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Abstract

A classical school choice problem consists of a set of schools with priorities over students and

a set of students with preferences over schools. Schools' priorities are often based on multi-

ple criteria, e.g., merit-based test scores as well as minimal-access rights (siblings attending

the school, students' proximity to the school, etc.). Traditionally, minimal-access rights are

incorporated into priorities by always giving minimal-access students higher priority over

non-minimal-access students. However, stability based on such adjusted priorities can be con-

sidered unfair because a minimal-access student may be admitted to a popular school while

another student with higher merit-score but without minimal-access right is rejected, even

though the former minimal-access student could easily attend another of her minimal-access

schools.

We therefore weaken stability to minimal-access stability: minimal-access rights only pro-

mote access to at most one minimal-access school. Apart from minimal-access stability, we

also would want a school choice mechanism to satisfy strategy-proofness and minimal-access

monotonicity, i.e., additional minimal-access rights for a student do not harm her. Our main

result is that the deferred acceptance mechanism is the only mechanism that satis�es minimal-

access stability, strategy-proofness, and minimal-access monotonicity. Since this mechanism

is in fact stable, our result can be interpreted as an impossibility result: fairer outcomes that

are made possible by the weaker property of minimal-access stability are incompatible with

strategy-proofness and minimal-access monotonicity.
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1 Introduction

A classical school choice problem1 consists of a set of schools that have priorities over students

and a set of students who have preferences over schools. Priorities are often determined by various

components such as a merit-based component (e.g., entrance exam scores or existing grade point

averages) and a normative component (e.g., having a sibling already attending a school, living

in walking distance to a school, or public transport accessibility). However, these components

are fundamentally di�erent since academic merit applies to all schools equally while aspects due

to a sibling attending a school and easy logistics to get to school only apply to some schools.

We therefore refer to the �rst component as �absolute priority� and the second (augmenting)

component as �minimal-access rights.� Traditionally, a school's �nal priority ranking over students

is such that students who have minimal-access rights are ranked above those who do not have

minimal-access rights, and within each of these two groups of students the absolute priority (i.e.,

the merit-based ranking) applies.

More speci�cally, if only one minimal-access criterion, e.g., walk-zone accessibility, is considered,

then one way to adjust absolute priorities is, at each school, to always give walk-zone students

higher priority over non-walk-zone students. However, stability based on such minimal-access

adjusted priorities can be criticized as giving students with walk-zone rights at several schools

advantages that go beyond granting a minimal-access to a walk-zone school: for example, a walk-

zone student may be admitted to a popular school while another student with higher merit-based

(absolute) priority but without walk-zone right is rejected, even though the former walk-zone

student could easily attend another walk-zone school. Such an outcome, while stable with respect

to minimal-access adjusted priorities, might be considered unfair.

This criticism is �rst mentioned and illustrated by Duddy (2019, page 362), who writes that

the priority pro�le of schools

� . . . can fail to capture important aspects of the information from which it is derived.

In particular, important information is lost when a student satis�es a priority criterion

across multiple schools. This loss of information means that matching mechanisms

must treat situations that are substantially di�erent from one another as though they

were identical.�

Duddy (2019) then o�ers various examples to illustrate his point of view and suggests a model

extension that allows to treat additional priority criteria across multiple schools in a more di�eren-

tiated way. In addition to multiple types of minimal-access rights (walk-zone rights, siblings-at-a-

school rights, etc.), Duddy (2019) considers probabilistic matchings. In contrast, we consider only

1See Pathak (2011) and Abdulkadiro§lu (2013) for surveys on mechanism and market design in school choice.
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one type of minimal-access criterion, e.g., walk-zone rights, and focus on deterministic matchings.2

However, we do adopt Duddy's di�erential treatment of minimal-access rights and weaken the

standard notion of stability with respect to minimal-access adjusted priorities to minimal-access

stability: minimal-access rights only matter to guarantee access to one minimal-access school (if

possible).

To be more precise, stability is classically based on (minimal-access) adjusted priorities, and it

requires, in addition to non-wastefulness and individual rationality, the absence of justi�ed envy:

student i would justi�ably envy student j if she would like to attend student j's school and she

has a higher adjusted priority at that school than student j (Balinski and Sönmez, 1999). The

interpretation is that minimal-access rights apply across all minimal-access schools, which is why

we refer to the derived property in our model as no justi�ed max envy. If minimal-access rights are

interpreted as minimal guarantees, then a situation where student i is matched to a minimal-access

school (or better) and envies student j only because of the minimal-access right (that is, student

j is ranked higher in merit and has no minimal-access right for his school, while student i does)

does no longer justify a complaint; we call the associated notion no justi�ed min envy. Using no

justi�ed min envy instead of no justi�ed max envy weakens stability to minimal-access stability.3

Apart from minimal-access stability, we would want a school choice mechanism to satisfy

strategy-proofness, that is, no student can obtain a better match by misrepresenting her pref-

erences. Apart from being a strategic robustness property, strategy-proofness in matching models

represents a certain notion of fairness. Former Boston Public Schools superintendent Thomas

Payzant (Payzant, 2005),4 in a memo to the Boston School Committee on May 25, 2005, describes

the rationale for switching away from a manipulable school choice mechanism as follows:

�A strategy-proof algorithm levels the playing �eld by diminishing the harm done to

parents who do not strategize or do not strategize well.�

Finally, we introduce a natural monotonicity property for the school choice model with minimal-

access rights: minimal-access monotonicity requires that additional minimal-access rights for a

student do not harm her. An alternative motivation for minimal-access monotonicity would be

that it should not be bene�cial for students to hide or renounce some of their minimal-access rights

2Since we interpret our main result as an impossibility result to derive matching mechanisms that can in fact
accommodate the di�erential treatment that Duddy (2019) calls for, it su�ces to show that impossibility result for
a less general model.

3Note that our weakening of the classical stability notion is closely linked to the presence of minimal-access
rights. Other relaxations of classical stability and alternative justi�ed envy notions have, for instance, recently been
studied in Aygün and Bó (2021), Ehlers and Morrill (2020), Tang and Zhang (2021), and Troyan et al. (2020).

4A direct on-line reference for this quote does not seem available anymore but we refer, for instance, to Pathak
and Sönmez (2008, page 1637).
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(Aygün and Bó, 2021, show that in the selection mechanism used for federal universities in Brazil,

students can get better assignments by not claiming all their �privileges.�).

The deferred acceptance mechanism that is based on adjusted priorities satis�es all the desirable

properties discussed above; in fact, it even satis�es the stronger stability property with respect to

adjusted priorities. Based on Duddy's (2019) critique, however, a di�erent mechanism, one that

can treat minimal-access rights in a more di�erentiated way, could be desirable. To further explore

this line of thought, we �rst need to answer the question:

�Which mechanisms satisfy minimal-access stability, strategy-proofness, and minimal-

access monotonicity?�

Our answer to this question is perhaps disappointing: apart from the deferred acceptance

mechanism that is based on adjusted priorities, there exists no other mechanism that satis�es

the three properties (Theorem 1). Hence, it is impossible for a school-choice mechanism to sat-

isfy minimal-access stability, strategy-proofness, and minimal-access monotonicity while treating

minimal-access rights in a di�erentiated way, as demanded by Duddy (2019).

2 Model and main result

A standard school choice problem consists of a population of students and a set of schools. Students

are de�ned by their preferences over schools, and schools are de�ned by their capacities and

priorities over students. Priorities are often determined by various components such as a merit-

based component (e.g., entrance exam scores or existing grade point averages) and a normative

component (e.g., having a sibling already attending a school, living in walking distance, or public

transport accessibility). We refer to the �rst component as �absolute priority� and the second

(augmenting) component as �minimal-access rights� (see our discussion at the beginning of the

Introduction).

We de�ne an (extended school choice) problem as a sextuple (I, S, q, P,≻, r) with

� a �nite set I of students;

� a �nite set S of schools;

� a list of capacities q ≡ (qs)s∈S where for each s ∈ S, qs ∈ N;

� a list of strict preferences P ≡ (Pi)i∈I over S ∪ {∅}, where ∅ represents the �no-school

option�;
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� a list of strict (absolute) priority relations ≻≡ (≻s)s∈S over I; and

� a list of minimal-access rights r ≡ (r(i))i∈I where for each i ∈ I, r(i) ⊆ S.

For each i ∈ I, we call r(i) student i's minimal-access schools. For each s ∈ S, let r(s) ≡
{i ∈ I : s ∈ r(i)}. Let Pi denote the set of possible preferences of student i. Let Pi ∈ Pi and

s, s′ ∈ S ∪ {∅}. We write s Ri s
′ if s Pi s

′ or s = s′. A school s ∈ S is acceptable for student i if

s Pi ∅. In the sequel, since the set of students and schools and the schools' capacities remain �xed,

a problem is more compactly denoted by (P,≻, r). Note that the only di�erence to a �classical�

school choice problem (P,≻) is the separation of priorities into absolute priorities and minimal-

access rights. Aygün and Bó (2021) present a model for Brazilian university admissions that is

close to our extended school choice model with exam grades taking the role of absolute priorities

and �privileges� that can be strategically used, or not, to gain admission.

