called “Steps”) to “public”.
Moreover, 43% of the respondents declared never having changed their privacy
settings.

We also looked at the information Fitbit and Garmin users thought “off
the top of their heads” were publicly available on their profiles before they
checked their settings. As shown in Figure 3.10, Fitbit and Garmin users
highly overestimate the public accessibility of their data, except for the friends’
list. This means that, for a large number of users, they well overestimated the
amount of information that is actually publicly available.

3.4.3 Friends and family are favorite data recipients.

As seen before, WAT users have the possibility to share some of their fitness
data with individuals. Although Fitbhit and Garmin provide privacy levels for
each type of data, Apple provides the possibility to define which type of data
they want to share with each of their contacts. We asked our respondents,
among a list of social relationships, with how many of them they share at
least one type of fitness data. Figure 3.11 shows that WAT users tend to
share their fitness data with friends and family more than with other groups
of individuals. Indeed, 40% of the respondents declared sharing data with at
least one friend and 38% with at least one family member, whereas less than
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Figure 3.11: Number of individuals in each relationship group with whom our respondents
share their fitness data.

10% share data with the other groups of individuals (only 2% with employers).
Furthermore, 1% of them declared sharing their fitness data in the framework
of a health program (e.g., with their employer and/or health insurance com-
pany). This corroborates Gabriele and Chiasson [19]’s findings about users’
privacy concerns and willingness to share. However, the actual sharing be-
havior that we measured is far lower than their willingness to share, as well
as their comfort in sharing, measured by Gabriele and Chiasson. This shows
that, even if users are ready to share their data, they do not necessarily do so.
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Figure 3.12: Self-declared likelihood to use the three different proposed PETS.

3.4.4 Users are inclined to use PETs.

We looked at the (self-reported) likelihood that respondents would use the dif-
ferent PETSs we proposed. The results, depicted in Figure 3.12, suggest that
most of the respondents are (slightly to extremely) likely to use each of the
three techniques. The likelihood is even higher for the access monitoring re-
minder, for which 63.5% of the respondents declared that they would likely use.
Therefore, we recommend fitness-data service providers to offer the reminder
technique that is rather straightforward to implement. As for the other tech-
niques, Velykoivanenko et al. [46] show that they can be implemented with a
modest decrease in (perceived) utility.

We also looked at the participants’ suggestions on how to facilitate the TPA
access management process (i.e., granting, monitoring, or revoking access).
We collected 480 meaningful (open-ended) answers and categorized them into
three main families of solutions.

First, the majority of our respondents (53.5%) proposed access monitoring
solutions. In line with our earlier finding, the most promising solution (39.8%)
was the use of periodic reminders in the form of pop-up notifications. The
respondents were in favor of a system that could review TPAs, flag those that
have not been used for a certain amount of time, and remind users to reconsider
the accesses they granted. [Woman, 30-39 y.o., Fitbit]: “I think the reminders
are great! I allowed access to some app and totally forgot about it. I'm not sure
if they’re still collecting data, but had I remembered, I would have revoked it.”
A few respondents (3.5%) even proposed a more proactive solution: a privacy
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check-up feature that could automatically revoke access for unused TPAs and
then provide users a list of TPAs whose accesses were revoked [Man, 30-39 y.o.,
Garmin|: “Garmin should automatically revoke access every few months (such
as every six months) and ask me again whether I should grant access to the
third-party apps. Then I can decide whether I am still interested in those apps
and whether it is worth sharing the data.” Some respondents (4.0%) asked
for a specialized app or a feature in the phone operating system to handle the
access management procedure. They (6.3%) proposed a consolidated feature
that can present a list of TPAs, including the types of data they collect and
where they store the data. [Man, 60+ y.o., Apple]: “Place the permissions in
a consolidated location, rather than skipping around to apps that may or may
not be reading data.” Note that, for Fitbit and Garmin, we should distinguish
between the use of the fitness tracking service’s (i.e., Fitbit and Garmin) API to
access fitness data and the use of the TPA’s mobile application associated with
the TPA (e.g., Strava). Indeed, the API calls could be made from Strava’s
servers, regardless of whether the Strava mobile app is actually used. The
fitness tracking service knows only when API is used, whereas the mobile
operating system knows only when the TPA’s mobile app is used.

Second, several respondents (12.9%) suggested solutions for improving the
access granting procedure. They asked for clear, transparent, and easy to
understand privacy policies (8.5%). [Man, 40-49 y.o., Garmin]: “I would
like to see everything laid out in plain English, no lawyer-speak. I would like it
to be clear whether they can keep my data forever, sell it data, collect it after I
revoke access, etc. I would also like to know who and why is potentially buying
my data.” Note that Harkous et al. [272] proposed a similar solution named
Polisis. A few respondents suggested a time-framed sharing feature where
users can decide to share only data collected in a given time frame (1.0%).

Third, many respondents (31.7%) proposed generic solutions. In particular,
they (20.8%) asked that the access management procedure be facilitated and
that the user interface be made easier to interact with. They mainly found that
the information about collected data types, sharing conditions, and sharing
consequences were not clearly stated when granting access and/or that they
were hidden in the interface. They asked for better visibility to help them
make informed decisions when granting access, and for usable interfaces to
facilitate revoking access. [Man, 40-49 y.o., Fitbit]: “Don’t bury the feature
under multiple levels of the app’s user menu. Place it front and center at the
top level under My Account.” A few respondents asked that users be informed
about TPAs (4.0%) and that there be better legislation (privacy rules) and
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law enforcement for some TPAs that infringe user privacy (2.5%). The rest of
the suggestions (4.4%) were about ensuring the deletion of previously-stored
data after an access is revoked, and the automatic revoking of an access when
uninstalling a TPA.

3.4.5 Users lack knowledge about data sharing.

We evaluated our respondents’ awareness and understanding of fitness-data
sharing with TPAs, both qualitatively and quantitatively. We asked them
questions, for which we knew the ground truth, and we requested that they
draw (facultative) on paper how they picture the data flow when sharing fitness
data with TPAs.

Mental Models - Technical Understanding

We first present our findings on respondents’ technical understanding of the
information flow in the WAT and TPA ecosystems. In terms of the elements
drawn, most of the drawings illustrated the main elements of the ecosystem
(i.e., WATs: 92.4%, connected devices: 84.8%, WAT servers: 81.1%, TPAs:
97.0%), where 65.9% of the drawings included all together these four elements.
Among the drawings with TPAs, 56.3% included one TPA or a third-party
server, and the rest included two or more TPAs or third-party servers. A few
drawings (10.2%) included additional elements such as databases, other smart
devices (e.g., scales), satellites, API, PC, GPS, etc.

We identified four main patterns in the drawings: the different types of
mental models.

e mm;. Online data synchronization where the data is transmitted from a
WAT to a TPA via a connected device and a WAT server.

e mmsy. Online data synchronization where the data is transmitted without
passing through a connected device: Directly from a WAT to a WAT server
and then to a TPA server.

e mmg. Offline data synchronization where the data is transmitted locally on
a connected device between a WAT app (e.g., Apple Health app) and a
TPA—without requiring data transmission through their respective servers.

e mmy. Drawings that we could not attribute to mm;—mmg (other).

Before evaluating these models, we checked the ground truth by carefully
reviewing the privacy policies and technical documents of Apple, Fitbit, and
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name description Apple Fitbit Garmin
mmq online, using a phone X v v
mms  online, without using a phone X X X
mmsg offline, using a phone v X X

Table 3.2: Ground truth for mental models.

category Apple Fitbit Garmin total
mmy n =18 (29.0%) n =24 (45.3%) n==6 (35.3%) 36.4%
mms n=2 (3.2%) n==6(11.3%) n=3177%) 8.3%
mms n=23 (371%) n=10 (18.9%) n=2 (11.8%) 26.5%
Mmig3 n =3 (4.8%) n=1(1.9%) n=1(59%) 3.8%
mmy n=16 (25.8%) n=12(22.6%) n=>5(29.4%) 25.0%
correct n =23 (371%) n =24 (45.3%) n=06(35.3%) 40.2%
inaccurate n =3 (4.8%) n=1(1.9%) n=1(5.9%) 3.8%
incorrect  n =36 (58.1%) n =28 (52.8%) n =10 (58.8%) 56.1%
total n = 62 n =53 n=17 n =132

Table 3.3: Mental model results.

Garmin [44, 273, 274]. We also contacted the Garmin support team to confirm
our findings related to their devices. Table 3.2 summarizes the ground-truth
findings showing that Apple devices have a different ecosystem, compared with
Fitbit and Garmin devices. Whereas Apple devices exchange information with
TPAs locally and not via their servers (i.e., mmg), Fitbit and Garmin devices
do it via their servers (i.e., mm;).> We also found that the data (for all devices)
is always transmitted through the smartphone, hence mmsy is an “incorrect”
model.

In summary, we evaluated the drawings for each respondent considering
exclusively their device brand. To wit, we considered mm, as “correct” for
Fitbit and Garmin owners and “incorrect” for Apple owners. Similarly, mms
was considered “correct” for Apple owners and “incorrect” for others. We also
labeled the drawings that included both mm, and mms “inaccurate”. Finally,
we considered other drawings (i.e., mmy) “incorrect”, as they usually missed
the main elements, and they did not correctly connect them.

Table 3.3 summarizes the findings. The first type (i.e., mm;) was the

SNote that Apple users can back up their data on iCloud. Also, TPAs can store their
data on their servers. However, the primary connection between the Apple Health app and
TPA is held locally.
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most frequently seen mental model where 36.4% of respondents drew it (e.g.,
Figures A.2a and A.2b in Appendix A.9). We found that 45.3% of the Fitbit
owners and 35.3% of the Garmin owners correctly drew mm,. However, 29.0%
of the Apple owners incorrectly thought that their Apple device transmits their
health data by using Apple servers.

The second type of mental model (i.e., mmy) was related to those respon-
dents who incorrectly thought that the online synchronization occurs without
passing through a phone. This model was seen for 8.3% of the respondents
(see Figures A.2c and A.2d).

The third type (i.e., mms) was for those respondents who connected their
WAT mobile app and TPA locally, without using any online path using the
WAT server (e.g., see Figures A.3a and A.2b). 26.5% of the drawings were
related to mmg. Apple owners (correctly) shared this mental model more
than other brand owners (e.g., 37.1% for Apple vs. 11.8% for Garmin). All
these respondents also connected their phones or TPAs to the servers of WATs
and/or TPAs. This indicates that respondents thought that, despite the local
synchronization, their data could also be stored on servers.

A few respondents (i.e., 3.8%) had an inaccurate understanding of the
information flow, i.e., mixed mm; with mmgs (see Figure A.3c). Hence, we
considered these models as inaccurate. Finally, 25.0% of the drawings belonged
to the “other” category (i.e., mmy) and were considered as incorrect (see
Figures A.3d and A.4a).

In conclusion, these findings show that more than half of the respondents
(56.1%) had incorrect mental models. Among this group, 44.3% mistakenly
drew a mental model that belonged to a device different than the device they
owned. The others, with incorrect mental models (55.7%), either thought
their device could connect to servers without using a connected device or
drew irrelevant infrastructures. These respondents did not have an essential
understanding of the main elements and their respective connections in the
WAT-TPA ecosystem. Such incorrect mental models can cause users to make
dangerous decisions when sharing their data hence compromising their privacy.
For example, while mmg (offline sharing, i.e., on the phone) suggests that if
the user deletes the TPA’s mobile app from their phone sharing is no longer
possible, it is not necessarily the case for mm; (online sharing, e.g., from the
service provider’s servers to the TPA’s servers). Lastly, in terms of the brands,
our findings show that Fitbit owners had a relatively better understanding of
the ecosystem compared with the other device owners (i.e., 45.3% for Fitbit
vs. 36.2% for others). Also, Apple users confused their ecosystem with that
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of other brands more than the other device owners (i.e., 33.9% for Apple vs.
19.2% for others).

Mental Models - Contextual Information

We identified four main themes in order to summarize the contextual infor-
mation included in 73 drawings as follows. Respondents expressed their lack
of trust in TPAs in 64.4% of the drawings. They voiced their concern that
TPAs would share their data to make profits (38.4%). They thought that TPAs
could share the data with entities interested in users’ data such as companies
working in market analysis and advertisement, developers, other TPAs, giant
tech companies, scientific institutes, and governments (e.g., see Figures A.4b
and A.4c). The respondents (19.2%) also drew that their data is stored on
the third-party servers (see Figure A.2b) and might be further analyzed (see
Figure A.4d). A few respondents particularly mentioned ‘information analysis’
(6.8%) and wrote about ‘user profiling’ (5.5%) (see Figure A.5a). Finally, a
few participants (8.2%) reported being concerned on whether TPAs can keep
their data safe and secure (see Figure A.5b). In conclusion, these findings
indicate that some users (i.e., 35.3% of the total sample), despite using TPAs,
have serious privacy and security concerns about them.

Some respondents (16.4%) reflected on their general privacy concerns,
in particular about the WAT services. A few respondents expressed con-
cerns that Apple and Fitbit might share their data, without their consent. A
respondent reported that Fitbit might share the data with affiliated companies
(i.e., Google, see Figure A.5¢).

Interestingly, about half of the respondents (47.9%) pointed to actions re-
lated to access management in their drawings. Most of the respondents
(42.5%) drew some elements about ‘granting or revoking access’ in their draw-
ings (e.g., see Figure A.5d). A few respondents (8.2%) also sketched ‘selective
sharing’ showing that they could share some data types and avoid sharing
others (e.g., see Figure A.3b). Although these drawings show that some re-
spondents (i.e., 25.7% of the total sample) are knowledgeable about PETs,
such as revoking access or partial sharing, these findings could also be biased
as the respondents already received informed about such practices while an-
swering the survey, and this might not reflect their actual practices in their
everyday life.

Finally, only a few respondents reflected trust and comfort in their
drawings (5.5%) where they reported feeling safe about their privacy and being
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Truth Ans. Truth Ans.

True Steps True 73 Location

True B Weight/height True 73 Sleep data

Trueﬂ Activities N/A | 51 Stress

True | 83  Gender N/A Username

False’ 80 Password N/A Menstrual cycle

True 76 Birth date Falsen E-mail

Figure 3.13: Proportion of correct answers regarding the data shared with TPAs. For each
type of data, the ground truth is provided. N/A means that we cannot define a common
ground-truth for all respondents as it depends on their device brand.

comfortable with the WAT and TPA companies. Two respondents drew that
the data collected by WATSs could be further analyzed to improve their services
and products. One respondent also reported believing that the data would be
deleted by a TPA after they revoke their access (see Figure A.5d), which is
not necessarily the case.

Quantitative Measurement of the Users’ Understandings

As for quantitatively measuring our respondents’ understandings about fitness-
data sharing with TPAs, we asked them to answer two types of questions. For
the first, we provided a list of data types and asked them to select, as if they
had granted access for all possible types of data, which one could be shared
with TPAs. For the second, we provided five statements about what TPAs can
technically and legally do after a user grants them access. Then, we provided
three statements about what TPAs can technically do after access is revoked.

Figure 3.13 shows the proportion of correct answers for each type of data.
We can see that, in particular, 20% of the respondents believe that the pass-
word of their companion app account is shared with TPAs, whereas 55% of
them believed that the e-mail address linked to their account is shared. Both
are not shared by any of the studied WAT brands. Indeed, sharing such
user information can be considered to be a high privacy and security threat.
However, we also observe that a non-negligible fraction of the respondents un-
derestimated the information that can be shared with TPAs. For example,
more than one fourth of the respondents believed that location or sleep data
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Truth Ans.
True BKEM The TPAis able to access the fitness data that was collected before | granted
access.

The TPA is able to access the fitness data that was collected after | granted
access.

True

True BEEM The TPAis able to store on their own servers any data they have access to.

True | 85 | The TPAapp is legally allowed - according to the federal laws in force in the
United States - to store any data they have access to on their own servers.

True Bekl| The TPA app is legally allowed - according to your companion app's terms of
service - to store any data they (the TPA) have access to on their own server.

False 82 The TPAwill be able to access the data collected after revoking, using the
previously granted authorization.

True | 84 | The TPAwill be able to access the data collected before revoking, if they
stored it on their own servers.

Falsekll The TPAwill still be able to access the data collected before revoking, using
the previously granted authorization (without storing it on their own server).

Figure 3.14: Proportion of correct answers regarding the (legal and technical) feasibility of
data access by TPAs.

cannot be shared with the TPAs, whereas in fact, they can.

Figure 3.14 shows the percentage of correct answers for each provided state-
ment about fitness-data sharing with TPAs. We can observe that, in partic-
ular, most of the respondents (i.e., two-thirds) falsely believed that the data
collected before they granted access cannot be accessed by the TPAs; this is
false. Indeed, granting fitness-data access permits the TPAs to access every
data of a specified type stored either on a server when using APIs or on a
smartphone, when using local sharing. In addition to this statement, most of
respondents (i.e., almost two-thirds) also falsely believe that a TPA, for which
the data access has been revoked, can still access the fitness data collected
before the access revocation, even if they did not store it.

In summary, a large majority of WAT users do not completely understand
the actual process of data sharing with TPAs. Such a limited understanding
could lead to an uninformed user making a decision that could have serious
privacy implications. For example, a given user could share every type of data,
without checking what a TPA actually does, while thinking that no previously
collected data would be shared. In this way, the TPA will be able to collect
much more fitness data than expected by the user in the first place, and even
without their knowledge of it.
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3.5 Discussion

Our findings show that around seven out of ten WAT users in the US shared
their fitness data, with at least one TPA (see RQ1). In line with the findings
of a previous study [56], about half of the users underestimated the actual
number of the TPAs to which they granted access to their fitness data. The
two main reasons for not revoking accesses are due to the lack of concern
about privacy and basic forgetfulness. Many respondents reported that they
forgot about the accesses that they have previously granted, especially as they
probably have stopped using the TPA (due to utility-related reasons). Indeed,
after realizing that they were sharing more data than they thought, many
respondents reported they plan to revoke some of their previously granted
access authorizations.

Our results show that WAT users highly overestimate the availability of
their personal information on their public profile (see RQ2). However, such
lack of knowledge about their own privacy settings should not be too harm-
ful, as their actual privacy levels tend to be higher than their estimations.
Furthermore, the default privacy settings of their companion apps seem to
substantially influence their current settings. Therefore, we recommend that
WAT providers increase the default privacy level, as much as possible, in order
to help their users preserve their privacy (i.e., opt-in). As for data sharing with
other individuals, as expected given the existing literature on the topic, they
tend to share data with friends and family members more than with other
types of individuals (e.g., co-workers).

Our respondents positively perceived all three PETs we proposed in the
survey (see RQ3), which is consistent with Murmann et al. findings [153].
However, when we asked them for their design suggestions, they only high-
lighted the importance of reminders and privacy checkups. They thought such
reminders could effectively help them to recall and review their TPAs and to
revoke the accesses they no longer use. A few respondents asked for more
proactive and specialized privacy checkups, such as TPA access managers that
periodically revoke access from unused TPAs and then ask users to reconsider
them to either renew or leave them (i.e., similar to what recent versions of An-
droid do: they revoke permissions from unused apps [259]). Yet, some of the
proposed solutions highlighted users’ misconceptions about the functioning of
the WAT-TPA ecosystem and were in fact not feasible. For example, the solu-
tion about privacy-checkup is feasible for Apple more than for Fitbit/Garmin,
as Apple Health can interact with iOS to monitor the usage of both mobile
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apps and TPAs. Finally, a few respondents mentioned interesting solutions
about time-framed sharing for enabling users to define the time frame for the
data they share.

Our findings on users’ knowledge of data sharing (see RQ4) show that
most of the WAT users have a limited understanding of the WAT-TPA ecosys-
tem. Many respondents had incorrect mental models or they confused this
eco-system with that of devices from other brands. Such incorrect mental
models can induce other risky behaviors for privacy, such as sharing more
data than is actually required or not regularly checking the previously granted
permissions. The respondents were mainly confused about the temporal di-
mension of access management, they were uncertain about what could be done
with their data before they grant accesses and after revoking them. This is
a particularly risky belief, as many WAT users can grant access to their pre-
viously collected sensitive data, thinking that the TPAs will access only their
new data. Our findings regarding mental models are relatively positive, com-
pared to those from an earlier study [46]. The respondents in Velykoivanenko
et al. [46]’s study were fresh WAT users (i.e., they began using WATSs for
the experiment and filled the questionnaire a few months afterwards), where
our respondents were experienced WAT users.” Our findings show that WAT
users have poor knowledge about the data-sharing process. The implemen-
tation of transparency-enhancing technologies (TETs) [275] could be helpful
in such case. For example, to help users improve their mental models when
using their app, service providers could display visual information as draw-
ings, thus representing where and how the collected data is transferred. Such
a visualization method has been used in the past, for example, to help users
understand privacy policies (Poli-see) [151]. Another solution would be to use
our results to highlight the most problematic areas and to add information to
help users better understand specific points about data sharing (e.g., clearly
state that “granting access to a TPA will cause sharing all the collected data
without taking into account the sharing date.”)

Finally, more than one-third of the respondents who submitted their draw-
ings demonstrated their privacy concerns and their lack of trust in TPAs.
Unfortunately, despite these privacy concerns, most WAT manufacturers (i.e.,
with their companion apps) do not take responsibility for actively supporting
users against privacy threats with TPAs. Exceptionally, Apple is relatively
restrictive about which TPAs their users can share their data with (e.g., they
have to be fitness-oriented and have a clear privacy policy) [276]. However,

"Note also that, in Velykoivanenko et al.’s study [46], they did not consider TPAs.
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the companion app’s service provider does not provide substantial technical or
legal support. For example, about data sharing with TPAs, Garmin’s privacy
policy states only that “once you direct us to share data with a third party, the
third party’s handling of your personal data is the responsibility of that third
party, and you should carefully review the third party’s privacy policy.”

In the case of data sharing, users’ privacy is directly related to their behav-
ior, as they voluntarily choose to share their data. However, we demonstrated
users’ general lack of awareness about how they should manage their TPAs (as
they tend to forget what they granted access in the past), as well as their lack
of knowledge about the functioning of WATSs. Furthermore, our respondents
demonstrated privacy concerns and a positive attitude toward PETSs, which
suggests that they want to improve their privacy. As their lack of awareness
and knowledge is, at least partially, the reason for their risky behavior, helping
them to improve their understanding of the whole data-sharing process (e.g.,
by implementing TETs in WAT apps) could be a promising approach for the
adoption of less risky behavior.

3.6 Limitations

Our work has some limitations. First, all the respondents were TPA users, and
as 70.2% of the WAT users are also TPA users, our respondents do not repre-
sent all of the WAT users. This should be noted, in particular, for questions
related to data sharing on public profiles. Second, we asked the respondents
to draw their mental models at the end of the survey; the drawing was op-
tional. Our findings about mental models are relatively correct, compared
to an earlier study [46]. This could be due to the self-selection bias prob-
lem [277] because our mental-model question was not mandatory, hence the
respondents who were less confident or knowledgeable might have skipped this
question. It is also possible that answering the survey could have influenced
the respondents’ knowledge about the system architecture (e.g., some ques-
tions refer to “servers” ). This could have affected the respondents’ mental
model, but only in a positive way. Our results revealed an important lack of
knowledge. Therefore, mental models would have probably been even worse if
we had collected the drawings at the beginning of the survey and from all sur-
vey respondents. Third, when asking the respondents about how many of their
TPAs they were actively using, they had to choose between “None,” “Some,”
“Most,” and “All.” The boundary between “Some” and “Most” could lack
clarity, as these terms do not represent a specific number or a ratio. How-
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ever, “All” and “None” are distinct enough to support the presented results.
Fourth, we should have calculated the minimum sample size by using power
analysis to conduct the statistical analysis. But we relied on earlier similar
studies and recruited slightly more. Nevertheless, we believe that our statisti-
cal test is valid, as an a posteriori power analysis by using G*Power 3.1 for a
paired t-test revealed a high level of power (1.0), which means that it is highly
likely we did not commit a type II error. Finally, the way we advertised the
study (by referring to “fitness-data sharing”) could have slightly biased the
respondents and the recruitment process. However, we mentioned only data-
sharing with TPAs, and avoided using the terms “privacy” and “security” to
not prime the respondents.

