
Investigating Graph Embedding Methods for Cross-Platform Binary Code
Similarity Detection

Victor Cochard
Cyber-Defence Campus

armasuisse S+T
Lausanne, Switzerland

Damian Pfammatter
Cyber-Defence Campus

armasuisse S+T
Zurich, Switzerland

Chi Thang Duong
DISL
EPFL

Lausanne, Switzerland

Mathias Humbert
DESI

University of Lausanne
Lausanne, Switzerland

Abstract—IoT devices are increasingly present, both in the
industry and in consumer markets, but their security re-
mains weak, which leads to an unprecedented number of
attacks against them. In order to reduce the attack surface,
one approach is to analyze the binary code of these devices to
early detect whether they contain potential security vulnera-
bilities. More specifically, knowing some vulnerable function,
we can determine whether the firmware of an IoT device
contains some security flaw by searching for this function.
However, searching for similar vulnerable functions is in
general challenging due to the fact that the source code is
often not openly available and that it can be compiled for
different architectures, using different compilers and compi-
lation settings. In order to handle these varying settings, we
can compare the similarity between the graph embeddings
derived from the binary functions. In this paper, inspired
by the recent advances in deep learning, we propose a new
method – GESS (graph embeddings for similarity search) –
to derive graph embeddings, and we compare it with various
state-of-the-art methods. Our empirical evaluation shows
that GESS reaches an AUC of 0.979, thereby outperforming
the best known approach. Furthermore, for a fixed low false
positive rate, GESS provides a true positive rate (or recall)
about 36% higher than the best previous approach. Finally,
for a large search space, GESS provides a recall between
50% and 60% higher than the best previous approach.

1. Introduction

Devices connected to the Internet, known as Internet
of Things (IoT), are increasingly present in our daily lives.
Cameras, refrigerators, smart speakers, connected sensors,
lightning fixtures, and wearable devices are some exam-
ples thereof. IoT devices might have access to confidential
information (e.g., health devices or security cameras) or
play a crucial role for safety (e.g., door controllers).
However, security is often not the main priority when
designing such devices, and the use of untrusted third-
party code, frequently even in outdated versions, is a
common practice (known as code reuse). Moreover, since
these devices often rely upon cheap components with lim-
ited memory and computing resources, classical protection
techniques (such as antivirus software) are typically too
heavy-weight, and in consequence not being used [1]. As
a consequence, hackers increasingly target IoT devices,
thereby creating serious damages and putting human lives
at risk [2], [3]. In order to reduce the attack surface and

prevent potential cyberattacks, it becomes crucial to early
identify vulnerabilities in IoT devices’ firmwares.

Unfortunately, identifying vulnerabilities is a diffi-
cult task, especially in the situation where firmwares are
closed-source. Even finding known security vulnerabilities
across devices poses a major challenge. This is due to
the fact that the same piece of (vulnerable) source code
can be compiled for various architectures, using different
compilers and compilation settings (reflecting varying ob-
jectives such as runtime efficiency or binary code size),
thus leading to strongly differing code representations in
its binary form. Hence, having a mechanism to compare
binary functions, and assigning a measure of similarity
in terms of source code equivalence, is of high added
value. With such a similarity detection technique, known
vulnerabilities (e.g., in a popular third-party library) can
be searched across various closed-source firmware images.

Previous studies have shown that search techniques
based upon control flow graphs (CFGs) can be effective
and accurate to find security vulnerabilities across dif-
ferent architectures, and generally outperform approaches
that directly work on binary instructions [4]. However,
searches based upon raw CFGs hardly scale, due to
the computational cost of graph matching. One approach
to improve scalability is to map attributed control flow
graphs (ACFGs) into high-dimensional numeric vectors
referred to as graph embeddings [5], [6]. Graph embed-
dings have not only shown to provide better search-time
capabilities than graph matching, but have also led to
promising results in terms of robustness to code variations
across different architectures and compiler settings.

In order to better understand how graph embed-
dings can help detect security vulnerabilities, consider the
workflow depicted in Figure 1. Initially, two databases
(firmware and vulnerability) are built in an offline prepa-
ration phase. This is done by taking a set of available
firmware images, respectively vulnerabilities, extracting
the corresponding ACFGs and storing the resulting graph
embeddings in the corresponding databases. Once these
databases are built, two approaches become possible:

• Vulnerability search: In case a new vulnerabil-
ity becomes known, the corresponding embedding
can be searched in the firmware database, return-
ing candidate devices that might be affected by the
requested vulnerability.

• Firmware search: In case a new device catches
interest (e.g., during procurement), its embedding

Raw Feature
Extraction

Firmware Images Vulnerabilities

Graph
Embedding

ACFG

Firmware

Database

Vulnerability

Database

Vulnerability
Search

Suspicious
Firmware

Image

Vulnerability
Embedding

Firmware
Search

Firmware
Embedding

Suspicious
Vulnerabilities

Offline Preparation

Online Application

Figure 1: Graph embeddings similarity search to identify
security vulnerabilities in firmware images. Figure adapted
from [6].

can be computed and compared against the vul-
nerability database, to get a list of potential vul-
nerabilities the device might contain.

Existing approaches require to trade-off recall and
precision when trying to detect similar binary functions in
real-world settings where the search space is large and the
number of dissimilar pairs of functions largely outweigh
the number of similar pairs. Therefore, one key challenge
that remains when searching for vulnerable functions in
large firmware databases is to achieve both a high recall
and a high precision in order to quickly identify vulnerable
functions and limit the need of expert knowledge.
Contributions. In this work, we propose GESS, a new
approach for graph embedding based on neural networks.
It works in two steps. The first step transforms an arbitrary
ACFG into a specific fixed-size numeric vector. It does
so by selecting a fixed number of representative nodes
from the ACFG and, for each of these nodes, computing
their fixed-size neighborhood. The numeric vector then
consists of the attributes of the nodes’ neighbors. The
second step of GESS abstracts away compilation settings
to transform this numeric vector into a representation that
is robust to cross-platform differences. To this end, it uses
a specifically-crafted convolutional neural network trained
with hundreds of thousands of ACFGs from different
libraries. We compare GESS to the best existing approach,
Gemini [6], and to a new backward message passing
method. We also adapt popular graph neural networks
(GNNs), specializing them to the considered problem.
These include GraphSAGE [7], graph convolutional net-
works [8], and graph isomorphism networks [9], nowadays
widely used for graph-related problems [10]–[13].

We evaluate the performance of GESS and alternative
approaches by using two open-source software compo-

nents widely used in IoT devices: OpenSSL and binutils.
GESS provides an area under the ROC curve (AUC)
of 0.979, whereas the best alternative approach, Gemini
reaches an AUC of 0.949 on the same dataset. Further-
more, at a false positive rate of 0.01, GESS provides a
true positive rate (TPR) of 0.76 against a true positive
rate of 0.56 for Gemini, representing a relative TPR
increase of 35.7%. Moreover, GESS generalizes better
to completely unalike functions, such as functions from
distinct libraries. For example, when training the models
on binary functions coming from the OpenSSL dataset
and testing on binutils functions, GESS provides an AUC
of 0.931 whereas Gemini provides an AUC of 0.898.

The improvement provided by GESS is especially
striking in the most realistic setting where there is an
imbalance between the number of similar and dissimilar
functions and a large search space. When retrieving the 20
nearest neighbors of a binary function, Gemini provides
a recall of 37% whereas GESS reaches a recall of 60%,
representing an increase of more than 60%. Besides, in
order to reach a recall of 50%, GESS requires only the
10 nearest binary functions while Gemini requires 116
nearest neighbors. This in turn dramatically affects the
precision of Gemini, which drops to less than 3% (against
32% for GESS). This implies that, in order to identify
actual vulnerable functions, a security analyst would have
to analyze ten times more binary functions with Gemini
than with GESS due to the false positive cases.

Finally, GESS shows comparable or better results than
Gemini in terms of time performance. For the training
phase, it can reach the same AUC as Gemini in 40 minutes
instead of 5 hours for Gemini. Besides, although the full
training process takes about 14 hours for GESS, this
method already reaches an AUC close to its maximum
value in 5 hours (AUC = 0.977). Moreover, GESS is more
than four times faster than Gemini for the testing phase.

We summarize our contributions as follows:

• We create a dataset of attributed control flow
graphs corresponding to functions widely used in
IoT devices, compiled for different architectures
with various compilers settings. This dataset can
be used to train and compare different binary code
similarity detection techniques.

• We propose a new approach based on convolu-
tional neural networks to generate graph embed-
dings for binary functions. Our evaluation shows
that GESS can achieve better AUC and recall than
the state-of-the-art approach.

• Our experiments show that GESS can be trained
to match Gemini’s performance on our dataset 8
times faster.

• We further evaluate several other graph embed-
dings methods such as graph neural networks and
compare their performance with GESS.

• For reproducibility purposes, both our dataset and
implementation are made publicly available.1

We introduce the concepts that serve as a basis for
this work in Section 2. From there, we describe our two
new methods in Section 3. We present our experimental
results and comparison between the different methods in

1. Available at: https://github.com/GESS-code/GESS

https://github.com/GESS-code/GESS

i n t i t e r a t i v e f i b o n a c c i (i n t i n d e x) {
i n t i , c u r r e n t =1 , p r ed =1;
i f (index <=0) {

re turn 0 ;
}
i f (index <=2) {

re turn 1 ;
}
f o r (i =2 ; i<i n d e x ; i +=1) {

c u r r e n t = c u r r e n t + p red ;
p red = c u r r e n t − p red ;

}
re turn c u r r e n t ;

}

Figure 2: C function computing a specific value of the
Fibonacci sequence.

Section 4. We discuss the existing approaches for binary
code similarity detection and other related work in Sec-
tion 5, before concluding in Section 6.

2. Background

In this section, we provide some background on fun-
damental concepts the remainder of this paper relies on.

2.1. Control Flow Graphs

Control flow graphs (CFGs) are a well-known concept
used as the foundation of many (static and dynamic)
binary analysis techniques. CFGs model the different
flows the execution of a program or function can take.
CFGs are represented by directed graphs, where vertices
correspond to basic code blocks, and edges to possible
control transfers between them. A basic code block is a
straight-line and branch-free sequence of code. Control
therefore always enters at the first instruction of a basic
block and exits at its last one.

Branches in binary code can either be conditional
or always taken (i.e., unconditional). In the case of an
unconditional branch, the corresponding basic block has
a single successor, whereas for a conditional one, two
successors are possible. As a consequences, vertices in
CFGs have an out-degree of at most two. CFGs, within the
scope of this work, are statically extracted, i.e., without
actually running the corresponding binary files. Further,
the CFGs are obtained on a per-function basis (function-
local CFGs). Therefore, they model possible execution
flows within a single function.

2.2. Attributed Control Flow Graphs

The attributed control flow graph (ACFG) of a func-
tion is its control flow graph with some attributes added to
the vertices. These attributes describe relevant statistics of
the basic code block they belong to (e.g., the total number
of instructions contained within the corresponding basic
block).

As an example, consider the source code depicted
in Figure 2, which corresponds to a function computing
a value of the well-known Fibonacci sequence. When
extracted from a binary representation, the same source-
level function might lead to different ACFGs, depending

on how the binary was built. Even for simple functions,
both the graph structure and node attributes may vary. This
is visualized in Figure 3, where ACFGs for four different
combinations of architecture, compiler and compiler op-
timization level are shown (all belonging to the Fibonacci
function in Figure 2). This poses a major challenge for
binary code similarity detection, where the goal is to
determine that all four ACFGs originate from the same
source-level function.

The three node attributes listed in Figure 3, however,
only represent a subset of the actual attributes being used
within this work. In our implementation, we use the re-
verse engineering framework Radare2, version 5.1.0 [14],
for ACFG extraction (although any other tool with the
capability to extract CFGs might be considered), and
employ the following nine attributes for each basic block:

1) Number of arithmetic instructions
2) Number of logic instructions
3) Number of shift instructions
4) Number of data manipulation instructions
5) Number of call instructions
6) Number of jump instructions
7) Number of other selected instructions
8) Number of references to data or code
9) Number of total instructions

The attribute vector of a basic block containing two
shift and one jump instruction (thus three instructions in
total) would therefore be:(

0 0 2 0 0 1 0 0 3
)

The attributes used in our work are both influenced by
what was proposed in previous work (such as in [15], [5]
and [6]) and by the capabilities provided by Radare2 [14].

2.3. Graph Neural Networks

One method for obtaining graph embeddings is to
rely on graph neural networks (GNNs). A GNN essen-
tially computes node embeddings by passing messages
through the network edges. Then, graph embeddings can
be computed by pooling the node embeddings together
(see Section 2.4 for details).
General Framework. At the beginning, a node’s embed-
ding is merely its attributes. After this initialization phase,
the message passing can take place. First, nodes use their
embeddings to compute a message that they will pass to
their immediate neighbors. Then, nodes take the messages
from their neighbors and aggregate them. Finally, a node
updates its embedding based on this aggregation and
its current embedding. This message passing phase can
be repeated for several iterations. After n iterations, we
consider that a node’s embedding contains information
about its neighbors that are at most n hops away. Figure 5
shows how the embedding of node A from Figure 4 is
updated from its neighbors’ embeddings in one iteration
of the algorithm.

Formally, a node u constructs a message in an i-th
iteration using a parameterized function fm:

m(i)
u→v = fm(z(i)u , cv)

where z
(i)
u is the embedding of node u and cv is the

information from node v, which could be empty.

[3,1,9]

[0,0,2]

[1,0,2]

[0,0,2]

[0,0,2] [0,0,2]

[0,0,3]

[3,0,6] [0,0,1]

(a) x86, gcc, -O0

[3,0,11]

[0,0,3]

[0,0,4]

[1,0,5]

[1,0,3] [1,0,4]

[0,0,5]

[3,0,11 [0,0,1]

(b) MIPS, gcc, -O0

[1,0,3]

[1,0,2]

[0,0,2]

[0,0,3] [0,0,2]

[3,0,5]

[0,0,1][0,0,2]

(c) x86, gcc, -Os

[1,0,3]

[1,0,2]

[0,0,2]

[0,0,3] [0,0,2]

[3,0,5]

[0,0,1][0,0,2]

(d) ARM, gcc, -Os

Figure 3: Four ACFGs representing the function depicted in Figure 2. Each node contains three attributes representing
the number of arithmetic, call and total instructions in the corresponding basic code block. Each subfigure
represents a binary function (or ACFG) compiled with a different combination of architecture, compiler and compiler
optimization level.

C

D

F

EB

A

C

D

F

E

B

A

Figure 4: A sample undirected graph, serving as basis for
Figure 5 and Figure 6.