A matching is a mapping µ : I ∪S → 2I ∪S such that (i) for each i ∈ I, µ(i) ∈ S or µ(i) = ∅,
(ii) for each s ∈ S, µ(s) ⊆ I and |µ(s)| ≤ qs, and (iii) for each (i, s) ∈ I × S, µ(i) = s if and only

if i ∈ µ(s). For each i ∈ I, µ(i) is student i's match, i.e., the school or no-school option to which

the student is matched. Similarly, for each s ∈ S, µ(s) is school s's match, i.e., the students to

which the school is matched.

Matching µ is individually rational if for all i ∈ I, µ(i)Ri ∅.

Matching µ is non-wasteful if for all i ∈ I and all s ∈ S, s Pi µ(i) implies |µ(s)| = qs.

Student i ∈ I has justi�ed max envy at matching µ if there is a student j ∈ I and a school

s ∈ S such that µ(j) = s Pi µ(i) and

(1) s ̸∈ r(i), s ̸∈ r(j), and i ≻s j; or

(2) s ∈ r(i), s ∈ r(j), and i ≻s j; or

(3) s ∈ r(i) and s ̸∈ r(j).

Matching µ is stable if it is individually rational, non-wasteful, and no student has justi�ed max

envy.

Remark 1 (Stability and adjusted priorities).

A student has justi�ed max envy at a matching µ with respect to (P,≻, r) if and only if she has

justi�ed envy (Abdulkadiro§lu and Sönmez, 2003) at µ with respect to (P,≻r) where≻r ≡ (≻r
s)s∈S

are the adjusted priorities: for each s ∈ S, the priority relation ≻r
s is such that
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(1) for all i, j ̸∈ r(s), i ≻r
s j if and only if i ≻s j;

(2) for all i, j ∈ r(s), i ≻r
s j if and only if i ≻s j; and

(3) for all i ∈ r(s) and all j ̸∈ r(s), i ≻r
s j.

Therefore, a matching is stable with respect to (P,≻, r) if and only if it is �classically� stable with

respect to (P,≻r), i.e., as in college admissions (see, e.g., Balinski and Sönmez, 1999, page 79). ⋄

Remark 2 (Stability and schools' responsive adjusted priority preferences).

By assuming that schools have priorities over all students, together with our stability notion,

we implicitly assume that each school �nds all students acceptable and has responsive adjusted

priority preferences over sets of students. More precisely, school s ∈ S with capacity qs and

adjusted priority relation ≻r
s compares sets of students as follows. Let 2Iqs denote the set of all

subsets of I that do not exceed the capacity qs, i.e., 2
I
qs ≡ {I ′ ⊆ I : |I ′| ≤ qs}. Let P r

s denote

an adjusted priority preference relation on 2Iqs , i.e., P
r
s strictly orders all sets in 2Iqs . Then, P r

s is

responsive to ≻r
s if the following two conditions hold:

(a) for all I ′∈ 2Iqs with |I ′|<qs and all i ∈ I\I ′, (I ′ ∪ {i}) P r
s I ′ and

(b) for all I ′∈ 2Iqs with |I ′|<qs and all i, j ∈ I\I ′, (I ′ ∪ {i}) P r
s (I ′ ∪ {j}) if and only if i ≻r

s j.

When formulating (a), we implicitly assume that each school �nds all students acceptable. Note

that a model extension by allowing schools to �nd some students unacceptable while still having

responsive adjusted priority preference relations would not change our results (but require addi-

tional notation in order to adjust individual rationality and stability when unacceptable students

are concerned). ⋄

The set of stable matchings is non-empty. A stable matching can be obtained by adapting

Gale and Shapley's (1962) (student-proposing) deferred acceptance algorithm (see also

Roth, 2008) to the context of extended school choice problems as follows. Let (P,≻, r) be a

problem.

Step 0. Using ≻ and r, compute ≻r.

Step 1. Each student i proposes to the acceptable school she most prefers or the no-school option

(according to Pi). Among all proposers, up to its capacity, each school s tentatively assigns its

seats to students who have highest priority according to ≻r
s and rejects all other proposers. The

no-school option accepts all proposals it receives.
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Steps 2, . . .. Each student i who was rejected at the previous step proposes to her next most

preferred acceptable school or the no-school option (according to Pi). Each school s considers

the proposers she tentatively accepted (if any) and all current proposers. Among these students,

up to its capacity, school s tentatively assigns its seats to the students who have highest priority

according to ≻r
s and rejects all other proposers. The no-school option accepts all proposals it

receives.

The algorithm stops when each student is either tentatively matched or has been rejected by all her

acceptable schools; we denote the resulting matching by γ(P,≻, r). Alternatively, when focusing

on the deferred acceptance outcome for the classical school choice problem (P,≻r), we use the

equivalent notation γ(P,≻r).

It follows from Gale and Shapley (1962) (see also Abdulkadiro§lu and Sönmez, 2003, Propo-

sition 1) that the resulting matching is stable with respect to (P,≻r). Hence, by Remark 1, the

(student-proposing) deferred acceptance algorithm yields a matching that is stable with respect

to (P,≻, r). Moreover, the resulting matching is student-optimal in the sense that all students

weakly prefer it to any other stable matching.

Stability and no justi�ed max envy are key properties when allocating school seats to students

and both notions crucially depend on how priorities of students are adjusted to minimal-access

rights. In particular, when using adjusted priorities, a student who has minimal-access rights for

several schools obtains higher priority for all these schools. Duddy (2019) points out that stability

based on these adjusted priorities can be considered unfair because instead of just guaranteeing

minimal-access rights to one of these schools, it could create unfair situations where a minimal-

access student with low grades is admitted to a popular school while a student with higher grades

is rejected in spite of the fact that the minimal-access student could easily have been admitted

to another (but potentially less preferred) minimal-access school. In fact, as soon as a school

(or even the no-school option) that is at least as good as a minimal-access school is o�ered to

a student, one could consider a claim to be assigned to a better school based on minimal-access

rights as unjusti�able. In other words, when using adjusted priorities, a student may receive more

minimal-access rights than needed to guarantee a minimal-access school welfare level.

In order to take the above criticism into account, we introduce the following stricter envy

concept that declares envy due to minimal-access rights unjusti�ed if the student is already matched

to a minimal-access school or one that is at least as good as a minimal-access school. Student i ∈ I

has justi�ed min envy5 at matching µ if there is a student j ∈ I and a school s ∈ S such that

µ(j) = s Pi µ(i) and

5Our de�nition of justi�ed min envy is based on Duddy's (2019) notion of strongly justi�ed envy.
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(1) s ̸∈ r(i), s ̸∈ r(j), and i ≻s j; or

(2) s ∈ r(i), s ∈ r(j), and i ≻s j; or

(3a) s ∈ r(i), s ̸∈ r(j), and i ≻s j; or

(3b) s ∈ r(i), s ̸∈ r(j), j ≻s i, and there is no school s′ ∈ S with s′ ∈ r(i) and µ(i)Ri s
′.

The only (but important) di�erence with justi�ed max envy lies in condition (3b); i.e., the

only situation of justi�ed envy of agent i for school s that is assigned to agent j when agent i

has lower priority than agent j happens when agent i has a minimal-access right for s, agent j

does not, and all of agent i's minimal-access right schools are better than her matched school. A

matching is minimal-access stable if it is individually rational, non-wasteful, and no student

has justi�ed min envy. Since it is harder to achieve justi�ed min envy than justi�ed max envy,

the set of minimal-access stable matchings contains the set of stable matchings. We illustrate

the di�erence between stable and minimal-access stable matchings in the following example. In

particular, the example demonstrates that two classical results for the set of stable matchings

cannot be extended to the set of minimal-access stable matchings: neither does the set of minimal-

access stable matchings form a distributive lattice under the classical de�nitions of meet and join

given by Conway (Blair, 1988; Knuth, 1976) nor does it permit a �Rural Hospitals Theorem.�6

Example 1 (Stability versus minimal-access stability: cardinality of matched students).

Consider the extended school choice problem (I, S, q, P,≻, r) where I = {1, 2, 3} and S = {A,B,C}
such that for each s ∈ S, qs = 1 and where preferences P and priorities ≻ are given in Table 1.

More precisely, student 1 �nds all schools acceptable with A P1 B P1 C P1 ∅; for student 2 only

school A is acceptable; and for student 3 only school C is acceptable. The minimal-access rights

are given by r(1) = {A,C}, r(2) = ∅, and r(3) = {C} and the resulting adjusted priorities ≻r are

also given in Table 1.