3.7 Conclusion

Through a large-scale survey with N = 628 Apple Watch, Fitbit, and Garmin
users in the US, this work contributes to the research area of wearable pri-
vacy by qualitatively and quantitatively analyzing WAT users’ perceptions
and data-sharing behaviors with third-party applications and individuals. Our
analysis provides valuable insights to privacy researchers and practitioners to
better understand WAT users and to design novel PETs for fitness-data shar-
ing with TPAs.

In Chapter 5, we will design, with a participatory approach, and evaluate
such PETSs, including—but not limited to—time-framed sharing, automated
access revocation, and access-monitoring reminders.






Chapter 4

Watch your Watch: Inferring
Personality Traits from
Wearable Activity Trackers

Abstract. One particularly sensitive type of information has recently
attracted substantial attention, namely personality, as it provides a
means to influence individuals (e.g., voters in the Cambridge Analyt-
ica scandal). This chapter presents the first empirical study to show
a significant correlation between WAT data and personality traits (Big
Five). We conduct an experiment with 200+ participants. The ground
truth was established by using the NEO-PI-3 questionnaire. The par-
ticipants’ step count, heart rate, battery level, activities, sleep time,
etc. were collected for four months. By following a principled machine-
learning approach, the participants’ personality privacy was quantified.
Our results demonstrate that WATs data brings valuable information
to infer the openness, extraversion, and neuroticism personality traits.
We further study the importance of the different features (i.e., data
types) and found that step counts play a key role in the inference of
extraversion and neuroticism, while openness is more related to heart
rate.

4.1 Introduction

One particularly valuable type of personal information, as illustrated by the
Cambridge Analytica scandal [278], is personality. Personality is often charac-

5
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terized by the Big Five OCEAN traits (openness, conscientiousness, extraver-
sion, agreeableness, neuroticism) [279], and it is known to influence behavior.
Information about an individual’s personality enables others to manipulate
this individual more efficiently by sending them appropriate signals (e.g., tar-
geted advertisements), thus raising serious ethical concerns. For instance,
Cambridge Analytica used data from social networks to infer the personal-
ity traits of US voters and to influence them during the 2016 Presidential
Election [280, 281]. Similarly, credit card companies have exploited clients’
purchase history to profile debtors and craft the appropriate strategies to re-
cover their debts [282] (e.g., by determining whether a specific client would
respond better to a comforting or threatening message). As a result, in-
dividuals are increasingly worried about the potential misuses of automatic
personality assessment [114]. Besides social networks, prior work has demon-
strated that personality could be inferred from the data collected by individ-
uals’ (smart)phones [283, 284, 285, 286, 287].

In this work, we focus on the problem of personality inference in the con-
text of WATSs. As such devices collect a large amount of behavioral and phys-
iological data, they bring valuable information to infer personality. Indeed,
behavioral indicators are one of the three types of indicators that are used to
assess an individual’s personality [288]. Furthermore, previous research exten-
sively studied the relationship between personality and physical activity [289]
and identified multiple correlations between the two. Moreover, recent works
show that WAT data can be used to infer characteristics related to personality,
such as stress resilience [70] and mood [89]. It has also been shown that some
personality traits are correlated to sleep [290]. Finally, WAT data can also
be combined with other types of data that are already known to be helpful
for personality inference (e.g., social network behavior, smartphone usage).
Data brokers can indeed easily link different types of users’ data from different
databases [291] and build accurate inference models using such a larger and
more diverse data set. To the best of our knowledge, this is the first work to
address the concrete (privacy) risks of personality inference from data collected

by WATsS.

Contributions and Results

We present the first study on the inference of personality traits from data
collected by WATs. We equipped 200+ volunteers with Fitbit wearable devices
(namely, Fitbit’s Inspire HR, WAT') and captured their step counts, heart rate,
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battery level, activity, and sleep time over the course of a four-month period,
as well as data available on their user profile, such as gender. To determine
the personality profile of our participants, we used the Big Five personality
scores captured through the standardized NEO-PI-3 questionnaire [62]. Our
longitudinal data collection enabled us to precisely evaluate to what extent
data collected by wearable devices are correlated to personality traits, and
thus may be used together with other types of data, to conduct personality
inference attacks.

In particular, we rely on a machine learning model trained on the data
collected by the wearable devices to predict the given personality trait ter-
cile. Although our model does not reach high levels of accuracy for any Big
Five personality trait, it is evaluated using a rigorous leave-one-out (LOO)
cross-validation, and we show that it can classify WAT users according to
openness, extraversion, and neuroticism with statistical significance compared
to the random-guess baseline. We also report on the most relevant features by
analyzing those that are the most used by the inference model.

Furthermore, we collected our participants’ concerns and perceptions re-
garding personality inference from their WAT data in an exit questionnaire.
Nearly half of our participants thought that such inference would not be possi-
ble at all, while nearly two-third of them reported that they would be worried
if it was. This is in line with a recent qualitative study, using interviews, that
shows that a substantial fraction of users are worried about personality assess-
ment and about its potential misuse [114]. Finally, we analyzed related prior
work based on phone and smartphone data, discuss their methodologies, and
compare our results and methodology to theirs. We show that the accuracy
level achieved by our model outperforms that of the current state-of-the-art
found in literature about (smart)phone-based inference using similar method-
ologies (ternary classification) [286] for all five personality traits. Furthermore,
we are the first to show, with a rigorous evaluation process, correlations be-
tween wearable data and neuroticism and openness. Based on our analysis,
we also discuss the design of potential privacy-preserving solutions.

In summary, in this work, we provide answers to the following questions:
(RQ 1) To what extent do the data collected from WATS help infer their users’
personality traits? (RQ 2) For each personality trait, which types of WAT
data bring more information for the inference? (RQ 3) How does aggregating
data or removing access to multiple types of collected data affect the inference
accuracy?
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Outline

The rest of the chapter is organized as follows. In Section 4.2, we introduce
the relevant background on personality measurement and on fitness track-
ing. Section 4.3 we further discuss our adversarial model in the specific angle
of personality inference. We present the previous work related to personal-
ity inference in Section 4.7. In Section 4.4, we describe our data-collection
campaign, provide general statistics about the collected data, and report the
privacy concerns and opinions of the study participants. We introduce our
personality inference attack framework in Section 4.5 and present the results
in Section 4.6. We further discuss our results in Section 4.8 before concluding
this chapter in Section 4.10.

4.2 Background

In this section, provide the necessary background regarding one key aspects
of this chapter: personality assessment. The assessment of an individual’s
personality is generally based on the Big Five personality traits, also known
as the five-factor model. The Big Five personality traits constitute a psycho-
logical model that defines an individual’s personality through five main traits

(specifically openness, conscientiousness, extraversion, agreeableness, and neu-

roticism; conveniently abbreviated OCEAN) that are subdivided into six sub-

traits each [62]. This model, which has been proven to be robust and stable

over time [292], is structured as follows [279]:

e Openness to experience — Individuals who score high on this dimension
tend to be intellectual, imaginative, sensitive, and open-minded. Those who
score low tend to be down-to-earth, insensitive, and conventional.

e Conscientiousness — Individuals who are high in conscientiousness tend
to be careful, thorough, responsible, organized, and scrupulous. Those low
on this dimension tend to be irresponsible, disorganized, and unscrupulous.

e Extraversion — Individuals who score high on extraversion tend to be
sociable, talkative, assertive, and active. Whereas, those who score low tend
to be retiring, reserved, and cautious.

e Agreeableness — Individuals who score high on agreeableness tend to be
good-natured, compliant, modest, gentle, and cooperative. Individuals who
score low on this dimension tend to be irritable, ruthless, suspicious, and
inflexible.

e Neuroticism — Individuals high on neuroticism tend to be anxious, de-
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pressed, angry, and insecure. Those low on neuroticism tend to be calm,
poised, and emotionally stable. Neuroticism is sometimes referred as emo-
tional stability; it represents the exact same facet of personality, excepting
that the score is reversed.

The NEO-PI-3 (third version of the NEO-PI) is a standardized question-
naire for assessing an individual’s personality, along the five aforementioned
traits. It is considered to be a reference in the personality assessment research
field [62]. The NEO-PI-3 is a 240-item questionnaire describing and analyzing
the five main aforementioned personality traits.This questionnaire delivers, for
each of the five personality traits, a score between 0 and 192. The Big Five
personality traits and the NEO-PI questionnaires are deeply related and have
been developed mainly by Costa and McCrae [293]. Official translations of
this questionnaire exist in many languages. In this work, we used the official
translation of the full NEO-PI-3 questionnaire, in French, the local language
at our institution.

4.3 Adversarial Model

As described in the introduction of this manuscript (Chapter 1), we mainly
focus on an adversary that can access data processed by the service provider
(i.e., Fitbit). Accessing the raw data would require either setting up a very
specific environment with very specific devices (or even custom-made ones)
and/or being in physical proximity to the devices. As we wanted to study
a largely scalable attack with of-the-market devices, we decided to focus on
already processed data that is easily available using a web API. One such ad-
versary is typically the service provider itself. In this case, the risks we can
measure represent a lower bound of the actual risks as the service provider
has access to the raw WAT data and the smartphone data collected by the
companion mobile app. Such an adversary also typically corresponds to any
entity that manages third-party apps (TPAs). In Chapter 3, we show that
70% of WAT users share their data with at least one TPA and that users
who share their data with TPAs tend to forget that they do. Furthermore,
it also shows the users’ lack of knowledge about the data-sharing process and
demonstrates that they are not aware of the actual amount of data they share.
Moreover, 9% of the participants in this study claimed to grant Fitbit access
to at least one of their social media accounts, so that Fitbit can automatically
make posts on their social media profiles related to their activity (e.g., step
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counts). An adversary could use such information, alone or combined with
other information available on the social profiles [294, 295, 296], to infer users’
personality. Also, an employer could offer free WATSs to their employees if they
agree to share the collected data with their employer. Over the past few years,
US companies have engaged in such corporate-wellness programs using Fitbit
devices [26]. A government could gain access to a WAT service provider’s
data, for national security reasons, as recently suggested by a former US pres-
ident [30]. An insurance company (e.g., health) could provide tracking devices
to their policyholders to better analyze risks. For instance, Google acquired
Fitbit [27] and Alphabet, Google’s parent company, is growing rapidly in the
health insurance market 28], furthermore, they plan to force Fitbit users to
migrate to their Google accounts [29]. Finally, other adversaries could obtain
such information by accessing tracking-device companies’ leaked databases or
by using eavesdropping techniques, as WATSs and their related mobile appli-
cations are known to use poorly protected wireless communication protocols
and data storage [194, 195, 198, 201, 208, 209].

In this work, we consider one such adversary who subsequently uses the
collected data to infer the psychological profiles of the associated users. As
explained in the introduction of this chapter, such personal information is
highly sensitive, from a security & privacy point of view. This information is
highly valuable for adversaries, thus pushing them to conduct such attacks.
In particular, psychological profiling enables discrimination and manipulation.
Indeed, assessing an individual’s personality can help influence their behavior.
For instance, it can be used to influence consumers’ choices through targeted
advertisements [282, 297] and even voters’ choices [298] as in the Cambridge
Analytica scandal related to the 2016 US presidential election [278], and
thus have an impact beyond manipulating individuals, by influencing global
politics.

4.4 Data Collection and Statistics

We describe our data collection campaign and we report on the general statis-
tics regarding our participant pool.

4.4.1 Data-Collection Campaign

Evaluating the privacy of WAT users, with respect to their personality, re-
quires having access to both WAT and personality data for a number of indi-
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Figure 4.1: Data-collection architecture. Users wear the device that transmits their data
to the Fitbit servers via their smartphone. At the beginning of the experiment, they grant
us authorization to access their data, from the Fitbit server, using the Fitbit API. For this
purpose, the protocol OAuth2 is used. That protocol allows users to select the different
types of data that they agree to share with a given entity, then this entity receives a pair
of tokens that they can use to request the user’s data through a provided API. Users also

answer the online NEO-PI-3 personality questionnaires through which the ground truth is
established.

viduals. In order to collect such data, we organized a large-scale experiment.
We recruited the participants through LABEX, a dedicated structure of the
University of Lausanne (UNIL); it manages a pool of around 8’000 students
from two universities (a technical one, i.e., EPFL, and a general one, i.e.,
UNIL itself, that covers a broad range of disciplines). Those who were inter-
ested in our experiment responded to a screener questionnaire that we used to
verify their eligibility for participating. 981 individuals answered the screener
questionnaire and 429 were compatible with the experiment criteria: to own
a smartphone compatible with the Fitbit application, to speak French(i.e.,
the local language at the universities; the questionnaires were in the local
language), and to not already own a WAT. Given the number of devices at
our disposal and the withdrawals during the participants selection phase, we
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finally recruited 230 individuals.!

In order to ensure a better diversity of personality profiles, we selected
the participants from different academic institutions and various study disci-
plines (see Figure 4.3). Every selected participant received a Fitbit Inspire HR
bracelet. We chose to use a Fitbit device because Fithit is one of the leaders in
the WAT market [24] and because it provides a well-documented and effective
API [299] to collect users’ data. Moreover, the Fitbit Inspire HR is a high-
end general-purpose WAT; as such, it gave us access to a wide range of data
types (including step count, activities, sleep time, and heart rate) while still
being used by a large user base. Using Fitbit trackers introduced some minor
limitations such as the limited accuracy of some of their sensors (compared to
higher-end devices) [300] as well as limited access to the data that they collect
(only processed data, unlike specialized devices).

We only recruited new users because we wanted to provide them all the
same WAT model, for data homogeneity and data collection infrastructure
(Fitbit API). Furthermore, recruiting individuals who already owned a WAT
could have increased the dropout rate as they would have been tempted to
switch back to their own devices during the data collection.

Once they received their devices, the participants had to install the Fitbit
application on their smartphones. They were instructed to wear the bracelet
daily and all day long (they were free to remove it for comfort reasons, for
example, at night) and to regularly synchronize with the Fitbit app running on
their smartphones. They also had to answer a questionnaire that consisted of
demographic questions and the NEO-PI-3 standardized personality assessment
items [62] (see Section 4.2), which were used to compute their Big Five scores.?
We chose that specific questionnaire because it is a reference questionnaire
and because it provides results with high confidence and fine granularity. The
purpose of this questionnaire was to collect the necessary ground truth. As
most of the individuals in the LABEX participants pool are native French
speakers, and as the French version of the test was available at the psychology
department of our university, we decided to use the test in French for this study.
The participants also had to answer an exit questionnaire, at the end of the
experiment, which consisted of questions about how they used the application
and device, what their privacy concerns were, and what they understood about

'Part of the participants agreed to share their WAT data. The dataset is available at
https://dx.doi.org/10.5281/zenodo.7621224

2The questionnaire is available on https://www.parinc.com/Products/Pkey/275, un-
fortunately, we cannot directly share it due to copyright issues.
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their data processing and storage. Except for their answer about their privacy
concerns related to personality inference presented in Section 4.4.3, the data
collected through this exit questionnaire are not directly used in this work.
The WAT data were collected for four months (between May and Septem-
ber 2020)3 using the Fitbit API (the participants had to grant us access au-
thorization by using the OAuth2 protocol).* We collected the step count for
every one-minute interval; the average heart rate for every one-minute inter-
val; the sleep related data such as the bedtime, wake-up time, sleep quality
or the number of times that a user was restless during their sleep (for those
who wore the device at night); as well as the sports activities (e.g., running,
biking) that were automatically detected by Fitbit. Finally, in order to ensure
high data-utility of our dataset, we decided to only keep the 204 individuals
who wore their devices at least 50% of the time. Figure 4.1 depicts the global
hardware and software architecture of our data-collection campaign.

Ethical Considerations

During the distribution of the devices, the participants had to sign a consent
form that described the conditions of participation, the data being collected
(and the associated data management plan), the procedure to withdraw from
the study, and information about the financial incentive. The institutional
review board at our university validated the consent form and approved the
entire experiment. As a reward, participants were paid 60 CHF (~ 60 USD) at
the end of the data collection campaign, and they were allowed keep their
device for personal use, which they all did.

4.4.2 Descriptive Statistics

Among the 204 selected participants, 64.7% were women, 34.8% were men, and
0.5% (1 participant) preferred not to indicate their gender. The women/men
ratio is representative of the Fitbit user base. Indeed, we can observe that,
in the general population, two-thirds of Fitbit users are women [301]. 72%
of our participants are students from the general university (where a major-
ity of students are women), and 28% are from the technical university. They
are on average 22.6 years old with a standard deviation of 2.7 years. The

3The data collection campaign was conducted during the COVID-19 pandemic. However,
there was no lockdown or restriction from May to September in Switzerland; only large
events were canceled.

40ur access was revoked shortly after the end of the experiment.
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Figure 4.2: Cumulative distribution function of the personality score for each of the five
main traits (each score is between 2 and 192). The solid lines are the terciles, we display
them because we proceed to a ternary classification (see Section 4.5). The gray line (in the
middle) is the median.

Table 4.1: Distribution of the number of samples for each tercile and each personality trait.

O C E A N
Low 71 (35%) | 68 (33%) | 72 (35%) | 69 (34%) | 69 (34%)
Medium | 70 (34%) | 71 (35%) | 64 (31.5%) | 69 (34%) | 67 (33%)
High 63 (31%) | 65 (32%) | 68 (33.5%) | 66 (32%) | 68 (33%)

youngest is 18 years old and the oldest is 33 years old. Note that even if
the age range is not representative of the general population, as the Big Five
model is known to be stable over time [292], this should not substantially in-
fluence our results. Regarding the national statistics in our country, the age
distribution corresponds to the student population. However, the proportion
of women is slightly higher in our dataset than in the global student popula-
tion. The scores for all personality traits correspond to a normal distribution.
The medians of the scores for the five different personality traits have values
between 96.5 and 125 points, depending on the trait. As shown in Figure 4.2,
the scores for all personality traits are bell-shape distributed. This figure also
shows the different terciles for each personality trait. Terciles are relevant as
we focus on ternary classification in our experiments, as explained in detail in
Section 4.5.1. With terciles of 84 and 109 points, neuroticism has the highest
score variability, which helps us to better infer that personality trait (this is
confirmed by our results; see Section 4.6), as the difference between individu-
als appears to be substantial. Table 4.1 shows the distribution of participants
across each tercile of each personality trait. We can observe that the distri-
bution is globally well balanced with no majority class containing more than
35% of the samples. Because participants can have the exact same scores, the
terciles are not always of size exactly 33%. The participants wore their devices
during 88% of the data collection period on average. The individual with the
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Figure 4.3: Distribution of the study fields among the participants.

lowest wearing percentage wore it 50% of the time, and the individual with
the highest percentage wore it 99% of the time. They have an average heart
rate of 75 bpm (beats per minute) with a standard deviation of 7 bpm. The
highest average heart rate is 94 bpm, and the lowest one is 59 bpm. During
the data collection period, the participants took 1,066,263 steps on average,
with a standard deviation of 337,049. The highest number of steps taken is
2,637,922 and the lowest one is 360,133. During the data collection period,
the participants took 8,669 steps per day on average with a standard deviation
of 2,740; a minimum of 2,928 steps, and a maximum of 21,447 steps. They
slept for 8 hours and 17 minutes per day on average with a standard deviation
of 2 hours and 4 minutes. Physical activities are automatically detected and
recorded by the device, however, it only takes into account activities lasting
15 minutes or more. As shown by Figure 4.4, walking was, by far, the most
practiced activity (63% of the activities). This is explained by the fact that, if
other physical activities are generally considered for sports, walking can also
be included by simply moving from one place to another. As the participants
were free to sometimes remove their bracelets, they probably took steps, slept,
or did activities that were not taken into account by the device, therefore,
the previously discussed statistics about Fitbit collected data could be slightly
underestimated. Details about the distribution of study fields and activities
are shown in Figure 4.3 and 4.4.
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Figure 4.4: Breakdown (by types) of the activity practiced by the participants during the
data collection campaign.

4.4.3 Participants’ Privacy Concerns

In the exit questionnaire, we asked the participants to evaluate on a 5-point
Likert scale: (1) To what extent (that is, with what precision) can personality
be inferred based on the data collected from your Fitbit tracker? (from “Not
at all precise” to “Extremely precise”) and (2) To what extent would you be
worried if the user’s personality could be inferred accurately based on the data
collected by your Fitbit tracker? (from “Not at all worried” to “Extremely
worried”). For the first question, 47% of the participants answered “Not at all
precise” or “Slightly precise”, 34% answered “Moderately precise” and 19%
answered “Very precise” or “Extremely precise”. For the second question, 38%
of the participants answered “Not at all worried” or “Slightly worried”, 26%
answered “Moderately worried” and 36% answered “Very worried” or “Ex-
tremely worried”. Our participants also ranked personality as one of the most
concerning types of information in a proposed list® (the top-3 was: political
views, personality, and socio-economic status), and they were more concerned
with personality being inferred than religion or sexual orientation (both have
less than 30% of participants who either are “Very worried” or “Extremely

Sage, alcohol, and tobacco consumption, illegal drugs consumption, menstrual cycles,
political views, religion, sexual activity, sexual orientation, socio-economic status
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worried”).

4.5 Inference

Privacy is commonly characterized as the (in)accuracy of an inference pro-
cess [302], conducted by an adversary, that takes user data as input (data col-
lected from WATS in our case) and outputs (a probability distribution across
possible) values for some private attributes of the users (scores for the OCEAN
personality traits in our case). In order for the privacy quantification to be
fair and unbiased, it is paramount to properly design the inference framework
and methodology, as shown by Mgnsted et al. [286].

In this section, we describe the machine-learning-based inference method-
ology, the data extracted from the WATSs for the inference (i.e., the features),
and we report on our empirical results regarding the quantification of the
privacy of WAT users, with respect to their personality.

4.5.1 Methodology

We define an inference framework which consists in training and testing a
machine-learning (ML) model for predicting the scores for each of the OCEAN
personality traits, for a given user and the WAT data associated to them.
Based on the participants’ “actual” scores, computed from their responses
to the NEO-PI-3 questionnaire [62] by following a standardized methodology,
we establish the ground truth for the personality traits. We use this ground
truth to train the ML model, in a supervised manner, and to evaluate its
performance in terms of accuracy.

Inference Method

We chose to rely on classification methods because (1) the category within a
general population to which an individual belongs to is the most important
aspect from a psychological point of view [62] (as explained in Section 4.2)
and (2) it is the most common method used in prior work [284, 285, 286].
Classes can be defined based on quantiles in order to get evenly sized groups
(in terms of their number of individuals). For example, in the case of two
classes (i.e., binary classification), the first class is defined as the individuals
whose score is lower than the median and the second class as those whose
score is higher than the median. In the case of three classes (i.e., ternary
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classification), the class boundaries correspond to terciles. A common problem
of using the aforementioned technique with an even number of classes is that,
for bell-shaped distributions of scores, it splits participants in classes in the
middle of the bell, where most of the participants lie. To minimize this issue,
we defined the inference attack as a ternary classification process, similarly
to previous works [285, 286]. Therefore, the classification problem consists in
inferring, for each individual and each personality trait, if they belong to the
bottom, middle, or top personality score class (regarding the score terciles),
with respect to the whole dataset. Similarly to the related work [284, 285, 286],
we directly computed the terciles on the participant dataset. We considered
computing the terciles according to official statistics (national, for example),
but on the one hand, such information is not necessarily easily available (or
even exists), and on the other hand, this would not have solved the problem
of choosing the population for which these terciles should be computed (e.g.,
Swiss students, Swiss citizens, European citizens). By calculating the terciles
on the dataset, we at least guarantee that they correspond to the population
directly studied in this work. Furthermore, personality is not usually measured
in absolute terms by psychologists [303], but relative to a given population in
space and time (terciles change with time and culture).