Once a node v receives messages from all of its neigh-
bors, it aggregates them using an aggregation function fa:

z
(i)
N(v) = fa({m(i)

u→v,∀u ∈ N(v)})

A node v updates its embedding with the update function
fu as follows:

z(i+1)
v = fu(z

(i)
N(v), z

(i)
v)

There exist various GNNs that essentially differ in the sent
messages and aggregation functions. In this paper, we will
rely on and compare three popular GNNs.
Graph Convolutional Network. In a GCN [8], a node’s
message sent to its neighbors is the embedding of the
sending node divided by the square root of the degrees
(i.e., the number of neighbors) of sending and receiving
nodes multiplied together. Formally, the message function
fm from node a to node b is fm(a, b) = za√

da·db
, where

dn is the degree of node n. The aggregation function fa
is a sum.
GraphSAGE. In GraphSAGE [7], the message function
fm returns a node’s embedding, and the aggregation

A

B

E

Message
Computation

Aggregation
Function

Message
Computation

Neural
Network

Node embedding passing

Message passing

Figure 5: Message passing to update the embedding of
node A from Figure 4. The neural network is a multi-
layer perceptron (MLP) and the message computation and
aggregation function depend on the type of GNN used.

function fa is either a sum or a mean of the neighbor
embeddings, while the update function fu is a concate-
nation of the neighbors’ embeddings with the node’s
own embedding. For example, if sum is chosen as the
concatenation operation, node n updates its embedding by
feeding zn||Σu∈N(n)zu to the neural network (as shown
in Figure 5), where || is the concatenation operator.
Graph Isomorphism Network. A GIN [9] is a GNN
that is used to compute graph-global embeddings that
discriminate non-isomorphic graphs. Nodes directly send
their embedding as message, and the aggregation function
is a sum. After each iteration, the embeddings of each
node in the graph are summed, and this sum is stored.
This sum is used as the graph embedding.

2.4. From Node to Graph Embeddings

Global Pooling. Apart from GINs which are designed to
embed graphs, the other GNN techniques only compute
node embeddings. We can however use these node embed-
dings and create a graph embedding from them by pooling
all of them together using a pooling function. Two tradi-
tional pooling functions are global sum pooling and global
mean pooling where the graph embedding is computed by

summing, respectively averaging, the node embeddings.
For example, given the set of node embeddings {zv} of
a graph G, the graph embedding constructed using global
mean pooling is:

zG =
1

|G|
∑
v∈G

zv

where |G| is the number of nodes.
Differential Pooling. Global pooling in GNNs leads to a
loss of information about node embeddings, as it is impos-
sible to reconstruct the individual node embeddings from
the result of a global pooling function that is not injective.
Intuitively, the information loss gets more important as
more nodes are pooled together.

In order to get graph embeddings for GCN and Graph-
SAGE without pooling all nodes together, we can use
differential pooling [16]. Instead of pooling all the nodes
in a graph, differential pooling divides it into subgraphs,
using another GNN that computes the partitions in paral-
lel, and performs the pooling by subgraph. The pooling
result is considered as the embedding of the subgraph.
Since the subgraphs are smaller, less information is lost
than if global pooling had to be performed. Then, a new
smaller graph is output, each of its nodes representing a
subgraph of the original graph.

In differential pooling, the whole process (message
passing + subgraph pooling) is repeated until only one
node is left. The graph embedding is then the embedding
of the remaining node. Differential pooling uses weighted
edges to consider the fact that some subgraphs are more
interconnected than others (depending on the number of
interconnected nodes). The assignments are computed us-
ing soft clustering. Hence, a node’s clustering assignment
is the probability for the node to be in each cluster. A
node can therefore partly be in multiple clusters at the
same time (with the sum of the clustering probabilities
being equal to 1).

3. Methodology

In this section, we describe the technical details of the
two new approaches we propose.

3.1. Graph Embeddings for Similarity Search
(GESS)

We first explain the details of GESS, our first novel
graph embedding method. GESS starts by labeling the
nodes of the ACFGs based on their attributes (as defined
in Section 2.2). We define the node label as the linear
combination of its attributes. Formally, a node with 9
attributes ai,1≤i≤9 takes as label:

9∑
i=1

aipi

where pi,1≤i≤9 are the weights of the attributes.
Then, by building upon Patchy-San [17], we transform

the labeled graphs into receptive fields in order to later
feed them to a convolutional neural network (CNN).

A CNN is a neural network that uses convolutional
layers in addition to dense layers [18]. A convolutional

layer divides its inputs into small – possibly overlapping –
chunks. A chunk can be a slice from a larger image or a 1-
second part of an audio sample for example. These chunks
are then fed to convolutional filters, which extract higher-
level features. The same filters are used for each chunk. A
CNN often stacks convolutional layers. The idea is to first
compute local features on small slices and progressively
use them to get relevant features on larger slices. A CNN
often ends with one or more dense layers which output
global features on the whole data.

Generally, arbitrary graphs cannot be easily divided
into relevant chunks because of their lack of structure
(unlike an audio sample or a 2D image for example). In
order to embed a graph, we select a fixed number of nodes
and return a fixed-size neighborhood of those nodes. These
neighborhoods are called the graph’s receptive fields and
are then fed to the convolutional neural network (as graph
“chunks”), that returns the embeddings. The different
steps of the construction of a neighborhood are shown
in Figure 6.

We use the node labels to sort them and select those
that will generate the receptive fields: The first receptive
field will be the neighborhood of the node with the highest
label, and so on. The neighbors are returned sorted: First
comes the source node, i.e., the node used to create the
neighborhood, and then the neighbors are sorted by dis-
tance to source. If some neighbors have the same distance
to the source, those with the highest label will come first.
For example, in Figure 6, node A is selected first, as it is
the source node. Then come nodes B and E – sorted by
label (in this example, alphabetical order) – since they are
one-hop away from A. Finally come C and D since they
are two-hop away from A. Only C is eventually included
in the receptive field since the receptive field is of size 4
and can thus include only 4 nodes.

Once the receptive fields have been generated, we feed
them into a CNN with the same structure as the one
depicted in Figure 7. The first convolutional layer takes
the receptive fields as chunks and extracts, for each of
them, local features. Then, the second layer takes each of
these features as chunks and, for each of them, extracts
graph-global features. For example, in Figure 7, it uses
the second local feature in order to extract three different
graph-global features represented in red, green and blue. A
rectified linear unit (ReLU) activation function is applied
to these features. It replaces negative values by 0 and
leaves positive values unchanged. This allows the network
to be non-linear and makes it more expressive. Finally,
a dense layer with ReLU activation returns the graph
embedding.

In summary, GESS computes graph embeddings by:
1) Computing labels for each node from their attributes

using a linear filter;
2) Selecting highest-labeled nodes;
3) Creating receptive fields around these nodes;
4) Ordering the nodes by distance and then by label in

each receptive field;
5) Feeding the receptive fields to a CNN.

3.2. Backward Message Passing (BMP)

We now introduce a new technique that takes advan-
tage of the following two properties of ACFGs:

C

D

F

EB

A

C

D

F

EB

A

C

D

F

EB

A

A

B

E

C

⋯

Select
Neighborhood

Normalize
Subgraph

Create
Receptive Field

Compute Node
Labels

Figure 6: Overview of GESS (first part): Labeling the nodes and creating the receptive field(s) that will be fed into the
convolutional neural network (see Figure 7).

Convolutional
Layer 1

Convolutional
Layer 2 + ReLU

Dense Layer
+ ReLU

Graph Receptive
Fields

Local
Features

Global
Features

Final
Embedding

Figure 7: Overview of GESS (second part): Convolutional
neural network generating GESS embeddings. This toy
example takes 4 receptive fields of size 16 and has con-
volutional and dense layers with output dimensions 10, 3,
and 20, respectively.

• Nodes have at most two successors
(un-/conditional branches);

• Graphs have a unique root node
(function entry point).

As with graph neural networks, nodes are given an
embedding that is initialized with their node attributes.
Then, the message passing phase takes place: nodes send
their embedding to their predecessor without any message
computation or aggregation (contrary to GNNs). Each
node receives the embeddings of its successors, thus re-
ceiving at most two embeddings. All nodes take their
current embedding and the two received embeddings and
pass them through a neural network in parallel. For the
nodes that receive strictly less than two messages, empty
spots are replaced by zeros. Information therefore flows
from function exit points to the function entry point,
following the paths the function would take during execu-
tion in reverse order. Since information flows towards the
function entry point, after a sufficient number of iterations,
the entry point’s embedding should contain information
about the whole graph. Therefore, the embedding of the
entry point is returned as the graph embedding.

This approach heavily relies on the fact that every
relevant basic block is reachable from the function entry
point. However, functions might contain indirect branch
instructions, i.e., branches to a target represented by a
register or memory value. The effective target of such
a branch might depend on runtime values (e.g., user-
controlled) or be the result of a complicated computation,
which in turn cannot be tracked by a static disassembler.
In consequence, statically extracted ACFGs can be in-
complete. This is problematic for this approach because,
if no edge connects two blocks, no message is passed
between them. Taking the extreme case of disconnected
components for example, no information can flow from
the blocks that are not connected to the function entry
point, thus having no influence on the function embed-
ding computed at the entry point. This prevents the final
embedding from properly representing the whole function.

In Figure 8, we notice that, for ACFG (a), there is a
path following red arrows from every node to the function
entry point (red node, here labelled A). Since arrows rep-
resent message passing, we conclude that, with a sufficient
number of iterations, information from every node can
influence the embedding of the entry point. However, for
ACFG (b), nodes C to F have no red-arrow path to the
entry point. Therefore, the embedding of the entry point

C

D

A

E

B

C

E

A

F

B

D

(a) (b)

Message Passing

Figure 8: Two different ACFGs: (a) connected, and (b)
disconnected. The red nodes are function entry points
while the yellow nodes are nodes with no predecessor. The
thin red arrows represent the backward message passing
(BMP) described in Section 3.2

cannot appropriately represent the whole function.
In order to deal with this issue, we pool all basic

blocks with no predecessor (except the entry point). Their
embeddings are summed, passed through a neural net-
work, and finally added to the graph embedding. While
this does not resolve ACFG incompleteness, it still allows
the function embedding to contain information about the
code that is only reachable via indirect jumps. Therefore,
in Figure 8 (b), the approach would sum the embeddings
of the yellow nodes (C and D) at the end of the iteration
process and pass them through a neural network before
adding this result to the embedding of the entry point.

One problem of pooling the yellow nodes is that there
is no way to determine whether C and D are possible
targets of function-local indirect jumps, or just some code
that is unreachable from within the function. Since these
nodes are taken into account when computing the em-
bedding, this embedding can now depend on unreachable
code (that might even belong to a completely different
function). This is undesirable, since unreachable code does
not change the way the function works, and therefore
a perfect embedding function should not depend on it.
This approach has nevertheless been chosen, based on
the assumption that such unreachable code blocks are un-
common. It is also worth noting that all other approaches
evaluated in this paper, including previous work, suffer
from the same problem in the presence of unreachable
code.

4. Experimental Results

All of the following experiments have been carried out
on an 8-core Intel Xeon E5-2620 CPU (2.1GHz) with
128 GB of RAM. The tensor operations were dispatched

to an Nvidia Titan V GPU with 12 GB of memory using
CUDA 10.1.

4.1. Dataset

Our experimental dataset consists of two open-source
software components, commonly used in IoT devices:
OpenSSL (v3.0.0 alpha13) and binutils (v2.36.1). All func-
tions were compiled for three different architectures (i386,
armhf, mips; all 32-bits) using two different compilers
(gcc v8.3.0.6 [19] and clang v7.0.1.8 [20]).2 For each
combination of compiler and architecture, we used five
different optimization levels (-O0, -O1, -O2, -O3 and
-Os). In order to be able to recover function names after
compilation and thus maintain a ground truth, debugging
information (-g flag) was included in all binaries.

ACFGs have then been extracted from the resulting
binaries using Radare2 [14]. Only graphs with strictly
more than five nodes have been kept in our dataset (in
accordance to previous work [15]). Finally, we divided our
dataset into training (70%), validation (15%), and testing
(15%) sets in such a way that:

• All ACFGs originating from the same source func-
tion are in the same set. This way, validation
and testing are performed on functions unknown
during training.

• The training/validation/testing ratio is the same for
all used software components (i.e., OpenSSL and
binutils).

This provides us with a final dataset of 607, 940 at-
tributed control flows graphs: 468, 538 from binutils and
139, 402 from OpenSSL. The graphs from binutils have
an average, median, and maximum size (i.e., number of
nodes) of 30, 15, and 874, respectively. The graphs from
OpenSSL have an average, median, and maximum size of
19, 12, and 2445, respectively. Note that, for all graphs,
the minimum size is 6 by design.

4.2. Experimental Protocol

Training Protocol. We generate a graph embedding for
each ACFG. The graph embeddings serve as ACFG “sig-
natures” where we can compare two ACFGs by comparing
their signatures. We want to train our models such that
similar ACFGs should have similar signatures, i.e., similar
graph embeddings. Here we assume that two ACFGs orig-
inating from the same source-level function are similar,
and thus need to be classified as such by the approaches.
To this end, as shown in Figure 9, we leverage a Siamese
architecture [22] to train our model, similarly to what was
proposed in Gemini [6].

Let f be our graph embedding model. f takes an
ACFG G as input and returns a graph embedding zG:
zG = f(G). Let 〈(G,G′), y〉 be a training sample where
(G,G′) is a pair of ACFGs, and y = 1 if G and G′

are similar while y = −1 if they are dissimilar. Given a
set of n training samples 〈(Gi, G

′
i), y〉, we want to train

2. A known bug prevented compilation for mips using clang. There-
fore, we only used gcc to compile for the mips architecture [21].

Graph Embedding
ModelACFG G Embedding zG

Graph Embedding
ModelACFG G′ Embedding zG′

Same
Parameters Cosine Similarity

Figure 9: Siamese network architecture. It takes two
ACFGs G and G′ as input, transform them into two graph
embeddings zG and zG′ , and then computes the cosine
similarity between zG and zG′ .

the graph embedding model f such that it minimizes the
following loss function:

n∑
i

(sim(f(Gi), f(G′i))− yi)2

where sim is a similarity function that measures the
similarity between two embeddings. In our paper, we rely
on cosine similarity.

Training data generation. To train our models, we
need to generate training samples, i.e., pairs of ACFGs.
Computing all pairs of ACFGs using a Cartesian product
and training on them would however be too computation-
ally expensive. Therefore, we resort to sample pairs as
follows.

For positive samples, for each ACFG a, we sample m
similar ACFGs (originating from the same source func-
tion) at random and pair them with a. These pairs of sim-
ilar ACFGs are given a training label of 1 corresponding
to the cosine similarity of two identical embeddings.

For negative samples, we also sample m different
ACFGs (originating from different source functions) at
random and pair them with a. These pairs are given a
label of −1 corresponding to the cosine similarity of
two opposite embeddings. This gives a balanced dataset
containing as many similar pairs as dissimilar pairs. Dur-
ing the training and validation phases, for each ACFG is
created one pair with a similar ACFG, as well as one pair
with a different ACFG. We compute different pairings for
each epoch. This allows us to train the model on a higher
number of pairs and to reduce the risks of overfitting. For
the testing phase, we generate 10 similar and 10 different
pairs for each ACFG. We select a higher number of pairs
in order to get more robust results across different testing
conditions with random pairings.

Training process. After each training epoch, we val-
idate the model on our validation set and, at the end of
the training phase, we test it on the testing set. Validation
and testing follow the same protocol:

1) Pairs of ACGFs are generated from the data.
2) Each pair is fed to the graph embedding model in

order to compute two embeddings, one for each
ACFG in the pair.

3) The cosine similarity between the embeddings of
each pair is computed.

4) The pair labels and their cosine similarity are used in
order to compute a receiver operating characteristic
(ROC) curve. The ROC curve shows the true positive
rate (TPR) on the y-axis against the false positive rate
(FPR) on the x-axis.