6A basic version of the Rural Hospitals Theorem (Roth, 1984, Theorem 9) in the school choice context states
that the set of �lled school seats is the same across all stable matchings, as is the set of students who are assigned
seats. Thus, the number of students assigned to the no-school option does not vary across stable matchings. The
�rst versions of the theorem appear in Gale and Sotomayor (1985), Roth (1984), and Roth (1986).
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P1 P2 P3

A A C

B

C

≻A ≻B ≻C

3 3 3

2 2 2

1 1 1

≻r
A ≻r

B ≻r
C

1 3 3

3 2 1

2 1 2

Table 1: Students' preferences P , priorities ≻, and adjusted priorities ≻r where r(1) = {A,C}, r(2) = ∅,
and r(3) = {C} (Example 1).

By applying the two versions7 of the deferred acceptance algorithm, one immediately veri�es

that the unique stable matching is

1 2 3

µ∗ : | | |
A ∅ C

which is the boldfaced matching in Table 1. The stable matching µ∗ is by de�nition also minimal-

access stable. However, there is exactly one other minimal-access stable matching, namely

1 2 3

µ : | | |
B A C

which is the boxed matching in Table 1. To see that µ is minimal-access stable, �rst note that only

student 1 does not get her most preferred school. Second, the only school that student 1 prefers to

her match is school A. Note that 2 ∈ µ(A), 1 ∈ r(A), 2 ̸∈ r(A), and 2 ≻A 1. However, student 1

does not have justi�ed min envy because µ(1) = B P1 C and C ∈ r(1). One easily veri�es that

apart from µ∗ and µ there is no other minimal-access stable matching.

Since students 1 and 2 both most prefer school A and µ∗(1) = A = µ(2), there does not exist a

minimal-access stable matching that is unanimously most preferred by all students. In particular,

the set of minimal-access stable matchings does not form a distributive lattice under the classical

de�nitions of meet and join given by Conway (Blair, 1988; Knuth, 1976).

Finally, note that di�erent minimal-access stable matchings may have di�erent numbers of

students assigned to the no-school option. So, the set of minimal-access stable matchings does not

permit a �Rural Hospitals Theorem.� Interestingly, at the unique stable matching µ∗ one student

is assigned to the no-school option, while at the only other minimal-access stable matching, no

student is assigned to the no-school option. ⋄
7The second version of the deferred acceptance algorithm, the school-proposing deferred acceptance algorithm

(see Subsection 3.1), is obtained by switching the roles of students and schools (i.e., proposers and receivers) and
yields the stable matching that is student-pessimal, i.e., all students weakly prefer any other stable matching.
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Our next example shows that a minimal-access stable matching can Pareto dominate the unique

stable matching.

Example 2 (Stability versus minimal-access stability: Pareto domination).

Consider the extended school choice problem (I, S, q, P,≻, r) where I = {1, 2, 3} and S = {A,B,C}
such that for each s ∈ S, qs = 1 and where preferences P and priorities ≻ are given in Table 2.

More precisely, students �nd all schools acceptable with preferences given in Table 2. The minimal-

access rights are given by r(1) = r(2) = {A,C} and r(3) = ∅ and the resulting adjusted priorities

≻r are also given in Table 2.

P1 P2 P3

B A A

A B B

C C C

≻A ≻B ≻C

3 3 3

1 1 1

2 2 2

≻r
A ≻r

B ≻r
C

1 3 1

2 1 2

3 2 3

Table 2: Students' preferences P , priorities ≻, and adjusted priorities ≻r where r(1) = r(2) = {A,C}
and r(3) = ∅ (Example 2).

By applying the two versions of the deferred acceptance algorithm (see Footnote 7), one im-

mediately veri�es that the unique stable matching is

1 2 3

µ∗ : | | |
A C B

which is the boldfaced matching in Table 2. The stable matching µ∗ is by de�nition also minimal-

access stable. However, there is exactly one other minimal-access stable matching, namely

1 2 3

µ : | | |
B C A

which is the boxed matching in Table 2. To see that µ is minimal-access stable, �rst note that

only student 2 does not get her most preferred school. Second, student 2 prefers school B to her

match and 1 ∈ µ(B), 2 ̸∈ r(B), 1 ̸∈ r(B), but 1 ≻B 2. Third, student 2 prefers school A to her

match and 3 ∈ µ(A), 2 ∈ r(A), 3 ̸∈ r(A), and 3 ≻A 2, but student 2 does not have justi�ed min

envy because µ(2) = C and C ∈ r(2). One easily veri�es that apart from µ∗ and µ there is no

other minimal-access stable matching.

10



Since students 1 and 3 both get their most preferred schools at µ and student 2 gets the

same school at both µ and µ∗, the minimal-access stable matching µ Pareto dominates the stable

matching µ∗. ⋄

Examples 1 and 2 illustrate how choosing a minimal-access stable matching that is di�erent

from a stable matching could be attractive because, in some situations, more students could be

matched or a Pareto improvement could be implemented.

A mechanism φ is a function that selects for each problem (P,≻, r) a matching φ(P,≻, r). For

each student i, φi(P,≻, r) denotes the school to which the student is assigned by φ. Mechanism

φ is individually rational / non-wasteful / (minimal-access) stable if for each problem

(P,≻, r), φ(P,≻, r) is individually rational / non-wasteful / (minimal-access) stable.

A mechanism is minimal-access monotonic if for each student an expansion of her minimal-

access rights induces the mechanism to assign her to a weakly more preferred school. Formally,

mechanism φ is minimal-access monotonic if for each student i and for each pair of prob-

lems (P,≻, r) and (P,≻, r′) with r′(i) ⊆ r(i) and for each student j ̸= i, r′(j) = r(j), we have

φi(P,≻, r) Ri φi(P,≻, r′). Assuming students can renounce / hide minimal-access rights, a mech-

anism is minimal-access monotonic if whenever a student renounces / hides some of her minimal-

access rights, the mechanism assigns her to a weakly less preferred school. Put di�erently, it is

always optimal for a student to not hide any of her minimal-access rights (Aygün and Bó, 2021,

demonstrate for Brazilian federal university admissions that students often have a better chance

at admission if they hide privileges). Thus, a minimal-access monotonic mechanism is strategi-

cally simple and hence levels the playing �eld. In the context of classical exchange economies,

Postlewaite (1979) is the �rst to introduce and study hiding-proofness and destruction-proofness

with respect to individual endowments; minimal-access monotonicity is a natural version of these

properties in our model.

The well-known non-manipulability property strategy-proofness requires that no student can

ever bene�t from misrepresenting her preferences. Formally, mechanism φ is strategy-proof

if for each problem (P,≻, r), for each student i, and for all preferences P ′
i ∈ Pi, φi(P,≻, r) Ri

φi(P
′
i , P−i,≻, r) where P−i ≡ (Pj)j ̸=i.

The mechanism that always assigns the matching obtained by the (student-proposing) deferred

acceptance algorithm based on adjusted priorities is called (minimal-access adjusted) deferred

acceptance mechanism and denoted by γ. As mentioned earlier, γ is stable and hence also

minimal-access stable. The following lemma also shows that γ inherits strategy-proofness from

the deferred acceptance mechanism in the standard setting. Finally, the lemma shows that γ is
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minimal-access monotonic; this follows from the deferred acceptance mechanism in the standard

setting �respecting improvements� (Balinski and Sönmez, 1999)� the intuition being that since

more minimal-access rights for a student improve her position in the priority ranking of some

schools, chances to be matched to a more desirable school throughout the deferred acceptance

algorithm increase.

Lemma 1 (Properties of the deferred acceptance mechanism).

The deferred acceptance mechanism γ is stable, strategy-proof, and minimal-access monotonic.

Proof. We only have to prove strategy-proofness and minimal-access monotonicity. Let (P,≻, r)

be a problem. Let i ∈ I and P ′
i ∈ Pi. Recall that, with a slight abuse of notation, γ also denotes the

deferred acceptance mechanism in the standard setting (de�ned for problems of the form (P,≻r)

instead of (P,≻, r)). Then, it follows from Dubins and Freedman (1981) and Roth (1982) that8

γi(P,≻, r) = γi(P,≻r)Ri γi(P
′
i , P−i,≻r) = γi(P

′
i , P−i,≻, r). Hence, γ is strategy-proof.

Let i ∈ I and let (P,≻, r) and (P,≻, r′) be two problems with r′(i) ⊆ r(i) and for each student

j ̸= i, r′(j) = r(j). By Remark 1, r and r′ induce adjusted priorities ≻r and ≻r′ such that for

each j ∈ I and each s ∈ S, i ≻r′
s j implies i ≻r

s j. Hence, ≻r is a so-called improvement of

≻r′ for student i and, from Balinski and Sönmez (1999, Theorem 5), it follows that γi(P,≻, r) =

γi(P,≻r)Ri γi(P,≻r′) = γi(P,≻, r′).