Evaluation

We evaluated privacy for each of the five main personality traits (OCEAN)
independently. For each trait, we defined three classes from the whole dataset
as explained above, and we conducted the inference and the evaluation. In
order to train and evaluate the model, we proceeded to a nested Leave-One-
Out (LOQO) cross-validation. More specifically, for a dataset S = {x;|i €
[1..N]}, where x; denotes the data of participant i, the model was trained and
evaluated N times using S \ {z;} as training set and {x;} as testing set for
each i € [1..N]. Moreover, for each of the N iterations, the feature selection
strategy and its hyper-parameters (i.e., number of selected features) as well as
the hyper-parameters of the model were chosen using a grid search with LOO
cross-validation on the N — 1 elements of the training set.

By proceeding this way, we make sure that the results presented are fair
in the sense that information leakage (e.g., when the feature selection is done
on the entire dataset) is prevented. As pointed out by Mgnsted et al. [286],
sharing data between model selection and model evaluation steps leads to
overestimating performance of the models at stake. In particular, they show
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that some of the works related to ours [284, 285] are subject to such method-
ological biases. We use the accuracy (i.e., the proportion of correctly clas-
sified instances) as our evaluation metric. This metric is the most suitable
for comparing different models, and it provides a clear understanding of their
performance. Moreover, it is the only metric that is used in all prior work
performing classification [284, 285, 286]. However, we are aware that accu-
racy is limited since, as it aggregates the confusion matrix into a single value,
it does not distinguish between different types of errors and their associated
magnitudes (e.g., misclassifying a participant as “bottom” instead of “top” is
worse than misclassifying them as “middle”). Finally, we compare our results
to the baseline defined by a uniformly-random naive classifier (the probability
of inferring the correct class for each trait and each test individual is there-
fore 33%). Due to slight differences between the class sizes, we decided not
to use the majority baseline. When the difference between two class sizes is
zero or one, holding-out a single sample from the training set would result in
the corresponding class being under-represented in the training set and the
majority-class classifier would then underperform the random baseline.

The inner loop of this nested cross-validation performs both feature and
model selection. The feature selection strategy is cross-validated among (1)
univariate feature selection, (2) a greedy feature elimination strategy, and (3)
a model-based feature importance approach. The models at stake in this inner
cross-validation loop are Support Vector Machines (SVM) and Random Forests
(RF). Cross-validated hyper-parameters for SVMs are the kernel (Gaussian
and linear kernels are considered), C' and ~ (for Gaussian kernels), while for
RFs, we have cross-validated the number of trees in the forest and the split
criterion. For all traits, in all iterations of the inner loop, the selected model
is an SVM. Note that, as it can be observed in Table 4.5, SVM is the most
common ML method used in prior work for solving similar problems. For the
implementation, we have relied on the scikit-learn [304] machine learning
library for Python.

4.5.2 Feature Extraction

We collected different types of data through the Fitbit API: time series (steps,
heart rate, battery level), events (sleep, activities) and standalone features
(gender, resting heart rate). The extraction of most of our features consisted
of aggregating time-series data over time intervals, with some periodicity using
the following method: for each day of the week, we aggregated data according
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Table 4.2: List of all features used in the evaluation. “Std.” stands for standard deviation.
The “+” operation for data aggregation means that both aggregating methods were used
to obtain the given feature. The dots in the last 5 columns indicate that the corresponding
features of this data type were selected by the model for inferring the corresponding trait
in our evaluation.

Data Type Statistics Aggregation Method O|C|E N
Step count Mean, Std. Days of the week + 4-hour period | e | o | e °
Step goals Nb. of occurrences The whole data collection period | e °
Heart rate Mean, Std. Days of the week + 4-hour period | e e o |o
Sleep time Mean, Std. Days of the week + 4-hour period | e o |
Other sleep details Mean, Std. No aggregation o | o
Activity time Mean, Std. Days of the week + 4-hour period | e °
Activity types Entropy, Nb., Proportion Activity type o (o (o o |0
Battery charging Entropy, Nb. of occurrences | Days of the week, 4-hour period

Gender Category N/A . o |o

to predefined periods of the day. To this end, we partitioned the day into six
periods of four hours with boundaries at: 2AM, 6AM, 10AM, 2PM, 6PM and
10PM. Previous studies highlighted that personality is correlated with indi-
viduals’ circadian rhythm (natural process that regulates a 24-hour biological
cycle) [305, 306]. We thus defined 6 x 7 = 42 different periods (e.g., “Monday
between 10AM and 2 PM”) for aggregating the data into features. We then
computed features corresponding to their two first statistical moments (i.e.,
the mean and the variance for the heart rate and step count taken across each
of these periods).

Note that, although the extracted features refer to physiological and be-
havioral information, they are not as rich as those that can be collected from
a (smart)phone [283, 307, 285, 286, 308]. They could also contain errors as,
for example, the sensor signal analysis might sometimes not detect the right
activity or confuse a step with certain arm gestures.

Furthermore, they are particularly centered on the user’s activities and,
unlike phone data, contain no direct social information, even though multiple
personality traits have a strong social component.

Steps and Heart Rate

Steps and heart rate have the same data structure: they are sequences of pairs
(t,x), where t a timestamp, and x a scalar value. The sampling period is
of one minute. We extracted features from the data of both types by using
the periodic aggregation method explained above. As Fitbit “rewards”, on
a daily basis, its users whose step counts exceed a certain so-called “daily
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step goal” (set to 10,000 by default), we added the following three related
features: the number of times this goal is achieved, the number of times it is
just achieved (up to 5% more than the step goal), and the number of times
it is almost achieved (up to 5% less than the step goal). Furthermore, the
Fitbit API directly provides the resting heart rate for each user, which we
used as such as a feature. As mentioned in Section 4.2, a relatively high
score in extraversion is, for example, linked to sociable and active individuals
whose traits could influence the step count. One of the extraversion sub-traits
is excitement seeking, which can lead to an augmentation of an individual’s
heart rate. Neuroticism is linked to impulsivity and stress, which can also
cause variations in heart-rate. Moreover, it has been shown that heart-rate
variability and an individual’s personality are correlated [309].

Sleep and Activities

Sleep data are composed of a start time, a duration, and other information
such as the sleep quality, the number of times the user wakes up during their
sleep, and the number of times they are agitated. We built features of the
same structure as steps and heart rate. We generated, the mean and standard
deviation of sleep time, for each four-hour and day-of-the-week periods. We
also computed the mean and standard deviation of the awake duration during
sleep, the awaking count, the sleep duration, the time (in minutes) it takes to
fall asleep, the restless-moment count and duration, and the sleep efficiency
(all these details are directly provided by Fitbit). The data structure of the
activities is similar to that of sleep data. We therefore built similar features.
We computed the number and proportion of each practiced activity, as well as
the entropy of the distribution of practiced activities. As mentioned previously,
active individuals tend to obtain higher scores in extraversion. As for sleep,
previous studies established that an individual’s sleep quality and habits are
correlated with their personality [310, 290, 311].

Battery

The “current” battery level of the device is available at any point in time
through the profile endpoint of the Fitbit API. To eventually obtain a battery
data time series for each participant, we collected this twice a day, at a fixed
time. Note that the API returns the battery level at the time of the last syn-
chronization (together with the time of the last synchronization). Then, we
extracted the average battery level right before and after a charge, as well as
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its standard deviation. We also computed how many times each participant
charged their device and the entropy of the time elapsed between these events,
for each day of the week. We also created similar features by using only the
six previously defined periods of the day (without again aggregating with the
days of the week). However, the Fitbit API provides only the battery level
at the time of the last synchronization between the bracelet and the smart-
phone. Therefore, we might have lost information if users had not synchronized
their data regularly (e.g., if Bluetooth was not continuously activated on their
phone).

Gender

As gender is known to be correlated with the score of some personality traits [312],
and as such information is often available through the profile endpoint of the
Fitbit API, we included gender data as a feature. All the participants specified

a gender in their profiles. We observed a mismatch between the gender they
specified in their Fitbit profiles and that specified in their responses to our
questionnaire for only 0.98% (n = 2) of the participants. Self-reported gender
data can therefore be considered as a readily-available (to an adversary) and
trustworthy data in the inference process.

4.6 Results

Inference Accuracy

As shown in Figure 4.5, we obtained results that are statistically significantly
better than the baseline® for openness (p < 0.01), extraversion, and neuroti-
cism (p < 0.001). The trained model correctly classified 45% of the partic-
ipants’ scores in openness (+36% with respect to the baseline), 52% of the
participants’ scores in extraversion (+58% with respect to the baseline), and
50% of the participants’ scores in neuroticism (4+52% with respect to the base-
line). We further observe that Fitbit data brings some valuable information for
the inference of other traits, such as agreeableness and conscientiousness, but
these results are not statistically significant. Regarding the definition of each
personality trait, it is relatively intuitive that WAT data are less informative
for a trait such as agreeableness than for neuroticism or extraversion.

6All statistical tests for model comparison were conducted using McNemar’s test, with
Bonferroni correction.
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Figure 4.5: Accuracy of the ternary classification with respect to the baselines for each of the
five main traits. For each trait, we display the increase of accuracy (in percentage) compared
to the random baseline, the accuracy of the baselines and the accuracy of the prediction.
Percentages are rounded to the unit. The accuracy of the prediction outperforms both
baselines with statistical significance with Bonferroni correction (i.e., using an « value of
0.05/m with m the number of inferences, 5 in our case) for openness (p < 0.01), extraversion,
and neuroticism (p < 0.001).

Table 4.3 provides more performance metrics, namely precision, recall and
fl-scores for each tercile. For openness, extraversion, and neuroticism, the
weighted mean of the fl-score (respectively 0.45, 0.51, and 0.50) is clearly
higher than the baseline (0.33), which confirms the results presented above.

Influential Features

In Table 4.2, we can see which general-data types were used to extract the
relevant features for inferring each personality trait. For each inference, we
looked at the three most informative features. We considered the features
selected more times during the inner loop of our cross validation as more in-
formative. For features used to infer openness, extraversion, and neuroticism,
we conducted statistical tests (Kruskal-Wallis with Bonferroni correction) to
reject the natural null hypothesis that the differences between terciles are in-
cidental to the collected data. We show that we can reject the null hypothesis
for all of these features with p < 0.05(x),p < 0.01(x%),p < 0.001(% x %) or
p < 0.0001(x * #x). Figures 4.6, 4.7, and 4.8 show the distribution of the most
informative features over the terciles for openness, extraversion, and neuroti-
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Table 4.3: Precision, recall and fl-score for each class.

Openness Prec. | Rec. | fl-score | B. fl-score
Low 0.47 0.39 0.43 0.34
Medium 0.48 0.60 0.53 0.34
High 0.39 0.35 0.37 0.32
Weighted Mean | 0.45 0.45 0.45 0.33
Conscien. Prec. | Rec. | fl-score | B. fl-score
Low 0.39 0.43 0.41 0.33
Medium 0.33 0.31 0.32 0.34
High 0.44 0.26 0.43 0.33
Weighted Mean | 0.39 0.39 0.39 0.33
Extraversion Prec. | Rec. | fl-score | B. fl-score
Low 0.54 0.61 0.57 0.34
Medium 0.44 0.31 0.37 0.32
High 0.56 0.63 0.59 0.33
Weighted Mean | 0.51 0.52 0.51 0.33
Agreeab. Prec. | Rec. | fl-score | B. fl-score
Low 0.35 0.36 0.36 0.34
Medium 0.39 0.41 0.40 0.34
High 0.31 0.29 0.30 0.33
Weighted Mean | 0.35 0.35 0.35 0.33
Neuroticism Prec. | Rec. | fl-score | B. fl-score
Low 0.55 0.59 0.57 0.34
Medium 0.41 0.42 0.41 0.33
High 0.53 0.49 0.51 0.33
Weighted Mean | 0.50 0.50 0.50 0.33

cism. Even if our approach would likely lead to similar results with other
types of population (i.e., than the one we collected the data from) and the
performance would be comparable, we would expect the influential features to
be quite different. For instance, going out late at night has a different meaning
for students and for middle-aged adults with children. The three most infor-
mative features for each inference process are (when there are more than three
features, all the presented features are considered as equally important by the

model):

e Openness**
— Step-goals (> 10k steps) just achieved.**

Number yoga activities.*

HR std from 2AM to 6AM on Thu.**

HR std from 10AM to 2PM on Fri.**

HR std from 2PM to 6PM on Thu.*

e Conscientiousness
— Std of HR btw Wed. and Thu. (10PM-2AM)
— Sleep-time mean from 10AM to 2PM on Sun.
— Sleep-time mean from 2AM to 6AM on Sat.

e Extraversion***
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— Step mean btw Fri. and Sat. (10PM-2AM).*¥**

— Step mean on Mon. btw 6PM and 10PM.****

— Step mean btw Thu. and Fri. (10PM-2AM).*#4*

— Number of distinct activities. ***

— HR mean btw Sun. and Mon. (10PM-2AM).###*
e Agreeableness

— Steps std on Sun. btw 6PM and 10PM.

— Sleep-time mean (global).

— Std of HR on Thu. btw 10AM and 2PM.
e Neuroticism***

— Gender. ****

— Steps mean on Mon. btw 6PM and 10PM.**

— Sleep-time mean from 10AM to 2PM on Sun.*
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Figure 4.6: Distribution of four of the main features used for openness inference for each
tercile. HR mean is weighted regarding the individual’s resting HR.

Interestingly, we can see that the practice of yoga is highly informative for
the inference of openness. This is coherent as users with high openness tend
to seek new experiences and to engage in self-examination and individuals
who practice yoga are known to obtain higher score in openness [313]. How-
ever, we cannot make a general conclusion here with that information as only
eight participants recorded yoga activities during the data collection. Among
those participants, only one was not classified in the high openness tercile.
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Figure 4.7: Distribution of the five main features used for extraversion inference for each
tercile. Step count means are weighted regarding the bracelet wearing time, HR mean is
weighted regarding the individual’s resting HR.

Table 4.4: The obtained inference accuracy using different combinations of data sources.
The increase in accuracy is computed using the random baseline. The last line corresponds
to aggregations by day (i.e., not 4-hours time slots) for heart rate and steps.

Data source ‘ o ‘ C E ‘ A ‘ N
All data sources 45% (+36%)** | 39% (+18%) 52% (+58%)*** | 35% (+6%) | 50% (+52%)***
All data but gender 44% (+33%)* | 39% (+18%) 52% (+58%)*** | 35% (+6%) | 47% (+42%)**
All data but heart rate 35% (+6%) 32% (-3%) 50% (+52%)*** | 34% (+3%) | 50% (+52%)***
)
)

Only step count 34% (+3%) 32%
All data (aggregated) but gender | 38% (+15%) 35% (+

*p < 0.05, ¥*p < 0.01, ***p < 0.001

3%) A% (+42%)** | 34% (+3%) | 44% (+33%)*

( ( (
( E |
All data but heart rate and sleep | 34% (+3%) 33% (+0%)  50% (+52%)*** | 33% (+0%) | 48% (+45%)**
( (- (
( (+ (+3%)

6%)  33% (+0%) 34% (+3%) | 34% (+

As shown in Figure 4.6, HR-related features are important for the inference
of openness. Psychology studies have shown that features related to cardiac
activity (including heart rate), are correlated with openness [314, 315].

This is confirmed by Table 4.4 which shows that without HR-related fea-
tures, our model is not able to correctly classify individuals according to their
openness level significantly higher than the baseline. Note that most of these
HR-related features are relative to Thursday and Friday afternoons. One pos-
sible reason is that openness is related to art sensitivity and creativity and that
these time slots are the most favorable for such activities (museums or art gal-
leries, for example, are often closed at the beginning of the week). Thursday
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Figure 4.8: Distribution of the three main features used for neuroticism inference for each
tercile. Step count means are weighted regarding the bracelet wearing time. The sleep time
is in hours. The area of each circle in the gender plot is proportional to the number of
participants who corresponds to the given gender.

and Friday evenings/nights or Saturday, however, are time periods related to
extravert-oriented activities (e.g, clubbing). We can also observe that steps
goals are used to infer the score of openness, however, there is no previous
research that can help us understand the reason of this correlation.

Looking at Table 4.2, we can first observe that, information related to
steps, heart rate, and activities are used to infer extraversion. This can be
explained by the fact that people with higher scores in extraversion tend to be
more active, assertive, and sociable (see Section 4.2). Three of the most in-
formative features relate to the average step count at night, thus showing that
the level of (social) activity plays a key role in the inference of extraversion.
This is confirmed in Figure 4.7 Indeed, the more extraverted a participant
is, the more steps they take at night (especially at night between Thursday
and Friday, on Monday evenings, and at night between Friday and Saturday).
This could be explained by the fact that the more extraverted the individual,
the more they go out at night (e.g., to meet friends, to go clubbing, etc.).
That may also be supported by the mean heart-rate on Sunday night being
higher for the most extraverted individuals. Furthermore, we observe that the
most extraverted individuals tend to do more distinct activities, which corre-
sponds to the activity and excitement seeking component of extraversion as
described in Section 4.2. Moreover, to assess personality traits, standard tests
combine behavioral, cognitive, and affective indicators [288], and behavioral
indicators are the most informative to assess extraversion [316]. This explains
why WAT data, which are almost exclusively related to behavior, are the most
informative for this trait.

Steps, heart rate, and activities are also used to infer neuroticism. However,
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we observe that HR-related features do not appear to be the most informative
features for neuroticism. Instead, these features relate to gender, sleep, and
steps. Previous works show that information such as step count, heart rate,
or duration of sleep are indicators of stress resilience, which by definition is
highly correlated with neuroticism [70]. Step count, heart rate, and duration
of sleep have also been used in previous studies to predict depression [71].We
also observe that sleep and gender are used to infer neuroticism. Both are
indeed known to be correlated with this personality trait [290, 312], and this
is confirmed in Figure 4.8. We can observe that the mean for sleep hours
on Sunday midday for both participants with a low and high neuroticism
score is significantly higher than that for the participants with a medium
score of neuroticism. In fact, these two groups differ mainly in gender, as
men tend to have a low neuroticism score and women a high score. More
specifically, there is a significant difference among the terciles regarding the
sleep time (here on Sunday between 10am and 2pm). It also shows that there
is a significant difference between genders regarding their neuroticism score.
As gender is correlated with neuroticism, we trained and evaluated a simple
decision tree to infer the neuroticism class from gender only with the same
methodology as described before. Such a model reaches an accuracy score of
48%. Additionally, we also evaluated our model without using gender and
showed that it reaches 47% of accuracy. Therefore, a model using WAT data
is similar, in terms of accuracy, to a model based on gender for inferring
neuroticism. However, considering that WAT users can easily lie about their
gender without decreasing their utility, which is not the case with step count
or sleep data, a model based on WAT data (possibly helped by gender), is
therefore more reliable than a model based on gender only.

Note that the list of informative features for the conscientiousness and
agreeableness traits should be considered with caution, because it corresponds
to prediction tasks for which our models do not significantly outperform the
baseline.

Sensitivity Analysis

We evaluated the inference performance by using a subset of data sources.
Indeed, when giving access to the API, WAT users can choose to restrict ac-
cess to some information by selecting only some types of data or, simply, by
choosing to not report personal information (i.e., gender). Furthermore, some
devices can simply not collect certain data due to the lack of sensors (e.g., un-
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Figure 4.9: Evolution of the performance of the inference with training data collected for
the first 8, 12, and 16 weeks. As it does not evolve over time, gender is not used as a feature.

like the Fitbit Inspire HR, the Fitbit Inspire does not collect heart-rate data).
Table 4.4 summarizes the results obtained by evaluating the inference model
which uses different data source combinations. The accuracies of the extraver-
sion and neuroticism inferences are still significantly higher than the baseline
when using only step-count-related features. This demonstrates that even de-
vices that do not collect the heart rate, such as the Fitbit Inspire bracelet, can
be used to accurately infer the personality of their users. However, the results
from Table 4.4 suggest that heart rate data is essential to infer openness as
the inference accuracy significantly declines when we remove this data source
from the features set.

Performance Evolution over Time and Training Set Size

Additionally, we analyzed how the inference performance evolves with training
data collected over an increasing period of time. As it does not evolve over
time, we did not use gender as a feature. Figure 4.9 shows, for each trait, how
the inference accuracy evolves using training data collected for 8, 12, and 16
weeks.

We can observe that only 8 weeks are necessary to obtain an accuracy sig-
nificantly better than random for neuroticism while 16 weeks are required to
significantly outperform the baseline for openness and extraversion. We can
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also postulate that the inference performance would be better with a few more
months of data (which would capture additional seasonal phenomena), espe-
cially for extraversion, that shows the highest growth with time. We observe
that the inference of extraversion is highly dependent on the data collection
duration. This is probably due to seasonal behavior change (e.g., people tend
to go out more often during the summer), and due to the fact that the most
important features are probably related to social events, and thus that more
time is necessary to collect enough data related to these specific, and possibly
short, events. However, the results tend to show that an augmentation of data
collection duration would not highly impact the inference of conscientiousness
and agreeableness. Note that we use the same set of participants for all infer-
ences, which may introduce a bias due to the fact that we selected the ones
who wore their devices at least 50% of the time during the whole four-month
period. Results with fewer months could so be slightly underestimated con-
sidering that some participants may have been selected while they were not
wearing the device much during that specific period.
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Figure 4.10: Evolution of the performance of the inference with training dataset size by
evaluating the model with k-fold cross validation with &k € {2,3,4,5,10}

Finally, we also evaluated our model using k-fold cross validation with k €
{2,3,4,5,10}, details are available in Figure 4.10, and show that, especially
for openness, neuroticism, and extraversion, the inference accuracy tends to
increase with the size of the training set. For all traits, the accuracy does
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Table 4.5: Comparative table of the most relevant publications. The ‘year’ is the year
of publication, the ‘source’ represents the data source used to build the features for the
inference process, ‘N’ is the number of participants, ‘var.” means that the data collection
duration is not fixed among the different participants, ‘CDR’ stands for Call Detail Records,
the inference type is either regression or classification, k is the number of classes in case of
classification, ‘SVR/’ stands for Support Vector Regression, ‘SVC’ for Support Vector Classi-
fication, ‘RF’ for Random Forest, and ‘LOQO’ stands for Leave-One-Out evaluation. Finally,
the ‘Results’ column shows, in bold, which traits were inferred statistically significantly
better than their respective baseline.

Article Year | Source N  Dur. | Inference Model | Eval. | Results
de Oliveira et al. [283] 2011 | CDR 39  var. | Regression SVR | 10-fold | OCEAN*
Chittaranjan et al. [284] 2011 | Smartphone | 83 8 m | Class. (k=2) | SVC LOO | OCEAN*
de Montjoye et al. [285] 2013 | CDR 69 16 m | Class. (k=3) | SVC 10-fold | OCEAN*
Monsted et al. [286] 2018 | CDR 636 24 m | Class. (k=3)| SVC 10-fold | OCEAN
Stachl et al. [287] 2020 | Smartphone | 624 30 d | Regression RF 10-fold | OCEAN
— This chapter 2023 | WAT 204 4m | Class. (k=3) | SVC LOO | OCEAN

* Mpnsted et al. [286] showed that these articles suffer from test-data leakage (i.e., when data from the test data is used
for training, for instance, in the feature selection step), which leads to overfitting. Therefore, the performance reported
in those articles is largely overestimated. For example, according to Mgnsted et al. [286], if de Montjoye et al. had used
a rigorous experimental setup, they would have only obtained statistically significant results for extraversion (leading to
OCEAN instead of OCEAN in the table).

not plateau for larger training sets, which indicates that the accuracy would
increase if the sample included data of more individuals.

