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Abstract

Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci
are incongruent—due to events such as incomplete lineage sorting or horizontal gene transfer—it can be misleading to
infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific
processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such “process-
agnostic” approaches typically infer a tree for each locus and cluster these. There are, however, many possible combi-
nations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is
largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems
with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we
perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evo-
lutionary history. We observe that the best-performing combinations are distances accounting for branch lengths fol-
lowed by spectral clustering or Ward’s method. We also introduce two statistical tests to infer the optimal number of
clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the
usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying
topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta. We release treeCl, a new
program to cluster genes of common evolutionary history (http://git.io/treeCl).
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Introduction
Molecular phylogenetic methods infer the evolutionary his-
tory of homologous sequences. The techniques of molecular
phylogenetics were developed in the analysis of individual
protein sequences (Neyman 1971; Kashyap and Subas
1974), but due to the modern abundance of sequencing
data it is increasingly common to infer trees by jointly ana-
lyzing sequences from multiple loci (Delsuc et al. 2005). By
considering more data, multilocus analyses are expected to
deliver better-resolved and less biased inferences by averaging
out uncertainty over a greater amount of data (Pamilo and
Nei 1988).

There are a number of methods for multilocus phyloge-
netic analysis (Bininda-Emonds et al. 2002; de Queiroz and
Gatesy 2007; Liu et al. 2009). Many of these proceed by infer-
ring the single evolutionary tree that best fits the entire data
set. Such “averaging” over multiple loci presumes that these
loci share a common evolutionary history. However, when a
data set comprises multiple loci, the trees derived from indi-
vidual loci have the potential to be incongruent (Jeffroy et al.
2006). A key question here is whether incongruence results
from sampling error, or if it indicates a real underlying

difference in the evolution of distinct genomic loci. If we build
a single summary tree from multiple loci, we are implicitly
assuming the former: that each locus is a noisy estimate of the
same underlying tree.

Alternatively, we might expect different regions of a ge-
nome to have different histories (Leigh, Lapointe, et al. 2011),
due to a variety of processes such as horizontal gene transfer
(HGT), hybridization, incomplete lineage sorting (ILS), and
recombination. If we believe such processes have occurred,
then we should expect that the trees derived from different
loci could be incongruent with one another. Consequently,
“summary” trees inferred from the entire data set may be only
partially representative or, in the worst case, not representa-
tive of the evolution of any locus. Because this is a systematic
error, rather than noise, we cannot expect it to be reduced by
adding more data (Philippe et al. 2011). If we believe there is
real heterogeneity in the evolutionary process that produced
the genomes, and incongruence is an indication of this, then
we should look for ways of partitioning multilocus data
into groups that are related by the same history (Bull et al.
1993; Huelsenbeck et al. 1994; Cunningham 1997; Waddell
et al. 2000).
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Many methods dealing with incongruence make explicit
assumptions about its biological basis. Such “mechanistic”
approaches have been developed to model HGT (Hallett
and Lagergren 2001; Dessimoz et al. 2008; Abby et al. 2010),
ILS (Rannala and Yang 2003; Heled and Drummond 2010),
recombination (Kosakovsky Pond et al. 2006), gene duplica-
tion (GD) (Chen et al. 2000; Boussau et al. 2013), and com-
binations of processes such as combined ILS/GD models
(Bansal et al. 2010; Doyon et al. 2010; Sz€oll}osi and Daubin
2012). However, mechanistic approaches can be computa-
tionally prohibitive, and may not be robust to other
unmodeled sources of incongruence.

We focus our attention on an alternative class of methods
that we will describe as “process-agnostic.” These aim to de-
tect the existence and extent of any significant incongruence
within a data set, without relying on any assumptions about
its biological basis. Existing process-agnostic approaches take
the form of statistical tests of incongruence (Planet 2006;
Leigh, Lapointe, et al. 2011) and clustering approaches relying
on partitioning data sets into groups that are cohesive and
self-similar (Nye 2008; Leigh, Schliep, et al. 2011).

Nye’s Tree of Trees (2008) summarizes the phylogenetic
similarities among genes as another tree, termed a meta-tree,
where a tip corresponds to a tree derived from multilocus
data, and an internal node represents the consensus of its
child trees. The meta-tree is inferred from intertree Robinson-
Foulds (1981) distances using an algorithm analogous to
neighbor joining (Saitou and Nei 1987).

Similarly, Conclustador (Leigh, Schliep, et al. 2011) uses
intertree distances as a basis for clustering. Trees are com-
pared using a novel Euclidean distance among bipartitions
weighted by bootstrap support, and for clustering Leigh et al.
use a version of the k-means algorithm and a spectral clus-
tering method (Kaufman and Rousseeuw 1987; Zelnik-Manor
and Perona 2004). A conceptually similar method is PhyBin
(Newton and Newton 2013), which can either identify genes
with topologically identical trees or perform hierarchical clus-
tering on the Robinson-Foulds distance matrix between every
tree.