The following example demonstrates that picking another minimal-access stable matching than

the matching obtained by γ can lead to a violation of both strategy-proofness and minimal-access

monotonicity.

Example 3 (A minimal-access stable mechanism that is neither strategy-proof nor

minimal-access monotonic). Consider again the extended school choice problem of Example 1.

Let φ be a minimal-access stable mechanism such that φ(P,≻, r) = µ. We show �rst that φ

is not strategy-proof. Let P ′
1 be the preference relation with C P ′

1 A P ′
1 B P ′

1 ∅. The unique

minimal-access stable matching at pro�le P ′ ≡ (P ′
1, P2, P3) is µ∗. To see this, note �rst that at

any minimal-access stable matching, student 3 is assigned to school C, and second that µ is not

minimal-access stable because student 1 has justi�ed min envy with respect to student 2 and school

A. Hence, φ1(P
′,≻, r) = A P1 B = φ1(P,≻, r) and φ is not strategy-proof.

Next, we show that φ is not minimal-access monotonic. Consider the minimal-access rights r′

where r′(1) = {A} ⊊ {A,C} = r(1), r′(2) = r(2) = ∅, and r′(3) = r(3) = {C}. Then, by the same

arguments as before, φ(P,≻, r′) = µ∗. Hence, φ1(P,≻, r′) = µ∗(1) = AP1B = φ1(P,≻, r) and φ

is not minimal-access monotonic. ⋄
8See also Abdulkadiro§lu and Sönmez (2003, Proposition 2).
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The following theorem shows that the fact that minimal-access stable mechanism φ in Exam-

ple 3 fails to satisfy strategy-proofness and walk-zone monotonicity is not a coincidence: the only

mechanism satisfying all three properties is the deferred acceptance mechanism γ.

Theorem 1 (Characterization).

A mechanism φ is minimal-access stable, strategy-proof, and minimal-access monotonic if and only

if φ = γ.

Theorem 1 demonstrates that apart from the deferred acceptance mechanism that is based on

adjusted priorities, there exists no other mechanism that satis�es the three normatively appealing

properties we have considered. Hence, it is impossible for a school-choice mechanism to sat-

isfy minimal-access stability, strategy-proofness, and minimal-access monotonicity while treating

minimal-access rights in a di�erentiated way, as demanded by Duddy (2019).

Proof sketch of Theorem 1. From Lemma 1 it follows that the deferred acceptance mechanism

satis�es minimal-access stability, strategy-proofness, and minimal-access monotonicity. Next, we

explain the uniqueness part of the proof; the full proof that there is no other mechanism that

satis�es the three properties is delegated to Appendix A.

Let φ satisfy minimal-access stability, strategy-proofness, and minimal-access monotonicity.

Suppose φ ̸= γ. Then, there exists a problem (P,≻, r) such that φ(P,≻, r) ̸= γ(P,≻, r).

First, we show that it is without loss of generality to assume that problem (P,≻, r) is such that

(t.a) φ and γ assign di�erent matchings and (t.b) each student who receives a di�erent match,

�nds only one school acceptable (see Transformation Claim, Claim 1, in Appendix A).

Second, since φ and γ are individually rational, we can partition the set of students at (P,≻, r)

by using the following types (see Type Claim, Claim 2, in Appendix A). Types 1 and 2 are students

with di�erent matches under φ and γ who �nd exactly one school acceptable: type 1 students �nd

only the school they are matched to under γ acceptable and are matched to ∅ under φ; type 2

students �nd only the school they are matched to under φ acceptable and are matched to ∅ under

γ. Type 3 students are matched equally under φ and γ.

Third, we prove that while φ(P,≻, r) is minimal-access stable, it cannot be stable due to the

Rural Hospitals Theorem and the assumption that φ(P,≻, r) ̸= γ(P,≻, r). Hence,

(e.1.) there exists some student with justi�ed max envy at φ(P,≻, r) and

(e.2.) any justi�ed max envy at φ(P,≻, r) is not justi�ed min envy.

Fourth, we show that students with justi�ed max envy cannot be of Type 2. Hence, from (e.1)

there exists a student i of Type 1 or Type 3 that has justi�ed max envy.
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Fifth, if student i is of Type 1, then we can strictly reduce his minimal-access rights (possibly

followed by a transformation of preferences à la Transformation Claim, Claim 1) to obtain a

problem that satis�es again (t.a) and (t.b). If, on the other hand, student i is of Type 3, then

we can identify a student of Type 1, say k, with justi�ed max envy and carry out a reduction

of student k's minimal-access rights (possibly followed by a transformation of preferences à la

Transformation Claim, Claim 1) to obtain a problem that satis�es again (t.a) and (t.b).

Thus, starting from a problem that satis�es (t.a) and (t.b) we obtain each time a new problem

that satis�es again (t.a) and (t.b) but with a strictly smaller number of minimal-access rights for

some Type 1 student (while maintaining the minimal-access rights of the other students). However,

since the number of students is �nite, the total (�nite) number of minimal-access rights cannot be

strictly decreased perpetually. Thus, we obtain a contradiction and conclude that φ = γ.

In the standard setting, the unique stable mechanism that satis�es strategy-proofness is the

deferred acceptance mechanism (see, e.g., Roth and Sotomayor, 1990, Theorem 4.6). Together

with Lemma 1, this implies that in our setting the unique stable mechanism that satis�es strategy-

proofness is the deferred acceptance mechanism. However, the deferred acceptance mechanism

is not the unique stable mechanism that satis�es minimal-access monotonicity. A mechanism we

present as an independence example for strategy-proofness (Example 4) satis�es minimal-access

monotonicity and minimal-access stability (in fact, it satis�es stability).

Before discussing the independence of the properties that characterize the deferred acceptance

mechanism in Theorem 1 (see Section 4), we would like to explore what happens to other well-

known mechanisms in the presence of minimal-access rights.

3 Other well-known mechanisms and minimal-access rights

Using the adjusted priorities ≻r we can adapt three more well-known mechanisms: the school-

proposing deferred acceptance mechanism, the immediate acceptance mechanism, and the top

trading cycles mechanism.

3.1 The school-proposing deferred acceptance mechanism

We adapt the classical school-proposing deferred acceptance algorithm to our model with

minimal-access rights. Let (P,≻, r) be a problem.
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Step 0. Using ≻ and r, compute ≻r.

Step 1. Each school s proposes to the students with highest priority (under ≻r
s), up to its capacity.

The no-school option proposes to all students. Among all proposers, each student i tentatively

accepts the most preferred acceptable school or the no-school option (according to Pi) and rejects

all other proposers.

Steps 2, . . .. For each student who rejected school s at the previous step, school s proposes to

the next highest priority student (according to ≻r
s) to whom it has not yet made a proposal. The

no-school option proposes to all students. Each student i considers the proposer she tentatively

accepted (if any) and all current proposers. Among these proposers, student i tentatively accepts

the most preferred acceptable school or the no-school option (according to Pi) and rejects all other

proposers.

The algorithm stops when students no longer reject proposals. The mechanism that always assigns

the matching obtained by the school-proposing deferred acceptance algorithm based on adjusted

priorities is called (minimal-access adjusted) school-proposing deferred acceptance mech-

anism and we denote it by γS. It is well-known that γS is stable but not strategy-proof. We now

show that γS is not minimal-access monotonic. Consider the extended school choice problem

(I, S, q, P,≻, r) where I = {1, 2} and S = {A,B} such that for each s ∈ S, qs = 1 and 2 ≻s 1.

Students' preferences are given by Table 3. The minimal-access rights are given by r(1) = {A}
and r(2) = ∅.

P1 P2

B A

A B

≻r
A ≻r

B

1 2

2 1

≻r′
A ≻r′

B

2 2

1 1

Table 3: Students' preferences P and adjusted priorities ≻r and ≻r′ (Subsection 3.1).

One immediately veri�es that γS(P,≻, r) is the boxed matching in Table 3. Let r′ be the

minimal-access rights de�ned by r′(1) = r′(2) = ∅. Then, γS(P,≻, r′) is the bold-faced matching

in Table 3. Since γS
1 (P,≻, r′) = B P1A = γS

1 (P,≻, r), γS is not minimal-access monotonic.

3.2 The immediate acceptance mechanism

We adapt the classical immediate acceptance algorithm to our model with minimal-access

rights. Let (P,≻, r) be a problem.
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Step 0. Using ≻ and r, compute ≻r.

Step 1. Each student i proposes to the acceptable school she most prefers or the no-school option

(according to Pi). Among all proposers, up to its capacity, each school s assigns its seats to the

students who have highest priority according to ≻r
s and rejects all other proposals. The no-school

option accepts all proposals it receives.