5) The area under the ROC curve (AUC) is computed.

K W Validation Loss

10 8 0.65629
8 8 0.65894
8 9 0.66034
6 10 0.66037
10 6 0.66125
5 9 0.66324
8 7 0.66519
2 9 0.66542
4 10 0.66598
9 10 0.66618

TABLE 1: Receptive field hyperparameters. Validation
loss with respect to the number and size of the receptive
fields (sorted by increasing validation loss).

Note that an AUC of 0.5 corresponds to random
guessing (i.e., false positive rate = true positive rate)
while an AUC of 1 corresponds to a perfect predic-
tion or classification.

Early stopping. We continue training our model until
the validation ROC AUC starts decreasing. Each model
has a patience parameter h, and, if the validation ROC
AUC does not increase for h epochs, training stops. h
is chosen empirically depending on the variability of the
validation ROC AUC (i.e., h needs to be high enough
for the model to not stop training if it can still improve
while h should not be too low for the training to end
prematurely). After each iteration, if the highest validation
ROC AUC is reached, the model is stored. For testing, we
load the best model according to the validation ROC AUC.
Hyperparameter Selection. All experiments on GESS
were performed using TensorFlow 2.3.0. To tune the
hyperparameters, we vary one of them while fixing the
others. For each hyperparameter, we select the best value
according to the validation AUC. For each configuration
of the hyperparameters, the model is trained for a fixed
number S of epochs. In order to speed-up the process, the
same pairs are used for all S epochs and recomputed only
between iterations. Moreover, the validation loss is only
computed after the S epochs. This loss is the value that
we want to minimize.

GESS has the following hyperparameters:

• The weights pi,1≤i≤9 of the labeling function;
• The number of receptive fields (K) and the size

(or width W) of these fields;
• The number of convolutional and dense layers of

the CNN, and the size of these layers.

Labeling function. To tune the weights of the labeling
function, we rely on simulated annealing [23], a meta-
heuristic used to find the (approximate) global optimum
of a given function. The weights pi are all initialized by
0, and at each iteration, a neighbor of the weight vector
is computed by adding a value uniformly distributed in
[−1, 1]\{0} to one of the weights. For the other hyperpa-
rameters, we fix K = 4, W = 5, the CNN is fixed to have
two convolutional layers of sizes 16 and 3, and a dense
layer of size 10. For our tuning process, we chose S = 7
and simulated annealing parameters λ = 0.95, T0 = 0.7
and Tend = 0.002.

Receptive fields. The number of receptive fields K and
their size W have been optimized using grid search. More

Size of 1st convolutional layer

Va
lid

at
io

n
AU

C

0,976

0,977

0,978

0,98

0,981

64 112 128 144 148 152 156 160

Figure 10: Validation ROC AUC with respect to the
output size of the first convolutional layer, for second
convolutional layer and dense layer of sizes 30 and 25,
respectively.

precisely, we tried receptive field numbers and sizes in
the range of 1 to 10. For each combination of K and
W , a dataset of pairs of ACFGs is computed and used
for all S training epochs as discussed above. The exper-
iments showed that, for both parameters, no significant
improvement resulted from selecting values over 8 for
both hyperparameters, as shown in Table 1. Therefore,
in order to obtain a small CNN and eventually get a more
efficient implementation, both hyperparameters have been
set to 8.

CNN layers. For the CNN, we tried with different
network depth and observed that a network depth of three
(two convolutional layers and one dense layer) gave the
best results. In order to select the size of the convolutional
and dense layers, we first tried with some random values
before focusing on the most promising ones. For example,
regarding the output size of the first convolutional layer,
we first tried with the values shown in Figure 10. We
observe that the best output size of the first convolutional
layer is 152. To be sure, we tried the values close to
the approximate best size (in our example, it would be
144, 148, 156, and 160). We repeat this process for
other hyperparameters of the CNN. Finally, we selected
convolutional layers of sizes 152 and 30, and a dense layer
of size 25 as the maximum validation AUC was reached
with these values.

Backward Message Passing. We also implemented this
approach with TensorFlow 2.3.0. The optimal hyperpa-
rameters for this method are three iterations of message
passing, and two dense layers: (i) one with input size
of 27 (3 node embeddings of size 9) and output size of
30, and (ii) one with input size of 30 and output size 9.
Furthermore, we set the output size of the dense layer to 9
in order to match the size of the node embeddings used in
the next iteration of BMP. Indeed, with the BMP method,
the node embedding is initialized with the node attributes,
and is thus of size 9.

GNNs. We implemented the three GNNs introduced in
Section 2.3 by relying on PyTorch 1.7.1 and PyTorch
Geometric 1.7.0 [24].

GCN. We implemented GCN with global mean pool-
ing (note that global sum pooling would give collinear
embeddings, and so would give the same cosine similarity,

Approach AUC

GraphSAGE (DP) 0.813
GCN 0.864
GraphSAGE (GMP) 0.917
GIN 0.920
BMP 0.930
Gemini 0.949

GESS 0.979

TABLE 2: Testing area under the ROC curve (AUC) of
the different graph embedding methods under study. GESS
outperforms all other methods, and GNN methods provide
the worst AUC. Note that GraphSAGE has been tested
with two pooling methods: global mean pooling (GMP)
and differential pooling (DP).

thus the same loss). We experimentally tested this GNN
with 1, 2, 3, 5, and 10 iterations, and found an optimum
at 3 iterations. We believe that the fact that performance
is poor with a higher number of iterations is due to
the phenomenon of over-smoothing: as the number of
iterations increases, node embeddings get too general and
do not represent any part of the graph anymore.

GraphSAGE. We implemented GraphSAGE with
global mean pooling and with differential pooling. How-
ever, the GNN that learns clustering assignments in differ-
ential pooling needs a fixed number of outputs. Therefore,
the number of clusters is fixed. The problem is that the
input ACFGs can have from 6 to more than 2, 000 nodes.
Therefore, it is hard to find a fixed number of clusters that
suits all graphs. The experiments were performed with
30 clusters at the first iteration, 15 at the second one,
8 at the third, and so on until 1. We further performed
our experiments with 1, 2, 3, 5, and 10 iterations of
GraphSAGE for each iteration of differential pooling. The
optimum was reached with 2 iterations of GraphSAGE.

GIN. The graph embedding returned by a GIN is the
concatenation for all iterations of the sum of the node
embeddings. Since the results of the first iteration are also
contained in the embedding, we can run it for a larger
number of iterations without over-smoothing. Thus, we
tried with 8, 10, and 12 iterations. After experimenting
GIN with different neural networks of different depths
and sizes, an optimum was found experimentally using a
neural network with 4 hidden layers of 70 nodes. There
are therefore 5 layers in total, including the output layer
(of size 9 to pass the output to the embeddings of the
next iteration like in BMP). The optimal ROC AUC
was reached using GIN with this neural network for 12
iterations.
Baseline. We compared our newly proposed methods with
the best existing approach, Gemini [6], as a baseline.
We re-implemented Gemini by optimizing its performance
using the most recent version of PyTorch.

4.3. General Results

Table 2 summarizes the results of all the graph em-
bedding methods under study. We first observe that GESS,
with an AUC of 0.979, outperforms Gemini (AUC =
0.949). Our other approach, backward message passing
(BMP), reaches an AUC of 0.930, lower than Gemini