Statistical binning (Mirarab et al. 2014) uses a graph-based
algorithm to divide a set of genes into a number of approx-
imately equal-sized bins of phylogenetically compatible genes
(Warnow 1994). This has been used as a preprocessing step,
with the bins subsequently used as input for coalescent spe-
cies tree estimation; binning is shown to reduce run times,
and to increase accuracy in the presence of ILS (Mirarab et al.
2014).

BUCKy (An�e et al. 2007; Larget et al. 2010) uses a Bayesian
probabilistic framework to estimate a gene-to-tree map that
assigns each gene to one of the (2n � 3)!! possible unrooted
trees on n taxa (Felsenstein 2004). A Dirichlet process prior
(Ferguson 1973; Antoniak 1974) is used to determine the total
number of distinct trees represented by the gene-to-tree map.

These methods have in common that they each adopt a
specific clustering procedure. There are, however, many po-
tential distance measures and clustering algorithms, and we
know almost nothing about their relative performance in
identifying genes that share common evolutionary histories

under plausible biological scenarios. For instance, the
Robinson-Foulds distance used in Tree of Trees ignores any
difference in branch lengths among trees, yet these might
provide useful information in the context of ILS; the
Dirichlet process prior in BUCKy tends to result in uneven
cluster sizes (An�e et al. 2007), yet this might be suboptimal in
the context of recombination. Furthermore, the problem of
determining the optimal number of clusters remains poorly
understood, with methods providing no, or only generic,
solutions.

Here, we present a survey of clustering methods to parti-
tion multilocus data sets into groups with consistent under-
lying phylogenies. Our aims are to investigate whether this is a
viable approach to use to partition multilocus data in an
evolutionarily meaningful way, and to measure the relative
effectiveness of each method. Specifically, we test combina-
tions of three distance measures between trees (table 1) and
seven well-established clustering algorithms (table 2) on sim-
ulated and empirical sequence data.

We also introduce two likelihood ratio tests for inferring
the optimal number of clusters. We test them extensively
through simulations and show that they accurately recover
the true number of clusters and outperform the silhouette
criterion, a general-purpose heuristic.

We apply the best combination of tree distance, clustering
method, and stopping criterion to two empirical data sets:
alignments of 344 loci in 18 yeast taxa (Hess and Goldman
2011), and of 176 loci in 306 taxa derived from 7 species of
Chiastocheta genus globeflower flies.

Table 1. Distance Metrics Investigated.

Distance Measure Features Incorporated

Robinson-Foulds Topology
Euclidean Branch lengths
Geodesic Topology and branch lengths

Table 2. Clustering Methods Investigated.

Clustering Method Type Implementation

Single linkage Hierarchical Fastcluster
(M€ullner 2013)

Complete linkage Hierarchical Fastcluster
Average linkage

(UPGMA)
Hierarchical Fastcluster

Ward’s method Hierarchical Fastcluster
Spectral

clustering (using
k-means
for the final
clustering step)

Coordinate
transform

Spectral clustering:
Custom implementation
in treeCl (after
Zelnik-Manor and
Perona 2004)

k-means: Scikit-learn
(Pedregosa et al. 2011)

MDS þ
k-means

Coordinate
transform

Custom implementation
in treeCl (after
Torgerson 1952)

k-medoids Partitioning
around
medoids

C Clustering Library
(de Hoon et al. 2004)
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The analyses were carried out using our new open source
software package, treeCl, freely available at http://git.io/treeCl
(last accessed March 1, 2016).

Results
The clustering approach investigated here takes a set of se-
quence alignments (one alignment per locus), and from them
describes a partition of the data that divides the alignments
into nonoverlapping subsets, each subset containing loci
sharing a common phylogenetic history. Throughout this ar-
ticle we will describe such a division as a “partition,” and the
resulting subsets as “clusters.” The approach is a three-step
pipeline (fig. 1). First, we infer a separate phylogenetic tree for
each input sequence alignment. Second, we gauge the level of
evolutionary similarity among loci by measuring distances
between pairs of trees. Third, we apply a clustering algorithm
on the distances to generate a set of clusters. The number of
clusters is either a fixed value decided a priori, or inferred from
the data using tests introduced below.

In the following, we describe the results of a series of sim-
ulation experiments designed to explore the parameter space
of the tree clustering approach and choose the most effective
combinations of methods. We assess different stopping cri-
teria for choosing the best-supported number of clusters
from the data, again using simulation. Finally, we present

the application of our method to data sets of yeast orthologs
and of Chiastocheta genus globeflower flies.