Steps 2, . . .. Each student i who was rejected at the previous step proposes to her next most

preferred acceptable school or the no-school option (according to Pi). Among all proposers, up to

its capacity, each school s assigns its remaining seats (if any) to the students who have highest

priority according to ≻r
s and rejects all other proposals. The no-school option accepts all proposals

it receives.

The algorithm stops when each student is either matched or has been rejected by all her acceptable

schools. The mechanism that always assigns the matching obtained by the immediate acceptance

algorithm based on adjusted priorities is called (minimal-access adjusted) immediate ac-

ceptance mechanism. It follows from Abdulkadiro§lu and Sönmez (2003) that the immediate

acceptance mechanism is neither strategy-proof nor stable. Note that the immediate acceptance

mechanism is not stable �even if� students have no minimal-access rights. Since in this case, stabil-

ity equals minimal-access stability, the immediate acceptance mechanism is also not minimal-access

stable. However, since more minimal-access rights for a student improve her position in the pri-

ority ranking of some schools, chances to be matched to a more desirable school earlier in the

immediate acceptance algorithm increase and thus the immediate acceptance mechanism satis�es

minimal-access monotonicity.

3.3 The top trading cycles mechanism

Inspired by David Gale's top trading cycle algorithm, Abdulkadiro§lu and Sönmez (2003)

introduced the so-called top trading cycles mechanism, which we adapt to our model with minimal-

access rights. Let (P,≻, r) be a problem.

Step 0. Using ≻ and r, compute ≻r.

Step 1. Each student i points to the acceptable school she most prefers or the no-school option

(according to Pi). The no-school option points to all students and each school s points to the

student who has highest priority according to ≻r
s. There is at least one cycle. Each student in a

cycle is assigned to the school (or the no-school option) she points to and she is removed. The

capacity of each school (but not the no-school option) that is in a cycle is reduced by 1. If the

capacity of a school is now 0, then the school is removed (the no-school option is not removed).
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Steps 2, . . .. Each remaining student i points to the school she most prefers among the remaining

schools or the no-school option (according to Pi). The no-school option points to all students and

each remaining school s points to the student who has highest priority according to ≻r
s among all

remaining students. There is at least one cycle. Each student in a cycle is assigned to the school

(or the no-school option) she points to and she is removed. The capacity of each school (but not

the no-school option) that is in a cycle is reduced by 1. If the capacity of a school is now 0, then

the school is removed (the no-school option is not removed).

The algorithm stops when each student has been removed and matched to a school or the no-

school option. The mechanism that always assigns the matching obtained by the top trading

cycles algorithm based on adjusted priorities is called (minimal-access adjusted) top trading

cycles mechanism. It follows from Abdulkadiro§lu and Sönmez (2003) that the top trading cycles

mechanism is strategy-proof but not stable. Note that the top trading cycles mechanism is not

stable �even if� students have no minimal-access rights. Since in this case, stability equals minimal-

access stability, the top trading cycles mechanism is also not minimal-access stable. Furthermore,

since more minimal-access rights for a student improve her position in the priority ranking of some

schools, chances to form a trading cycle that leads to matching with a more desirable school earlier

in the top trading cycles algorithm increase and thus the top trading cycles mechanism satis�es

minimal-access monotonicity (the formal proof is relegated to Appendix B).

4 Independence of properties in Theorem 1

The following three mechanisms show that the three properties in Theorem 1 are logically unre-

lated. We label the following independence examples by the property that is not satis�ed.

Example 4 (Strategy-proofness). We de�ne a mechanism γ̄ as follows. For each (P,≻, r),

γ̄(P,≻, r) ≡

{
γ(P,≻, r) if for some k ∈ I, r(k) ̸= ∅;
any9 stable matching at (P,≻, r) if for each k ∈ I, r(k) = ∅.

By de�nition, γ̄ is stable and γ̄ ̸= γ. We now show that γ̄ is also minimal-access monotonic. Let

i ∈ I and (P,≻, r) and let (P,≻, r′) be two problems with r′(i) ⊊ r(i) and for each student j ̸= i,

r′(j) = r(j). Then,

γ̄i(P,≻, r) = γi(P,≻, r)Ri γi(P,≻, r′)Ri γ̄i(P,≻, r′).

9To guarantee γ̄ ̸= γ, one has to pick some stable matching di�erent from γ(P,≻, r) for some problem (P,≻, r).
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The �rst equality follows from the de�nition of γ̄. The �rst Ri-comparison follows from minimal-

access monotonicity of γ (Lemma 1). The second Ri-comparison follows from the student-

optimality of the stable matching γ(P,≻, r′) at problem (P,≻, r′), i.e., all students weakly prefer

stable matching γ(P,≻, r′) to any other stable matching at problem (P,≻, r′). Hence, γ̄ is minimal-

access monotonic.

To see that γ̄ is not strategy-proof, let (P,≻, r) be a problem with γ̄(P,≻, r) ̸= γ(P,≻, r).

Then, there is a student i ∈ I who can state (truncation) preferences P ′
i that are obtained from her

preferences Pi by declaring all schools less preferred than γi(P,≻, r) as unacceptable while keeping

all other acceptable schools in the same order. Thus, γ̄i(P
′
i , P−i,≻, r) = γi(P,≻, r) Pi γ̄i(P,≻, r).

Therefore, student i is better o� by misrepresenting her preferences. Hence, γ̄ is not strategy-

proof. ⋄

The above example shows, in particular, that, apart from the deferred acceptance mechanism,

there do exist other stable mechanisms that satisfy minimal-access monotonicity.

Example 5 (Minimal-access stability). The top trading cycles mechanism (Subsection 3.3)

satis�es strategy-proofness, minimal-access monotonicity (see Appendix B), but not minimal-access

stability (see Subsection 3.3). ⋄

Example 6 (Minimal-access monotonicity). We de�ne a mechanism γ̃ as follows. In the

particular situation where all schools have the same (particular) priority order, all students but

the lowest priority student have no minimal-access rights, and the lowest priority student has

at least 2 minimal-access rights, we apply the associated serial dictatorship with a small twist:

as soon as there is only one minimal-access seat left, the (student-proposing) deferred acceptance

algorithm is applied. In all other situations, the deferred acceptance mechanism is applied directly.

Formally, let (I, S, q, P,≻, r) be a problem. Let I = {1, 2, . . . , n}. We distinguish between two

cases.

Case 1: For each s ∈ S, 1 ≻s 2 ≻s · · · ≻s n and for each i ∈ I\{n}, r(i) = ∅ and |r(n)| > 1.

For each s ∈ S, let qs(0) ≡ qs. The following procedure outputs a matching.

Begin Procedure

Step 1. Student 1 is assigned to her most preferred school or the no-school option (according to

P1), say s∗1. If s
∗
1 ∈ S, then qs∗(1) ≡ qs∗(0) − 1 and for each s ∈ S\{s∗1}, qs(1) ≡ qs(0). If s

∗
1 = ∅,

then for each s ∈ S, qs(1) ≡ qs(0). Go to Step 2.
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Step i > 1.

(a) If i < n and
∑

s̃∈r(n) qs̃(i− 1) > 1, then student i is assigned to her most preferred school

or the no-school option (according to Pi), say s∗i , among the schools in the set {s ∈ S :

qs(i−1) > 0}. If s∗i ∈ S, then qs∗(i) ≡ qs∗(i−1)−1 and for each s ∈ S\{s∗i }, qs(i) ≡ qs(i−1).

If s∗i = ∅, then for each s ∈ S, qs(i) ≡ qs(i− 1). Go to the next step.

(b) If i < n and
∑

s̃∈r(n) qs̃(i− 1) = 1, then students {i, . . . , n} are matched to the remaining

seats of the schools in {s ∈ S : qs(i − 1) > 0} and the no-school option by applying the

(school-proposing) deferred acceptance algorithm (with adjusted priorities based on agent n's

last remaining minimal-access school). The procedure ends.

(c) If i = n, then student n is assigned to her most preferred school or the no-school option

(according to Pn), say s∗n, among the schools in the set {s ∈ S : qs(n − 1) > 0}. The

procedure ends.

End Procedure

Let γ̃(P,≻, r) be the matching that is obtained by the above procedure. For later convenience, we

refer to steps i(a) and i(c) in the procedure (i = 1, [ i < n and
∑

s̃∈r(n) qs̃(i− 1) > 1 ], and i = n)

as the �serial dictatorship (SD) steps.� Step i(b) in the procedure is referred to as the DA step.

Case 2: Otherwise. In this case, the mechanism coincides with the deferred acceptance mecha-

nism, i.e., γ̃(P,≻, r) ≡ γ(P,≻, r).

It is easy to see that mechanism γ̃ is strategy-proof. In Case 2 this follows immediately from

strategy-proofness of the deferred acceptance mechanism. In Case 1 this is due to the SD steps (in

particular, by misstating her preferences, no student can change the set of schools that is available

to her) and strategy-proofness of the deferred acceptance mechanism.