roc_curve_truncated

Original ACFGs AUC = 0,949Reversed ACFGs AUC = 0,956

5,7191878753217E-06 0,018190830235439900

7,62558383376227E-06 0,01952912019826520

7,62558383376227E-06 0,019542464969974300

7,62558383376227E-06 0,01956534172147560

7,62558383376227E-06 0,019586312077018400

7,62558383376227E-06 0,019622533600228800

7,62558383376227E-06 0,019647316747688500

7,62558383376227E-06 0,01967209989514820

7,62558383376227E-06 0,01969688304260800

7,62558383376227E-06 0,019719759794109200

7,62558383376227E-06 0,019740730149652100

7,62558383376227E-06 0,019755981317319600

7,62558383376227E-06 0,01976932608902870

7,62558383376227E-06 0,019807454008197500

7,62558383376227E-06 0,01983223715565720

7,62558383376227E-06 0,01986273949099230

7,62558383376227E-06 0,019887522638452000

7,62558383376227E-06 0,019921837765703900

7,62558383376227E-06 0,019954246496997400

7,62558383376227E-06 0,019982842436374000

7,62558383376227E-06 0,020007625583833800

7,62558383376227E-06 0,020024783147459700

7,62558383376227E-06 0,020047659898961000

7,62558383376227E-06 0,020064817462587000

7,62558383376227E-06 0,02009722619388050

7,62558383376227E-06 0,020112477361548000

7,62558383376227E-06 0,02013535411304930

7,62558383376227E-06 0,020154418072633700

7,62558383376227E-06 0,020173482032218100

7,62558383376227E-06 0,020198265179677800

7,62558383376227E-06 0,02023067391097130

7,62558383376227E-06 0,020247831474597300

7,62558383376227E-06 0,020272614622057

7,62558383376227E-06 0,020293584977599800

7,62558383376227E-06 0,020312648937184300

7,62558383376227E-06 0,02032980650081020

7,62558383376227E-06 0,020348870460394600

7,62558383376227E-06 0,020392717567438800

7,62558383376227E-06 0,020413687922981600

7,62558383376227E-06 0,02044228386235820

7,62558383376227E-06 0,020455628634067300

7,62558383376227E-06 0,02047850538556860

7,62558383376227E-06 0,020493756553236100

7,62558383376227E-06 0,020516633304737400

7,62558383376227E-06 0,02052997807644650

7,62558383376227E-06 0,020554761223906200

7,62558383376227E-06 0,020579544371365900

7,62558383376227E-06 0,020598608330950300

7,62558383376227E-06 0,02063101706224380

9,53197979220284E-06 0,020650081021828200

9,53197979220284E-06 0,02067486416928800

9,53197979220284E-06 0,02069774092078930

9,53197979220284E-06 0,020716804880373700

9,53197979220284E-06 0,020732056048041200

9,53197979220284E-06 0,020762558383376200

9,53197979220284E-06 0,02077780955104380

9,53197979220284E-06 0,02080068630254500

9,53197979220284E-06 0,020825469450004800

9,53197979220284E-06 0,020850252597464500

9,53197979220284E-06 0,020886474120674900

9,53197979220284E-06 0,020907444476217700

9,53197979220284E-06 0,02094557239538650

9,53197979220284E-06 0,02097607473072160

9,53197979220284E-06 0,020997045086264400

9,53197979220284E-06 0,021025641025641000

9,53197979220284E-06 0,02104851777714230

9,53197979220284E-06 0,021088552092269600

9,53197979220284E-06 0,021126680011438400

9,53197979220284E-06 0,02114574397102280

9,53197979220284E-06 0,021157182346773400

9,53197979220284E-06 0,021193403869983800

9,53197979220284E-06 0,021220093413402000

9,53197979220284E-06 0,02123725097702790

9,53197979220284E-06 0,021258221332570800

9,53197979220284E-06 0,021277285292155200

9,53197979220284E-06 0,021328757983033100

9,53197979220284E-06 0,02134591554665900

9,53197979220284E-06 0,021361166714326600

9,53197979220284E-06 0,021425984176913500

9,53197979220284E-06 0,021454580116290200

9,53197979220284E-06 0,021486988847583600

9,53197979220284E-06 0,02150414641120960

9,53197979220284E-06 0,021534648746544700

9,53197979220284E-06 0,02155180631017060

9,53197979220284E-06 0,021588027833381000

9,53197979220284E-06 0,021660470879801700

9,53197979220284E-06 0,021689066819178300

9,53197979220284E-06 0,021708130778762700

9,53197979220284E-06 0,021732913926222500

9,53197979220284E-06 0,021759603469640600

9,53197979220284E-06 0,021799637784767900

9,53197979220284E-06 0,021830140120102900

9,53197979220284E-06 0,021853016871604200

9,53197979220284E-06 0,02188161281098080

9,53197979220284E-06 0,021893051186731500

9,53197979220284E-06 0,02192164712610810

9,53197979220284E-06 0,021963587837193800

9,53197979220284E-06 0,021994090172528800

9,53197979220284E-06 0,022030311695739200

9,53197979220284E-06 0,02204937565532360

9,53197979220284E-06 0,022070346010866500

9,53197979220284E-06 0,022091316366409300

9,53197979220284E-06 0,02212181870174440

9,53197979220284E-06 0,0221523210370794

9,53197979220284E-06 0,022167572204746900

9,53197979220284E-06 0,022190448956248200

9,53197979220284E-06 0,022234296063292300

9,53197979220284E-06 0,022264798398627400

9,53197979220284E-06 0,022289581546087100

9,53197979220284E-06 0,02231055190163000

9,53197979220284E-06 0,022339147841006600

9,53197979220284E-06 0,022371556572300100

9,53197979220284E-06 0,022392526927842900

9,53197979220284E-06 0,02240968449146890

9,53197979220284E-06 0,022432561242970200

9,53197979220284E-06 0,022464969974263700

9,53197979220284E-06 0,02255457058431040

9,53197979220284E-06 0,022575540939853200

9,53197979220284E-06 0,022592698503479200

9,53197979220284E-06 0,022607949671146700

9,53197979220284E-06 0,022632732818606400

Tr
ue

 P
os

iti
ve

 R
at

e

0

0,2

0,4

0,6

0,8

1

False Positive Rate
0 0,2 0,4 0,6 0,8 1

Original ACFGs AUC = 0,949
Reversed ACFGs AUC = 0,956

roc_curve_complete_dataset.97771

fpr Leo Gemini

0,0 0,0

0,00010909958746718500 0,04023047287852440

0,00012955576011728200 0,04822542702260410

0,00015342129487572900 0,05347584466946230

0,00015342129487572900 0,053479254031570700

0,00015342129487572900 0,05355085063584600

0,00015342129487572900 0,053567897446387800

0,00015342129487572900 0,05394633664041460

0,00015683065698407800 0,05394633664041460

0,00015683065698407800 0,05395315536463130

0,00015683065698407800 0,054000886434148200

0,00015683065698407800 0,05402134260679830

0,00015683065698407800 0,05403498005523170

0,00015683065698407800 0,054103167297398700

0,00015683065698407800 0,054109986021615400

0,00015683065698407800 0,054127032832157100

0,00015683065698407800 0,05413044219426550

0,00015683065698407800 0,054198629436432400

0,00015683065698407800 0,05422590433329920

0,00015683065698407800 0,05425999795438270

0,00015683065698407800 0,054280454127032800

0,00015683065698407800 0,05429068221335790

0,00015683065698407800 0,05429750093757460

0,00015683065698407800 0,05430772902389960

0,00015683065698407800 0,05432818519654970

0,00015683065698407800 0,054396372438716700

0,00015683065698407800 0,05440319116293340

0,00015683065698407800 0,054464559680883700

0,00015683065698407800 0,05446796904299210

0,00015683065698407800 0,054478197129317100

0,00015683065698407800 0,0545463843714841

0,00015683065698407800 0,05457024990624250

0,00015683065698407800 0,05460775288943440

0,00015683065698407800 0,05464184651051790

0,00015683065698407800 0,05464525587262620

0,00015683065698407800 0,05466571204527630

0,00015683065698407800 0,054675940131601400

0,00015683065698407800 0,05468957758003480

0,00015683065698407800 0,05472367120111830

0,00015683065698407800 0,05479185844328530

0,00015683065698407800 0,05480549589171870

0,00015683065698407800 0,054822542702260400

0,00015683065698407800 0,05482595206436880

0,00015683065698407800 0,054839589512802200

0,00015683065698407800 0,054911186117077500

0,00015683065698407800 0,05493164228972760

0,00015683065698407800 0,05494187037605260

0,00015683065698407800 0,05497255463502780

0,00015683065698407800 0,05524530360369580

0,00015683065698407800 0,05525894105212920

0,00015683065698407800 0,05526916913845420

0,00015683065698407800 0,05528280658688760

0,00015683065698407800 0,05529644403532100

0,00015683065698407800 0,05536463127748800

0,00015683065698407800 0,055388496812246400

0,00015683065698407800 0,055395315536463100

0,00015683065698407800 0,055402134260679800

0,00015683065698407800 0,055419181071221600

0,00015683065698407800 0,055432818519655000

0,00015683065698407800 0,05548736831338860

0,00015683065698407800 0,05549759639971360

0,00015683065698407800 0,05570215812621460

0,00015683065698407800 0,05571579557464800

0,00015683065698407800 0,05572261429886470

0,00015683065698407800 0,05579080154103170

0,00015683065698407800 0,05580443898946510

0,00015683065698407800 0,05582148580000680

0,00015683065698407800 0,05583171388633190

0,00015683065698407800 0,055852170058982000

0,00015683065698407800 0,05585557942109030

0,00015683065698407800 0,05587944495584880

0,00015683065698407800 0,05588285431795710

0,00015683065698407800 0,055896491766390500

0,00015683065698407800 0,055903310490607200

0,00015683065698407800 0,05597490709488260

0,00015683065698407800 0,05598172581909930

0,00015683065698407800 0,05603286625072450

0,00015683065698407800 0,05605332242337460

0,00015683065698407800 0,05606355050969960

0,00015683065698407800 0,056080597320241400

0,00015683065698407800 0,056087416044458100

0,00015683065698407800 0,05609764413078310

0,00015683065698407800 0,05616583137295010

0,00015683065698407800 0,056182878183491900

0,00015683065698407800 0,056203334356142000

0,00015683065698407800 0,05621015308035870

0,00015683065698407800 0,05623060925300880

0,00015683065698407800 0,056234018615117100

0,00015683065698407800 0,05626811223620060

0,00015683065698407800 0,056278340322525700

0,00015683065698407800 0,05628174968463400

0,00015683065698407800 0,05629879649517580

0,00015683065698407800 0,0563022058572841

0,00015683065698407800 0,05631925266782590

0,00015683065698407800 0,056343118202584300

0,00015683065698407800 0,056353346288909300

0,00015683065698407800 0,05638743990999280

0,0001602400190924280 0,05638743990999280

0,0001602400190924280 0,056424942893184700

0,0001602400190924280 0,056431761617401400

0,0001602400190924280 0,056499948859568400

0,0001602400190924280 0,05650335822167670

0,0001602400190924280 0,056520405032218500

0,0001602400190924280 0,05652381439432680

0,0001602400190924280 0,056564726739627000

0,0001602400190924280 0,05663632334390240

0,0001602400190924280 0,05664996079233580

0,0001602400190924280 0,056718148034502700

0,0001602400190924280 0,056755651017694600

0,0001602400190924280 0,05681020081142820

0,0001602400190924280 0,05684088507040330

0,0001602400190924280 0,05697725955473730

0,0001602400190924280 0,057014762537929200

0,0001602400190924280 0,057219324264430100

0,0001602400190924280 0,05724659916129690

0,0001602400190924280 0,05725341788551360

0,0001602400190924280 0,057277283420272100

0,0001602400190924280 0,057284102144488800

0,0001602400190924280 0,05730455831713890

0,0001602400190924280 0,057372745559305900

0,0001602400190924280 0,05738638300773930

Tr
ue

 P
os

iti
ve

 R
at

e

0,0

0,2

0,4

0,6

0,8

1,0

False Positive Rate (logarithmic)
0 0,001 0,01 0,1 1

GESS
Gemini

0,0001

 1

Figure 11: ROC curves of GESS and Gemini computed
on the testing set (with logarithmic x-axis).

and GESS, but it nevertheless represents an interesting
avenue for future research. Indeed, this method remains
relatively simple and could be further optimized. On the
contrary, all approaches based on graph neural networks
(GNNs) show relatively low AUC. Note that we have
implemented GraphSAGE both with global mean pooling
and differential pooling, and we see that global mean
pooling provides better AUC (of more than 0.1 point).
Given this result, we have implemented only global mean
pooling for the GCN.

Let us now examine the ROC curves of Gemini and
GESS in Figure 11. We observe that, for a fixed false posi-
tive rate (FPR) of 0.01, GESS achieves a true positive rate
(TPR) of 0.76 against 0.56 for Gemini, which represents a
relative TPR increase of 35.7%. Therefore, if we want to
keep a low false positive rate while maximizing the true
positive rate, GESS is significantly better than the best
existing method.

Figure 12 shows the validation AUC with respect to
the training time for both GESS and Gemini. First, we
observe that GESS can reach the same AUC as Gemini
in 40 minutes instead of more than 4 hours (6× faster).
On the other hand, if we favor the accuracy (AUC) over
the time performance, we can pay the price of a longer
training time (of about 14 hours) with GESS against about
5 hours for Gemini. However, we can observe that, for
a 5-hour training time, GESS achieves an AUC already
close to its maximum validation AUC and, above all, much
higher than Gemini. We further measure the overall testing
time for Gemini and GESS. The average testing time is
of 138 seconds – 0.235 ms per pair sample – for Gemini
and 29 seconds – 0.049 ms per pair sample – for GESS,
which implies that GESS is more than four times faster
than Gemini at determining whether two binary functions
are similar or not.

In order to better visualize the graph embeddings
returned by GESS, we plot the embeddings of 10 source
functions in a two-dimensional map by relying on the t-
SNE dimensionality reduction technique [25]. Figure 13
depicts the 10 source functions compiled for three dif-
ferent architectures (mips, armhf, i386) while Figure 14
depicts the same source functions compiled with two
different compilers (gcc and clang). In both figures, we

Va
lid

at
io

n
RO

C
 A

U
C

0,93

0,94

0,95

0,96

0,97

0,98

0,99

Training Time

0 2h 4h 6h 8h 10h 12h 14h

GESS
Gemini

Figure 12: Validation AUC of GESS and Gemini with
respect to the training time. We observe that GESS can
reach the same AUC as Gemini in 40 minutes instead of
more than 4 hours (6× faster).

add_file_shuffle
s_mips_file
_bdf_mips_init_stubs
tls_dlm_reloc_p
elf_link_renumber_hash_table_dynsyms
unlink_if_ordinary
ihex_set_arch_mach
mips_elf_create_stub_symbol
ERR_peek_error_line_data
receipt_request_print

mips
armhf
i386

Tableau 1

add_file_shuffle s_mips_file _bdf_mips_init_stubs tls_dlm_reloc_p elf_link_renumber_hash_table_dynsymsunlink_if_ordinary ihex_set_arch_mach mips_elf_create_stub_symbolERR_peek_error_line_datareceipt_request_print

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O2-0xae4d0-sym,add_file_shuffle,isra,6 51,737083435058594 -120,13975524902344

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O3-0xbc128-sym,add_file_shuffle,isra,6 46,48991394042969 -91,6960678100586

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O2-0x77f88-sym,s_mips_file 40,32362365722656 -44,15257263183594

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O3-0x7e66c-sym,s_mips_file 54,59049987792969 -17,125036239624023

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_Os-0x6fc0c-sym,s_mips_file 71,91887664794922 -45,40969467163086

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x4401f0-dbg,_bfd_mips_elf_init_stubs -85,0827407836914 -3,770686149597168

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x44b218-dbg,tls_ldm_reloc_p 44,67158126831055 48,657562255859375

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5e484-dbg,_bfd_mips_elf_init_stubs -62,186744689941406 -22,666757583618164

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5f934-dbg,tls_ldm_reloc_p 33,01789474487305 21,95754051208496

binutils-2,36,1-ld,bfd-armhf-clang-7,0,1,8-Wall_g_O0-0xf4a64-dbg,elf_link_renumber_hash_table_dynsyms -6,82403564453125 72,98777770996094

binutils-2,36,1-ld,bfd-armhf-gcc-8,3,0,6-Wall_g_O0-0x8c95c-dbg,elf_link_renumber_hash_table_dynsyms 8,116304397583008 44,525325775146484

binutils-2,36,1-ld,bfd-i386-clang-7,0,1,8-Wall_g_O0-0x8101b50-dbg,elf_link_renumber_hash_table_dynsyms -39,13298416137695 81,29414367675781

binutils-2,36,1-ld,bfd-i386-gcc-8,3,0,6-Wall_g_O0-0x8bb91-dbg,elf_link_renumber_hash_table_dynsyms -24,492856979370117 46,703243255615234

binutils-2,36,1-ld,bfd-mips-clang-7,0,1,8-Wall_g_O0-0x53ec7c-dbg,elf_link_renumber_hash_table_dynsyms -2,0147721767425537 103,80238342285156

binutils-2,36,1-ld,bfd-mips-gcc-8,3,0,6-Wall_g_O0-0x138f44-dbg,elf_link_renumber_hash_table_dynsyms 23,34385108947754 72,48896026611328

binutils-2,36,1-objdump-armhf-clang-7,0,1,8-Wall_g_O0-0x18bba4-dbg,unlink_if_ordinary -0,07079995423555374 -33,712162017822266

binutils-2,36,1-objdump-armhf-gcc-8,3,0,6-Wall_g_O0-0x102d58-dbg,unlink_if_ordinary -60,85440444946289 33,84822082519531

binutils-2,36,1-objdump-i386-clang-7,0,1,8-Wall_g_O0-0x81bb340-dbg,unlink_if_ordinary -38,25349807739258 11,484228134155273

binutils-2,36,1-objdump-i386-gcc-8,3,0,6-Wall_g_O0-0x14617d-dbg,unlink_if_ordinary -24,121700286865234 -16,03660774230957

binutils-2,36,1-objdump-mips-clang-7,0,1,8-Wall_g_O0-0x633080-dbg,unlink_if_ordinary -5,906651496887207 9,805792808532715

binutils-2,36,1-objdump-mips-gcc-8,3,0,6-Wall_g_O0-0x26b510-dbg,unlink_if_ordinary 17,165010452270508 -8,972970962524414

binutils-2,36,1-strip-armhf-clang-7,0,1,8-Wall_g_O0-0x55950-dbg,ihex_set_arch_mach 37,49272537231445 102,46661376953125

binutils-2,36,1-strip-i386-clang-7,0,1,8-Wall_g_O0-0x808b010-dbg,ihex_set_arch_mach 72,02375793457031 90,63675689697266

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x45d5c0-dbg,ihex_set_arch_mach 77,10151672363281 59,457969665527344

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x49efa0-dbg,mips_elf_create_stub_symbol 108,46430969238281 21,789541244506836

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O0-0x8acd8-dbg,mips_elf_create_stub_symbol 75,64817810058594 20,239973068237305

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O1-0x62054-dbg,mips_elf_create_stub_symbol 89,6202163696289 -13,157038688659668

openssl-3,0,0,alpha13-libcrypto,so-armhf-gcc-8,3,0,6-Wall_g_O3-0xeb00c-dbg,ERR_peek_error_line_data 120,69438171386719 -27,813230514526367

openssl-3,0,0,alpha13-libcrypto,so-i386-gcc-8,3,0,6-Wall_g_O3-0x163e10-dbg,ERR_peek_error_line_data 93,21912384033203 -79,36964416503906

openssl-3,0,0,alpha13-libcrypto,so-mips-gcc-8,3,0,6-Wall_g_O3-0x1620a8-dbg,ERR_peek_error_line_data 118,1903305053711 -60,2628288269043

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O0-0x43a7c-dbg,receipt_request_print -34,1889762878418 -62,57019805908203

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O1-0x3d03c-dbg,receipt_request_print 0,42533624172210693 -112,17686462402344

openssl-3,0,0,alpha13-openssl-armhf-gcc-8,3,0,6-Wall_g_O0-0x35384-dbg,receipt_request_print -67,231201171875 -72,7455062866211

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O0-0x807c810-dbg,receipt_request_print -30,874839782714844 -94,21327209472656

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O1-0x8071f90-dbg,receipt_request_print -62,25175857543945 -107,48030853271484

openssl-3,0,0,alpha13-openssl-i386-gcc-8,3,0,6-Wall_g_O0-0x37f2f-dbg,receipt_request_print -0,964881181716919 -77,44961547851562

openssl-3,0,0,alpha13-openssl-mips-gcc-8,3,0,6-Wall_g_O0-0x40494-dbg,receipt_request_print -31,199947357177734 -129,9629669189453

Tableau 1-1

-O0 -O1 -O2 -O3 -Os

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O2-0xae4d0-sym,add_file_shuffle,isra,6 51,737083435058594 -120,13975524902344

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O3-0xbc128-sym,add_file_shuffle,isra,6 46,48991394042969 -91,6960678100586

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O2-0x77f88-sym,s_mips_file 40,32362365722656 -44,15257263183594

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O3-0x7e66c-sym,s_mips_file 54,59049987792969 -17,125036239624023

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_Os-0x6fc0c-sym,s_mips_file 71,91887664794922 -45,40969467163086

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x4401f0-dbg,_bfd_mips_elf_init_stubs -85,0827407836914 -3,770686149597168

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x44b218-dbg,tls_ldm_reloc_p 44,67158126831055 48,657562255859375

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5e484-dbg,_bfd_mips_elf_init_stubs -62,186744689941406 -22,666757583618164

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5f934-dbg,tls_ldm_reloc_p 33,01789474487305 21,95754051208496

binutils-2,36,1-ld,bfd-armhf-clang-7,0,1,8-Wall_g_O0-0xf4a64-dbg,elf_link_renumber_hash_table_dynsyms -6,82403564453125 72,98777770996094

binutils-2,36,1-ld,bfd-armhf-gcc-8,3,0,6-Wall_g_O0-0x8c95c-dbg,elf_link_renumber_hash_table_dynsyms 8,116304397583008 44,525325775146484

binutils-2,36,1-ld,bfd-i386-clang-7,0,1,8-Wall_g_O0-0x8101b50-dbg,elf_link_renumber_hash_table_dynsyms -39,13298416137695 81,29414367675781

binutils-2,36,1-ld,bfd-i386-gcc-8,3,0,6-Wall_g_O0-0x8bb91-dbg,elf_link_renumber_hash_table_dynsyms -24,492856979370117 46,703243255615234

binutils-2,36,1-ld,bfd-mips-clang-7,0,1,8-Wall_g_O0-0x53ec7c-dbg,elf_link_renumber_hash_table_dynsyms -2,0147721767425537 103,80238342285156

binutils-2,36,1-ld,bfd-mips-gcc-8,3,0,6-Wall_g_O0-0x138f44-dbg,elf_link_renumber_hash_table_dynsyms 23,34385108947754 72,48896026611328

binutils-2,36,1-objdump-armhf-clang-7,0,1,8-Wall_g_O0-0x18bba4-dbg,unlink_if_ordinary -0,07079995423555374 -33,712162017822266

binutils-2,36,1-objdump-armhf-gcc-8,3,0,6-Wall_g_O0-0x102d58-dbg,unlink_if_ordinary -60,85440444946289 33,84822082519531

binutils-2,36,1-objdump-i386-clang-7,0,1,8-Wall_g_O0-0x81bb340-dbg,unlink_if_ordinary -38,25349807739258 11,484228134155273

binutils-2,36,1-objdump-i386-gcc-8,3,0,6-Wall_g_O0-0x14617d-dbg,unlink_if_ordinary -24,121700286865234 -16,03660774230957

binutils-2,36,1-objdump-mips-clang-7,0,1,8-Wall_g_O0-0x633080-dbg,unlink_if_ordinary -5,906651496887207 9,805792808532715

binutils-2,36,1-objdump-mips-gcc-8,3,0,6-Wall_g_O0-0x26b510-dbg,unlink_if_ordinary 17,165010452270508 -8,972970962524414

binutils-2,36,1-strip-armhf-clang-7,0,1,8-Wall_g_O0-0x55950-dbg,ihex_set_arch_mach 37,49272537231445 102,46661376953125

binutils-2,36,1-strip-i386-clang-7,0,1,8-Wall_g_O0-0x808b010-dbg,ihex_set_arch_mach 72,02375793457031 90,63675689697266