Obfuscation

Finally, we evaluated the inference performance using heart rate and step count
data aggregated by day (instead of 4-hour intervals), mimicking the case where
the adversary would only have access to the average daily heart rates and total
daily step counts (other features such as sleep and activities are used in the
same way as described previously). Indeed, previous research suggests that
such aggregation may be used as an obfuscation technique to reduce privacy
risks and shows high acceptance among WAT users [46]. Table 4.4 shows that
aggregating heart rate and step count results in an important drop in accuracy
and that none of the inferences are significantly better than the baseline in this
case. Note that we also removed gender from the features to properly evaluate
the impact of such an obfuscation technique on neuroticism.
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4.7 Related Work

Recently, Meegahapola et al. higlighted the correlation between data from
wearable for pets and dog’s personality using a custom-built device equipped
with an accelerometer and a gyroscope and using as ground truth a Bigh-like
model specifically adapted for dogs.

More related to human beings, prior studies about mobile-phone-related
data highlighted the link between collected personal data and personality
traits. Table 4.5 compares all the related-work experimental layout and re-
sults that we discuss in detail next.

de Oliveira et al. studied to which extent it is possible to infer personality
traits from call-detail records using regression. Their model obtained mean
square errors (MSE) significantly (p < 0.05) lower than the baseline (MSE of
1.184) for openness (MSE of 0.670), extraversion (MSE of 0.650), and agree-
ableness (MSE of 0.615) [283].

Chittaranjan et al. evaluated the accuracy of personality-trait inference
from smartphone data by using binary classification methods [284, 307]. They
obtained an average accuracy of 72% (425% of accuracy compared to the
baseline on average) for all traits.

de Montjoye et al. evaluated the accuracy of personality-trait inference
from phone-based metrics by using ternary classification methods [285]. They
obtained an average accuracy of 53% (4+42% of accuracy compared to the
baseline on average) for all traits.

However, Mgnsted et al. show that the inference results were overestimated
in the aforementioned articles [283, 284, 285]. More specifically, the authors
of these works optimized some parameters (e.g., feature, model, and hyper-
parameter selection) based on the entire dataset instead of doing so based on
only the training set considered in each iteration of the cross-validation loop;
this corresponds to the common pitfalls P3 and P5 listed in Arp et al.’s recent
work on the dos and don’ts of machine learning in computer security [318].
Mgnsted et al. further proceed to a ternary classification of the five traits by
using the same models, features, and approach as de Montjoye et al.’s arti-
cle [285]. They show that, based on their correlation with the trait to infer
without using cross-validation (i.e., on the entire dataset), previous research
about inferring personality from phone data overestimated model performance
by selecting certain features. After following the same approach and obtaining
similar results to de Montjoye et al., Mgnsted et al. show that by using a more
rigorous methodology with the same data, only extraversion can be inferred



Chapter 4. Watch your Watch 103

(with an accuracy significantly better than the baseline) from (smart)phone
data. They obtained an accuracy improvement of +36% (wrt the baseline)
for that specific trait. Therefore, we cannot compare our work with their re-
sults, except for those of Mgnsted et al. who used a (rigorous) methodology
similar to ours. Hence, we can assert that personality inference models using
WAT data outperform those using CDR as they achieve a higher accuracy
for extraversion as well as accuracies significantly higher than the baseline for
neuroticism and openness.

More recently, Stachl et al. inferred personality traits from richer smart-
phone data [287] using smartphone data of 624 participants collected over 30
days. Their features were more diverse and richer than those used in the other
studies. The features were derived from call detail records, music consumption,
application usage, mobility, overall phone activities, and daily activities. They
show that it is possible to infer openness, extraversion, and conscientiousness
from these data.

In summary, we are the first to demonstrate that WAT data brings valuable
information to classify users according to their personality traits. Moreover,
regarding related work that used similar methodological approaches (ternary
classification), we show WAT data is more helpful for such classification than
phone data. Also, by using a rigorous evaluation methodology, and thus, in
comparison with most of the previous works, fairly evaluating the inference
performance, we are the first to show how users can be classified according to
their neuroticism level with an accuracy significantly higher than the baseline.
Finally, we show that WAT data are correlated to openness, which was not
the case with the data considered in prior work (e.g., CDR).

4.8 Discussion

Our experimental results demonstrate that processed data from WATSs bring
valuable information about at least three of the Big Five personality traits.
Indeed, WAT data correlates with at least three of the five personality traits,
which is consistent with multiple previous findings showing that behavior in-
dicators are particularly informative for some traits (especially for extraver-
sion) [288, 316], that WAT data can help assess stress resilience [70], or that
it can be used to infer someone’s mood [89]. One can argue that, as openness
and extraversion tend to be positive traits (or are perceived as such), inferring
them does not represent a particularly serious threat. However, that would
overlook two important points. On the one hand, even if these traits are (per-
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ceived as) positive, inferring that an individual has a low score in these traits
would therefore be rather (perceived as) negative, and, on the other hand, the
goal of the adversary is not to point out the positive/negative aspects of their
targets’ personality, but rather to gather information about their personality
to better influence them afterward. Another important point to raise is that
even if the inference accuracy showed in this work might be considered rather
low, as we used only WAT processed data collected from a limited number
of individuals during a limited amount of time, our results constitute a lower
bound of what data brokers can do. On the one hand, they can access training
data from many more individuals and thus can build stronger models. On the
other hand, they can easily link WAT data with other types of data to improve
the inference models. In their research, Aimeur et al. [291] showed how easy it
is to link data of the same individual through different data broker databases.
They voiced concerns about how easy it is to collect personal data about given
individuals in general. Furthermore, it is known that few individuals read pri-
vacy policies and that among those who do, one-third claim to have no (or
very little) understanding of what they read [319]. Considering this, and that
most WAT users tend to forget about the (not always honest [53, 52, 54])
third-party apps they share their data with and highly underestimate their
number, as shown in Chapter 3, it is likely that many data brokers have ac-
cess to individuals” WAT data along with other types of personal data that
can be used together to accurately infer personality profiles. Moreover, as
Google recently acquired Fitbit [27] and plans to force Fitbit users to migrate
their Fitbit account into their Google accounts [29], they will be in position to
build the strongest possible inference models. Furthermore, the magnitude of
this threat can only increase as the technology improves with the addition of
new sensors (e.g., ECG), better sensor accuracy, and more efficient machine-
learning algorithms. Furthermore, whereas rather low accuracy may not be
considered a serious threat for particular individuals, the case is different when
we consider an entire population (or a large part of it). Even if an accuracy
increase of 15 points above the random baseline is not particularly impressive
when about a single individual, on a large scale, it may help an adversary to
better target thousands of people. This raises obvious privacy and societal
issues, especially in light of the recent scandals related to personality-based
influence campaigns. Additionally, our results may be considered rather low
compared to other data sources (e.g., smartphone and app behavior, online
social networks), however, WATSs are still an emergent technology and compa-
nies regularly implement more and more (and more efficient) sensors and/or
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functionalities and therefore collect more and more data (and more accurate
data). Furthermore, unlike online social networks, for example, it is partic-
ularly astonishing to be able to infer certain personality traits simply based
on acceleration, orientation, and light sensors (for movements and heart rate).
This “unsuspected feel” may exacerbate the threat to the general population.
Indeed, almost half of our participants answered that personality traits infer-
ence would be “Not at all precise” or “Slightly precise”. Nevertheless, WATs
are indeed activity-centered and will probably therefore never collect data that
can be used to infer only-social related traits such as agreeableness. As for
conscientiousness, although we collected the battery level with the intention
of inferring this trait (with the hypothesis that the most conscientious peo-
ple recharged their devices more regularly), it is important to note that the
battery of the Fitbit device that we used for this study lasts approximately
five days and that, consequently, most of our battery data series are about 20
points long, unlike the step-count data series, for example, which has tens of
thousands of points.

To address this threat, a first step is to raise awareness of it. This thesis
chapter makes a contribution by providing concrete evidence of this threat
based on a rigorous risk assessment. Based on this assessment, privacy pro-
tection techniques should be designed. A first protection technique would be
to limit the amount of data shared with the service provider, keeping as much
data as possible on the users’ devices. As all Fitbit users collected data are
stored on Fithit’s servers, a simple solution would be to let the user choose
whether to store each type of data on Fitbit’s servers or to only store them
on a personal synchronized smartphone/tablet. Except for some specific data,
the raw sensor signal-processing is directly computed either on the WAT or on
the smartphone. This means that as long as the user does not need to share
personal data and the smartphone’s storage capacity is sufficient, they could
increase their privacy while keeping the same level of utility. Furthermore, if a
given piece of information needs more computing power than provided by the
user’s smartphone, so it has to be processed on Fitbit’s servers, it can simply
be deleted from the servers once transferred back to the user. This will leave
the data inaccessible to most of the potential adversaries and reduce the data-
leakage risks. Additionally, the data shared could be obfuscated to further
enhance users’ privacy. A commonly used solution is to add noise to the data,
which should be done in a controlled way in order to provide formal guaran-
tees, such as differential privacy. However, we decided to evaluate a different,
simpler (and so more understandable by users), technique which consists in
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aggregating data over some period of time. For instance, only the daily step
count or the daily average heart rate could be shared with the service provider.
We showed the efficacy of such an obfuscation technique in Section 4.6. By
doing so, an adversary loses substantial information about when the data has
been collected, which is particularly useful as seen in Section 4.6 (e.g., steps
at night). Indeed, our results suggest that only intra-day data brings informa-
tion about personality traits. Therefore, an adversary whose goal is to infer
individuals’ personality would probably not obtain significant results using
aggregated WAT data. Furthermore, in the case of the adversary being the
service provider, it would still be able to store their users’ (aggregated) data,
and to provide them with attractive services. Indeed, recent works, including
Chapter 3 of this Thesis manuscript, show that most users view this obfusca-
tion technique as having little impact on their utility [46], and are inclined to
use it when sharing their data.

Another possible solution would be to empower users by letting them
choose which sensors to enable or disable and which data to keep on the device
or share with the servers of the service provider.”

An important lead for future work is to evaluate the acceptability of such
protection techniques by end users. Would users be interested in disabling
some of their WAT sensors (and which ones)? Do users need to synchronize
their data with the service provider (which data)? Do users need to syn-
chronize their step counts for every minute and with a one-step precision?
Indeed, research has shown that users usually do risk-benefit analysis or so-
called privacy calculus when using wearable devices [321]. For example, when
purchasing healthcare wearable devices, users trade-off receiving relevant and
personalized health information, the sensitivity of this information, and the
existence of legislative data-protection mechanisms [37]. However, some users
are not fully aware of the potential privacy risks of WATs [132] and, as shown
in Chapter 3, they also are not fully aware of their own data-sharing behavior
and lack knowledge on the data-sharing ecosystem, which might negatively
affect their utility-privacy trade-offs, and ultimately lead them to take wrong
privacy decisions [102]. Some individuals are willing to decrease their privacy
for an increase in utility, especially when they consider that the device pro-
vides them considerable benefits [113], whereas other individuals are willing
to accept lower benefits to gain more privacy [322]. The latter users probably

"Note that Fitbit already enables their users to deactivate some sensors directly on some
of its devices [320]. However, this option is not particularly highlighted on the user interface
and is limited to a binary choice.
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prefer to use WATSs that implement protection mechanisms, even if the acti-
vation of such mechanisms decreases their utility. They could then trade off
utility and privacy directly when using the device and fine-tune the parame-
ters with respect to their concerns. This could be studied through the lens of
privacy calculus [321, 37, 323].

4.9 Limitations and Generalization of the Re-
sults

Our work has some limitations, beyond those related to the use of Fithit, as
mentioned above. In particular, we only show that, for three of the five traits,
WAT data can be used to reach significantly higher inference accuracies com-
pared to the random baseline. Thus, future studies are needed to optimize the
model and show that WAT data can be used to develop highly effective models
for personality inference. Also, while we can assume that our ground truth is
particularly accurate given the detailed questionnaire we relied upon, we want
to highlight that the participants’ answer quality could be degraded due to
the well-documented respondent fatigue [324], as well as the social desirability
bias [325]. There is clearly a trade-off between the details of the psycholog-
ical profiles and the quality of the collected survey data. Furthermore, the
participants’ responses about their privacy concerns may have been biased as
they were aware of the study’s purpose. Additionally, while the study partic-
ipants are somewhat representative of the local student population, they are
not representative of the general adult population. Finally, a larger duration
and a larger number of participants would have increased the significance of
our results.

However, even if we study a particular type of population in this work, it
is highly likely that our results can be generalized to a more global type of
population. Although our model (trained on data collected from a specific type
of population) can probably not be generalized to other types of populations, as
for example, older individuals tend to not have the same activities as students
(e.g., going out on Friday night), our methodology can. In the case of a
different age population, for example, whereas specific behaviors change over
time [326], different specific remarkable patterns could still be used by an
inference model. Therefore, another inference model can be trained with data
from another type of population and will probably reach a similar performance,
but using features related to different life patterns. It is also important to note
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that, even if our model is trained with data collected from young individuals,
as personality traits are generally stable over time [292], data collected now
from young individuals will still be useful to infer their personality in the
future.

4.10 Conclusion and Future Work

In this chapter, we showed that WAT data can help classify users according
to their personality traits, especially openness, extraversion, and neuroticism.
We demonstrated that the use of WATSs can create privacy risks that an ad-
versary can potentially exploit. Our study is based on the WAT data of 204
individuals collected over a period of four months. We defined classes for
each of the Big Five traits according to the dataset terciles and used differ-
ent features extracted from information as step count, heart rate, sleep time,
activities, battery level, and gender to train a ternary classifier for each of
these traits. We conducted ternary classification and used accuracy as the
evaluation metric and obtained results significantly higher than the baseline
for openness, extraversion, and neuroticism. Also, we showed that, regarding
prior work, using WAT data outperforms the use of call detail records (CDR)
for inferring individuals regarding their personality traits. Furthermore, we
studied the impact of data source removal on inference accuracy and pointed
out that the model could reach even higher performance if trained on a larger
dataset. Moreover, we analyzed the selected features and highlighted the most
informative ones for each personality trait. We also showed that aggregating
step count and heart rate by day is an effective obfuscation technique. Finally,
we drew links with related studies and compared our results with theirs.

For future work, as noted in Section 4.6, we consider that it would be in-
teresting to optimize inference models by exploring more feature combinations
and by training and evaluating such models on larger datasets. To this end,
additional data collection may be useful. For example, knowing that some
WATS provide logging functionalities (e.g., meals and food intake), those data
may be used to build features to improve the inference model (prior studies
state that personality and dietary habits are correlated [327]). Also, profile
information or device-usage data, as the number of “Fitbit friends” or the
number of times where a user taps on the device’s screen, could be helpful to
increase the inference accuracy. Furthermore, as highlighted in the introduc-
tion as well as the adversarial model of this chapter, personality inference as
defined in this chapter is often considered as a privacy issue.
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It would also be interesting to design and evaluate other obfuscation tech-
niques. Indeed, it might be relevant to develop obfuscation techniques that
result in less data loss, and thus, would have an even better acceptability than
the one that we evaluated.

In this study, we focus on a particular adversary who has full access to
user data. However, it could be interesting to consider adversaries who would
have only partial access to the data and study what methods they might use
to obtain these data. Furthermore, we focus on only one given type of de-
vice. It would be interesting to extend our study to multiple kinds of devices
and evaluate, for instance, how the quality/quantity of sensors affects the in-
ference accuracy. Moreover, in our study, we used data collected on a very
specific population. Conducting a similar experiment on a more diverse pop-
ulation would be useful for studying whether our results can be extended to
all categories of the population.

In Chapter 3 we have shown that, due to their lack of knowledge of the
WAT data-sharing ecosystem and of awareness of their own behavior, users
may adopt risky practices, and in this chapter, we have shown that WAT
data can be used to conduct inference attacks. Therefore, it is crucial to
develop privacy/transparency technologies to help them better manage their
data-sharing, which is what we study in the next chapter.






Chapter 5

Our Data, Our Solutions: A
Participatory Approach for
Enhancing Privacy in Wearable
Activity Tracker Third-Party
Apps

Abstract. Users of wearable activity trackers (WATSs) lack knowledge
about data sharing. Most of them are not fully aware of their own data-
sharing behavior. Therefore, it is crucial to design privacy-enhancing
technologies (PETs) and transparency-enhancing technologies (TETS)
to help them better manage their data-sharing hence to protect their
privacy. In this chapter, we take a participatory design approach to
design PETs/TETS, together with WAT users. We conducted three de-
sign sessions with 8-9 users in each session. During these sessions, the
participants were able to propose and evaluate new PETs/TETSs related
to WAT-data sharing. The outcome of these sessions was 19 different
designs that we then categorized into seven categories of functionality
(design features). Multiple proposed designs can be compared to designs
existing in other fields (e.g., social networks, mobile permission) as they
offer similar functionalities. We then evaluated these different function-
alities regarding their feasibility, effectiveness, adoption, and usability
as PETs. Then, to propose a general solution, we selected three iden-
tified design features. Such a solution should implement functionalities
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related to partial sharing, reminders, and revocation assistance. These
functionalities were evaluated overall as highly feasible and effective;
Finally, the participants found them very usable and to have a high
adoption potential.

5.1 Introduction

In the previous chapters, we discussed the fact that though WAT data are gen-
erally kept on the user’s device or on the service provider’s cloud, the data can
also be shared voluntarily by users with other individuals (e.g., family, friends,
co-workers; healthcare professionals) and entities (e.g., employers, insurance
companies, third-party service providers), typically through third-party ap-
plications (TPAs) or social network profiles. Users do so for increased social
or financial benefits (e.g., better projection of the self, decreased insurance
premiums) and/or for additional features not offered by the original services
or application. For example, users might want to share some of their fitness
data to take advantage of functionalities that are not natively supported by
the service provider’s applications or get financial rewards (e.g., WeWard [47],
Fitcoin [49]). However, they could lose track of their TPAs [56], or some TPAs
could collect more data than they need to provide their services [52] then share
them with other parties and/or use them against the users’ consent.

In Chapter 2, we analyzed users’ awareness, understanding, attitudes, and
behaviors toward fitness data sharing with TPAs and individuals. We explored
users’ practices and actual behaviors toward fitness data sharing and their
mental models. Our empirical results showed that about half of WAT users
underestimate the number of TPAs to which they have granted access to their
data, and 63% share data with at least one TPA that they do not actively use
(anymore). Furthermore, 29% of the users do not revoke TPA access to their
data because they have forgotten that they gave access to it in the first place,
and 8% were not even aware they could revoke access to their data. Finally,
their mental models, as well as some of their answers, demonstrated substantial
gaps in their understanding of the data-sharing process. Importantly, 67%
of the respondents think that TPAs cannot access the fitness data that was
collected before they granted access to it, whereas TPAs can actually do this.

Therefore, it is crucial to set up privacy-enhancing technologies (PETS), as
well as transparency-enhancing technologies (TETs [275]), to help the users
better manage and keep track of their multiple applications and better un-
derstand how the fitness-data sharing ecosystem works. Such PETs/TETs
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could indeed help them to avoid risky behaviors for privacy, such as sharing
more data than is actually required or not regularly checking the previously
granted permissions to revoke them if necessary. Few studies, including the
work described in this thesis, evaluate the potential for adoption of such PETs
(i.e., related to TPAs) [46], and others developed PETSs in the context of WAT
data sharing [56, 181, 184, 186, 187, 118, 190, 191, 192]. However, for these
studies, the tools are designed by the researchers (and sometimes tested by
users afterward). Although such tools could be evaluated by users afterward,
involving users upstream in the design process would often highlight problems
and solutions that developers and researchers would not have thought of, as
they do not represent the core target. Furthermore, none of these studies is
focusing on data sharing. There is no study, to our knowledge, that focuses
on the design of PETs for WAT-data sharing that includes users in the design
process, which constitutes an important gap in the related literature.

In this chapter, we report the results obtained by conducting a partici-
patory design study with WAT users (N=26). In this study, we answer the
following research questions:

e RQ1: What solutions will be suggested by WAT users to help them
better manage data sharing to avoid risky behaviors for privacy?

e RQ2: What solutions will be suggested by WAT users to help them
better understand the data-sharing process?

e RQ3: What solutions will be suggested by WAT users to obfuscate/aggregate
their data in order to improve their privacy while keeping decent utility?

In this chapter, we report the designs proposed and evaluated by 26 WAT
users during three participatory design sessions (8-9 users for each session).
We collected and analyzed 19 different designs that we then categorized into
seven categories of functionality (design features). Multiple proposed designs
can be compared to designs existing in other fields (e.g., social networks, mo-
bile permission) as they offer similar functionalities. We then conducted an
expert session with two information security & privacy experts to evaluate
these different functionalities regarding their feasibility, effectiveness, adop-
tion, and usability as PETs (the same criteria were used by the participants
for their evaluation) and propose a general solution that implements multiple
design features proposed by the participants. This general solution should im-
plement functionalities related to partial sharing, reminder notifications, and
revocation assistance. We evaluate these functionalities as being overall highly
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feasible and effective, and the participants evaluated them as being very easy
to use (i.e., high usability) and as having a high adoption potential.

Outcome

The chapter is organized as follows. We first describe our methodology in
detail in Section 5.2. We present and analyze the results in Section 5.3. We
then discuss the results and propose our general solution in Section 5.4 before
briefly concluding in Section 5.6.

5.2 Methodology

In this study, we highlight the solutions WAT users propose to help them
maximize their privacy when they share their data. To this end, we con-
ducted participatory design sessions [328] with WAT users who share data
with TPAs. Similarly to our proposition in Section 3.4.4, there are few studies
about privacy-enhancing technologies (PETS) as new functionalities for data
sharing [46, 181] or as tools to better understand privacy policies [151]. How-
ever, to our knowledge, all published works related to PETs for WAT-data
sharing were about solutions designed by developers or researchers. Whereas,
we think that users themselves could bring us particularly relevant perspec-
tives and insight, as they are the first concerned by the usage of WATs and
data sharing. Participatory design is a user-centric design approach that is
used by designers to include the end users in the process of the design [329].
Such an approach has been used in multiple studies related to utility, includ-
ing WAT utility [330, 331, 332] and privacy [333, 334]. Participatory design
is particularly useful to develop solutions related to usable security and pri-
vacy [335, 336]. As the main problems that we want to solve in this work are
related to the end-users behaviors and understanding, we need to develop so-
lutions that are particularly adapted to their needs. By directly asking users
to propose solutions, we, therefore, gather information from the individuals
who are the most affected by privacy issues as well as the usage of the related
technology (i.e., WATSs). Whereas developers may have many biases related
to their particular position, and fail to see potential problems with the usabil-
ity of their solutions, directly asking end users to propose solutions may be a
great help in highlighting new ideas, with a form of guarantee that they will be
relevant and adapted to their usage and understanding of the technology. Fur-
thermore, previous research has shown that a participatory design approach
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may actually help researchers to develop relevant and efficient solutions to
help users [333, 337]. In the framework of our participatory design sessions,
we performed different participatory design activities in order to make the par-
ticipants aware of the risks related to data sharing and promote participants’
creativity, and generate effective solutions.

We designed our study according to the participatory design approach of
earlier studies [328, 338, 333]. Most of the content presented to the partici-
pants during the design sessions was adapted from the findings of Chapter 3.
LABEX, a dedicated structure of the University of Lausanne (UNIL) helped us
to recruit the participants, as it manages a pool of around 8’000 students from
two universities (a technical one, i.e., EPFL, and a general one, i.e., UNIL itself
covering a broad range of disciplines). This is the same structure that we used
in Chapter 4. The students who were interested in our experiment completed
a screener survey that we used to verify their eligibility for participating. We
scheduled three participatory design sessions.

5.2.1 Recruitment

We used an online screener survey to recruit participants (5 minutes to com-
plete). This survey was as short as possible and was composed of only questions
that are necessary to filter the participants regarding our criteria (see below),
basic demographics to ensure recruiting a balanced sample (e.g., with respect
to gender), WAT usage, and data-sharing behavior.