Mechanism γ̃ is also minimal-access stable. This is obvious in Case 2 since the deferred ac-

ceptance mechanism always yields a stable matching. We now show that in Case 1 mechanism

γ̃ always yields a minimal-access stable matching. Let µ = γ̃(P,≻, r). First, since the no-school

option is available at each SD and DA step, µ is individually rational. Second, µ is non-wasteful

because (i) at the SD steps, unoccupied seats are always available and (ii) the deferred acceptance

mechanism is non-wasteful. Third, there is no justi�ed min envy:

(a) At each SD step i < n, student i does not have justi�ed min envy with respect to any student

j ∈ I\{i} because j ≻µ(j) i or µ(i)Ri µ(j).

(b) At DA step i, no student in k ∈ {i, . . . , n − 1} has justi�ed min envy with respect to any

student j ∈ {1, . . . , i− 1} because j ≻µ(j) k. Student n does not have min envy with respect
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to any student j ∈ {1, . . . , i − 1} since the deferred acceptance mechanism is minimal-

access stable and
∑

s̃∈r(n) qs̃(i− 1) = 1. Finally, since the deferred acceptance mechanism is

minimal-access stable, no student in k ∈ {i, . . . , n} has justi�ed min envy with respect to

any other student j ∈ {i, . . . , n}\{k}.

(c) At SD step n, student n does not have justi�ed min envy with respect to any other student.

To see this, note that at this step, student n is assigned to her most preferred school or the

no-school option (according to Pn) among the schools in the set {s ∈ S : qs(n − 1) > 0}.
Since

∑
s̃∈r(n) qs̃(n− 1) ≥ 1, there is a minimal-access school s̃ ∈ r(n) with µ(n)Rn s̃.

Finally, mechanism γ̃ is not minimal-access monotonic. For an illustration, consider the ex-

tended school choice problem (I, S, q, P,≻, r) where I = {1, 2} and S = {A,B} such that for each

s ∈ S, qs = 1 and 1 ≻s 2. Students' preferences are given by Table 4. The minimal-access rights

are given by r(1) = ∅ and r(2) = {A,B}.

P1 P2

A A

B B

Table 4: Students' preferences P (Example 6).

One immediately veri�es that γ̃(P,≻, r) is the boxed matching in Table 4. Let r′ be the

minimal-access rights de�ned by r′(1) = r(1) = ∅ and r′(2) = {A} ⊊ {A,B} = r(2). Then,

γ̃(P,≻, r′) is the encircled matching in Table 4. Since γ̃2(P,≻, r′) = AP2B = γ̃2(P,≻, r), γ̃ is not

minimal-access monotonic. ⋄
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A Appendix: Proof of the uniqueness part of Theorem 1

Proof of Theorem 1: uniqueness of γ. We prove that γ is the only mechanism that satis�es

minimal-access stability, strategy-proofness, and minimal-access monotonicity.

Let φ satisfy minimal-access stability, strategy-proofness, and minimal-access monotonicity and

suppose φ ̸= γ. Then, there exists a problem (P,≻, r) such that φ(P,≻, r) ̸= γ(P,≻, r). We �rst

show that problem (P,≻, r) can be transformed into a problem (P̄ ,≻, r) such that (t.a) φ and γ

assign di�erent matchings and (t.b) each student who receives a di�erent match, �nds only one

school acceptable.

Claim 1 (Transformation Claim). Let (P,≻, r) such that φ(P,≻, r) ̸= γ(P,≻, r). Then, there

is a preference pro�le P̄ such that

(t.a.) φ(P̄ ,≻, r) ̸= γ(P̄ ,≻, r) and

(t.b.) for each student ℓ with φℓ(P̄ ,≻, r) ̸= γℓ(P̄ ,≻, r), only one school is acceptable under P̄ℓ.

Proof of the Transformation Claim. Let µ ≡ φ(P,≻, r) and µ∗ ≡ γ(P,≻, r).

Let ℓ be a student with µ(ℓ) ̸= µ∗(ℓ). Since φ and γ are individually rational, µ(ℓ) Rℓ ∅ and

µ∗(ℓ)Rℓ ∅. Therefore, at least one school is acceptable under Pℓ.

Next, assume that ℓ is a student such that µ(ℓ) ̸= µ∗(ℓ) and who �nds at least two di�erent

schools acceptable under Pℓ. We distinguish between two cases.
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Case 1. µ∗(ℓ) Pℓ µ(ℓ). Let P̄ℓ be a preference relation where µ∗(ℓ) is the only acceptable school.

Let P̄ ≡ (P̄ℓ, P−ℓ), µ̄ ≡ φ(P̄ ,≻, r), and µ̄∗ ≡ γ(P̄ ,≻, r). Since γ is strategy-proof, µ̄∗(ℓ) = µ∗(ℓ).

Since φ is individually rational, µ̄(ℓ) ∈ {∅, µ∗(ℓ)}. By strategy-proofness of φ, µ̄(ℓ) ̸= µ∗(ℓ). Hence,

µ̄(ℓ) = ∅. Moreover, since µ∗(ℓ) Pℓ µ(ℓ)Rℓ ∅, µ̄∗(ℓ) ̸= ∅ = µ̄(ℓ).

Case 2. µ(ℓ) Pℓ µ
∗(ℓ). Let P̄ℓ be a preference relation where µ(ℓ) is the only acceptable school.

Let P̄ ≡ (P̄ℓ, P−ℓ), µ̄ ≡ φ(P̄ ,≻, r), and µ̄∗ ≡ γ(P̄ ,≻, r). Since φ is strategy-proof, µ̄(ℓ) = µ(ℓ).

Since γ is individually rational, µ̄∗(ℓ) ∈ {∅, µ(ℓ)}. By strategy-proofness of γ, µ̄∗(ℓ) ̸= µ(ℓ). Hence,

µ̄∗(ℓ) = ∅. Moreover, since µ(ℓ) Pℓ µ
∗(ℓ)Rℓ ∅, µ̄(ℓ) ̸= ∅ = µ̄∗(ℓ).

Note that relative to P , P̄ = (P̄ℓ, P−ℓ) only involves a transformation of student ℓ's preferences.

After the transformation, student ℓ �nds only one school acceptable. Hence, we reduced the number

of students who �nd more than one school acceptable by one student. Moreover, φℓ(P̄ ,≻, r) ̸=
γℓ(P̄ ,≻, r). In particular, φ(P̄ ,≻, r) ̸= γ(P̄ ,≻, r).

Thus, if at problem (P,≻, r) there are students who have di�erent matches at φ and γ and who

�nd at least two di�erent schools acceptable, then we can, student by student, transform (P,≻, r)

until we obtain a preference pro�le such that (t.a) and (t.b) are satis�ed.

Based on the Transformation Claim (Claim 1), we now can assume without loss of generality

that

problem (P,≻, r) satis�es (t.a) and (t.b). (1)

Since φ and γ are individual rational, we can assign the following types to students. Types 1

and 2 are students with di�erent matches under φ and γ who �nd exactly one school acceptable:

Type 1 students �nd only the school they are matched to under γ acceptable and are matched to

∅ under φ; Type 2 students �nd only the school they are matched to under φ acceptable and are

matched to ∅ under γ. Type 3 students are matched equally under φ and γ.

Claim 2 (Type Claim). Each student ℓ is exactly of one of the following types:

Type 1: γℓ(P,≻, r) ∈ S is the only acceptable school under Pℓ and φℓ(P,≻, r) = ∅.

Type 2: φℓ(P,≻, r) ∈ S is the only acceptable school under Pℓ and γℓ(P,≻, r) = ∅.

Type 3: φℓ(P,≻, r) = γℓ(P,≻, r)Rℓ ∅.

To summarize, we consider (P,≻, r) satisfying (t.1) and (t.2) such that φ(P,≻, r) ̸= γ(P,≻, r)

and the Transformation Claim (Claim 1) and Type Claim (Claim 2) hold. We now derive a

contradiction.
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Start. Let µ ≡ φ(P,≻, r) and µ∗ ≡ γ(P,≻, r).

Suppose µ is stable at (P,≻, r). Then, since µ∗ is also stable at (P,≻, r), it follows from

Remark 1 and the Rural Hospitals Theorem (see Footnote 6) that any student who is matched

(to a school) at µ is also matched (to a school) at µ∗, and vice versa. Hence, all students are of

Type 3. However, this contradicts (t.a). So, µ is not stable at (P,≻, r).

Since φ is minimal-access stable, µ is minimal-access stable at (P,≻, r). Since µ is not stable

at (P,≻, r) this means that

(e.1.) there exists some student i with justi�ed max envy at µ with respect to some student

j ∈ I\{i} and some school s ∈ S and

(e.2.) any justi�ed max envy at µ is not justi�ed min envy.