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x45d5c0-dbg,ihex_set_arch_mach 77,10151672363281 59,457969665527344

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x49efa0-dbg,mips_elf_create_stub_symbol 108,46430969238281 21,789541244506836

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O0-0x8acd8-dbg,mips_elf_create_stub_symbol 75,64817810058594 20,239973068237305

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O1-0x62054-dbg,mips_elf_create_stub_symbol 89,6202163696289 -13,157038688659668

openssl-3,0,0,alpha13-libcrypto,so-armhf-gcc-8,3,0,6-Wall_g_O3-0xeb00c-dbg,ERR_peek_error_line_data 120,69438171386719 -27,813230514526367

openssl-3,0,0,alpha13-libcrypto,so-i386-gcc-8,3,0,6-Wall_g_O3-0x163e10-dbg,ERR_peek_error_line_data 93,21912384033203 -79,36964416503906

openssl-3,0,0,alpha13-libcrypto,so-mips-gcc-8,3,0,6-Wall_g_O3-0x1620a8-dbg,ERR_peek_error_line_data 118,1903305053711 -60,2628288269043

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O0-0x43a7c-dbg,receipt_request_print -34,1889762878418 -62,57019805908203

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O1-0x3d03c-dbg,receipt_request_print 0,42533624172210693 -112,17686462402344

openssl-3,0,0,alpha13-openssl-armhf-gcc-8,3,0,6-Wall_g_O0-0x35384-dbg,receipt_request_print -67,231201171875 -72,7455062866211

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O0-0x807c810-dbg,receipt_request_print -30,874839782714844 -94,21327209472656

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O1-0x8071f90-dbg,receipt_request_print -62,25175857543945 -107,48030853271484

openssl-3,0,0,alpha13-openssl-i386-gcc-8,3,0,6-Wall_g_O0-0x37f2f-dbg,receipt_request_print -0,964881181716919 -77,44961547851562

openssl-3,0,0,alpha13-openssl-mips-gcc-8,3,0,6-Wall_g_O0-0x40494-dbg,receipt_request_print -31,199947357177734 -129,9629669189453

Function name :

Architecture :

Tableau 1-1-1

mips armhf i386

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O2-0xae4d0-sym,add_file_shuffle,isra,6 51,737083435058594 -120,13975524902344

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O3-0xbc128-sym,add_file_shuffle,isra,6 46,48991394042969 -91,6960678100586

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O2-0x77f88-sym,s_mips_file 40,32362365722656 -44,15257263183594

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O3-0x7e66c-sym,s_mips_file 54,59049987792969 -17,125036239624023

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_Os-0x6fc0c-sym,s_mips_file 71,91887664794922 -45,40969467163086

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x4401f0-dbg,_bfd_mips_elf_init_stubs -85,0827407836914 -3,770686149597168

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x44b218-dbg,tls_ldm_reloc_p 44,67158126831055 48,657562255859375

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5e484-dbg,_bfd_mips_elf_init_stubs -62,186744689941406 -22,666757583618164

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5f934-dbg,tls_ldm_reloc_p 33,01789474487305 21,95754051208496

binutils-2,36,1-ld,bfd-armhf-clang-7,0,1,8-Wall_g_O0-0xf4a64-dbg,elf_link_renumber_hash_table_dynsyms -6,82403564453125 72,98777770996094

binutils-2,36,1-ld,bfd-armhf-gcc-8,3,0,6-Wall_g_O0-0x8c95c-dbg,elf_link_renumber_hash_table_dynsyms 8,116304397583008 44,525325775146484

binutils-2,36,1-ld,bfd-i386-clang-7,0,1,8-Wall_g_O0-0x8101b50-dbg,elf_link_renumber_hash_table_dynsyms -39,13298416137695 81,29414367675781

binutils-2,36,1-ld,bfd-i386-gcc-8,3,0,6-Wall_g_O0-0x8bb91-dbg,elf_link_renumber_hash_table_dynsyms -24,492856979370117 46,703243255615234

binutils-2,36,1-ld,bfd-mips-clang-7,0,1,8-Wall_g_O0-0x53ec7c-dbg,elf_link_renumber_hash_table_dynsyms -2,0147721767425537 103,80238342285156

binutils-2,36,1-ld,bfd-mips-gcc-8,3,0,6-Wall_g_O0-0x138f44-dbg,elf_link_renumber_hash_table_dynsyms 23,34385108947754 72,48896026611328

binutils-2,36,1-objdump-armhf-clang-7,0,1,8-Wall_g_O0-0x18bba4-dbg,unlink_if_ordinary -0,07079995423555374 -33,712162017822266

binutils-2,36,1-objdump-armhf-gcc-8,3,0,6-Wall_g_O0-0x102d58-dbg,unlink_if_ordinary -60,85440444946289 33,84822082519531

binutils-2,36,1-objdump-i386-clang-7,0,1,8-Wall_g_O0-0x81bb340-dbg,unlink_if_ordinary -38,25349807739258 11,484228134155273

binutils-2,36,1-objdump-i386-gcc-8,3,0,6-Wall_g_O0-0x14617d-dbg,unlink_if_ordinary -24,121700286865234 -16,03660774230957

binutils-2,36,1-objdump-mips-clang-7,0,1,8-Wall_g_O0-0x633080-dbg,unlink_if_ordinary -5,906651496887207 9,805792808532715

binutils-2,36,1-objdump-mips-gcc-8,3,0,6-Wall_g_O0-0x26b510-dbg,unlink_if_ordinary 17,165010452270508 -8,972970962524414

binutils-2,36,1-strip-armhf-clang-7,0,1,8-Wall_g_O0-0x55950-dbg,ihex_set_arch_mach 37,49272537231445 102,46661376953125

binutils-2,36,1-strip-i386-clang-7,0,1,8-Wall_g_O0-0x808b010-dbg,ihex_set_arch_mach 72,02375793457031 90,63675689697266

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x45d5c0-dbg,ihex_set_arch_mach 77,10151672363281 59,457969665527344

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x49efa0-dbg,mips_elf_create_stub_symbol 108,46430969238281 21,789541244506836

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O0-0x8acd8-dbg,mips_elf_create_stub_symbol 75,64817810058594 20,239973068237305

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O1-0x62054-dbg,mips_elf_create_stub_symbol 89,6202163696289 -13,157038688659668

openssl-3,0,0,alpha13-libcrypto,so-armhf-gcc-8,3,0,6-Wall_g_O3-0xeb00c-dbg,ERR_peek_error_line_data 120,69438171386719 -27,813230514526367

openssl-3,0,0,alpha13-libcrypto,so-i386-gcc-8,3,0,6-Wall_g_O3-0x163e10-dbg,ERR_peek_error_line_data 93,21912384033203 -79,36964416503906

openssl-3,0,0,alpha13-libcrypto,so-mips-gcc-8,3,0,6-Wall_g_O3-0x1620a8-dbg,ERR_peek_error_line_data 118,1903305053711 -60,2628288269043

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O0-0x43a7c-dbg,receipt_request_print -34,1889762878418 -62,57019805908203

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O1-0x3d03c-dbg,receipt_request_print 0,42533624172210693 -112,17686462402344

openssl-3,0,0,alpha13-openssl-armhf-gcc-8,3,0,6-Wall_g_O0-0x35384-dbg,receipt_request_print -67,231201171875 -72,7455062866211

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O0-0x807c810-dbg,receipt_request_print -30,874839782714844 -94,21327209472656

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O1-0x8071f90-dbg,receipt_request_print -62,25175857543945 -107,48030853271484

openssl-3,0,0,alpha13-openssl-i386-gcc-8,3,0,6-Wall_g_O0-0x37f2f-dbg,receipt_request_print -0,964881181716919 -77,44961547851562

openssl-3,0,0,alpha13-openssl-mips-gcc-8,3,0,6-Wall_g_O0-0x40494-dbg,receipt_request_print -31,199947357177734 -129,9629669189453

Tableau 1-1-1-1

gcc Clang

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O2-0xae4d0-sym,add_file_shuffle,isra,6 51,737083435058594 -120,13975524902344

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O3-0xbc128-sym,add_file_shuffle,isra,6 46,48991394042969 -91,6960678100586

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O2-0x77f88-sym,s_mips_file 40,32362365722656 -44,15257263183594

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O3-0x7e66c-sym,s_mips_file 54,59049987792969 -17,125036239624023

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_Os-0x6fc0c-sym,s_mips_file 71,91887664794922 -45,40969467163086

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x4401f0-dbg,_bfd_mips_elf_init_stubs -85,0827407836914 -3,770686149597168

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x44b218-dbg,tls_ldm_reloc_p 44,67158126831055 48,657562255859375

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5e484-dbg,_bfd_mips_elf_init_stubs -62,186744689941406 -22,666757583618164

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5f934-dbg,tls_ldm_reloc_p 33,01789474487305 21,95754051208496

binutils-2,36,1-ld,bfd-armhf-clang-7,0,1,8-Wall_g_O0-0xf4a64-dbg,elf_link_renumber_hash_table_dynsyms -6,82403564453125 72,98777770996094

binutils-2,36,1-ld,bfd-armhf-gcc-8,3,0,6-Wall_g_O0-0x8c95c-dbg,elf_link_renumber_hash_table_dynsyms 8,116304397583008 44,525325775146484

binutils-2,36,1-ld,bfd-i386-clang-7,0,1,8-Wall_g_O0-0x8101b50-dbg,elf_link_renumber_hash_table_dynsyms -39,13298416137695 81,29414367675781

binutils-2,36,1-ld,bfd-i386-gcc-8,3,0,6-Wall_g_O0-0x8bb91-dbg,elf_link_renumber_hash_table_dynsyms -24,492856979370117 46,703243255615234

binutils-2,36,1-ld,bfd-mips-clang-7,0,1,8-Wall_g_O0-0x53ec7c-dbg,elf_link_renumber_hash_table_dynsyms -2,0147721767425537 103,80238342285156

binutils-2,36,1-ld,bfd-mips-gcc-8,3,0,6-Wall_g_O0-0x138f44-dbg,elf_link_renumber_hash_table_dynsyms 23,34385108947754 72,48896026611328

binutils-2,36,1-objdump-armhf-clang-7,0,1,8-Wall_g_O0-0x18bba4-dbg,unlink_if_ordinary -0,07079995423555374 -33,712162017822266

binutils-2,36,1-objdump-armhf-gcc-8,3,0,6-Wall_g_O0-0x102d58-dbg,unlink_if_ordinary -60,85440444946289 33,84822082519531

binutils-2,36,1-objdump-i386-clang-7,0,1,8-Wall_g_O0-0x81bb340-dbg,unlink_if_ordinary -38,25349807739258 11,484228134155273

binutils-2,36,1-objdump-i386-gcc-8,3,0,6-Wall_g_O0-0x14617d-dbg,unlink_if_ordinary -24,121700286865234 -16,03660774230957

binutils-2,36,1-objdump-mips-clang-7,0,1,8-Wall_g_O0-0x633080-dbg,unlink_if_ordinary -5,906651496887207 9,805792808532715

binutils-2,36,1-objdump-mips-gcc-8,3,0,6-Wall_g_O0-0x26b510-dbg,unlink_if_ordinary 17,165010452270508 -8,972970962524414

binutils-2,36,1-strip-armhf-clang-7,0,1,8-Wall_g_O0-0x55950-dbg,ihex_set_arch_mach 37,49272537231445 102,46661376953125

binutils-2,36,1-strip-i386-clang-7,0,1,8-Wall_g_O0-0x808b010-dbg,ihex_set_arch_mach 72,02375793457031 90,63675689697266

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x45d5c0-dbg,ihex_set_arch_mach 77,10151672363281 59,457969665527344

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x49efa0-dbg,mips_elf_create_stub_symbol 108,46430969238281 21,789541244506836

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O0-0x8acd8-dbg,mips_elf_create_stub_symbol 75,64817810058594 20,239973068237305

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O1-0x62054-dbg,mips_elf_create_stub_symbol 89,6202163696289 -13,157038688659668

openssl-3,0,0,alpha13-libcrypto,so-armhf-gcc-8,3,0,6-Wall_g_O3-0xeb00c-dbg,ERR_peek_error_line_data 120,69438171386719 -27,813230514526367

openssl-3,0,0,alpha13-libcrypto,so-i386-gcc-8,3,0,6-Wall_g_O3-0x163e10-dbg,ERR_peek_error_line_data 93,21912384033203 -79,36964416503906

openssl-3,0,0,alpha13-libcrypto,so-mips-gcc-8,3,0,6-Wall_g_O3-0x1620a8-dbg,ERR_peek_error_line_data 118,1903305053711 -60,2628288269043

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O0-0x43a7c-dbg,receipt_request_print -34,1889762878418 -62,57019805908203

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O1-0x3d03c-dbg,receipt_request_print 0,42533624172210693 -112,17686462402344

openssl-3,0,0,alpha13-openssl-armhf-gcc-8,3,0,6-Wall_g_O0-0x35384-dbg,receipt_request_print -67,231201171875 -72,7455062866211

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O0-0x807c810-dbg,receipt_request_print -30,874839782714844 -94,21327209472656

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O1-0x8071f90-dbg,receipt_request_print -62,25175857543945 -107,48030853271484

openssl-3,0,0,alpha13-openssl-i386-gcc-8,3,0,6-Wall_g_O0-0x37f2f-dbg,receipt_request_print -0,964881181716919 -77,44961547851562

openssl-3,0,0,alpha13-openssl-mips-gcc-8,3,0,6-Wall_g_O0-0x40494-dbg,receipt_request_print -31,199947357177734 -129,9629669189453

Figure 13: Two-dimensional map of the ACFGs compiled
from 10 different source functions (represented by differ-
ent colors) for three architectures (represented by different
circle line types), plotted using the t-SNE dimensionality
reduction technique [25].

observe that the embeddings representing the 10 different
functions (ACFGs) are clustered together (i.e., by color)
and not by architecture or compiler type. This shows
how our graph embedding method can efficiently detect
similar source functions even when these are compiled
with different architectures or compilers.