831 individuals answered the screener questionnaire and 54 were compatible
with the experiment criteria. The recruitment criteria are the following: to
regularly use a WAT device (at least 3 days a week) for more than six hours a
day, to have used their WAT for at least six months (medium-term use [42]), to
share data with at least one third-party application, and to speak French (i.e.,
the local language at the universities). For each session, 11 individuals were
invited in order to finally obtain 9 participants, as we expected a few “no
shows”. When more than 9 individuals attended a given session, the last ones
to arrive were sent back with 10 CHF (~ 10 USD) in compensation. The
latecomers were not compensated. If an invited individual withdrew before
the session began, we invited someone else. In total, we invited 40 individuals,
nine of them withdrew before the session began, 2 did not attend their session,
and 3 extra participants were sent back (including one who was sent back
without being compensated because they were late). Finally, 26 individuals
were present for the sessions.
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Ethical Considerations

Before each design session, the participants had to sign a consent form that
described the conditions of participation, the data being collected (and the
associated data-management plan), the procedure for withdrawing from the
study, and the information about the financial incentive. The institutional
review board at our university validated the consent form and approved the
study. Participants were paid 70 CHF (~ 75 USD) at the end of the session.

5.2.2 Session Procedure

We separated the participants into design sessions (i.e., nine people in each ses-
sion) in order to conduct several focused design sessions. Each group attended
one session. We conducted all three sessions in two days without overlap (one
on the first day in the afternoon, and the others on the second day, respectively,
in the morning and in the afternoon).

Although we conducted sessions with nine participants, we set up both
general (all nine participants together) and group (groups of three partici-
pants) activities. To facilitate participatory design, the study consisted of six
main parts: pre-study (screener) survey, introduction, setting up the situation,
upgrading knowledge, sketching, and value ranking (see Figure 5.1).

The participatory design sessions were conducted by three investigators:
the thesis author who led the sessions as the session moderator and two assis-
tants. We audio-recorded all sessions and took photos of the artifacts (after
collecting consent from the participants). In the following paragraphs, we
explain the procedure and our rationale for each part.

Figure 5.1 summarizes the timeline of a session. During each session, after
welcoming the participants, we briefly introduced the concept of data sharing
(what can be shared and with whom) and asked them some thought-provoking
questions about privacy. We briefly presented, based on academic research and
newspaper articles, the potential threats to privacy caused by WAT-data shar-
ing. Once they were aware of the threats, we reconstructed, with them, the
WAT-data sharing ecosystem. We presented them with the current literature
knowledge about users’ behavior and the understanding of data sharing with
third parties. This presentation was based mostly on the findings of Chapter
3. Next, after briefly giving them a few tips about design, we set up discus-
sions (in small groups) on how to improve users’ understanding of the whole
data-sharing ecosystem, their awareness of their own behavior, and the user
experience, and on how to develop multiple solutions. The outcome of these
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Figure 5.1: Session timeline. This figure summarizes the different steps of one participatory

design session, shows the different activities and their expected outcomes.
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sessions is PETs/TETs that assist WAT users in the data-sharing process,
hence that increase their privacy. The form of solutions were storyboards or
low-fidelity paper prototypes.

Prior to running the study, in order to refine the protocol, we ran the session
with two researchers who are from our university, have expertise, respectively,
in distributed systems and information security & privacy, and who did not
take part in this research.

The following sections summarize the different parts of each session. During
all parts involving the participants discussing with each other (generally in
small groups of three individuals), we encouraged them to share their own
user experience and to raise the positive and negative points of their own
experience with data sharing.

Introduction (20 min.)

The participants were invited to attend participatory design sessions. They
were asked to wear their WATSs and to bring their phones. Two researchers
were present to welcome them. The first checked their identity and brought
them into the room, while the second asked them to fill out and sign the
consent and payment forms. When every participant was welcomed and had
signed their forms, they sat around a table, they were free to choose their seats.
Once everyone was seated, we asked some participants to switch places in order
to form a gender-balanced group, we began recording the session (audio and
video), and the participatory design session officially started. We followed the
methodology from earlier participatory design studies [328, 338, 333]. Before
commencing the first activities, we described the schedule and reminded the
participants about the main goals of this study (i.e., designing tools to help
users better manage their data-sharing and/or better understand the data-
sharing process).

Setting Up the Situation (20 min.)

We began each session by briefly presenting how WAT-data sharing can impact
users’ privacy. One of the investigators (this thesis author) first showed them
the different ways, for a WAT user to share their data, and he displayed a
short video showing them how to grant and revoke access to the data to a
given TPA (Strava). Then, we asked a few thought-provoking questions about
data privacy:
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e Who do you think might be interested in accessing your fitness data, and
why?

e What do you think it is possible to do with or learn from your fitness
data?

Participants discussed these questions with their group mates for five min-
utes. By asking them to discuss these questions in small groups, we encouraged
everyone to participate and think deeply about these questions, as it provides
more opportunities to express their opinions and thoughts to others. Indeed,
pedagogical research has shown that, in comparison to simple lectures, asking
people to discuss specific questions in small groups increases their engage-
ment and retention of knowledge [339, 340]. Then, all participants (from
all groups) shared and debated their answers to these questions; they raised
additional related questions and answers. This discussion was supervised by
the main investigator. The goal of this activity was to ensure that the partic-
ipants were aware of the problem and that they share their personal concerns
and experience with data sharing. After the discussion, the main investigator
briefly presented the potential threats to privacy caused by WAT-data shar-
ing. This presentation was based on academic research [4, 8, 9, 12, 13] and
newspaper [30, 26, 341] articles.

Upgrading Knowledge (20 min)

We discussed the process of WAT-data sharing with TPAs and how the data-
sharing environment works [52, 61]. Together with the participants, we recon-
structed the data flow by asking them (and correcting them if they are wrong)
what the different entities are, what their relations are, and how the data are
shared between them. Our purpose at this step is to reconstruct a correct
drawing of the process on a flip chart. As active learning increases knowl-
edge acquisition and performance [339], by involving everyone in this process,
we increase their engagement thus ensuring that they indeed acquire a cor-
rect mental model of the ecosystem. However, as we wanted to provide them
with only the correct model and needed the activity to be reasonably brief,
we directly conducted this activity all together. We also briefly presented the
current literature knowledge about users’ behavior and their understanding
toward data sharing with third parties and the related threats; in particular,
the findings discussed in Chapter 3. This was done by showing them a short
presentation with slides. Thus, we helped the participants to be at the same
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Figure 5.2: Photo of one of the tables during the sketching phase.

knowledge level and to be aware of the problems we wanted to address during
the session. It is important for participants to have the correct mental model
in order for them to be able to design solutions that indeed apply to the de-
scribed problems and that can be implemented in a way that corresponds to
a specific and existing layer of the system. In order to not influence them
with regard to the solutions they could have proposed, we discussed only our
findings on users’ behavior and understanding and did not present the results
about our own PET designs (i.e., the countermeasures presented in Chapter 3
and Chapter 4).

Sketching (70 min)

We conducted a short presentation to give the participants tips about designs
and how to sketch, or storyboard [342, 343]. By doing this, we ensure that
they have all the necessary information to create designs that we will able
to correctly interpret and classify. We then asked each group to design and
propose at least two solutions to improve users’ privacy related to data sharing
(more if they have more ideas). We asked them to do this in three steps:
(1) Determine one or two specific problems (challenges) that they want to
solve. (2) Imagine at least two new functionalities/solutions to improve the
problems (i.e., either two solutions for one problem or two solutions for two
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Figure 5.3: Photo of one of the groups presenting one of their design.

problems). And (3) draw sketches to visualize how it could be implemented
in the data sharing (WAT device, companion app, servers, ...). Figure 5.2
shows one of the tables during the sketching phase as well as the drawings
produced by the corresponding group. Time permitting, we welcomed more
solutions from each group. We provided the participants with large paper
sheets (A3), sticky-note papers, colored pens, and markers. Each group worked
separately from each other. There were no interactions between groups at this
stage. The investigators went from time to time to the different tables to
observe the progress of the activity. To do this, the investigators asked a few
questions, without too much priming, to understand where participants were
in the definition of their problem and/or the design of their solution and also
to check that participants understood the process and had no questions about
what they were doing.

Value Ranking (30 min)

In order to compare the reactions the WAT users had about the proposed
designs with our own evaluation as security & privacy experts, we asked the
participants to evaluate them. To do so, each group (either one or multiple
persons by group) presented their sketches and discussed them with the other
session participants. Each presentation (5 min.) was in three phases: presen-
tation, questions and answers, and evaluation. Figure 5.3 shows participants
during the presentation of one of their designs. After each presentation, each
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participant (they had to indicate if they were one of the designers or not) was
asked to evaluate the proposed solution regarding two points: usability [344]
(i.e., if the solution is easy to use) and adoption [345] (i.e., if they would use
the solution in everyday life). For each of these points, they attributed a grade
on a five-point Likert Scale. Their grades were collected using an online form
that the participants could access with their phones. The participants graded
the solutions before we proceeded to the coding (see Section 5.2.5) in order for
us to identify specific design features from the proposed solutions, as grading
the identified features after the sessions would have required us to contact each
participant once again after the coding process. Therefore, the evaluation by
the participants is directly related to the proposed solutions and not to the
design features that we identified in these solutions and that we discuss in
the results section. However, we consider that this evaluation still provides us
with insightful information about how the participants perceived the different
proposed functionalities. After grading, one of the investigators collected all
the material (text and drawing) related to the presented design. Furthermore,
the evaluation was anonymous (we know only if the evaluation of a given de-
sign was done by one of its designers or not). Hence, we minimized all social
biases that could have influenced their evaluation. We then asked them if there
were any comments or questions about the session, or information security &
privacy in general, and we discussed them if necessary. After the session, each
participant was paid in cash upon leaving.

5.2.3 Room Layout

As shown in Figure 5.4, during the sessions, we arranged the room as follows:
We placed three tables in the middle of the room, along with three chairs
each, each one can accommodate three participants. At one end of each table,
standing on a stool, we placed an audio recorder to record the discussion at the
table. At the beginning of the session, the main investigator (i.e., the author
of this thesis) was at the back of the room, or in front of the participants when
sitting. The main investigator was equipped with a laptop, a beamer, and a
flipchart in order to supervise the general discussions and the presentations.
Two video cameras are also placed in the room: One, fixed on a tripod stand,
was in one of the corners of the room, thus enabling a global vision. The other
camera was placed on a long table and turned towards the presentations and
was regularly moved by a second investigator in order to film pieces of the
discussion taking place at certain tables during the session.
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Figure 5.4: Layout of the room where all the participatory design sessions were conducted.
To conduct the sessions, we used three tables along with three chairs each as well as drawing
material (e.g., paper sheets, pens), a flipchart, and a video projector (and a connected
laptop). To record the sessions we used three audio recorders (one per table) as well as two
video cameras.

5.2.4 Participants & Groups Composition

The session participants and the groups were composed in such a way as to
obtain a gender balance. Table 5.1 in the appendix shows the details about
the sessions and group composition. We conducted three different sessions
with three groups of three people, except for Group 2 of Session 1, which was
composed of only two participants. Among the participants, 42% were women
(11 participants), and 58% were men (15 participants). They were 21.1 years
old on average, with a standard deviation of 2.5 years. The participants wore
their WAT 5.9 days a week on average, with a standard deviation of 1.4 days.
The days they wore the device, 35% of them wore it during 7 to 12 hours, 27%
during 13 to 18 hours, and 38% during 19 to 24 hours. The participants were
composed of 65% of Apple users, 12% of Fitbit users, 19% of Garmin users,
and only one of them (4%) had another type of device. Half of them (50%)
share their data with only one TPA, 42% with two to five TPAs, only one of
them (4%) share their data with six to nine TPAs, and also only one of them
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Session Group Gender Age Days Hours Nb TPAs Device

1 1 Woman 23 6 13-18 1 Garmin
Man 30 7 13-18 10+ Apple
Man 20 7 13-18 1 Apple
2 Woman 22 7 19-24 2-5 Fitbit
Man 22 4 7-12 2-5 Garmin
3 Woman 19 7 7-12 2-5 Apple
Man 22 7 19-24 1 Apple
Man 20 7 19-24 6-9 Apple
2 4 Man 25 4 7-12 2-5 Garmin
Woman 22 7 19-24 1 Fitbit
Woman 19 5 19-24 2-5 Garmin
5 Woman 24 6 13-18 2-5 Apple
Man 19 5 13-18 2-5 Apple
Man 20 5 19-24 1 Garmin
6 Woman 23 5 19-24 1 Other
Man 21 7 13-18 1 Apple
Woman 20 7 13-18 2-5 Apple
3 7 Man 21 7 7-12 25 Apple
Woman 20 5 19-24 1 Apple
Woman 21 5 7-12 1 Apple
8 Woman 18 7 7-12 1 Apple
Man 20 7 7-12 1 Apple
Man 20 3 7-12 2-5 Apple
9 Man 20 7 19-24 1 Apple
Man 19 7 19-24 2-5 Fitbit
Woman 19 3 7-12 1 Apple

Table 5.1: Details of participants for each session and group.
share their data with 10 or more TPAs.

5.2.5 Coding Process

After all the sessions, we collected 19 drawings that represent the partici-
pants’ designs (all groups submitted two designs except for one group that
submitted three). Then, we used open coding [269] to categorize the multiple
functionalities (i.e., design features) included in the different designs. Two of
the researchers working on this study (the coders) independently developed
a codebook on their own before pooling and discussing their respective re-
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sults. By doing so, we noted a high rate of overlap between the codes and
design feature categories defined in the two codebooks. After comparing both
codebooks, one of the coders (i.e., the author of this thesis) built a new fi-
nal codebook by merging overlapping codes and designing feature categories;
then, the second coder reviewed and provided feedback. Finally, both coders
reached an agreement on the coding. In total, as shown in Table A.1, we iden-
tified 16 distinct codes classified into seven categories (or themes). As they
describe design features, and one specific design could implement multiple fea-
tures, these codes and categories are non-exclusive. As a result, regarding
their functionalities, each design could correspond to multiple design-feature
categories.

5.2.6 Expert Review Meeting

After having coded all the proposed designs, we were able to classify them
into seven design-feature categories, each category corresponding to one spe-
cific type of PET/TET. In addition to the evaluation of the design provided by
the participants themselves, and in order to provide a more informed perspec-
tive on the way these solutions could be implemented and used, we evaluated
these different types of technologies (i.e., the pre-defined categories) during
an expert evaluation session with two information security & privacy experts,
i.e., the two other researchers who work on the study and who did not take
part in the coding process. The two experts are professors in our institution
and their specializations are Information Security & Privacy (Expert 1), and
Cybersecurity (Expert 2). The coders (and in particular one of them, the
author of this thesis) first welcomed the experts and presented the protocol
of the review meeting (10 min.). Then, we proceeded as follows, individually
for each design feature category (10 min. each): The author of this thesis
presented the design feature to the others (2 min.). During the presentation,
the author of this thesis showed one slide that included the name of the de-
sign feature, a brief description, and a few examples of drawings that are the
most representative of the feature. Then, the experts discussed it (5 min.).
During the discussion, they could ask questions to the coders. Finally, they
provided feedback (3 min.). This feedback consisted of a graded evaluation on
a b-point Lickert scale of the feasibility [346] (i.e., if it is feasible to develop)
and effectiveness [347] (i.e., if it is effective to protect users’ privacy) of the
feature, and of a free discussion including (1) comments about their graded
evaluation, (2) any suggestions on how to improve it, and (3) any example
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that such design is implemented in a different context. During the evalua-
tion, the coders also graded the different designs, together with the experts.
However, in order to not be influenced by the experts, they did this before
hearing the experts’ comments. The author of this thesis allocated sufficient
speaking time to both experts. During each step of this session, the experts
had pens and paper at their disposal to take notes and write down their ideas
and notes when required. The session was audio recorded. The session lasted
approximately 90 minutes.

5.3 Results

In this section, we present seven features extracted through the coding process,
from the 19 designs collected during the participatory design sessions. For each
feature, we begin with a complete description of its functionalities, then, if
possible, we provide examples of similar features that already exist in another
context (e.g., mobile phone permissions, social networks), that usually help
users to easily monitor what type of data is shared with which application.
We present qualitative evaluations related to the feature, before presenting the
quantitative evaluation by the participants and the evaluation by the experts
which are also summarized, respectively, in Table 5.2.

Table A.1 in the appendix summarizes the results of the coding with all the
features (categories) and codes that were identified during the coding process.

5.3.1 Feature 1 - Partial Sharing

Partial sharing enables WAT users to share only part of their data according
to a specific time frame or a given context. In fact, granting access to WAT
data permits the TPAs to access every data of a specified type regardless of
when the data has been collected by the device. In other words, a TPA can
access WAT data that was collected before a user granted access. Using this
feature, the user would be able to choose a specific data-collection time frame
that they want to share (excluding the others). Feature 1 was present in three
different designs proposed by the participants. Whereas one of the designs
allows users to select a time frame by indicating dates, another one simply
enables the user to choose between sharing all the data or only the data that
has been collected since the access was granted. In a different approach, the
third design, shown in Figure 5.5, is context-aware, allowing users to indicate
the data type and the activity type they would want to share (e.g., sharing
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Figure 5.5: Translated version of the design that proposes partial sharing (Feature 1) regard-
ing specific contexts (exercises) and/or time frames (when the user enables data sharing).
In this version of the design, we replaced all the text (written in French) with an English
translation.

only the heart rate data that were collected while running). This last design
also proposes a “start sharing” feature that the user could enable and disable
to select the time frame during which the data is shared (and only the data
collected during this specific time frame). Such features should be implemented
by the service providers (e.g., Apple or Fitbit).

This feature received positive feedback from the experts. Expert 1 men-

tioned that “/...] it’s also pretty good addressing one of the issues detected in
previous work, that is people misunderstand that when you grant access you
also grant access to data that was collected in the past.” [61]. The same expert
added “[...] find it a bit restrictive in a way, they [the participants] could have
gone further other than just basing their access control on time [...] I think
they could have imagined other mechanisms like the granularity of the data
and so on [...]".
Regarding the scores, this feature received the second-highest score given by
the experts, for feasibility (4.75) and effectiveness (4.00). As for the evalua-
tions by the participants, this feature received the second-highest score given
by the participants, for adoption (4.12) and usability (4.41). We can, therefore,
affirm that, with all scores above 4, this feature is particularly appreciated.
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Figure 5.6: Screenshot of the current Garmin companion app showing the TPAs list. When
the user taps on one of the TPAs, it opens a panel showing all types of data that is shared
with that TPA.

5.3.2 Feature 2 - Visualization

Solutions under this category aim to help users have a better overview of their
data-sharing behavior by designing new visualization tools. These tools can
help the users explore the shared data and the different TPAs with whom they
share their data by classifying them either by data type or by TPAs. Some
proposed visualization features also allow users to keep track of all shared data
through a logging system and by displaying an accurate data-sharing history.
Finally, such a feature can also help users monitor their own behavior toward
data sharing by presenting them with specific statistics about their usage of
the different TPA services that are installed on their phones. Feature 2 was
present in five different designs. Currently, most platforms allow users to check
a list of connected TPAs (e.g., see Garmin interface in Figure 5.6). However,
no companion app provides a list of TPAs classified based on the type of shared
data. Such features should be implemented by service providers. An example
of Feature 2, in a different context, is available on iOS and Android for access
management of mobile applications, as shown in Figure 5.7. The behavioral
and log statistics feature is also similar to the macOS screen time.!

For the experts, the weakest aspect of Feature 2 is effectiveness. Expert
2 mentioned that “The main drawback of this approach is that it’s not very
effective, maybe it can lead to a change or increase awareness of the user [...J
but as a mechanism itself it is not directly protecting privacy.”. This feature
received a low score for effectiveness (3.00). However, feasibility received the
second-highest score given by the experts (4.75, tied with three other fea-
tures). As for the evaluation by the participants, this feature did not receive a
high score for adoption (3.82); however, it received a decent score for usability
(4.21). We think that such a solution might be perceived as useful and multi-

'https://support.apple.com/en-us/HT210387
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Figure 5.7: Screenshot of the permission management panel on Android. When the user
taps on one of the data types, it opens a panel showing all applications having access to
that data/sensor.

ple WAT users might be interested in accessing information about their data
sharing. However, most of the users will probably not use it, as they have to
actively check a dedicated section in the service provider’s mobile app, which
is already quite complex. Indeed, previous research on online social networks
and Android permission has shown that most of the users never update or
even check their privacy settings [57, 247].

5.3.3 Feature 3 - Centralization

Centralization is not a new feature but rather a solution that guarantees secure
data sharing among users. Two different solutions were proposed. The first
solution suggests that the main service provider should have its own TPA app
store. Any TPA interested in offering services in the app store would first need
to obtain approval from the main service provider. This approval would act as
a guarantee to users that the TPA will confidentially and securely process their
data and that their privacy will not be compromised. In a slightly different
context, a known example of this feature is Google Play’s privacy labels? (or
data safety section), allowing developers to disclose information about their
app’s data collection, sharing, and security measures. The second proposed
method is to eliminate the possibility of sharing users’ data with TPAs and
replace it with a plugin system directly integrated into the main application.
This solution would guarantee that the users’ data would not be stored on
the TPA’s server at any moment, as the main service provider would still be
the data-processing entity. Feature 3 was present in three different designs.

’https://blog.google/products/google-play/data-safety/
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This solution would involve the active participation of service providers and
the TPAs’ companies.

This feature received multiple criticisms from the experts in general. [Ex-
pert 1]: “The only positive aspect I see is that a dedicated store would force
TPAs to be more transparent about what they really do with the data, but
regarding the plugin solution, I don’t think that such solution can be put in
place.”. [Expert 2]: “In terms of feasibility, I don’t even know how it could
be done.”. This feature received by far the lowest evaluation for feasibility
(2.00), and the second lowest score for effectiveness (2.67). As for adoption
and usability, it received average scores (respectively, 4.00, and 4.18).

5.3.4 Feature 4 - Reminders

Feature 4 is designed to address the well-known problem of users forgetting to
revoke access [56, 61] by proposing notification reminders. Such a system could
simply remind users periodically that they are sharing their data with TPAs.
Multiple designs propose further engaging features by directly asking the users
to renew the previously granted access (i.e., to opt-in again) or by asking them
if they want to revoke it (i.e., to opt-out). Similar reminder mechanisms were
implemented in other contexts. For example, Facebook implemented a pri-
vacy checkup system [348] to periodically remind users about the TPAs they
share their data with and ask them if they want to revise the access autho-
rizations. Such features could be implemented by service providers. Feature 4
was present in seven solutions. Figure 5.8 depicts one of the examples.

This feature was generally well-perceived by the experts. [Expert 1]: “I
don’t think it’s gonna solve the privacy issues all together [...] but will it solve
an existing problem? I think yes, absolutely, it solves the problem of forgetting.
[...] and I think it would be used.”. [Expert 2|: “I gave pretty much the same
scores as for [Feature 2 |, except for the effectiveness because [...] at least it
prompts the user to take some action [...] so it’s a bit more effective than
Just being transparent [...]”. This feature received the second highest score
for feasibility (4.75) and effectiveness (4.00), and even if the mean score for
usability (4.03) is not one of the highest, it is greater than 4, which is a decent
score. As the score of adoption (3.75) is slightly lower than 4, we would
recommend implementing that feature with an option to disable it or choosing
the reminder frequency to avoid bothering users who do not want to use it.
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Figure 5.8: Translated version of a design that implements a reminder notification feature
(Feature 4).