Then, µ(j) = s Pi µ(i), s ∈ r(i), s ̸∈ r(j), j ≻s i, and there is a school s′ ∈ S with s′ ∈ r(i) and

µ(i)Ri s
′. Thus,

|r(i)| > 1. (2)

Since s Pi µ(i), student i is not of Type 2. Thus, by the Type Claim (Claim 2), it su�ces to

distinguish between the two cases where student i is of Type 1 or 3.

Case T1. Student i is of Type 1. Thus, µ∗(i) is the only acceptable school under Pi and µ(i) = ∅.
Then, it follows from s Pi µ(i) that s is the only acceptable school under Pi, i.e., µ

∗(i) = s.

Minimal-access rights reduction step. Let r′ be the minimal-access rights de�ned by r′(i) ≡
{s} and for each ℓ ∈ I\{i}, r′(ℓ) ≡ r(ℓ). So for school s, the set of students with minimal-access

right did not change, i.e., r′(s) = r(s), and for all other schools S\{s}, the only possible change is

that student i lost her minimal-access right, i.e., for each school s̃ ∈ S\{s}, r′(s̃) = r(s̃)\{i}.
Let ν ≡ φ(P,≻, r′) and ν∗ ≡ γ(P,≻, r′). Since φ is minimal-access monotonic, ∅ = µ(i)Ri ν(i).

Hence, by individual rationality, ν(i) = ∅. Recall that µ∗(i) = s is the only acceptable school

under Pi and that under ≻r′ , student i retained his minimal-access right at school µ∗(i) = s while

other students' minimal-access rights did not change. Hence, for problems (P,≻, r) and (P,≻, r′),

student i applies to school s at Step 1 of the deferred acceptance algorithm. Since at school s,

students' priorities did not change from ≻r to ≻r′ and all students I \{i} apply to the same schools

in the consecutive steps of the deferred acceptance algorithm, the resulting matchings for problems

(P,≻, r) and (P,≻, r′) are the same; particularly, ν∗(i) = µ∗(i) = s. In particular, ν∗(i) ̸= ν(i).

Note that relative to (P,≻, r), at (P,≻, r′) agent i's matches under φ and γ did not change but

other agents' matches might have changed. However, since φ(P,≻, r′) = ν ̸= ν∗ = γ(P,≻, r′), we

can again apply the Transformation Claim (Claim 1) to obtain a problem (P̄ ,≻, r′) that satis�es
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(t.a) and (t.b) (possibly no transformation is required) and, in addition, has reduced minimal-

access rights such that

1 = |r′(i)| < |r(i)|.

Then, return to the Start (�rst line after the Type Claim, Claim 2). Note that inequality (2)

cannot apply to an agent with only one minimal-access school, so agent i, who featured as justi�ed

max envy agent in this case, cannot feature as a justi�ed max envy agent later on.

Case T3. Student i is of Type 3. Thus, µ(i) = µ∗(i) Ri ∅. Since µ(j) = s ̸= ∅, student j is not

of Type 1. Suppose student j is of Type 3. Then, µ∗(j) = µ(j) = s. But then, since student i has

justi�ed max envy with respect to student j and school s at matching µ, student i has justi�ed

max envy with respect to student j and school s at matching µ∗ as well. Since this contradicts

the stability of µ∗ at (P,≻, r), student j is not of Type 3.

So, by the Type Claim (Claim 2), student j is of Type 2. Then, s = µ(j) is the only acceptable

school for student j at Pj and µ∗(j) = ∅. Since γ is non-wasteful, there is a student k ∈ I such

that µ∗(k) = s and µ(k) ̸= s. Obviously, student k is of Type 1. In particular, µ(k) = ∅. Since µ∗

is stable at (P,≻, r), it follows from µ∗(k) = sPj ∅ = µ∗(j) and Remark 1 that k ≻r
s j. Hence, at µ,

student k has justi�ed max envy with respect to student j and school s. So, as in Case T1, there

is a student of Type 1 that has justi�ed max envy at µ. Hence, we can apply the minimal-access

rights reduction step of Case T1 (with student k in the role of student i), followed again by a

transformation of the preferences (possibly applying the Transformation Claim, Claim 1) to obtain

a problem (P̄ ,≻, r′) that satis�es (t.a) and (t.b) and, in addition, has reduced minimal-access

rights such that

1 = |r′(k)| < |r(k)|.

Then, return to the Start (�rst line after the Type Claim, Claim 2). Recall that inequality (2)

cannot apply to an agent with only one minimal-access school, so agent k, who featured as justi�ed

max envy agent in this case, cannot feature as a justi�ed max envy agent later on.

Starting from problem (P,≻, r), Cases T1 and T3 explain how to obtain a new problem

(P̄ ,≻, r′) with unequal matchings under φ and γ by strictly reducing the minimal-access rights

of a Type 1 student (and possibly the transformation of preferences). Problem (P̄ ,≻, r′) is then

used as new input at the Start (�rst line after the Type Claim, Claim 2). Hence, for (P̄ ,≻, r′)

there exists an agent with justi�ed max envy and, by inequality (2), minimal access rights for

more than one school. Thus, the strict reduction step of the minimal-access rights of a Type 1

student is repeated. However, since the number of students is �nite, the total (�nite) number of

minimal-access rights cannot be strictly decreased perpetually. Thus, we obtain a contradiction.

Therefore, φ = γ.
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B Appendix: Proof that the top trading cycles mechanism

is minimal-access monotonic

For classical school choice problems, Proposition 9 in the supplementary material of Hat�eld et al.

(2016) implies that the top trading cycles mechanism is minimal-access monotonic in our setting

of extended school choice problems. However, for completeness, below we provide a direct proof.

We �rst consider the �unit setting� where each school has 1 seat, i.e., for each s ∈ S, qs = 1.

Let τ denote the top trading cycles mechanism.

Let i ∈ I. Let (P,≻, r) and (P,≻, r′) be two problems such that r′(i) ⊆ r(i) and for each

j ∈ I\{i}, r′(j) = r(j). With a slight abuse of notation we write τ(≻) for τ(P,≻, r) and τ(≻′)

for τ(P,≻, r′). Step t ≥ 1 in the top trading cycles algorithm applied to (P,≻, r) and (P,≻, r′) is

referred to as step t of τ(≻) and τ(≻′), respectively. In addition, let ti and t′i denote the step of

τ(≻) and τ(≻′) at which student i is assigned to a school (or the no-school option ∅), respectively.

For each t ∈ {1, . . . , ti}, let A(≻, t) denote the set of agents (students and schools)10 that are

present at step t of τ(≻). Similarly, for each t′ ∈ {1, . . . , t′i}, let A(≻′, t′) denote the set of agents

(students and schools) that are present at step t′ of τ(≻′). Finally, for each t ∈ {1, . . . , ti}, let
P (i,≻, t) denote the set of predecessors of student i at step t of τ(≻), i.e., the agents (students and

schools) from which there is a path (that does not involve ∅) to student i.11. For convenience, we

always exclude student i and (obviously also) the no-school option ∅ from the set of predecessors,

i.e., i, ∅ ̸∈ P (i,≻, t). In particular, it is possible that P (i,≻, t) = ∅, i.e., no school points to student
i at step t of τ(≻). Finally, by a cycle C we here refer to the set of agents (students and schools)

and the no-school option ∅ involved in a �pointing� (top trading) cycle.12

The following proposition shows that the top trading cycles mechanism is minimal-access mono-

tonic.

Proposition 1.

τi(≻)Ri τi(≻′). (3)

10The no-school option ∅ is not considered an agent.
11Here, each directed edge in the path refers to the �pointing� as described in the top trading cycles algorithm

(see Subsection 3.3).
12Note that whenever the no-school option ∅ is in a top trading cycle the cycle is trivial in the sense that it only

contains one student (and no school).
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Proof of Proposition 1. If ti = 1, then τi(≻) is student i's most preferred school (or, if all

schools are unacceptable, ∅), in which case (3) holds trivially. Let ti > 1. Assume that (3) does

not hold, i.e.,

τi(≻′) Pi τi(≻). (4)

We �rst prove the following lemma by induction.

Lemma 2. For each step t ∈ {1, . . . , ti − 1},
(A) t < t′i;

(B) if C is a cycle at step t of τ(≻′), then

(1) C is a cycle at step t of τ(≻) or

(2) C ⊆ P (i,≻, t) ∪ {∅};

(C) if C is a cycle at step t of τ(≻), then C is a cycle at step t of τ(≻′).

Proof of Lemma 2.

Induction basis. Let t = 1. We �rst prove (A). Suppose t ≥ t′i. Then, t
′
i = 1. So, i is in a cycle

at step 1 of τ(≻′). But then i is also in a cycle at step 1 of τ(≻), which contradicts ti > 1. Hence,

t < t′i. This proves (A).

Next, we prove (B). Let C be a cycle at step 1 of τ(≻′). From (A) it follows that i ̸∈ C.