4.4. Cross-Dataset Training

Next, we would like to investigate whether the graph
embedding models can generalize to completely unknown
data. Indeed, while the ACFGs on which validation and
testing is performed are extracted from different functions
than the training ACFGs, so far all our dataset functions
contain both binutils and OpenSSL, and thus might learn
characteristics from both binutils and OpenSSL (e.g., cod-
ing style, functionality, etc.). In order to determine how
robust Gemini and GESS are when using cross-dataset
training, we split up ACFGs from OpenSSL and binutils,
and we then train and validate on the OpenSSL dataset
and test on the binutils dataset or, vice versa, train and
validate on the binutils dataset and test on the OpenSSL
dataset.

The corresponding results are shown in Table 3. First,
we observe that the area under the ROC curve is higher

add_file_shuffle
s_mips_file
_bdf_mips_init_stubs
tls_dlm_reloc_p
elf_link_renumber_hash_table_dynsyms
unlink_if_ordinary
ihex_set_arch_mach
mips_elf_create_stub_symbol
ERR_peek_error_line_data
receipt_request_print

gcc
Clang

Tableau 1

add_file_shuffle s_mips_file _bdf_mips_init_stubs tls_dlm_reloc_p elf_link_renumber_hash_table_dynsymsunlink_if_ordinary ihex_set_arch_mach mips_elf_create_stub_symbolERR_peek_error_line_datareceipt_request_print

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O2-0xae4d0-sym,add_file_shuffle,isra,6 51,737083435058594 -120,13975524902344

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O3-0xbc128-sym,add_file_shuffle,isra,6 46,48991394042969 -91,6960678100586

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O2-0x77f88-sym,s_mips_file 40,32362365722656 -44,15257263183594

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O3-0x7e66c-sym,s_mips_file 54,59049987792969 -17,125036239624023

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_Os-0x6fc0c-sym,s_mips_file 71,91887664794922 -45,40969467163086

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x4401f0-dbg,_bfd_mips_elf_init_stubs -85,0827407836914 -3,770686149597168

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x44b218-dbg,tls_ldm_reloc_p 44,67158126831055 48,657562255859375

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5e484-dbg,_bfd_mips_elf_init_stubs -62,186744689941406 -22,666757583618164

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5f934-dbg,tls_ldm_reloc_p 33,01789474487305 21,95754051208496

binutils-2,36,1-ld,bfd-armhf-clang-7,0,1,8-Wall_g_O0-0xf4a64-dbg,elf_link_renumber_hash_table_dynsyms -6,82403564453125 72,98777770996094

binutils-2,36,1-ld,bfd-armhf-gcc-8,3,0,6-Wall_g_O0-0x8c95c-dbg,elf_link_renumber_hash_table_dynsyms 8,116304397583008 44,525325775146484

binutils-2,36,1-ld,bfd-i386-clang-7,0,1,8-Wall_g_O0-0x8101b50-dbg,elf_link_renumber_hash_table_dynsyms -39,13298416137695 81,29414367675781

binutils-2,36,1-ld,bfd-i386-gcc-8,3,0,6-Wall_g_O0-0x8bb91-dbg,elf_link_renumber_hash_table_dynsyms -24,492856979370117 46,703243255615234

binutils-2,36,1-ld,bfd-mips-clang-7,0,1,8-Wall_g_O0-0x53ec7c-dbg,elf_link_renumber_hash_table_dynsyms -2,0147721767425537 103,80238342285156

binutils-2,36,1-ld,bfd-mips-gcc-8,3,0,6-Wall_g_O0-0x138f44-dbg,elf_link_renumber_hash_table_dynsyms 23,34385108947754 72,48896026611328

binutils-2,36,1-objdump-armhf-clang-7,0,1,8-Wall_g_O0-0x18bba4-dbg,unlink_if_ordinary -0,07079995423555374 -33,712162017822266

binutils-2,36,1-objdump-armhf-gcc-8,3,0,6-Wall_g_O0-0x102d58-dbg,unlink_if_ordinary -60,85440444946289 33,84822082519531

binutils-2,36,1-objdump-i386-clang-7,0,1,8-Wall_g_O0-0x81bb340-dbg,unlink_if_ordinary -38,25349807739258 11,484228134155273

binutils-2,36,1-objdump-i386-gcc-8,3,0,6-Wall_g_O0-0x14617d-dbg,unlink_if_ordinary -24,121700286865234 -16,03660774230957

binutils-2,36,1-objdump-mips-clang-7,0,1,8-Wall_g_O0-0x633080-dbg,unlink_if_ordinary -5,906651496887207 9,805792808532715

binutils-2,36,1-objdump-mips-gcc-8,3,0,6-Wall_g_O0-0x26b510-dbg,unlink_if_ordinary 17,165010452270508 -8,972970962524414

binutils-2,36,1-strip-armhf-clang-7,0,1,8-Wall_g_O0-0x55950-dbg,ihex_set_arch_mach 37,49272537231445 102,46661376953125

binutils-2,36,1-strip-i386-clang-7,0,1,8-Wall_g_O0-0x808b010-dbg,ihex_set_arch_mach 72,02375793457031 90,63675689697266

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x45d5c0-dbg,ihex_set_arch_mach 77,10151672363281 59,457969665527344

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x49efa0-dbg,mips_elf_create_stub_symbol 108,46430969238281 21,789541244506836

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O0-0x8acd8-dbg,mips_elf_create_stub_symbol 75,64817810058594 20,239973068237305

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O1-0x62054-dbg,mips_elf_create_stub_symbol 89,6202163696289 -13,157038688659668

openssl-3,0,0,alpha13-libcrypto,so-armhf-gcc-8,3,0,6-Wall_g_O3-0xeb00c-dbg,ERR_peek_error_line_data 120,69438171386719 -27,813230514526367

openssl-3,0,0,alpha13-libcrypto,so-i386-gcc-8,3,0,6-Wall_g_O3-0x163e10-dbg,ERR_peek_error_line_data 93,21912384033203 -79,36964416503906

openssl-3,0,0,alpha13-libcrypto,so-mips-gcc-8,3,0,6-Wall_g_O3-0x1620a8-dbg,ERR_peek_error_line_data 118,1903305053711 -60,2628288269043

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O0-0x43a7c-dbg,receipt_request_print -34,1889762878418 -62,57019805908203

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O1-0x3d03c-dbg,receipt_request_print 0,42533624172210693 -112,17686462402344

openssl-3,0,0,alpha13-openssl-armhf-gcc-8,3,0,6-Wall_g_O0-0x35384-dbg,receipt_request_print -67,231201171875 -72,7455062866211

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O0-0x807c810-dbg,receipt_request_print -30,874839782714844 -94,21327209472656

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O1-0x8071f90-dbg,receipt_request_print -62,25175857543945 -107,48030853271484

openssl-3,0,0,alpha13-openssl-i386-gcc-8,3,0,6-Wall_g_O0-0x37f2f-dbg,receipt_request_print -0,964881181716919 -77,44961547851562

openssl-3,0,0,alpha13-openssl-mips-gcc-8,3,0,6-Wall_g_O0-0x40494-dbg,receipt_request_print -31,199947357177734 -129,9629669189453

Tableau 1-1

-O0 -O1 -O2 -O3 -Os

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O2-0xae4d0-sym,add_file_shuffle,isra,6 51,737083435058594 -120,13975524902344

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O3-0xbc128-sym,add_file_shuffle,isra,6 46,48991394042969 -91,6960678100586

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O2-0x77f88-sym,s_mips_file 40,32362365722656 -44,15257263183594

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O3-0x7e66c-sym,s_mips_file 54,59049987792969 -17,125036239624023

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_Os-0x6fc0c-sym,s_mips_file 71,91887664794922 -45,40969467163086

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x4401f0-dbg,_bfd_mips_elf_init_stubs -85,0827407836914 -3,770686149597168

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x44b218-dbg,tls_ldm_reloc_p 44,67158126831055 48,657562255859375

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5e484-dbg,_bfd_mips_elf_init_stubs -62,186744689941406 -22,666757583618164

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5f934-dbg,tls_ldm_reloc_p 33,01789474487305 21,95754051208496

binutils-2,36,1-ld,bfd-armhf-clang-7,0,1,8-Wall_g_O0-0xf4a64-dbg,elf_link_renumber_hash_table_dynsyms -6,82403564453125 72,98777770996094

binutils-2,36,1-ld,bfd-armhf-gcc-8,3,0,6-Wall_g_O0-0x8c95c-dbg,elf_link_renumber_hash_table_dynsyms 8,116304397583008 44,525325775146484

binutils-2,36,1-ld,bfd-i386-clang-7,0,1,8-Wall_g_O0-0x8101b50-dbg,elf_link_renumber_hash_table_dynsyms -39,13298416137695 81,29414367675781

binutils-2,36,1-ld,bfd-i386-gcc-8,3,0,6-Wall_g_O0-0x8bb91-dbg,elf_link_renumber_hash_table_dynsyms -24,492856979370117 46,703243255615234

binutils-2,36,1-ld,bfd-mips-clang-7,0,1,8-Wall_g_O0-0x53ec7c-dbg,elf_link_renumber_hash_table_dynsyms -2,0147721767425537 103,80238342285156

binutils-2,36,1-ld,bfd-mips-gcc-8,3,0,6-Wall_g_O0-0x138f44-dbg,elf_link_renumber_hash_table_dynsyms 23,34385108947754 72,48896026611328

binutils-2,36,1-objdump-armhf-clang-7,0,1,8-Wall_g_O0-0x18bba4-dbg,unlink_if_ordinary -0,07079995423555374 -33,712162017822266

binutils-2,36,1-objdump-armhf-gcc-8,3,0,6-Wall_g_O0-0x102d58-dbg,unlink_if_ordinary -60,85440444946289 33,84822082519531

binutils-2,36,1-objdump-i386-clang-7,0,1,8-Wall_g_O0-0x81bb340-dbg,unlink_if_ordinary -38,25349807739258 11,484228134155273

binutils-2,36,1-objdump-i386-gcc-8,3,0,6-Wall_g_O0-0x14617d-dbg,unlink_if_ordinary -24,121700286865234 -16,03660774230957

binutils-2,36,1-objdump-mips-clang-7,0,1,8-Wall_g_O0-0x633080-dbg,unlink_if_ordinary -5,906651496887207 9,805792808532715

binutils-2,36,1-objdump-mips-gcc-8,3,0,6-Wall_g_O0-0x26b510-dbg,unlink_if_ordinary 17,165010452270508 -8,972970962524414

binutils-2,36,1-strip-armhf-clang-7,0,1,8-Wall_g_O0-0x55950-dbg,ihex_set_arch_mach 37,49272537231445 102,46661376953125

binutils-2,36,1-strip-i386-clang-7,0,1,8-Wall_g_O0-0x808b010-dbg,ihex_set_arch_mach 72,02375793457031 90,63675689697266

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x45d5c0-dbg,ihex_set_arch_mach 77,10151672363281 59,457969665527344

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x49efa0-dbg,mips_elf_create_stub_symbol 108,46430969238281 21,789541244506836

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O0-0x8acd8-dbg,mips_elf_create_stub_symbol 75,64817810058594 20,239973068237305

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O1-0x62054-dbg,mips_elf_create_stub_symbol 89,6202163696289 -13,157038688659668

openssl-3,0,0,alpha13-libcrypto,so-armhf-gcc-8,3,0,6-Wall_g_O3-0xeb00c-dbg,ERR_peek_error_line_data 120,69438171386719 -27,813230514526367

openssl-3,0,0,alpha13-libcrypto,so-i386-gcc-8,3,0,6-Wall_g_O3-0x163e10-dbg,ERR_peek_error_line_data 93,21912384033203 -79,36964416503906

openssl-3,0,0,alpha13-libcrypto,so-mips-gcc-8,3,0,6-Wall_g_O3-0x1620a8-dbg,ERR_peek_error_line_data 118,1903305053711 -60,2628288269043

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O0-0x43a7c-dbg,receipt_request_print -34,1889762878418 -62,57019805908203

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O1-0x3d03c-dbg,receipt_request_print 0,42533624172210693 -112,17686462402344

openssl-3,0,0,alpha13-openssl-armhf-gcc-8,3,0,6-Wall_g_O0-0x35384-dbg,receipt_request_print -67,231201171875 -72,7455062866211

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O0-0x807c810-dbg,receipt_request_print -30,874839782714844 -94,21327209472656

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O1-0x8071f90-dbg,receipt_request_print -62,25175857543945 -107,48030853271484

openssl-3,0,0,alpha13-openssl-i386-gcc-8,3,0,6-Wall_g_O0-0x37f2f-dbg,receipt_request_print -0,964881181716919 -77,44961547851562

openssl-3,0,0,alpha13-openssl-mips-gcc-8,3,0,6-Wall_g_O0-0x40494-dbg,receipt_request_print -31,199947357177734 -129,9629669189453

Function name :

Compiler :

Tableau 1-1-1

mips armhf i386

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O2-0xae4d0-sym,add_file_shuffle,isra,6 51,737083435058594 -120,13975524902344

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O3-0xbc128-sym,add_file_shuffle,isra,6 46,48991394042969 -91,6960678100586

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O2-0x77f88-sym,s_mips_file 40,32362365722656 -44,15257263183594

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O3-0x7e66c-sym,s_mips_file 54,59049987792969 -17,125036239624023

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_Os-0x6fc0c-sym,s_mips_file 71,91887664794922 -45,40969467163086

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x4401f0-dbg,_bfd_mips_elf_init_stubs -85,0827407836914 -3,770686149597168

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x44b218-dbg,tls_ldm_reloc_p 44,67158126831055 48,657562255859375

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5e484-dbg,_bfd_mips_elf_init_stubs -62,186744689941406 -22,666757583618164

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5f934-dbg,tls_ldm_reloc_p 33,01789474487305 21,95754051208496

binutils-2,36,1-ld,bfd-armhf-clang-7,0,1,8-Wall_g_O0-0xf4a64-dbg,elf_link_renumber_hash_table_dynsyms -6,82403564453125 72,98777770996094

binutils-2,36,1-ld,bfd-armhf-gcc-8,3,0,6-Wall_g_O0-0x8c95c-dbg,elf_link_renumber_hash_table_dynsyms 8,116304397583008 44,525325775146484

binutils-2,36,1-ld,bfd-i386-clang-7,0,1,8-Wall_g_O0-0x8101b50-dbg,elf_link_renumber_hash_table_dynsyms -39,13298416137695 81,29414367675781

binutils-2,36,1-ld,bfd-i386-gcc-8,3,0,6-Wall_g_O0-0x8bb91-dbg,elf_link_renumber_hash_table_dynsyms -24,492856979370117 46,703243255615234

binutils-2,36,1-ld,bfd-mips-clang-7,0,1,8-Wall_g_O0-0x53ec7c-dbg,elf_link_renumber_hash_table_dynsyms -2,0147721767425537 103,80238342285156

binutils-2,36,1-ld,bfd-mips-gcc-8,3,0,6-Wall_g_O0-0x138f44-dbg,elf_link_renumber_hash_table_dynsyms 23,34385108947754 72,48896026611328

binutils-2,36,1-objdump-armhf-clang-7,0,1,8-Wall_g_O0-0x18bba4-dbg,unlink_if_ordinary -0,07079995423555374 -33,712162017822266

binutils-2,36,1-objdump-armhf-gcc-8,3,0,6-Wall_g_O0-0x102d58-dbg,unlink_if_ordinary -60,85440444946289 33,84822082519531

binutils-2,36,1-objdump-i386-clang-7,0,1,8-Wall_g_O0-0x81bb340-dbg,unlink_if_ordinary -38,25349807739258 11,484228134155273

binutils-2,36,1-objdump-i386-gcc-8,3,0,6-Wall_g_O0-0x14617d-dbg,unlink_if_ordinary -24,121700286865234 -16,03660774230957

binutils-2,36,1-objdump-mips-clang-7,0,1,8-Wall_g_O0-0x633080-dbg,unlink_if_ordinary -5,906651496887207 9,805792808532715

binutils-2,36,1-objdump-mips-gcc-8,3,0,6-Wall_g_O0-0x26b510-dbg,unlink_if_ordinary 17,165010452270508 -8,972970962524414

binutils-2,36,1-strip-armhf-clang-7,0,1,8-Wall_g_O0-0x55950-dbg,ihex_set_arch_mach 37,49272537231445 102,46661376953125

binutils-2,36,1-strip-i386-clang-7,0,1,8-Wall_g_O0-0x808b010-dbg,ihex_set_arch_mach 72,02375793457031 90,63675689697266