__

5.3.5 Feature 5 - Revocation Assistance

This feature assists users in revoking data access. Two of the related pro-
posed solutions include features for directly asking the user if they want to
revoke access to their data when they uninstall a TPA’s mobile app from their
phone. This feature is relevant because some users would be concerned about
their data being deleted after uninstalling TPAs [61]. Feature 5 was present
in three different designs. One of these designs also includes an automatic
data-revocation option for when a TPA’s mobile app is not used for a while.
A similar technique was implemented by Google on Android phones called
“Remove permissions for unused apps”? to automatically remove permissions
for apps than you did not use for a certain amount of time. The third design
implements an option for directly sending a message to the TPA’s company
to ask them to delete any related data that are stored on their servers. This
feature is supported by Article 17 of the General Data Protection Regulation
(GDPR) about the “right to be forgotten”.* Figure 5.9 is one of the designs
implementing a feature that would enable revoking access while uninstalling
a TPA’s mobile app on the phone. Service providers should implement such
features, and depending on the specific version of the feature, it may also re-
quire the involvement of the company that provides the OS of the phone (e.g.,

3https://support.google.com/android/answer/94319597hl=en#zippy=
%2Cautomatically-remove-permissions-for-unused-apps

‘https://gdpr.eu/right-to-be-forgotten/#: ~:text=In%20Article%2017%2C%
20the’,20GDPR,originally’20collected,200r%20processed’,20it
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Figure 5.9: A translated example of design implementing Feature 5 enabling revoking access
while uninstalling a TPA’s mobile app on the phone.

sending a revoking request when uninstalling the app). Furthermore, the op-
tion to automatically send a data removal request to the TPA company could
also be imposed by law, as it corresponds to an article of the GDPR.

This feature received one of the most positive feedback. [Expert 2]: “I have
a strong opinion on this option; I think it would increase privacy overall without
decreasing utility [...] I quess it’s a good option.”. This feature received the
highest score for effectiveness (4.50) and a decent score for feasibility (4.50). It
also received the highest mean scores for adoption (4.28) and usability (4.50).
As we can see, except for feasibility (for which it still received a decent mean
score), this feature is the best-rated one.

5.3.6 Feature 6 - Education & Sensitization

Participants proposed adding a tutorial or awareness-raising video during the
data-sharing process. Such a video would serve as educational design friction
to encourage users to be mindful and considerate about the consequences of
WAT data sharing, hoping it can be more effective than the typical text-based
“terms of services”. Earlier literature showed that users usually would skip
reading such text-based privacy notices [126]. Feature 6 was present in four
different designs. One of the designs, shown in Figure 5.10, proposes to show a
short video to the user in order to explain to them how data-sharing works and
what are the multiple related risks to their privacy. This design also specifies
that after watching the video, the users would have to answer a short quiz,
and if they fail, they could not share their data. The fourth design aims to
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Figure 5.10: Translated version of a design implementing a sensitization video (Feature 6)
and requiring to pass a test to share data with TPAs.

implement an informative and interactive consent form, enabling the users to
click on different links to obtain more information about how their data is
processed. Such features should be implemented by the service provider or
by the TPA’s company. The use of educational videos as privacy-preserving
interventions has been proposed in various contexts, such as for multiparty
privacy conflicts on social media [349]. Also, trading apps usually offer brief
training when users create an account.®

This feature did not receive much positive feedback from the experts (ex-
cept for feasibility). They found forcing users to watch a video challenging be-
cause they could be doing something else while the video played. Besides the
possibility of refraining from watching enforced videos, Expert 1 also thought
that such interventions harm the sense of gratification that users would per-
ceive when using a new technology. [Expert 1]: “/...] This is not promising
[...] you just installed the Strava app, you want to test it immediately, your
interest in such things is modest.’. Despite a decent score in feasibility (4.75),
Feature 6 received the lowest score for effectiveness (2.50). Furthermore, it
received the second-lowest score for adoption (3.55) and usability (3.82).

5.3.7 Feature 7 - TPAs Limit

This feature aims to limit the number of TPAs the users can share their data
with. If a user wants to share their data with a new TPA and this number
is already reached, they will first have to revoke a previously granted access.
Only one design implements this feature. Such features should be implemented
by the service provider. Such a limitation is implemented, for example, in the
messaging app WhatsApp that permits linking an account to only four different

Shttps://www.degiro.ch/helpdesk/en/trading-possibilities/why-do-i-have-
complete-test-i-can-trade-product


https://www.degiro.ch/helpdesk/en/trading-possibilities/why-do-i-have-complete-test-i-can-trade-product
https://www.degiro.ch/helpdesk/en/trading-possibilities/why-do-i-have-complete-test-i-can-trade-product

Chapter 5. Our Data, Our Solutions 135

Can't have more than 4 linked devices

To link a new device, first log out from an
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Figure 5.11: Screenshot of the WhatsApp linked devices panel. The user cannot link their
account with more than four different devices at a time.

devices at the same time, as shown in Figure 5.11.°

Except for feasibility, this feature received mostly negative feedback from
the experts. [Expert 1]: .../ if that feature could be enabled or disabled,
I'm pretty sure everyone would disable it on the first time they get prevented
from installing something [...]”. As for the participants, they mostly seem to
dislike it. [Man, 20 y.o., Apple]: “It’s kind of annoying to have a limit, let’s say
someone needs a lot of apps.”. In this case, the experts (and the coders) gave a
low score for effectiveness (2.50). Indeed, even if the feature of having a limited
number of TPAs with which users can share their data would certainly increase
users’ privacy, users would not like it and would not want such a feature to be
implemented. Furthermore, users could simply revoke/grant access multiple
times, which does not help them. Considering the simplicity of this feature, it
received the highest mean score for feasibility (5.00). As for the evaluation by
the participants, this feature also received the lowest mean score for adoption
(2.83) and usability (3.17).

5.4 Discussion

We investigated the widespread problem of user data-sharing in the context
of third-party applications (TPAs) and wearable activity trackers (WATS).
Through participatory design sessions, our participants provided us with mul-
tiple designs in order to help them better manage their WAT-data sharing and

Shttps://faq.whatsapp.com/378279804439436/7helpref=uf_share
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protect their privacy. These proposed solutions offer novel insights into the fu-
ture design and development of privacy-enhancing technologies for WAT-data
sharing with TPAs. In the following parts, we further discuss these findings,
including their limitations and technical feasibility, and envision possible com-
binations of these solutions to build effective PETs.

After having classified and evaluated the various proposed features by ex-
perts, we found that a general solution combining Features 1, 4, and 5 would
be a promising tool to help WAT users effectively protect their privacy. Next,
we revisit these three features.

Enabling the users to share selectively based on context, or specific
timeframes (i.e., which data and activity type they want to share regarding
the time it was collected or the corresponding activity) could address one
major misunderstanding regarding data sharing as users tend for example to
think that they only share the data that was collected from the moment the
granted an access authorization, which is not the case as once a TPA has access
to a user’s given type of data (e.g., step-count, heart-rate), they can access
all data corresponding to this type, regardless of when it was collected [61].
Furthermore, it could likely increase user privacy by substantially reducing
the amount of personal data’ that a potential adversary would have access
to. As suggested during the evaluation by the experts, it could be particularly
interesting to also limit the amount of shared data by allowing users to share
aggregated data. Indeed, previous research already discussed options to share
data aggregated over time (e.g., aggregating the data series by the day) [187]
and showed that it is an effective technique for mitigating inference attacks [63]
and is likely to be adopted by a large number of WAT users [61].

Mechanisms such as reminder notifications and “opt-out” or “opt-in”
access-authorization renewal were also evaluated as having high usability and
effectiveness (especially according to the evaluation by the experts). An ad-
vantage of such solutions is their feasibility to develop them without many
technical challenges. A similar feature was also proposed and evaluated in
previous research [61], showing that WAT users are particularly inclined to
use reminder notifications. However, we recommend implementing only “opt-
out” renewal, as “opt-in” could cause utility issues because such a feature
would revoke the access if the user ignores the message. Furthermore, the user
should be able to choose the frequency of such notifications or disable them,
for example, by checking a box that appears with the notification (e.g., “don’t

"following the concept of data minimizationhttps://edps.europa.eu/data-
protection/data-protection/glossary/d_en
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ask me again”).

The feature allowing users revoke data access when uninstalling a TPA’s
mobile app or asking a TPA’s company to remove data from their servers
received the most positive feedback from the participants and the experts.
Therefore, we find that such a protection mechanism should be implemented.
Indeed, as multiple WAT service providers implement data access for TPAs
by using API keys (e.g., using services as OAuth [43]), it might not be evident
for users that the access authorization is not necessarily revoked when they
delete a TPA’s mobile app from their phone and that the TPA can still access
their data from server to server. Solutions in Feature 5 could not only remind
the users to revoke the access but also teach them that they must do it if they
want to stop sharing their data with a given TPA. Furthermore, a feature to
help WAT users ask a TPA’s company to remove data from their servers is not
only a particularly good feature for increasing privacy but is also conformed
with Article 17 of the GDPR: “The data subject shall have the right to obtain
from the controller the erasure of personal data concerning him or her without
undue delay and the controller shall have an obligation to erase personal data
without undue delay [...]” [350]. However, simple notifications, as suggested in
Feature 4, would be preferable to automatic revocation, as the former could
cause utility issues (e.g., an access authorization being removed without the
user noticing).

Therefore, we propose a meta-solution called RePaRe, which stands for
REminder, PArtial sharing, and REvocation assistance. RePaRe is a com-
prehensive approach comprising the previously mentioned design features to
help WAT users better manage data-sharing. It implements partial sharing
(i.e., timeframe, context, and temporal aggregation), periodical reminders with
“opt-out” renewal (i.e., the user has to revoke the access actively) as well as
a disabling option, and an option to revoke access authorization when unin-
stalling the TPA’s mobile app from the phone as well as the option to send an
automatic data removal request to the corresponding company.

Figure 5.12 shows the workflow of WAT-data sharing and the different
features of RePaRe. The workflow, informed by earlier literature on WATsS,
consists of three main steps in the usage of TPAs (and so the data sharing with
them): (1) adoption (i.e., the moment when users start to use WATSs) [351,
352], (2) adherence (i.e., the period when users continue to use WATSs) [353],
and (3) abandonment (i.e., the moment when users stop using WATSs) [354,
355]. Next, we explain RePaRe according to the different stages of the workflow.
During the adoption step, a given user contemplates using a TPA, usually
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Figure 5.12: (Top) Workflow of WAT-data sharing process with TPAs. (Bottom) RePaRe:
an example meta-solution we propose for the workflow.

installing the corresponding app on their phone, and sharing their data with
the TPA. To do so, the user usually has the possibility to select the type of
data they want to share (e.g., step count, heart rate, activities) and have to
agree to share their data, generally by tapping/clicking on an “accept” button.
In that step, RePaRe proposes partial sharing (i.e., Feature 1), offering the user
different options to share more specific data regarding context and timeframe,
and to only share aggregated data. Implementing such a feature early in the
process is important as the TPA will have access to all data for a given type
as soon as the user accepts to share. The user interface of such a multi-
aspect partial sharing feature is out of the scope of our work and should be
investigated by future studies. During the adherence step of the data-sharing
process, the user passively shares their data to a given TPA by just wearing
the TPA and potentially using the corresponding mobile app. RePaRe still
offers partial sharing, in this step, as the user may want to modify them,
either to share more or less data and adjust the privacy risks. Additionally,
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RePaRe reminds the user, helping them not forget about the previously granted
access to their data, and the fact that they have the possibility to revoke this
authorization. In the abandonment step, RePaRe assists the user in revoking
previously granted access when they uninstall or remove the TPA mobile app
from their phone. Lastly, RePaRe reminds the user that they can request the
corresponding company to delete their data, including personally identifiable
information and WAT data, according to GDPR.

Such a meta-solution requires (almost exclusively) the service provider
(e.g., Fitbit) to be involved, which makes them the primary stakeholder, al-
lowing users to increase their privacy. This is an advantage for users or any
other party (e.g., a legal authority), as they would not need to request new
features from multiple third parties, but only from a single entity (the service
provider), requiring less effort on their part. Recognizing that the presented
meta-solution is just one manifestation of the diverse set of potential design
configurations is essential. The participatory approach we took uncovered a
range of innovative design features, each with the potential to enhance user
privacy in distinct ways. Thus, other combinations and arrangements of these
features have the potential to produce equally effective solutions. Having said
that, some of the proposed ideas require more consideration. For example, a
particularly drastic one would be to limit data storage directly on the WAT or
the smartphone. However, this could lead to severe drawbacks for utility, as
these devices (especially the WAT) have very limited computing and storage
capacities.

5.5 Limitations

This work has a few limitations. First, a participants’ sample including more
Fitbit users and fewer Apple users would have been more representative of the
population of WAT users. Indeed, as seen in Chapter 3, whereas Fitbit is one of
the most permissive companies regarding TPAs, Apple is more restrictive and
its users are more used to a particularly closed environment. Having more par-
ticipants that use devices from other companies would probably have helped
to generate more diverse designs. Another limitation is that the participants
evaluated each design as a whole and not the design features or each proposed
functionality, individually. Indeed, multiple designs included several different
functionalities but were evaluated as a global solution. Therefore, even if this
helps us draw general conclusions, the participants’ evaluations are not strictly
representative of how they would have evaluated each category, whereas, with
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the experts, the evaluations were made for each category, individually. As
we conducted multiple participatory design sessions, all the designs were not
evaluated by the same participants. Moreover, we (the investigators) also de-
cided to evaluate the different categories by regarding the same criteria as the
participants did, including adoption, for which an evaluation by WAT users
would be more relevant. Therefore, as we are not necessarily representative of
the WAT-user population, our evaluation for adoption could be biased. How-
ever, the evaluation by the experts of the three other discussed criteria (i.e.,
feasibility, effectiveness, and usability) was still highly relevant. Finally, we
lack qualitative feedback from the participants. Indeed, although we encour-
aged them to engage in discussion after each presentation, they mostly asked
questions to be sure they correctly understood the design, but very few of
them emitted remarks about their appreciation of the presented design.

5.6 Conclusion

In this chapter, we have described a participatory design study that was con-
ducted with 26 WAT users in order to design new functionalities that could
help WAT users better manage data sharing, thereby increasing their privacy.

We have classified the 19 different designs that were proposed by the partic-
ipants into 7 different design feature categories. Then, we have described and
evaluated these categories. We have also compared our experts’ evaluations
with the participants’ evaluations. We have used this information, as well as
other protection mechanism ideas that we already proposed in the previous
chapters, to develop a general (perfect) solution that would be, in our opinion,
highly effective for increasing WAT-users privacy while keeping a decent level
of feasibility, usability, and adoption. This ”meta-solution“ combines three of
the seven previously defined features, to which we have added one particular
PET that we already proposed and tested in the previous chapters (Chapters 3
and 4).

For future work, we plan to present our previously proposed “meta-solution”
called RePaRe, in detail to WAT users in order to have precise evaluations and
feedback. We also intend to implement and deploy a tool that would enable
WAT users to use similar functionalities in order to conduct a longitudinal
study on how users can adopt and use such a solution. Such a study would
help us improve this solution and to better understand to what extent it would
be useful to protect WAT-users privacy. Another interesting study could be
conducted on WAT companion-app developers and/or companies in order to
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better understand their motivations and to what extent they would consider
implementing such functionalities. Finally, we should actively follow the new
data-sharing trends in the WAT market, as well as the corresponding function-
alities, in order to observe if new privacy-enhancing technologies are indeed
implemented and to study potential new data-sharing behavior that could be
harmful to privacy.






Chapter 6

Conclusion

In this final chapter, we conclude this thesis in two parts. First, we summarize
our contributions to the wearable activity tracker security & privacy research
field. Then, we discuss the future of this research field by highlighting various
ways to complement the research presented in this thesis and to further explore
our findings.

6.1 Contributions

In this thesis, we have provided key findings about the quantification of the
privacy of users of wearable activity trackers by assessing the risks and threats
associated with the use of such devices and by proposing countermeasures.
After reviewing the current literature about WAT security & privacy in Chap-
ter 2, we highlight, in Chapter 3, the risks (i.e., “the possibility of something
bad happening” [356]) related to the usage of WAT devices by assessing the
users’ behavior and understanding toward data sharing. Our findings show
that a large number of users have poor knowledge of the WAT-data sharing
ecosystem and are often are not aware of all the data they share and with
whom. Such findings suggest that they could make decisions that, without re-
alizing it, are harmful to their privacy and that they are not fully aware of the
issues at stake in their privacy-utility trade-off [37, 134]. We have analyzed,
in Chapter 4, a particular threat to the privacy of WAT users by assessing
the extent to which an adversary can infer individuals’ personality from their
WAT data. In this chapter, we show a significant correlation between this data
and personality traits. We have discussed how such inferences can be harm-
ful (e.g., targeted advertising, discrimination) to the users and/or to society
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as a whole (e.g., massive political manipulation). Finally, in Chapter 5, we
have described the outcome of three participatory design sessions about pri-
vacy /transparency enhancing technologies conducted with WAT users, and we
have presented and commented on multiple draft designs for improving WAT-
data sharing, in the sense that they could help users to better understand it,
be more aware of their behavior, and share their data with fine-grained ac-
cess control; these designs could give them a means to improve their privacy.
We then discussed and proposed a meta-solution, called RePaRe, composed of
the best-evaluated features extracted from the different designs. This solution
would, in our opinion, highly improve WAT users’ privacy by providing them
with new features to help them better manage their data sharing and share
data more selectively.

6.2 Future Work and Perspectives

In Chapter 3, we have explored the actual behavior of WAT users toward data
sharing, as well as their understanding of the WAT-data sharing ecosystem.
However, we explore their behavior regarding only the entities (e.g., other
users, TPAs) to which WAT users share their data. For future work, it could
be interesting to further explore the types of data that are shared with TPAs,
as well as with other entities (e.g., friends, physicians, insurance, and social
networks). Indeed, as shown in Chapter 4, the amount of information that
an adversary can infer from WAT data varies depending on the type of data
to which they have access. And as attitudes and concerns about data sharing
regarding the different types of data and categories of entities WAT users can
share their data with were explored in previous work [19], this is not the case
of their actual behavior.

In Chapter 3, we have presented the results related only to how many TPAs
users share their data at a specific point in time (i.e., when they answered the
questionnaire). However, many of them could have shared their data with far
more TPAs before revoking their access. Some users regularly try, for example,
new TPAs before revoking the previously granted access. Such behavior can
also be harmful, as these TPAs can generally access all the data collected in
the past. As a result, it is crucial to study the frequency of such behavior in
the population of WAT users by investigating, through longitudinal studies,
how users grant and revoke access to their TPAs over time and by putting this
into perspective with their actual use of the TPAs.

We could also explore, from a more technical point of view, other types of
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inferences. Indeed, in this thesis, we studied how WAT data can be used to
infer a user’s personality. However, many other personal attributes, such as
religious beliefs, political views, and marital status, can probably be inferred
from such behavioral and contextual data. This could be either done using a
methodology similar to the one described in Chapter 4 or by collecting data
on a larger scale. For example, by collecting previously collected WAT-data
from users (after obtaining their consent) and ground truth about the personal
information, we could try to infer more. Indeed, as the main adversarial model
described in this thesis corresponds to companies that can access vastly larger
amounts of data than the data used in this thesis, it is crucial to understand
that the extent to which the accuracy of the inference of the personal attributes
of WAT users could indeed vary on a much larger scale and subsequently to
develop adapted mitigation techniques.

Another aspect of information privacy that we did not explore in this dis-
sertation and that could bring valuable knowledge about the privacy of WAT
users is to study the extent to which WAT data can be de-anonymized in
a large dataset. Indeed, health-data breaches (e.g., hospital databases) are
particularly frequent [357, 358] and, even if such data could be anonymized
or pseudonymized, it is generally not the case for WAT data that have been
shared by the users (e.g., with TPAs). As WAT data are highly related to
certain types of health data (e.g., heart rate), it is crucial to understand how
an adversary can cross-reference the data of a user to create user profiles con-
taining even more information.

Regarding mitigation techniques, we could design more secure communi-
cation protocols for WAT data, from either the WAT to the companion app
(i.e., the phone) or from the app to the cloud; as we have seen in Chapter 2
these aspects have multiple vulnerabilities. However, as described in this the-
sis, we consider that the way WAT users share their data constitutes a risk
greater than these security vulnerabilities. Hence, it is important to further
study PETs/TETSs, as we have in Chapter 5. For example, we could imple-
ment and evaluate, on a large scale, the final general solution that we proposed
in this manuscript, as well as others. It could also be interesting to open a
discussion with WAT developers/companies to evaluate to which extent they
would be inclined to develop such functionality in order to help their users to
protect their privacy. Although they are one of the main stakeholders related
to this topic hence are involved in the multiple issues about privacy, there are
particularly few that are studied/solicited by researchers.

Although, in this thesis, we focus on a specific type of wearable device
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(i.e., WATS), there exist a large variety of other devices, with similar types
of sensors that should be analyzed from the angle of information security
& privacy. Indeed, such devices are increasingly part of the daily lives of
numerous individuals and are equipped with ever more accurate and diverse
sensors. A large number of emerging technologies, such as the recent Apple
Vision Pro [359] could be widely adopted in the near future. Therefore, it is
crucial to not only conduct “technical” studies related to security & privacy
on this type of device (e.g., analyzing communication protocols, highlighting
security breaches, personal information inferences) but also to conduct studies
with user-centric approaches. This is essential to better understanding all the
risks for privacy and for proposing the necessary mitigation methods adapted
to the usage that individuals make of these technologies.
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Appendix A

A.1 Questionnaire of Chapter 3

STUDY

You are invited to participate in a research survey about fitness-

data sharing. The survey takes approximately 25 minutes to complete. For
an optimal experience, we recommend you take the survey on a
computer with your smartphone close to you.

PARTICIPATION CRITERIA
To be eligible for this study you must:

¢ regularly use an activity tracker (i.e., a wrist-worn device that collects
personal fitness data like step counts, activities, and/or heart rate)
from Apple, Fitbit, or Garmin,

e have your activity tracker paired with an iOS or Android smartphone,

e use the official companion app (i.e., Apple Health, Fitbit, Garmin
Connect) - preferably in English, and,

¢ have granted access to your fitness data to a third-party app (i.e,,
an app that is not provided by the company that manufactured your
device).

YOUR RIGHTS
You will be paid $5 for your complete participation in the study. You may
choose to terminate your participatiorhgllthis study at any time and for any
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reason. In this case, however, you will not be compensated and your data will
be deleted. If you participate, your answers will be kept confidential. Also,
we do not collect personally identifying information such as your name and e-
mail address. All data will be stored on a secured server and only
researchers participating in this study will have access to it. The results of this
research study might be published in scientific journals or conferences. Any
published information will be aggregated and/or anonymized.

CONSENT

If you wish to participate in this research study, please select the “"Agree”
option to continue. It will indicate that you are eligible for this study, that you
will answer all questions truthfully, and that you consent that we use the
collected data under the conditions stated above. If you select "Disagree” you
will not participate in this research survey and will not be paid.

Agree
Disagree

Screening - sharing

Have you ever granted access to your fitness data to any third-party app?

A third-party app is an app that is not provided by the company that
manufactured your device.

For example, the Strava app qualifies as a third-party app: you can grant it
reading access to your data collected by devices from Apple, Fitbit, and
Garmin. The picture below shows granting Strava access to your device's
companion app's data. Apple Health/Fitbit/Garmin app does not qualify
as a third-party app.
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Don’t Allow

Health Access

W "STRAVA® TO READ DATA

Active Energy

Cycling Distance

Heart Rate

Walking + Running Distance

Workout Routes

‘! Workouts

Allow

slelele]e]o

{ Back Connect Fitbit

- fitbit

Fitbit + Strava by Strava, Inc. would like the ability to
access and write the following data in your Fitbit
account.

Allow Al
location
(/] activity and exercise
9 heart rate
weight @
profile @

If you allow only some of this data, Fitbit + Strava may not function as
intended. Learn more about these permissions here.,

ccnnect

STRAVA

Control the information you share.

() Yes
() No

device infos

OJOXOXOXOX0X0XO,

How many days per week on average do you wear your main activity-
tracker?

N o o1 A W N HE O

What is the brand of your main activity tracker?



184 A.1. Questionnaire of Chapter 3

Garmin
Apple
Fitbit

What type of smartphone have you paired with your main activity tracker?

iOS (Apple)
Android

Block B - Device Information (device type and usage)

From now on please keep your smartphone close to yourself (the one with
which your fitness tracker is paired).

Some questions will explicitly ask you to check your app settings.

From now on please keep your smartphone close to yourself (the one with
which your fitness tracker is paired).