Suppose C is not a cycle at step 1 of τ(≻). Then, C ⊆ I ∪ S and there is a non-empty set of

schools S∗ ⊆ S ∩C that point to student i at step 1 of τ(≻), and each of the other agents in C\S∗

points to the same agent at step 1 of τ(≻) and τ(≻′). Hence, C ⊆ P (i,≻, t). This proves (B).

Finally, we prove (C). Let C be a cycle at step 1 of τ(≻). Since 1 < ti, i ̸∈ C. Hence, C is a

cycle at step 1 of τ(≻′), which proves (C).

Induction hypothesis. Suppose (A), (B), and (C) hold for each step 1, . . . , t − 1 with t < ti

(t− 1 < ti − 1).

Induction step. We prove that (A), (B), and (C) also hold for step t. Note �rst that, at each

step of the top trading cycles algorithm, the only agents that are removed from the problem are

the agents that are part of a cycle. Hence, by the induction hypothesis ((B) and (C) for steps

1, . . . , t− 1) it follows that

(a) A(≻, t) ⊇ A(≻′, t) and

(b) A(≻, t)\A(≻′, t) ⊆ P (i,≻, t).

We �rst prove (A) for step t. Since t − 1 < t < ti, it follows from (A) for step t − 1 that

t− 1 < t′i. So, t ≤ t′i. Suppose t = t′i. Then, i is in a cycle, say C, at step t of τ(≻′).
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We claim that C ⊆ P (i,≻, t) ∪ {i, ∅}. This is obviously true if C is a trivial cycle (consisting

of i and ∅ only).13 Suppose C is a non-trivial cycle. Then, ∅ ̸∈ C. Since C ⊆ A(≻′, t), by

(a), C ⊆ A(≻, t). However, since t < ti, C is not a cycle at step t of τ(≻). Note that if agent

i is the only agent in C that points to di�erent objects in cycle C and at step t of τ(≻), then

C ⊆ P (i,≻, t)∪{i, ∅} follows immediately. Now let a∗ ̸= i be an agent in C that points to di�erent

objects in cycle C and at step t of τ(≻), say b′ in cycle C and b ̸= b′ at step t of τ(≻). Since

∅ ̸∈ C, b′ ̸= ∅. Since b′ ∈ C ⊆ A(≻, t), agent a∗ points to b either because of a minimal-access

right at step t of τ(≻) (b = i) or because b has a higher priority than / is preferred to b′ but b

is not present at step t of τ(≻′), i.e., it follows that b ∈ {i} ∪ [A(≻, t)\A(≻′, t)]. If b = i, then

a∗ ∈ P (i,≻, t). Suppose b ̸= i. Since by (b), A(≻, t)\A(≻′, t) ⊆ P (i,≻, t), we have b ∈ P (i,≻, t).

Hence, by de�nition of P (i,≻, t), a∗ ∈ P (i,≻, t) as well. This shows that C ⊆ P (i,≻, t)∪ {i, ∅}.14

Now note that, since t < ti, for each s ∈ [S ∩ P (i,≻, t)] ∪ {∅}, τi(≻) Ri s. Since τi(≻′) ∈
[S ∩ C] ∪ {∅} ⊆ [S ∩ P (i,≻, t)] ∪ {∅}, we have τi(≻) Ri τi(≻′), which contradicts assumption (4)

we made at the beginning of the proof of Proposition 1. Hence, t < t′i and (A) for step t holds.

Next, we prove (B) for step t. Let C be a cycle at step t of τ(≻′). From (A) for step t it

follows that i ̸∈ C. Suppose C is not a cycle at step t of τ(≻). Then, it su�ces to show that

C ⊆ P (i,≻, t) ∪ {∅}.
Suppose C is a trivial cycle. Then, C consists of some student j∗ ̸= i and ∅ only. Then, by

(a), j∗ ∈ A(≻′, t) ⊆ A(≻, t). However, C is not a cycle at step t of τ(≻). Hence, j∗ points to

di�erent objects in cycle C and at step t of τ(≻). Then, j∗ points to some school s∗ ∈ S at

step t of τ(≻). In particular, s∗ ∈ A(≻, t)\A(≻′, t). Since by (b), A(≻, t)\A(≻′, t) ⊆ P (i,≻, t),

we have s∗ ∈ P (i,≻, t). Hence, by de�nition of P (i,≻, t), j∗ ∈ P (i,≻, t) as well. This shows that

C ⊆ P (i,≻, t) ∪ {∅}.
Now suppose C is a non-trivial cycle. Then, ∅ ̸∈ C. Since C ⊆ A(≻′, t), by (a), C ⊆ A(≻, t).

However, by assumption, C is not a cycle at step t of τ(≻). Let a∗ be an agent in C that points

to di�erent objects in cycle C and at step t of τ(≻), say b′ in cycle C and b ̸= b′ at step t of τ(≻).

Since ∅ ̸∈ C, b′ ̸= ∅. Since b′ ∈ C ⊆ A(≻, t), agent a∗ points to b either because of a minimal-access

right at step t of τ(≻) (b = i) or because b has a higher priority than / is preferred to b′ but b

is not present at step t of τ(≻′), i.e., it follows that b ∈ {i} ∪ [A(≻, t)\A(≻′, t)]. If b = i, then

a∗ ∈ P (i,≻, t). Suppose b ̸= i. Since by (b), A(≻, t)\A(≻′, t) ⊆ P (i,≻, t), we have b ∈ P (i,≻, t).

13Here a cycle that contains multiple instances of ∅, i.e., i1 → ∅ → i2 → ∅ · · · → ip → ∅ → i1 is interpreted as p
trivial cycles.

14It was su�cient to consider agents a∗ ̸= i in C that point to di�erent objects in cycle C and at step t of τ(≻).
To see this, let agent a ̸= i be an agent that points to the same agent in C and at step t of τ(≻). Then, there is a
path at step t of τ(≻) from a to i or to an agent a∗ in C that points to di�erent objects in C and at step t of τ(≻).
Since we have shown that a∗ ∈ P (i,≻, t), it immediately follows that a ∈ P (i,≻, t) as well.
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Hence, by de�nition of P (i,≻, t), a∗ ∈ P (i,≻, t) as well. This shows that C ⊆ P (i,≻, t).15 This

completes the proof of (B) for step t.

Finally, we prove (C). Let C be a cycle at step t of τ(≻). Since t < ti, i ̸∈ C. So, C ⊆
A(≻, t) ∪ {∅} and C ∩ P (i,≻, t) = ∅. Since by (b), A(≻, t)\A(≻′, t) ⊆ P (i,≻, t), we have C ⊆
A(≻′, t) ∪ {∅}. Since by (a), A(≻′, t) ⊆ A(≻, t) and i ̸∈ C, C is also a cycle at step t of τ(≻′).

This proves (C) and completes the proof of Lemma 2.

With the result of Lemma 2 we can now complete the proof of Proposition 1.

From Lemma 2 (A) for t = ti−1 it follows that ti ≤ t′i. Lemma 2 (B) and (C) for t = 1, . . . , ti−1

implies that A(≻, ti) ⊇ A(≻′, ti). From the top trading cycles algorithm it follows that A(≻′, ti) ⊇
A(≻′, t′i). Hence, A(≻, ti) ⊇ A(≻′, t′i). When student i is removed at step ti / t′i of τ(≻) / τ(≻′),

she is assigned to the school (or no-school option) that she most prefers in A(≻, ti) / A(≻′, t′i).

Thus, A(≻, ti) ⊇ A(≻′, t′i) implies τi(≻)Ri τi(≻′), i.e., equation (3) holds.

We now consider the general setting where schools can have multiple seats, i.e., for each s ∈
S, qs ≥ 1. The top trading cycles mechanism is also minimal-access monotonic in the general

setting. This can be easily seen by applying minimal-access monotonicity from the unit setting

as follows. First, make qs copies of each school s ∈ S and label them 1, 2, . . . , qs. Second, let

each copy of a school inherit the priority ordering of the school. Third, students' new preferences

are obtained from their original preferences by replacing each school s by its qs copies (in the

strict order of increasing labels). Fourth, note that the top trading cycles matching for the original

problem �coincides� with the top trading cycles matching for the new problem (by lumping together

the students who are matched to copies of the same school). Fifth, by applying minimal-access

monotonicity to problems in the unit setting we obtain minimal-access monotonicity in the general

setting.

15It was su�cient to consider agents a∗ in C that point to di�erent objects in cycle C and at step t of τ(≻). To
see this, let agent a be an agent that points to the same agent in C and at step t of τ(≻). Then, there is a path at
step t of τ(≻) from a to an agent a∗ in C that points to di�erent objects in C and at step t of τ(≻). Since we have
shown that a∗ ∈ P (i,≻, t), it immediately follows that a ∈ P (i,≻, t) as well.
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