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x45d5c0-dbg,ihex_set_arch_mach 77,10151672363281 59,457969665527344

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x49efa0-dbg,mips_elf_create_stub_symbol 108,46430969238281 21,789541244506836

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O0-0x8acd8-dbg,mips_elf_create_stub_symbol 75,64817810058594 20,239973068237305

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O1-0x62054-dbg,mips_elf_create_stub_symbol 89,6202163696289 -13,157038688659668

openssl-3,0,0,alpha13-libcrypto,so-armhf-gcc-8,3,0,6-Wall_g_O3-0xeb00c-dbg,ERR_peek_error_line_data 120,69438171386719 -27,813230514526367

openssl-3,0,0,alpha13-libcrypto,so-i386-gcc-8,3,0,6-Wall_g_O3-0x163e10-dbg,ERR_peek_error_line_data 93,21912384033203 -79,36964416503906

openssl-3,0,0,alpha13-libcrypto,so-mips-gcc-8,3,0,6-Wall_g_O3-0x1620a8-dbg,ERR_peek_error_line_data 118,1903305053711 -60,2628288269043

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O0-0x43a7c-dbg,receipt_request_print -34,1889762878418 -62,57019805908203

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O1-0x3d03c-dbg,receipt_request_print 0,42533624172210693 -112,17686462402344

openssl-3,0,0,alpha13-openssl-armhf-gcc-8,3,0,6-Wall_g_O0-0x35384-dbg,receipt_request_print -67,231201171875 -72,7455062866211

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O0-0x807c810-dbg,receipt_request_print -30,874839782714844 -94,21327209472656

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O1-0x8071f90-dbg,receipt_request_print -62,25175857543945 -107,48030853271484

openssl-3,0,0,alpha13-openssl-i386-gcc-8,3,0,6-Wall_g_O0-0x37f2f-dbg,receipt_request_print -0,964881181716919 -77,44961547851562

openssl-3,0,0,alpha13-openssl-mips-gcc-8,3,0,6-Wall_g_O0-0x40494-dbg,receipt_request_print -31,199947357177734 -129,9629669189453

Tableau 1-1-1-1

gcc Clang

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O2-0xae4d0-sym,add_file_shuffle,isra,6 51,737083435058594 -120,13975524902344

binutils-2,36,1-ar-mips-gcc-8,3,0,6-Wall_g_O3-0xbc128-sym,add_file_shuffle,isra,6 46,48991394042969 -91,6960678100586

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O2-0x77f88-sym,s_mips_file 40,32362365722656 -44,15257263183594

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_O3-0x7e66c-sym,s_mips_file 54,59049987792969 -17,125036239624023

binutils-2,36,1-as-mips-gcc-8,3,0,6-Wall_g_Os-0x6fc0c-sym,s_mips_file 71,91887664794922 -45,40969467163086

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x4401f0-dbg,_bfd_mips_elf_init_stubs -85,0827407836914 -3,770686149597168

binutils-2,36,1-gprof-mips-clang-7,0,1,8-Wall_g_O0-0x44b218-dbg,tls_ldm_reloc_p 44,67158126831055 48,657562255859375

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5e484-dbg,_bfd_mips_elf_init_stubs -62,186744689941406 -22,666757583618164

binutils-2,36,1-gprof-mips-gcc-8,3,0,6-Wall_g_O0-0x5f934-dbg,tls_ldm_reloc_p 33,01789474487305 21,95754051208496

binutils-2,36,1-ld,bfd-armhf-clang-7,0,1,8-Wall_g_O0-0xf4a64-dbg,elf_link_renumber_hash_table_dynsyms -6,82403564453125 72,98777770996094

binutils-2,36,1-ld,bfd-armhf-gcc-8,3,0,6-Wall_g_O0-0x8c95c-dbg,elf_link_renumber_hash_table_dynsyms 8,116304397583008 44,525325775146484

binutils-2,36,1-ld,bfd-i386-clang-7,0,1,8-Wall_g_O0-0x8101b50-dbg,elf_link_renumber_hash_table_dynsyms -39,13298416137695 81,29414367675781

binutils-2,36,1-ld,bfd-i386-gcc-8,3,0,6-Wall_g_O0-0x8bb91-dbg,elf_link_renumber_hash_table_dynsyms -24,492856979370117 46,703243255615234

binutils-2,36,1-ld,bfd-mips-clang-7,0,1,8-Wall_g_O0-0x53ec7c-dbg,elf_link_renumber_hash_table_dynsyms -2,0147721767425537 103,80238342285156

binutils-2,36,1-ld,bfd-mips-gcc-8,3,0,6-Wall_g_O0-0x138f44-dbg,elf_link_renumber_hash_table_dynsyms 23,34385108947754 72,48896026611328

binutils-2,36,1-objdump-armhf-clang-7,0,1,8-Wall_g_O0-0x18bba4-dbg,unlink_if_ordinary -0,07079995423555374 -33,712162017822266

binutils-2,36,1-objdump-armhf-gcc-8,3,0,6-Wall_g_O0-0x102d58-dbg,unlink_if_ordinary -60,85440444946289 33,84822082519531

binutils-2,36,1-objdump-i386-clang-7,0,1,8-Wall_g_O0-0x81bb340-dbg,unlink_if_ordinary -38,25349807739258 11,484228134155273

binutils-2,36,1-objdump-i386-gcc-8,3,0,6-Wall_g_O0-0x14617d-dbg,unlink_if_ordinary -24,121700286865234 -16,03660774230957

binutils-2,36,1-objdump-mips-clang-7,0,1,8-Wall_g_O0-0x633080-dbg,unlink_if_ordinary -5,906651496887207 9,805792808532715

binutils-2,36,1-objdump-mips-gcc-8,3,0,6-Wall_g_O0-0x26b510-dbg,unlink_if_ordinary 17,165010452270508 -8,972970962524414

binutils-2,36,1-strip-armhf-clang-7,0,1,8-Wall_g_O0-0x55950-dbg,ihex_set_arch_mach 37,49272537231445 102,46661376953125

binutils-2,36,1-strip-i386-clang-7,0,1,8-Wall_g_O0-0x808b010-dbg,ihex_set_arch_mach 72,02375793457031 90,63675689697266

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x45d5c0-dbg,ihex_set_arch_mach 77,10151672363281 59,457969665527344

binutils-2,36,1-strip-mips-clang-7,0,1,8-Wall_g_O0-0x49efa0-dbg,mips_elf_create_stub_symbol 108,46430969238281 21,789541244506836

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O0-0x8acd8-dbg,mips_elf_create_stub_symbol 75,64817810058594 20,239973068237305

binutils-2,36,1-strip-mips-gcc-8,3,0,6-Wall_g_O1-0x62054-dbg,mips_elf_create_stub_symbol 89,6202163696289 -13,157038688659668

openssl-3,0,0,alpha13-libcrypto,so-armhf-gcc-8,3,0,6-Wall_g_O3-0xeb00c-dbg,ERR_peek_error_line_data 120,69438171386719 -27,813230514526367

openssl-3,0,0,alpha13-libcrypto,so-i386-gcc-8,3,0,6-Wall_g_O3-0x163e10-dbg,ERR_peek_error_line_data 93,21912384033203 -79,36964416503906

openssl-3,0,0,alpha13-libcrypto,so-mips-gcc-8,3,0,6-Wall_g_O3-0x1620a8-dbg,ERR_peek_error_line_data 118,1903305053711 -60,2628288269043

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O0-0x43a7c-dbg,receipt_request_print -34,1889762878418 -62,57019805908203

openssl-3,0,0,alpha13-openssl-armhf-clang-7,0,1,8-Wall_g_O1-0x3d03c-dbg,receipt_request_print 0,42533624172210693 -112,17686462402344

openssl-3,0,0,alpha13-openssl-armhf-gcc-8,3,0,6-Wall_g_O0-0x35384-dbg,receipt_request_print -67,231201171875 -72,7455062866211

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O0-0x807c810-dbg,receipt_request_print -30,874839782714844 -94,21327209472656

openssl-3,0,0,alpha13-openssl-i386-clang-7,0,1,8-Wall_g_O1-0x8071f90-dbg,receipt_request_print -62,25175857543945 -107,48030853271484

openssl-3,0,0,alpha13-openssl-i386-gcc-8,3,0,6-Wall_g_O0-0x37f2f-dbg,receipt_request_print -0,964881181716919 -77,44961547851562

openssl-3,0,0,alpha13-openssl-mips-gcc-8,3,0,6-Wall_g_O0-0x40494-dbg,receipt_request_print -31,199947357177734 -129,9629669189453

Figure 14: Two-dimensional map of the ACFGs compiled
from 10 different source functions (represented by differ-
ent colors) with two compilers (represented by different
circle line types), plotted using the t-SNE dimensionality
reduction technique [25].

Train Data OpenSSL binutils

Test Data OpenSSL binutils OpenSSL binutils

Gemini 0.968 0.898 0.942 0.947
GESS 0.978 0.931 0.954 0.980

TABLE 3: Testing AUC after cross-dataset training, i.e.,
training and testing with different software components
(OpenSSL or binutils). For each configuration, the best
AUC is emphasized in bold.

when the model has been trained on functions from the
same software component than on functions from another
software component. We also notice that, for both models,
the AUC is higher when training on binutils and test-
ing on OpenSSL than the opposite. One explanation for
this might be that binutils contains more functions than
OpenSSL and that binutils is more diverse in the sense
that it encompasses a collection of various binary tools.3
Thus, a model trained on all these tools might generalize
better than a model trained only on OpenSSL. This shows
the importance of having a diverse training dataset for
accurately detecting similar binary functions.

Last but not least, we observe that GESS performs
better than Gemini in all scenarios and, in particular, when
testing with the binutils dataset where the AUC is always
higher for GESS by at least 0.003. This demonstrates
the ability of GESS to handle better the diversity of the
binutils source functions than Gemini.

4.5. Identifying Unknown Similar Functions

So far we have constructed our training, validation,
and test datasets such that they contain as many similar
pairs as dissimilar pairs. Moreover, in our experimental
setting, we have tried to guess whether a given pair was
similar or not, but never tried to identify all possible
functions similar to a given vulnerable function. In a
practical scenario where we want to detect a vulnerability,
we have to consider the whole set of binary functions and
compare them with the vulnerable function.

In a practical scenario where we want to detect some
vulnerabilities in a given target function, we have to
consider the whole set of binary functions and compare
them with the target function.

3. The list of the binary tools is available here: https://www.gnu.org/
software/binutils

Av
er

ag
e

Re
ca

ll

0 %

25 %

50 %

75 %

100 %

Top K
0 20 40 60 80 100 120 140 160 180 200

Gemini
Gemini (adapted)
GESS
GESS (adapted)

Figure 15: Average recall on the testing dataset when
retrieving the top-k nearest functions.

Therefore, in this new setting, we cannot rely on the
ROC curve and AUC but we rather should compute the
recall and precision results averaged over all ACFGs.
In order to identify all possible similar binary functions
from the whole set of possible functions, we select the
functions that are the k-nearest neighbors (in terms of
cosine similarity) of the target function. In order to get
the nearest neighbors, we compute the distance between
graph embeddings of the ACFGs by relying on FAISS [26]
which provides efficient nearest-neighbor search by op-
timizing the memory-speed-accuracy trade-off. It is in
practice several orders of magnitude faster than any other
k-nearest neighbor (k-NN) implementation. Moreover, in
terms of accuracy, the difference between FAISS and
traditional k-NN approaches is negligible in our setting.

We fine-tune our model for this new experimental
setting by adapting the manner model validation is per-
formed. Instead of relying on the validation AUC as
before, we now aim to maximize the recall averaged over
all possible values between 1 and k for every ACFG in the
validation set. Changing the validation process has a direct
impact on the model since the validation metric is what
determines the number of training epochs. In the following
results, we refer to these new models as adapted. The
training process remains the same as the one described in
Section 4.2. Finally, for the testing phase, for every ACFG
in the testing set, we get the k nearest neighbors among
all other ACFGs in the testing set.

Similarly to Feng et al. [5], we perform our exper-
iments for k ranging from 1 to 200. We measure, for
every k, the average recall and average precision over all
ACFGs in the testing set. Figure 15 depicts the average
recall while Figure 16 depicts the average precision.

First, as expected, the adapted models perform slightly
better than the original ones on this problem, and thus we
focus on these results in the following. We observe that,
when retrieving the 20 nearest neighbors, GESS (adapted)
provides an average recall of 59.6% and Gemini (adapted)
an average recall of 37.0%, which represents a relative
increase of more than 60%. For k = 200, the average

https://www.gnu.org/software/binutils
https://www.gnu.org/software/binutils

Av
er

ag
e

Pr
ec

is
io

n

0 %

25 %

50 %

75 %

100 %

Top K
0 20 40 60 80 100 120 140 160 180 200

Gemini
Gemini (adapted)
GESS
GESS (adapted)

Figure 16: Average precision on the testing dataset when
retrieving the top-k nearest functions.

recall of GESS (adapted) is of 83.1% while the recall
of Gemini (adapted) is of 55.2%, which represents an
increase of more than 50%. In fact, the average recall
of GESS is at least 50% greater than the average recall
of Gemini for any k > 8.

We notice that GESS achieves a recall of 50% when
retrieving the top-10 nearest neighbors, while Gemini
needs to retrieve 116 nearest neighbors for a comparable
performance, which then dramatically affects the preci-
sion. As we can observe in Figure 16, the average preci-
sion quickly drops for increasing values of k, but GESS
still outperforms Gemini. If we take k = 10, we observe
that GESS still provides a decent average precision of
32.3%. If we retrieve the 116 nearest neighbors to reach
the same recall with Gemini, the average precision drops
to less than 3%. This implies that a security analyst would
only identify one actual vulnerable function out of the 30
functions (detected by Gemini) that they would inspect.

5. Related Work

We summarize here the main previous approaches
tackling the problem of binary code similarity detection,
and in particular the cross-architecture methods that rely
on control flow graphs.