Prepare your Fitbit account credentials (we will not ask you the credentials,
only to connect to your Fitbit account).

Some questions will explicitly ask you to check your app settings.

What version of iOS is your device using?
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Follow the instructions below:

1. Tap on "Settings"

2. Tap on "General" (scroll down if needed)

3. Tap on "About"

4. Look at the current "Software Version"

g @ Settings
T‘\ Airplane Mode
Health Settings. o
Wi-Fi eduroam
Bluetooth On

B Notifications
Sounds
Focus
Screen Time
[2)

< Settings General

(3}

About

| @ General

8 Control Centre

Display & Brightness

Software Update

AirDrop
AirPlay & Handoff

Picture in Picture

iPod touch Storage

Background App Refresh

Date & Time

< General About
Name [4) iPod touch
|Software Version 16.2 |

Model Name iPod touch (7th gener...
Model Number MVHW2FD/A

Serial Number F6KFH2M6M93D

Limited Warranty Expires: 16.06.22

Songs 0
Videos 0
Photos 9

() v.15 or newer (e.g., v.15.2)
() v.14.9 or older (e.g., v.13)

What is the model of your Apple Watch, please indicate the model series

number?

Open Apple Watch app and follow the instructions below:

1. Tap on "General"
2. Tap on "About"

3. The series number is indicated in the "Model" section
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General

Apple Watch

About Name
My Faces
Software Update

Automatic App Insta Limited Warranty

*
10:09:30

%g et Songs

Photos
Fire and Water Airplane Mode
Applications
F
Notifications Capacity

App View
Watch Orientation

Dock Version
Language & Region

Model
i Apple ID
General Serial Number

Display & Brightness e el
Background App Refresh Wi-Fi Address

Accessibility Bluetooth

What is the model of your main activity tracker?

Open the Garmin Connect app and follow the instructions below:

1. Tap on the left top of the screen (the three lines)
2. Tap on "Garmin Devices"
3. Please indicate the device you use the most
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Devices

Venu 2

fenix 3 HR

& HRM-Pro

BETTER TOGETHER
Check your health stats, upload workouts, and
mare! All you need is a Gammin device 10 get
sarted

Explore Products ] _ Trouble Connecting?

What is the model of your main activity tracker?

Open the Garmin Connect app and follow the instructions below:

1. Tap on the left top of the screen (the three lines)
2. Tap on "Garmin Devices"
3. Please indicate the device you use the most
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@ Activities = Devices

Health Stats
% Venu 2

Training

fenix 3 HR

Gear

Insights

© HRM-Pro

Connections

Groups
Trouble Connecting?

Garmin Devices

BETTER TOGETHER

Check your health stats, upload
workouts, and more! All you need is Help
a Garmin device to get started.

Settings

Activity Tracking Ac

Explore Products] [ Add a Device

What is the model of your main activity tracker?

Open the Fitbit app and follow the instructions below:

1. Tap on your profile picture (top left)
2. Please indicate the device you use the most
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oooo0ooog

(1) fitbit

TODAY

Track your mindfulness

Track your exercise

87 kg

Log some water

& € Account

EDIT

Username
Joined February 5, 2020

Try Fitbit Premium

Personalized Guidance and

6 Create Family Account
Set up Ace for Kids

Inspire HR
0 (2)

Battery Medium

—+— Set up a Device

Shop Fitbit
SETTINGS
Activity & Wellness
Account Settings
App Settings
Help & Support

Legal

ns

-

ghts

Which of the following functionalities of your fitness tracker do you use?

Select all that apply.

Steps tracking

Heart-rate tracking

Sleep tracking

Activity tracking

Calorie tracking

Stress monitoring

None
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Block D - Access via Public Profile

Off the top of your head (i.e., without checking on your smartphone),
which of the following data is visible on your Fitbit profile?

Select all that apply.

(] Birthday

[ ] sex

[ ] Height

[} Weight

[] Location

[] My Friends

[ ] Badges & Trophies

[] Lifetime Steps, Distance, and Floors
O Average Daily Step Count

[] None

Now please check in your Fitbit app (see instructions below) and indicate
the privacy settings for each type of data.

Open the Fitbit app and follow the instructions below:

. Tap on the top left corner (where the profile picture is)

. Tap on "Social & Sharing"

. Tap on "Privacy"

. Tap on each data type and check privacy settings (Private, Friends, or
Public)

A WN -
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D o fitbit &4 | € Account & Social & Sharing
< TODAY EDIT U
S ©

4 Try Fitbit Premium Blocked Users
Personalized Guidance and Insights

0 Community Guidelines

Mins Create Family Account
Set up Ace for Kids

+  SetupaDevice
. 0 D)
0 0 1,407 Shop Fitbit W
SETTINGS
c Wear your Fitbit to bed +

Activity & Wellness

Account Settings
¢ Track your mindfulness
WIS e App Settings

Help & Support
‘(' Track your exercise +
e Legal

Notifications

— == bom

i o W Social & Sharing
12

a Private 1t Friends @ Public

Birthday

Sex

Height

Weight

Location

My Friends
Badges & Trophies

Lifetime Steps,
Distance, and Floors

Average Daily Step
Count

O O O0OO0O0O0O0OOOO0
O CIONONONONONONG,
O O O0OO0OO0O0O0OOOO0
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Off the top of your head (i.e., without checking on your smartphone),
which one of the following data is publicly visible on your Garmin Connect
profile?

Select all that apply.

[ ] Gender

[ ] Height

[} Weight

L] Age

[} VO, max

(] Personal records
[ ] Lifetime Totals
[] Last 12 months
[] Garmin device

[ ] segments leaderboard
(] Running

[ ] Cycling

[ ] walking

[] swimming

[ ] Gym & fitness equipment
[ ] Multisport

(] Diving

[ ] Winter sports
(] Hiking

(] Other (sports)
[ ] None

Now please check in your Garmin Connect app (see instructions below) and
indicate the privacy levels for each type of data.

Open the Garmin Connect app and follow the instruction below:

1. Tap on the left top of the screen (the three lines)
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2. Tap on "Settings"
3. Tap on "Profile & Privacy"
4. Check which data type is shared with which level (e.g., “Everyone”)

. = Ssettings Profile & Privacy
Health Stats
Usemame
Profile & Privacy
Training Locaton

User
Gear

Insights Notifications

BETTER TOGETHER Profile
Check your health stats, upload workouts, and
more! All you need is a Garmin device to get
started.

Phone Permissions

Connected Apps Activities

Sign Out Steps
@ Activity @ weight @ Hydration
Badges
Build Number
Muted Users
Version
Blocked Users

Data

Garmin Connect Mobile EULA

Privacy Policy »
[

Security Policy

Height

My
My connections
Only me connections & groups Everyone Custom
Profile
Activities
Steps
Badges

Now please check in your Garmin Connect app (see instructions below) and
indicate the privacy levels of each type of data.

Open the Garmin Connect app and follow the instruction below:

1. Tap on "More" at the bottom right of the screen (the three dots)

2. Tap on "Settings"

3. Tap on "Profile & Privacy"

4. Check which data type is shared with which setting (e.g., “"Everyone”)
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BETTER TOGETHER

Check your health stats, upload
workouts, and more! All you need is
a Garmin device to get started

Explore Products

My
My connections
Only me connections & groups Everyone Custom
Profile
Activities
Steps
Badges

In the previous question you said that you defined custom privacy settings for
activities.

Please check your "Activities" privacy settings and select the privacy levels
for each activity type.

Follow the instructions below:

1. In the same "Profile & Privacy" settings, tap on "Activities" (second option
from the top)

2. Tap on "Edit Custom Privacy Levels"

3. Check which type data is shared with which setting (e.g., "Everyone”)
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& Profile & Privacy

‘ Username

Profile

Muted Users

Blocked Users

Data

& Activities

Only Me

My Connections
ible t ou and your

My Groups and Connec

ble t ur Connects

Everyone

Custom

Edit Custom Privacy Levels

&« Custom Privacy Levels

Running

Cycling

Walking

Swimming

Gym & Fitness Equipment

Multisport

Diving

Winter Sports

Hiking

Running
Cycling
Walking
Swimming

Gym & fitness
equipment

Multisport
Diving

Winter sports
Hiking

Other

Only me

My connections

My connections

and groups

Everyone
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Please check your "Profile & Privacy" settings and select among the following
types of data the ones that are shown on your profile.

Follow the instructions below:

1. Go back to "Profile & Privacy" settings, slide down to the "Show on profile
section
2. Select all the following data that are available according to your settings

& Justom Privacy Levels & Profile & Privacy
Running

Cycling
Gender

Walking Height

Weight
Swimming
Age

Gym & Fitness Equipment V02 Max

Multisport Personal Records
Lifetime Totals
Diving
Last 12 Months

Winter Sports Garmin Device

Hiking What | Do

Manage Garmin Account

Gender
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] Height

] Weight

(] Age

] vOo2 Max

[] Personal Records
[] Lifetime Totals
[] Last 12 Months
[} Garmin Device

[ ] None

With which types of individuals do you generally share the following type of

data?

Open the Apple Health app and follow the instructions below:

1. Tap the "Sharing" tab (bottom)

2. You can check the sharing settings for each of your "sharing contacts"

@ show All Health Data

Articles

| aa o

Summary Sharing|

Browse

Summary () Sharing
Favourites Edit = You Are Sharing With
d St : U 2
eps 09:56 [2) : ts()(src :
10 steps

Add another person

Apps

Research Studies

Summary Sharing Browse
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Please select the types of individuals that you share your data with.
Select if your share with at least one corresponding individual.
Do not select anything if you do not share your data with anyone.

Co- Health
Friends Family workers  Professional Employers Strangers

Q(azziavity related ] 0 OJ ] O OJ

Heart related data D E]

Mindfulness

related data D D
O OJ

Mobility related
data

O O O O
O O O O
O O O O

With how many individuals of each of the following types do you share at
least one type of data?

Please select "0" when no one corresponds to the concerned type of

individuals.
More than
0 1-2 3-4 5-7 7
Friends
Family
Co-workers

Health Professional

Employers

ONOHNONONONG
ONONONONONG
ONOHNONONONG
ONOHONONONG
ONONONONONG

Strangers

How many individuals of each of the following types do you have as Garmin
"Connections"?
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Open the Garmin Connect app and follow the instructions below:

1. Tap on the left top of the screen (the three lines)
2. Tap on "Connections"

. Activities

C Welcome to Connéct Health Stats

Training
Gear

Insights

BETTER TOGETHER

Check your health stats, upload workouts, and

more! All you need is a Garmin device to get 1 ¢ Connections
started.

Groups

Explore Products ] [ Add a Device

Garmin Devices
@ Activity @ weight @ Hydration Settings

Help

Activity Tracking Accuracy

Challenges Calendar News Feed  Notifications

Please select "0" when no one corresponds to the concerned type of individuals.

More than
0 1-2 3-4 5-7 7
Friends
Family
Co-workers

Health Professional



200 A.1. Questionnaire of Chapter 3

More than
0 1-2 3-4 5-7 7

Employers

Strangers

How many individuals of each of the following types do you count in your
Garmin "connections"?

Open the Garmin Connect app and follow the instructions below:

1. Tap on "More" at the bottom right of the screen (the three dots)
2. Tap on "Connections"

@

Training
Gear

ETE

BETTER TOGETHER

Check your health stats, upload
workouts, and more! All you need is
a Garmin device to get started.

Explore Products Add a Device
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Please select "0" when no one corresponds to the concerned type of individuals.

More than
0 1-2 3-4 5-7 7
Friends O O O O O
Family O O O O O
Co-workers O O O O O
Health Professional O O O O O
Employers O O O O O
Strangers O O O O O

How many individuals of each of the following types do you count in your
Fitbit "friends"?

Open the Fitbit app and follow the instructions below:
1. Tap on the bottom "Community"

2. Tap on the top "Friends"
3. Specify your relationship with the people on the list
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fitbit — FEED 9 GROUPS

Q Track your mindfulness
.{, Track your exercise
87 kg

Log some water

_ (1] a
o EI o W

Please select "0" when no one corresponds to the concerned type of individuals.

More than
1-2 3-4 5-7 7
Friends
Family
Co-workers

Health Professional

Employers

ONONONONONOI
ONONONORONG)
ONONONONONG)
ONONONORONG)
ONONONORONG)

Strangers

Do you share your fithess data as part of a health program (e.g., with
your employer and/or health insurance company)?

) Yes
() No
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Have you ever modified the default privacy settings to change the
availability of some of the data on your profile?

[] Yes. I increased the availability of some of the data
[] Yes. I decreased the availability of some of the data

(] No

Bloc 5

Off the top of your head (i.e., without checking on your smartphone),
how many third-party apps currently have access to your fitness data?

OO000O0O0OOO0O0

Bloc 6

Off the top of your head (i.e., without checking on your smartphone),
please select the third-party apps that currently have access to your fitness data.
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[} samsung Health

(] MyFitnessPal

[} Google Fit

(] Strava Running and Cycling
[} Weight Watchers Mobile
[] Lose 1t!

[] Planet Fitness

[ ] Noom Weight

[] sSleepIQ

| RENPHO

[] ...others (one app per line)

Off the top of your head (i.e., without checking on your smartphone),
please select the third-party apps that currently have access to your fitness

data.

(] MyFitnessPal

[] Sweatcoin

[] Achievement

(] Flo period & Ovulation Tracker
] Weight Watchers Mobile

] Sleep Watch

[ ] Lose It!

[] Planet Fitness

[ ] Noom Weight
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[ ] strava Running and Cycling
[] ...others (one app per line)

Block E - Given Authorizations and Control

Do you think it is possible to revoke (cancel) previously granted third-party
app access?

() No
() Yes

Imagine that you granted access to a third-party app and you agreed to
share all the data that it is possible to share.

Select which of the following data you you think the third party app has
access to.

[] steps

[ ] Sleep data

Stress level

E-mail for your activity tracker account
Username for your activity tracker account
Password for your activity tracker account
Birthdate

Weight and height

(] Physical activities

oooooo
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[} Location
[ Gender
[ ] Menstrual cycle

[] None

Please open your Fitbit app and check how many third-party apps currently
have access to your fitness data.

For this question, you will need your Fitbit credentials.

Open the Fitbit app and follow the instructions below:

1. Tap on the top left corner (where the profile picture is)
2. Tap on "Third-Party Apps" (Last option)
3. Tap on "Manage 3rd party apps"
4. If requested, login to your profile
5. Count the number of 3rd party apps with access, this number can be 0.
Do fitbit Q | € Account « Party i@ wwwlibitco
- L E——xle - fitbit
1,141 " . o Log In R
; o i Googe B
$:)
: Lo 1
Eermse] @ -
£ 0 [ =]
" o @

Please only take into acccount the third-party apps that have access to your
data, like in the example below (do not take into account apps that only have
writing authorization).
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Official Strava by

The official way to sync Fitbit and Strava

=

© 00 N O U W IN - O

10+

Please open your Garmin Connect app and check how many third-party
apps currently have access to your fitness data.

Open the Garmin Connect app and follow the instructions below:

. Tap on the top left of the screen (the three lines)

. Tap on "Settings"

. Tap on "Connected Apps"

. Count the number of 3rd party apps with access (connected apps), this
number can be 0.

AW N+
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Check your health stats, upload workouts, and
more! All you need is a Garmin device to get
started.

addsveice |

Notifications

Phone Perr

Virtual Races

Sign Out

Garmin Connect

Security Policy

Please only take into acccount the third-party apps with which Garmin Connect shares data.

To verify if Garmin Connect indeed share data with a given third-party app, tap on this app in the list and it w

11:02 @

& Strava

You are connected to Strava.

¢ Your Garmin activities will automatically be shared
© with Strava.

Upgrade to a segment compatible Garmin device
and Strava Subscription account to use this
feature.

Upgrade to a LiveTrack compatible Garmin device

a trava Subscription account to use this

feature

Data shared from Connect to Strava

Activities

Data shared from Strava to Connect

11:03 @

Calories In/Out

=

X

Garmin Connect and MyFitnessPal work toget

to track your calories. Use MyFitnessPal to set
your calorie goals and record what food you're
eating, while your Garmin device tracks your daily
activity for an accurate calorie count.

information with
sTayinclode activities, focation; heart
rate and related metrics, calories burned and other health or
personal data
Disconnecting from My Fitne:
to share. Data pre
be affected.

your ¢
Pal will not

Disconnect
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© 00 N O U A W N - O

10+

Please open your Garmin Connect app and check how many third-party
apps currently have access to your fitness data.

Open the Garmin Connect app and follow the instructions below:

. Tap on "More" at the bottom right of the screen (the three dots)

. Tap on "Settings"

. Tap on "Connected Apps"

. Count the number of 3rd party apps with access (connected apps), this
number can be 0.

A WN =

@ = Settings

Profile & Privacy

U Settings
C Welcome to Connect ser Setting
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Notifications

Phone Permissions

Connected Apps

Sign Out

BETTER TOGETHER
Check your health stats, upload
workouts, and more! All you need is

a Garmin device to get started. Build Number

Version

| Explore Products] [ Add a Device

Garmin Connect Mobile EULA

Privacy Policy

Security Policy

Please only take into acccount the third-party apps with which Garmin Connect shares data.

To verify if Garmin Connect indeed share data with a given third-party app, tap on this app in the list and it w

11:02 B _e 11:03 @

& Strava & Calories In/Out

b4

You are connected to Strava. X

Garmin Connect and MyFitnessPal work together
to track your calories. Use MyFitnessPal to set
your calorie goals and record what food you're
eating, while your Garmin device tracks your daily
activity for an accurate calorie count.

Your Garmin activities will automatically be shared
with Strava.

Upgrade to a segment compatible Garmin device
and Strava Subscription account to use this
4 feature. t from My Fitne:
ect is currently sharing your information with
iocation teart
alories burned and other health or
personal data.

Upgrade to a LiveTrack compatible Garmin device
and Strava Subscription account to use this
feature.

Disconnecting from My Fitness Pal will revok
share. Data previously with My Fitn



Appendix A. Appendix 211

Data shared from Connect to Strava

Activities

Data shared from Strava to Connect

Courses

O 0 N OO U1 A W N P O

10+

Please open the Health app and check how many third-party apps currently
have access to your fitness data.

Open the Apple Health app and follow the instructions below:

1. Open your profile (top right corner)
2. Tap on "Apps" or "Apps AND Uninstalled Apps" (depending on the version)
3. Count the number of apps with access, this number can be 0.
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Summary (9 Sharing Apps
Favourites Edit  You Are Sharing With
. Connect
d Steps 09:56 User 2
9 topics
10 - Strava
0- s Add another person
Uninstalled Apps
@ Show All Health Data
9 AppS As apps request permission to update
your Health data, they will be added to
R h Studi the list.
Articles esearch Studies
v o= v 2 - v 2 2
Summary Sharing| Browse Summary Sharing Browse Summary Sharing Browse

Please do not consider apps that are classified as "Uninstalled Apps".

Please only take into acccount the third-party apps with which Apple Health

shares data.

To verify if Apple Health indeed share data with a given third-party app, tap
on this app in the list and it will specify it (see the examples below).

You may have to scrool down to find it.
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< Apps Strava

ALLOW “STRA\/A”

B Active Energy ()
b Cycling Distance ()
@ Date of Birth 0
b Downhill Snow Sports Distance O
' Heart Rate ()
@ Sex O
® Swimming Distance 0
@  Walking + Running Distance ()
]" Weight O
L aa =s

Summary Sharing Browse

O0O0O0OOOOOOO

= O 0 N O U1 »

0+

After checking your ${q://QID7/ChoiceGroup/SelectedChoices?} app,
please list the names of the third-party apps that currently have access to
your fitness data.

[ ] » Samsung Health
[ ] » MyFitnessPal
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» Google Fit

» Strava Running and Cycling
» Weight Watchers Mobile

» Lose It!

» Planet Fitness

» Noom Weight

» SleeplQ

» RENPHO

» ...others (one app per line)

Oo0o0000000

After checking your ${q://QID7/ChoiceGroup/SelectedChoices} app,
please list the names of the third-party apps that currently have access to
your fitness data.

» MyFitnessPal

» Sweatcoin

» Achievement

» Flo period & Ovulation Tracker
» Weight Watchers Mobile

» Sleep Watch

» Lose It!

» Planet Fitness

» Noom Weight

» Strava Running and Cycling

0000000000
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[} » ...others (one app per line)

00000000000

After checking your Apple Health app, please list the names of the third-
party apps that currently have access to your fitness data.

»
»
»
»
»
»
»
»
»
»
»

MyFitnessPal

Sweatcoin

Achievement

Flo period & Ovulation Tracker
Weight Watchers Mobile
Sleep Watch

Lose It!

Planet Fitness

Noom Weight

Strava Running and Cycling
...others (one app per line)
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Are you still actively using all these apps?

() Yes, I actively use all of these apps.
(O 1 actively use most of these apps.

() 1 actively use only some of these apps.
(O No, I actively use none of these apps.

Please select the third-party apps that currently have access to your fitness

data and that you use actively.

»
»
»
»
»
»
»
»
»
»
»

0000000000

Samsung Health
MyFitnessPal

Google Fit

Strava Running and Cycling
Weight Watchers Mobile
Lose It!

Planet Fitness

Noom Weight

SleeplQ

RENPHO

...others (one app per line)

Please select the third-party apps that currently have access to your fitness

data and that you use actively.



Appendix A. Appendix 217

» MyFitnessPal

»» Sweatcoin

» Achievement

» Flo period & Ovulation Tracker
» Weight Watchers Mobile

» Sleep Watch

» Lose It!

» Planet Fitness

» Noom Weight

» Strava Running and Cycling

0000000000

» ...others (one app per line)

How often have you revoked third-party app access to your fitness data?

(O Never

(O Only once

() 2-5 times

() 6-10 times

(O More than 10 times

Please select the third-party apps whose access you revoked.

[ ] » Samsung Health
[ ] » MyFitnessPal
[ ] » Google Fit
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» Strava Running and Cycling
» Weight Watchers Mobile

» Lose It!

» Planet Fitness

» Noom Weight

» SleeplQ

» RENPHO

» ...others (one app per line)

0000000

Please select the third-party apps whose access you revoked.

» MyFitnessPal

»» Sweatcoin

» Achievement

» Flo period & Ovulation Tracker
» Weight Watchers Mobile

» Sleep Watch

» Lose It!

» Planet Fitness

» Noom Weight

» Strava Running and Cycling

000000000
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[} » ...others (one app per line)

Why did you revoke access to those third-party apps?

You mentioned that you are not actively using one or several third-party
apps that currently have access to your fitness data.
Please explain why you did not revoke their access.

Usually, when you grant access to third-party apps, how do you select the
types of data that you want to share?
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< Back Connect Fitbit

- fitbit

Fitbit + Strava by Strava, Inc. would like the ability to
access and write the following data in your Fitbit
account.

Allow All
i location
activity and exercise
heart rate
weight @
profile @

It you allow only some of this data, Fitbit + Strava may not function as
intended. Learn more about these permissions here,

In the above example, you can tap on "Allow All" to grant access to all
requested data or select only the data you want to share.

Do not focus on the data types in the example, please provide your answer
regarding all types of data that are collected by your device.

(O 1 share everything

(O I share everything only when it is necessary to use the app otherwise I
share selectively

() 1 share selectively

Usually, when you grant access to third-party apps, how do you select the
types of data that you want to share?
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Don't Allow  Health Access Allow

Health

fa3ta in tf
Turn All Categories Off

w “Strava” to access all health data types

ALLOW “STRAVA" TO READ DATA

Active Energy

Cycling Distance

ololele

Walking + Running Distance

Workout Routes

)
o
W Heartrate
o
)
o

88

Workouts

In the above example, all types of data are selected "by default" and you can
unselect the data you do not want to share.

Do not focus on the data types in the example, please provide your answer
regarding all types of data that are collected by your device.

(O 1 share everything

(O 1 share everything only when it is necessary to use the app otherwise I
share selectively

() 1 share selectively

Usually, when you grant access to third-party apps, how do you select the
types of data that you want to share?
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ccnnect

STRAVA

Control the information you share.

You get to decide what information you share with
Strava, as well as what information Strava shares with
your Garmin Connect account. You can change these
selections at any time in your Garmin Connect settings.

Data shared from Garmin Connect to the Strava app

Activities ()

Data shared from the Strava app to Garmin Connect

Courses ()

Strava Privacy Policy

Save

Cancel

In the above example, all types of data are selected "by default" and you can
unselect the data you do not want to share.

Do not focus on the data types in the example, please provide your answer
regarding all types of data that are collected by your device.

() 1 share everything

(O 1 share everything only when it is necessary to use the app otherwise I
share selectively

() 1 share selectively

During the access-granting process, how likely would you use additional
sharing options related to the precision of the data, as in the example below?
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< Back Data sharing

Strava by Strava, Inc. would like the ability to
access the following data in your account.

Allow All
Steps
(0 Not rounded (e.g., 6243 steps)
() Rounded to the tens (e.g., 6240 steps)
() Rounded to the hundreds (e.g., 6200 steps)
() Rounded to the thousands (e.g., 6000 steps)

If you allow only some of this data, Strava may not function as
intended. Learn more about these permissions here,

() Extremely likely
() Likely

() slightly likely

() Neutral

() Slightly unlikely
(O Unlikely

(O Extremely unlikely

During the access-granting process, how likely would you use additional
sharing options related to time granularity of the data, as in the example
below?
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Data sharing

{ Back

Strava by Strava, Inc. would like the ability to
access the following data in your account.

Allow All
Steps
() Not Aggregated (steps taken every minute)
(0 Aggregated by hours
() Aggregated by days
() Aggregated by weeks

If you allow only some of this data, Strava may not function as
intended. Learn more about these permissions here,

() Extremely likely
() Likely

() slightly likely

() Neutral

() slightly unlikely
() Unlikely

(O Extremely unlikely

How likely would you use notification functionalities to periodically (e.g.,
every three months) remind you to monitor access granted to third-party

apps, as shown in the example below?
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\g Privacy Checkup! 4:24 PM

Touch to monitor and revise fitness-data access
granted to third-party applications.

This nofification is posted once a month. You can set the frequency
in the settings of your main fitness application

Extremely likely
Likely

Slightly likely
Neutral

Slightly unlikely
Unlikely

O0O0000O0

Extremely unlikely

Bloc F

Assume that you granted access to your fitness data to a third-party app.
For each of the following statements, please answer if you think that they are
true or false.

True False

The 3rd party is able to access the fitness
data that was collected (by my fitness O O
tracker) before I granted access.
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True False

The 3rd party is able to access the fitness
data that was collected (by my fitness O O
tracker) after I granted access.

The 3rd party is able to store on their own O O
servers any data they have access to.

The 3rd party app is legally allowed -

according to the federal laws in force in the O O
United States - to store any data they have

access to on their own servers.

The 3rd party app is legally allowed -

according to

$4{q://QID7/ChoiceGroup/SelectedChoices}'s O O
terms of service - to store any data they

(the 3rd party app) have access to on their

own servers.

Assume that you revoked the access previously granted to a third-party

app.
For each of the following statements, please answer if you think that they are
true or false.

True False

The 3rd party will be

able to access the

data collected after

revoking, using the O O
previously granted

authorization.

The 3rd party will be

able to access the

data collected

before revoking, if O O
they stored it on

their own servers.

The 3rd party will

still be able to access

the data collected

before revoking,

using the previously O O
granted authorization

(without storing it on

their own server).
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How difficult do you find it to monitor or revoke access granted to third-party
apps?

(O Very easy

() Easy

() Moderately easy
() Neutral

(O Moderately difficult
() Difficult

() Very difficult

What are your suggestions to facilitate the process of monitoring,
granting, or revoking the access to third-party apps?

IVIPC

Please indicate to what extent you agree with each of the the following
statements.

Neither

agree
Strongly Moderately nor Moderately Strongly
disagree  Disagree disagree disagree agree Agree Agree
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Neither

agree
Strongly Moderately nor Moderately Strongly
disagree  Disagree disagree disagree agree Agree Agree

Compared

to others, 1

am more

sensitive

about the

way online O O O O O O O
companies

handle my

personal
information.

To me, it is

the most

important

thing to

eep my O O O O O 0 O
privacy

intact from

online

companies.

Iam
concerned
about

e O O O O o O O

personal
privacy
today.

It usually

bothers me

when online

companies O O O O O O O
ask me for

personal

information.

When
online
companies
ask me for
personal
information, O O O O O O O
I
sometimes
think twice
before
providing it.
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Strongly
disagree

It bothers

me to give

personal

information O
to so many

online

companies.

Iam

concerned

that online

companies

are

collecting O
too much

personal

information

about me.

Last demographics

For how long have you been using your main activity tracker?

() Less than 1 month
() 1 to 12 months
() 1to 3 years

() 3to 5 years

(O More than 5 years

Moderately

Disagree disagree

O O

Neither
agree
nor
disagree

O

Moderately
agree

O

Agree

O

Strongly
Agree

O

On average, how many hours per day do you wear your main activity

tracker?

() 1-6
O 7-12
() 13-18
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19-24

With which gender do you identify the most?

Woman
Man
Non-binary
Prefer to self describe

Prefer not to answer

Mental Model

Last, we have an optional question for you. If you answer this question, you
will have the opportunity to participate in a draw to win a bonus payment
of $10 (in addition to the initial 5$). One in five people (i.e., 20%) will
be chosen as winners by a random draw.

You will need to draw a picture representing how you think the access
granting to third-party apps is processed, and how your fitness data is

transferred between different entities.

Please choose one of these options:

I will draw the picture
I prefer not to send any drawings and to skip this question

Before drawing the picture, please read carefully the following instructions:

1. Do not spend more than 5 minutes on the drawing.
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2. Please take a clean and white sheet of paper.
. Use a pencil, pen, or ideally color pens for your drawing.

4. When drawing consider these two questions: (i) how do you think access
granting to third-party apps is processed? (ii) how do you think your
fitness data is transferred between different entities?

5. Include all relevant elements in your drawing, including (i) your activity
tracker, (ii) your smartphone, (iii)
${q://QID7/ChoiceGroup/SelectedChoices}'s servers, (iv) the apps (i.e.,
your service provider’s app and third-party apps that have access to your
fitness data), (v) any other elements you think are relevant to be
illustrated.

6. You can use arrows and lines to connect these entities to each other.

7. Please use text to label the entities and their relationships with each
other.

8. Use your smartphone to take a picture of your drawing. Please try your
best to take a good-quality photo such that you can clearly read the labels
and see drawn entities.

9. Please note that we will not judge your drawing skills and technical
understanding.

10. Upload your picture here.

w
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A.3 Technical Codebook

Brand Apple Fitbit Garmin TOTAL
Mental Models N ratio correctness N ratio correctness N ratio correctness N ratio
mm1 48 36.36
mm2 1 8.33
mm3 35 26.52
mm1 & mm3 3 4.84 inaccurate 1 1.89 inaccurate 1 5.88 inaccurate 5 3.79
others-mm4 | 16 2581  ncomect 12 2264  incomect 5 2041  incorect | 33 25

TOTAL

36.36% of the respondents have mm1. 26.52% of the respondents have mm3. 8.33% of the respondents have mm2. 3.79% of the respondents share both mm1 and
mma3.

Finally, 25% of the respondents have different (other) models.

inaccurate
TOTAL
40.15% of the respondents had a correct mental model and 56.06% of them had an incorrect mental model. 3.79% of the respondents mixed correct and incorrect
models (i.e., inaccurate model)
Fitbit users have more correct mental models with 45.28% than Apple (37.%) and Garmin (35.29%) users.

different model 21 33.87 1 20.75 3 17.65 35 26.52
TOTAL 62 100 53 99.99

The mental model of 26.52% of the users is related to a different brand than their own device. In particular, one-third (33.78%) of the Apple users think their device
can synch online with servers which are not true.

A.4 Contectual Codebook

Count (n) Count (%) (out of 73 drawings)

Code 1.1 being concerned TPA share/sell data 28 38.36
Code 1.2 being concerned about data being stored 14 19.18
Code 1.3 concerned about information analysis 5 6.85
Code 1.4 being concerned about user profiling by TPA 4 5.48
Code 1.5 being concerned about TPA network security 6 8.22
Category 1 Lack of trust in TPAs 47 64.38
Code 2.1 privacy concern about WAT provider 7 9.59
Code 2.2 generic privacy concern about the backstage 1 1.37
Code 2.3 not happy with TPA/WAT privacy 1 1.37
Code 2.4 being concerned about the phone company 1 1.37
Code 2.5 operating systems such as iOS and Android should protect the users 1 1.37
Code 2.6 being concerned about TPA access 1 1.37
Category 2 General Privacy concerns about WAT/TPAs/operating systems 12 16.43
Code 3.1 knowledgable about access management 31 42.47
Code 3.2 knowledgable about selective sharing 6 8.22
Category 3 Being knowledgeable about access management 35 47.94
Code 4.1 believing that data will be deleted later 1 1.37
Code 4.2 confident with WAT provider S&P 1 1.37
Code 4.3 collected data can be use to improve WAT services 2 2.74
Category 4 Being positive about the data sharing process 4 5.48
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A.6 Why Not Revoking Access Codebook

Question: Why do respondents not revoke access?

oﬂ_vs_ Apple  Fitbit  Garmin
Total Answers Collected 394 221 141 32
Valid Answers 364 206 129 29
CODEBOOK
oﬂ.ui Apple Fitbit Garmin Count (%) Example Quote
Code 1.1 L) el Tl ElES P U el MESESeeTy (2 67 45 18 4 - “I just never think about it and do not think it is an issue to leave them on.”
revoke access
Code 1.2 MM”M__“MM iheyldepitcarelasiiinessidatalislnot 41 29 12 0 - "Honestly, I'm not concerned of these third-party apps that's why | kept them."
Category 1 comfortable to share data (not interested in 108 74 30 4 207 )
access management)
Code 2.1 forgot/did not notice 93 46 88 14 - “I forgot and didn't realize the apps had access until completing this survey.”
o "l was not thinking about this app having access to my data until | was
Code 2.2 TE 9 14 7 5 2 - prompted to think of the third-party apps | may have connected to my Fitbit...
Y plan to revoke access to it now."
Category 2 forgot about installed TPAs (might revoke 107 53 38 16 204 )
later)
contemplate using the TPA (actively) again " . . . "
Category 3 in the (near) future 97 50 41 6 26.7 ‘Because | plan on getting back on to this app in near future.
Code 4.1 didn't know | can do or how to do it 20 13 7 0 R 'I didn't realize | could. I didn't even \MM%MN\ <:§m$ to look for this information until
uninstalled and thought it will revoke "l uninstalled the apps and assumed they would no longer be able to access
Code 4.2 ) 6 3 2 1 - . L,
automatically my app information.
Code 4.3 didnt realize|sharing|mydata 42 24 13 5 R 'I didn't realize that after | stopped using the __mbp they would still have access
to my data.
Category 4 not familiar with data sharing and access 68 40 22 6 18.7 )
management
Category 5 perceive access fanagementiaslcomplext 14 9 5 0 3.9 “I find it troublesome to revoke their access.”
difficult (hassle)
Code 6.1 to keep receiving financial benefits 2 0 2 0 - "Third party app needs to be saved for my annual insurance incentive."
Code 6.2 keep saving data for future use 2 2 0 0 R I want to keep my data there for M mﬁwﬁmznm\ record in case | was to refer
Category 6 want to get more benefits (health or 4 2 2 0 11 _
monetary)
Code 7.1 trust the app 2 1 1 0 - "I trust that there isn't really anything they would do with my data."
Code 7.2 to help the app 1 0 1 0 - "I thought it would help with the app."
Category 7 trust TPAs 3 1 2 0 0.8 -
Code 8.1 only log info and doesn't let tracking 3 2 1 0 R '‘Because | never \mﬂ. them 3m<m access in the 3.& b\mnmm ! o.&._\ used 3rd parties
like my fitness pal to log the information.
Code 8.2 Can't remember 1 1 0 0 - "Didn’t remember!"
Code 8.3 someone else used the app 1 1 0 0 - "My little cousin uses the app, | don't!"
Code 8.4 did not have time as | just stopped using it 1 0 1 0 - "I only recently stopped using the app.”
Code 8.5 | limited the access 1 0 1 0 - "I did not revoke access entirely but limited access."
Code 8.6 My WAT doesn't support it 1 0 1 0 - "Not compatible with my version of Fitbit device!"
Code 8.7 Not meaningful responses [removed later] 2 0 2 0 - -
Category 8 others 10 4 6 0 2.7 -
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A.7 Suggestions Codebook

Question: su:

Total Answers Collected
Valid Answers

Count

(n)
614
480

estions on how to facilitate the TPA access management process

CODEBOOK

Code 1.1

Code 1.2

Code 1.3

Code 1.4
Category 1

Code 2.1

Code 2.2
Code 2.3

Code 2.4

Code 2.5

Category 2
Code 3.1

Code 3.2
Code 3.3

Code 3.4

Code 3.5

Code 3.6
Category 3

Code 4.1

Code 4.2

Code 4.3
Category 4
Code 5.1
Code 5.2

Code 5.3

Code 5.4
Code 5.5

Code 5.6
Category 5

notification/reminder

privacy checkups (auto-turn off unused
permissions)

specialized app/feature for managing granted
access

the phone should clearly show for each TPA
what data data collect or store
access monitoring systems

clear, transparent, and easy to comprehend
privacy policies

partial (selective) sharing

making temporary access only
not sharing (maximum privacy) should be
default

asking users to double check what they share

granting access
educating users about TPAs

facilitate access managing procedure
(interface) and make it visible
new legislation or law enforcement

deleting previously stored data after revoking
access

allowing users to delete their data from the
servers

uninstalling TPA should revoke it

generic solutions

users should avoid using many TPAs at the
same time

user should be more careful

users should do regular check

Users should take more responsibility
keeping account private

adjusting privacy settings

tangible consent collection

authentication
warning users about implications

manage it via phone

others

Count (n) Count (%)

191

30
257

41

152

34

40

39.79

3.54

3.96

6.25
53.54

8.54

2.08

1.04

0.63

0.63

12.92
3.96

20.83
25

25

0.42

1.46
31.67

0.63

7.08
0.63
0.21
0.21
0.21

0.42
0.21

0.21
1.47

Example Quote
“I think the reminders are great! | allowed access to some app and totally forgot
about it. I'm not sure if theyre still collecting data, but had | remembered, |
would have revoked it.”
“Garmin should automatically revoke access every few months (such
as every six months) and ask me again whether | should grant access
to the third-party apps. Then | can decide whether | am still interested
in those apps and whether it is worth sharing the data.”

"An app that can track which 3rd-party applications have access to my data
and help me choose which to revoke. It is too much to go through every
individual app to see what has access to what!"

“Place the permissions in a consolidated location, rather than skipping around
to apps that may or may not be reading data.”

“I would like to see everything laid out in plain English, no lawyer-speak. | would
like it to be clear whether they can keep my data forever, sell it data, collect it
after | revoke access, etc. | would also like to know who and why is potentially
buying my data.”

"Most apps make you share everything regardless of what their purpose is,
they should only request access to what is necessary."

"I would do temporary access instead of permanent access in the beginning."

"Make privacy selections default to the minimum authorization levels. User
must actively select information sharing."

"Apple should be more straightforward about what allowing access actually
means. Like when | select "allow" a popup should say, "Are you sure you want
to allow access?"

"I think that having a guide like this would be helpful for anyone. | never really
considered how much access 3rd parties have to all of my health data.”
“Don't bury the feature under multiple levels of the app’s user menu. Place it
front and center at the top level under My Account.”

"We need laws in place to protect people.”

"Entering into the agreement that certain apps can only access data from the
date of authorization moving forward and once access is revoked all data will
be deleted from any saved data hubs."

"Allow the users the option to 'wipe' their data."

"As soon as the app is deleted it should be auto revoked."

"Just try out one app at a time until you are familiar with each other."

"Make sure you take care to only grant access to apps that you will actually
use and when you stop using them, remember to revoke access."
"Regularly check on which apps have access."

"I prefer to keep my account of stats private with only trusted access."
"Adjust the privacy settings of each app."”

"Put something in writing as well as electronically and follow up to confirm
receipt and desired action was taken."

"I suggest that you receive an email confirmation."

"An app that warns you of implications."

"I think it would be easier for all users if they can monitor/revoke it through the
app itself."
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A.8 WAT Data Sharing

100. ) ) » P P % » P v
i'llll||||' uu”!q
§ 801 ’ ’ ’ “ wza Public
?_ ’ Friends
8 60 - ’ @4 Private
()]
g |
g 40 |
5 |
¢ 20 ’ i B Fitbit
’ ’ BZm Garmin

Type of Data

Figure A.1: Privacy level of different profile information for Fitbit and Garmin users. Here,
we decided to refer to similar concepts of both service providers using the Garmin’s labels
(e.g., “Badges” and “Badges and Trophies”), and to use Fitbit’s privacy labels and to refer
to both Garmin’s “My Connections” and "My Groups and Connection” as “Friends”.
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A.9 Mental Models
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(a) The first type of the mental models  (b) The first type of the mental models

(mmy): The fitness data is transmitted  (mmq): The fitness data is transmitted

to TPAs via a connected device and the  to TPAs via a connected device and the

WAT server. WAT server.
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(c) The second type of the mental models  (d) The second type of the mental models
(mms): The fitness data is transmitted  (mms): The fitness data is transmitted
without passing via a connected device. without passing via a connected device.

Figure A.2: Examples of users’ mental models - 1
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(a) The third type of the mental models  (b) The third type of the mental models
(mmg3): a local synchronization between  (mmg): a local synchronization between

the TPA and the companion app. the TPA and the companion app. The
respondent also is aware of selective shar-
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(¢) An example of an inaccurate mental  (d) An example of mmy (ie., an incor-
model that combines mmy with mms. rect mental model): This drawing cannot
be attributed to any of the mmy, mmso,

mms models.

Figure A.3: Examples of users’ mental models - 2
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(a) An example of mmy (i.e., an incor-  (b) An example mental model that shows
rect mental model): This drawing cannot  a respondent thinks the fitness data is
be attributed to any of the mmy, mms, shared with ‘scientists’, ‘data labs’, and

mms models. ‘government.’
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(¢) An example mental model that shows  (d) An example mental model that shows

a respondent thinks TPAs sell data for  arespondent thinks fitness data is further
analyzed and scrutinized by a TPA com-

pany.

monetary benefits.

Figure A.4: Examples of users’ mental models - 3
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(a) An example mental model that shows
a respondent thinks TPA will make their
profile based on the fitness data.

(¢) An example mental model that shows
a respondent thinks that the WAT com-
pany (i.e., Fitbit) can share the data with
its affiliated giant company (i.e., Alpha-
bet’s Google).

(b) An example mental model that shows
a respondent is concerned about the net-
work security of TPAs (i.e., possible pri-
vacy breach).
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(d) An example mental model that shows
a respondent is informed about granting
and revoking access. The example also
shows that respondent believes the data
will be deleted from TPA servers after
they revoke the access.

Figure A.5: Examples of users’ mental models - 4



277

Appendix A. Appendix

"T°G 9[qe], ur spt dnoid sy} 03 spuodsorIod PI SIY] ‘)T PIUSISOp

oym dnois oYy Jo pr o) AvdsIp am ‘USISOp oS 10 USISEP dyIads ouo 03 SpuodsslIod uwnjod Yory ‘d[qr) SUIpoy) :1'Y S[qRL

NI SVJLL - L £10893eD

. . ULIOJ JUOSUOD DAIORIOIU] PUR SATJRULIOJU] - g9 9PO))
° d O9PIA - 179 9pODH

° ° . uorjednpy ‘UoljezijIsuag - 9 A10391e)

. UOIJBI0ADI DIJRWONMY - £'G 9PO))
SIOAIOS 1197} WOIJ

. RJRD S, I0STL 97} dAOWLI 0} YJ.J, SUIYSe I0J 90URISISSY - 7'G 9pO))
9OIAIOS S, VL

. . SUI[RISUTUN USYM UOI}IOADI SS9I0® I0J 9JURISISSY - [°G 9pO))
° o . 20UR]SISSY UOIIBI0AdY - ¢ A10391e)
. e o . UOIRULIOUT ATU() - €F 9PO))

. [emoual sseodr eyep IHno-1do, - ¢'F 9poD

. . . [emoual sseooe 'lep ul-3dQ, - T'F 9poD
) ) o o o ) sIopuIruey - § A10891e)
° ° SuIsN[J - ¢'¢ 9pon

° a109s dde oymadg - 1°¢ apo))

) ) . uoljezierjua) - ¢ LA10393e)

so1YsTIRIG 98esn V4T, - £'C 9P0D

(A109s11]) S30] SuLreys eye(] -g'g 9POD

. mofj eyep / eyep pareys Suriojdxe I0J [00) SAIIORINU] -T°G 9PO))

) uorjezifensiA - g Ai1o03oje)

. ° ourejowtr) oyads ® SUIpIesol SULIRYS - g'T 9pPo))

) X000 91} Surpresar SuLreyq - T apo)

) . Surreys [eijaed - 1 £10891e)

6 6 8 8 8 9 SV ¥ €EeCT 1l dnozy / 9pop

Surpo) aanjesq usisa( OI'V



	Introduction
	Information Security & Privacy
	Research Ethics
	Wearable Activity Trackers (WATs)
	The WAT Ecosystem
	Adversarial Model
	Research Scope and Methodology
	Contributions
	List of Publications


	Literature Review
	Privacy
	Are WATs Risky for Users' Privacy?
	Research on WAT Users
	Privacy Policies, Regulations, and Ethics
	Health at Work or Workplace Surveillance?
	Privacy-Enhancing Technologies (PETs)

	WAT Security
	WAT–Phone Communication
	Phone–Server Communication and Data Storage
	Side-Channel Attacks
	Authentication
	Threat Assessment and Mitigation, and Security Protocols

	Overview and Research Gaps

	``Revoked just now!'' Users' Behaviors toward Fitness-Data Sharing with Third-Party Applications
	Introduction
	Related Work
	Methodology
	Recruitment
	Design of the Survey Questionnaire
	Procedure
	Data Reliability
	Coding Process
	General Statistics

	Results
	Users tend to forget about their TPAs.
	Users generally overestimate the amount of data they share on their public profiles.
	Friends and family are favorite data recipients.
	Users are inclined to use PETs.
	Users lack knowledge about data sharing.

	Discussion
	Limitations
	Conclusion

	Watch your Watch: Inferring Personality Traits from Wearable Activity Trackers
	Introduction
	Background
	Adversarial Model
	Data Collection and Statistics
	Data-Collection Campaign
	Descriptive Statistics
	Participants' Privacy Concerns

	Inference
	Methodology
	Feature Extraction

	Results
	Related Work
	Discussion
	Limitations and Generalization of the Results
	Conclusion and Future Work

	Our Data, Our Solutions: A Participatory Approach for Enhancing Privacy in Wearable Activity Tracker Third-Party Apps
	Introduction
	Methodology
	Recruitment
	Session Procedure
	Room Layout
	Participants & Groups Composition
	Coding Process
	Expert Review Meeting

	Results
	Feature 1 - Partial Sharing
	Feature 2 - Visualization
	Feature 3 - Centralization
	Feature 4 - Reminders
	Feature 5 - Revocation Assistance
	Feature 6 - Education & Sensitization
	Feature 7 - TPAs Limit

	Discussion
	Limitations
	Conclusion

	Conclusion
	Contributions
	Future Work and Perspectives

	Appendix
	Questionnaire of Chapter 3
	All Mental Models
	Technical Codebook
	Contectual Codebook
	Why Revoking Access Codebook
	Why Not Revoking Access Codebook
	Suggestions Codebook
	WAT Data Sharing
	Mental Models
	Design Feature Coding