Pewny et al. proposed the first effective cross-
architecture similarity detection technique based on graph
matching [4]. Their approach works by tracing the in-
put/output operations in a binary function and by using
them as node features in the control flow graph. It then
compares graphs individually using graph matching. In
order to provide a more efficient approach, Eschweiler
et al. propose to rely on features that are simple – and
therefore faster to extract – such as the total number
of instructions and the number of arithmetic instructions
[15]. However, their approach still relies on slow graph
matching algorithms.

Feng et al. borrow techniques from image processing
and adapt them to graphs for bug detection [5]. Their ap-
proach, called Genius, relies on unsupervised techniques
to extract an embedding from a graph and uses locality-

sensitive hashing (LSH) in order to perform an embed-
ding search in scalable time. The main drawback of this
approach is that it relies on bipartite graph matching to
learn its embedding function. This is still highly inefficient
and requires an offline phase of training before being
able to compute the embeddings. This prevents the model
from being updated frequently, for instance to take newly
discovered vulnerabilities into account.

Phan et al. [27] propose to use graph-based CNN in
addition to max pooling to compute the graph embedding.
Their approach uses a CNN with fixed receptive fields
in the CFGs. In their approach, nodes within a receptive
field are treated differently whether they are outgoing,
incoming or current nodes as they are assigned a different
filter. This increases the number of parameters and leads to
potential overfitting. Our approach which uses backward
message passing can alleviate this problem as it does
not require treating nodes differently. In addition, the
problem they want to solve is different than ours. They
want to classify whether a program can run without errors
or it cannot compile or it has syntactical problems. In
our setting, we want to check whether two functions are
similar based on their ACFGs. This is considered to be
harder as we need to train the model in an unsupervised
manner.

Similar to the above approach, Massarelli et al. [28]
propose a graph embedding model based on message pass-
ing neural network. Their approach differs from ours and
[27] as they learn the node features instead of constructing
them manually. This is done based on word2vec where
each instruction is considered as a word and the whole
function is considered as a document. SimInspector [29]
is another approach that aims to learn the node features
of the CFGs. Their approach involves 3 steps. First, in-
struction embeddings are constructed similar to [28]. In
the second step, the features of nodes of the CFGs are
built using BiLSTM where the inputs are the instruction
embeddings. Finally, the authors use structure2vec [30]
to construct the graph embedding from the node features
obtained from the BiLSTM. The idea of learned node
features is interesting, and we will consider it in future
work.

Ding et al. [31] aim to construct “paragraph” embed-
dings where a paragraph embedding captures the semantic
and structure of an assembly function and its CFG. First,
from each CFG, they identify possible execution paths,
e.g., by using random walks on the CFG. The execution
paths of a CFG are considered as sentences and they
together form a paragraph. The paragraph embeddings
can then be constructed using an improved version of
word2vec that can construct embeddings for paragraphs.
As their approach does not use a graph embedding model,
it cannot capture the relations between nodes in CFGs
directly. While the execution paths can somewhat capture
the relations, they are only approximations.

Xu et al. use supervised learning techniques and deep
neural networks to get an embedding that learns on the
data some notion of similarity [6]. Their method, referred
to as Gemini, relies on neural networks and computes
graph embeddings using structure2vec [30]. The model
is trained end-to-end using Siamese networks [32]. Func-
Net [33] is a similar method to Gemini as it uses struc-
ture2vec [30] as the underlying graph embedding model.

However, FuncNet uses triplet loss to learn the model in an
end-to-end manner. Compared to Genius, Gemini does not
rely on expensive graph matching, which makes it train
faster (in the order of hours). Moreover, the embedding
function is a neural network and can be retrained quickly
in order to account for new data or for a difference in the
definition of similar graphs. It also gives more accurate
results on the same data and computes the graph embed-
dings more than 380 times faster than Genius. Given these
results and the similarity between FuncNet and Gemini,
we re-implemented Gemini and used it as our comparison
baseline.

Li et al. propose to extend graph neural network
(GNN) models for similarity learning [34]. Their new
graph matching networks derive a similarity score through
a cross-graph attention mechanism to associate nodes
across graphs and identify differences. It provides very
good accuracy on a dataset generated from a popular
open-source video processing software. However, it only
matches graphs by pair, i.e., takes a pair of graphs as input
and returns a similarity score as output, which signifi-
cantly reduces the scalability of the approach. Indeed, this
approach would be prohibitive in the case where we want
to detect some vulnerabilities in a given target function
which requires to compare it with a large set of binary
functions (as described in Section 4.5).

Song et al. [35] tackle a different problem than ours.
They want to classify kernel objects from the memory
snapshot of a running system. Recognizing kernel objects
is important in identifying if an attack is happening. They
construct a memory graph which captures the point-to
relations of memory segments and their adjacency. They
design a GNN architecture specifically for the memory
graph which captures the node features, node relations,
and temporal information. While their approach also uses
GNN to construct graph embedding, the underlying mem-
ory graphs are different from our CFGs which makes their
GNN not applicable to our problem.

Besides the aforementioned related academic research,
a blog post from Google’s Project Zero team demonstrates
the practical value that binary code similarity detection
can have for supporting bug hunters [36]. In their work,
Google’s team developed an Apache-licensed C++ toolkit
to find statically-linked copies of (vulnerable) third-party
library functions in binary executables. The proposed ap-
proach uses a linear function (based on SimHashing) to
hash disassembled functions, preserving some notion of
function similarity. As a potential way for improving their
tool in the future, the academic literature reviewed in this
section is mentioned.

Finally, note that earlier approaches have been pro-
posed for cross-platform bug search [37]–[40], but these
are too costly to be applied for large-scale firmware bug
search and will thus not be discussed in details here.

6. Conclusion and Future Work

In this paper, we have investigated several graph em-
bedding methods for performing cross-platform binary
code similarity detection, including graph neural networks
(GNNs) and the best existing approach, Gemini. Build-
ing upon the recent advances in deep learning, we have
proposed and implemented a new method, GESS, that

outperforms all other graph embedding methods. More
specifically, GESS enables us to reach, for a fixed false
positive rate of 0.01, a true positive rate 36% higher than
the best existing approach. The improvement provided by
GESS is even more striking when considering a more
realistic setting of a large function search space. In this
scenario, we show that, in order to reach the same recall
rate (detection capability) of about 50%, GESS reduces
the number of binary functions to inspect for a security
analyst by ten compared to Gemini.

In future work, our newly proposed method could be
tested on datasets that contain functions with known vul-
nerabilities, and it could be applied to functions extracted
from widely used device firmwares. Computing function
similarities on such datasets would allow to measure
GESS’ performance on a more concrete scenario, with the
goal to discover security vulnerabilities in these devices.

Acknowledgment

The authors would like to thank Eric Jollès and Patrick
Schaller for providing feedback on the manuscript and our
shepherd for his guidance and feedback on the revised
manuscript.

References

[1] A. Cui, M. Costello, and S. J. Stolfo, “When Firmware Modifi-
cations Attack: A Case Study of Embedded Exploitation,” p. 13,
2013.

[2] A. Greenberg, “Hackers remotely kill a jeep on the highway-with
me in it,” Jul 2015. [Online]. Available: https://www.wired.com/
2015/07/hackers-remotely-kill-jeep-highway/

[3] J. Berger, “A dam, small and unsung, is caught
up in an iranian hacking case,” Mar 2016. [On-
line]. Available: https://www.nytimes.com/2016/03/26/nyregion/
rye-brook-dam-caught-in-computer-hacking-case.html

[4] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz,
“Cross-Architecture Bug Search in Binary Executables,” in
2015 IEEE Symposium on Security and Privacy. San Jose,
CA: IEEE, May 2015, pp. 709–724. [Online]. Available:
https://ieeexplore.ieee.org/document/7163056/

[5] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin,
“Scalable Graph-based Bug Search for Firmware Images,”
in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. Vienna Austria:
ACM, Oct. 2016, pp. 480–491. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2976749.2978370

[6] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
Network-based Graph Embedding for Cross-Platform Binary Code
Similarity Detection,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. Dallas
Texas USA: ACM, Oct. 2017, pp. 363–376. [Online]. Available:
https://dl.acm.org/doi/10.1145/3133956.3134018

[7] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive
Representation Learning on Large Graphs,” arXiv:1706.02216
[cs, stat], Sep. 2018, arXiv: 1706.02216. [Online]. Available:
http://arxiv.org/abs/1706.02216

[8] T. N. Kipf and M. Welling, “Semi-Supervised Classification
with Graph Convolutional Networks,” arXiv:1609.02907 [cs,
stat], Feb. 2017, arXiv: 1609.02907. [Online]. Available: http:
//arxiv.org/abs/1609.02907

[9] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are
Graph Neural Networks?” arXiv:1810.00826 [cs, stat], Feb. 2019,
arXiv: 1810.00826. [Online]. Available: http://arxiv.org/abs/1810.
00826

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.nytimes.com/2016/03/26/nyregion/rye-brook-dam-caught-in-computer-hacking-case.html
https://www.nytimes.com/2016/03/26/nyregion/rye-brook-dam-caught-in-computer-hacking-case.html
https://ieeexplore.ieee.org/document/7163056/
https://dl.acm.org/doi/10.1145/2976749.2978370
https://dl.acm.org/doi/10.1145/2976749.2978370
https://dl.acm.org/doi/10.1145/3133956.3134018
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826

[10] Z. Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, and S. He, “Dynamic
spatial-temporal graph convolutional neural networks for traffic
forecasting,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, no. 01, 2019, pp. 890–897.

[11] W. Torng and R. B. Altman, “Graph convolutional neural networks
for predicting drug-target interactions,” Journal of chemical infor-
mation and modeling, vol. 59, no. 10, pp. 4131–4149, 2019.

[12] S. He, F. Bastani, S. Jagwani, E. Park, S. Abbar, M. Alizadeh,
H. Balakrishnan, S. Chawla, S. Madden, and M. A. Sadeghi,
“Roadtagger: Robust road attribute inference with graph neural
networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 07, 2020, pp. 10 965–10 972.

[13] A. Pal, C. Eksombatchai, Y. Zhou, B. Zhao, C. Rosenberg, and
J. Leskovec, “Pinnersage: multi-modal user embedding framework
for recommendations at pinterest,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 2311–2320.

[14] “radare2,” 2021. [Online]. Available: https://rada.re/n/radare2.html

[15] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla,
“discovRE: Efficient Cross-Architecture Identification of
Bugs in Binary Code,” in Proceedings 2016 Network
and Distributed System Security Symposium. San
Diego, CA: Internet Society, 2016. [Online]. Available:
https://www.ndss-symposium.org/wp-content/uploads/2017/09/
discovre-efficient-cross-architecture-identification-bugs-binary-code.
pdf

[16] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and
J. Leskovec, “Hierarchical Graph Representation Learning with
Differentiable Pooling,” arXiv:1806.08804 [cs, stat], Feb. 2019,
arXiv: 1806.08804. [Online]. Available: http://arxiv.org/abs/1806.
08804

[17] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning Convolutional
Neural Networks for Graphs,” p. 10, 2016.

[18] K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” ArXiv e-prints, 11 2015.

[19] “Gcc, the gnu compiler collection,” 2021. [Online]. Available:
https://gcc.gnu.org/

[20] “Clang: a c language family frontend for llvm,” 2021. [Online].
Available: https://clang.llvm.org/

[21] “Bug 48623,” Dec. 2020. [Online]. Available: https://bugs.llvm.
org/show bug.cgi?id=48623

[22] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Sig-
nature verification using a” siamese” time delay neural network,”
Advances in Neural Information Processing Systems, vol. 6, pp.
737–744, 1993.

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680,
1983.

[24] “Pytorch geometric documentation¶,” 2021. [Online]. Available:
https://pytorch-geometric.readthedocs.io/en/latest/

[25] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.

[26] “Faiss,” 2021. [Online]. Available: https://ai.facebook.com/tools/
faiss

[27] A. V. Phan, M. Le Nguyen, and L. T. Bui, “Convolutional neural
networks over control flow graphs for software defect prediction,”
in 2017 IEEE 29th International Conference on Tools with Artifi-
cial Intelligence (ICTAI). IEEE, 2017, pp. 45–52.

[28] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Bal-
doni, “Investigating graph embedding neural networks with unsu-
pervised features extraction for binary analysis,” in Proceedings of
the 2nd Workshop on Binary Analysis Research (BAR), 2019.

[29] X. Zhu, L. Jiang, and Z. Chen, “Cross-platform binary code simi-
larity detection based on nmt and graph embedding,” Mathematical
Biosciences and Engineering, vol. 18, no. 4, pp. 4528–4551, 2021.

[30] H. Dai, B. Dai, and L. Song, “Discriminative Embeddings of Latent
Variable Models for Structured Data,” p. 10, 2016.

[31] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 472–489.

[32] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. Lecun, C. Moore,
E. Säckinger, and R. Shah, “Signature verification using a
“siamese” time delay neural network,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 07, no. 04, p.
669–688, 1993.

[33] M. Luo, C. Yang, X. Gong, and L. Yu, “Funcnet: A euclidean
embedding approach for lightweight cross-platform binary recog-
nition,” in International Conference on Security and Privacy in
Communication Systems. Springer, 2019, pp. 319–337.

[34] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,”
in International conference on machine learning. PMLR, 2019,
pp. 3835–3845.

[35] W. Song, H. Yin, C. Liu, and D. Song, “Deepmem: Learning
graph neural network models for fast and robust memory forensic
analysis,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 606–618.

[36] T. Dullien, “Searching statically-linked vulnerable library functions
in executable code,” https://googleprojectzero.blogspot.com/2018/
12/searching-statically-linked-vulnerable.html, accessed: 2021-09-
13.

[37] T. Dullien and R. Rolles, “Graph-based comparison of executable
objects (english version),” Sstic, vol. 5, no. 1, p. 3, 2005.

[38] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically find-
ing semantic differences in binary programs,” in International Con-
ference on Information and Communications Security. Springer,
2008, pp. 238–255.

[39] J. Ming, M. Pan, and D. Gao, “ibinhunt: Binary hunting with inter-
procedural control flow,” in International Conference on Informa-
tion Security and Cryptology. Springer, 2012, pp. 92–109.

[40] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate com-
parison of binary executables,” in Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop,
2013, pp. 1–10.

https://rada.re/n/radare2.html
https://www.ndss-symposium.org/wp-content/uploads/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
http://arxiv.org/abs/1806.08804
http://arxiv.org/abs/1806.08804
https://gcc.gnu.org/
https://clang.llvm.org/
https://bugs.llvm.org/show_bug.cgi?id=48623
https://bugs.llvm.org/show_bug.cgi?id=48623
https://pytorch-geometric.readthedocs.io/en/latest/
https://ai.facebook.com/tools/faiss
https://ai.facebook.com/tools/faiss
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html
https://googleprojectzero.blogspot.com/2018/12/searching-statically-linked-vulnerable.html

	Introduction
	Background
	Control Flow Graphs
	Attributed Control Flow Graphs
	Graph Neural Networks
	From Node to Graph Embeddings

	Methodology
	Graph Embeddings for Similarity Search (GESS)
	Backward Message Passing (BMP)

	Experimental Results
	Dataset
	Experimental Protocol
	General Results
	Cross-Dataset Training
	Identifying Unknown Similar Functions

	Related Work
	Conclusion and Future Work
	References