Performance of the Combinations of Distance Metrics
and Clustering Methods
Combinations of clustering methods (table 1) and distance
metrics (table 2) were tested on simulated data over a range
of conditions, described in Materials and Methods (table 3).

We investigated the performance of combinations of dis-
tance metrics and clustering methods for a fixed and known
number of clusters. To assess the accuracy of each resulting
partition, we computed the difference between the true par-
tition (known from simulation) and the inferred partition
using variation of information, an information-theoretic mea-
sure of the difference between two partitions of the same set
(Meil�a 2007). A variation of information value of zero is ob-
tained when the two partitions are the same, and increasing
positive values are obtained for partitions that are increasingly
different.

Our results are summarized in figure 2. In terms of distance
metrics, the performance using the Euclidean and geodesic
distances is considerably better than Robinson-Foulds. Of
these two, the geodesic distance performs marginally better
than Euclidean. These conclusions hold for both skewed and
uniform cluster size distributions, for the small and large data
sets (supplementary figs. S1–S3, Supplementary Material on
line), and for scenarios simulating both ILS (using nearest-
neighbor interchange [NNI] rearrangements) and HGT (using
subtree prune-and-regraft [SPR]).

In terms of clustering methods, the performance is worst
using the simpler hierarchical methods—single linkage, com-
plete linkage, and average linkage. Hierarchical clustering using
Ward’s criterion is more successful, but the best-performing
methods are those involving embedding the distance matrix in
a coordinate space: spectral and multidimensional scaling
(MDS). However, MDS, as well as k-medoids, shows erratic
behavior in some of the scenarios tested (supplementary figs.

Input Data

Infer trees

Inter-tree distances ClusteringSingle-locus trees

Calculate 
distances

Run clustering 
algorithm

FIG. 1. Overview of the clustering process. From left to right: input alignments are read; trees are inferred from the alignments; intertree distances
are computed and used as the basis for clustering. Further procedures are used to re-estimate one tree for each cluster and to choose the optimal
number of clusters—see text for details.

Table 3. Attributes of the Four Simulated Data Set Scenarios with
Incongruence Used to Test Combinations of Distance Metric and
Clustering Method, and the Scenario Used to Test the Effect of
Incomplete Occupancy.

Name Taxa Clusters Loci Distribution of
Loci into Clusters

Small uniform 20 4 60 15, 15, 15, 15
Small skewed 20 4 60 5, 10, 15, 30
Large uniform 40 6 90 15, 15, 15, 15, 15, 15
Large skewed 40 6 90 5, 5, 10, 10, 20, 40
Incomplete

occupancy
50 4 60 15, 15, 15, 15
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S1–S3, Supplementary Material online), and these were not
considered for further analyses. Summarizing these observa-
tions, the combination of Euclidean or geodesic distances
with spectral or Ward clustering seems to provide consistently
the best overall performance across various conditions tested
here. These combinations were used in our further analyses.

Performance of Methods for Determining the
Number of Clusters
So far we have investigated performance with a known num-
ber of clusters, but this is typically unknown. To infer it, we
devised two special-purpose likelihood ratio test procedures
using empirical distributions of the test statistic: one a distri-
bution derived from the input data via permutation, and the
other derived via a parametric bootstrap resampling proce-
dure (see Materials and Methods). We also compared these
with a general-purpose “silhouette” criterion (Rousseeuw
1987). For a single point the silhouette value is the ratio of
the mean of the distances to all other points in its cluster to

the mean of the distances to all points in the nearest cluster.
The silhouette score for the entire partition is the mean of
these ratios over all points in the data set. The optimal num-
ber of clusters is inferred as the value for which the silhouette
score is maximized.

For clarity, we first describe the results for a single set of
sequences (one problem instance) before presenting our ag-
gregate results. Given a problem instance, we repeat the clus-
tering procedure with a varying number of clusters and
compute the overall partition likelihood for each. Because
specifying a greater number of clusters provides more free-
dom for the model to fit the data, the likelihood is expected
to increase: this is generally what we observe. However, as in
all likelihood ratio tests, the key consideration is by how much
the likelihood must increase to warrant using the more com-
plex model. To tackle this we generate empirical distributions
of the likelihood increase from pseudoreplicate data derived
from the data present in the instance, through the permuta-
tion and parametric bootstrap procedures described in
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FIG. 2. The relative performances of combinations of distance metric (varying over columns of panels) and clustering methods (shown by the
colors of the lines), as measured by the variation of information metric (y-axes; higher values show a larger departure from the correct solution).
Lines show the mean value obtained from 1,000 replicates, and the error bars show the standard error of the mean. Rows correspond to the
experiments with a partition of uniformly sized clusters (A–C) and those with a partition of clusters of skewed sizes (D–F). In each individual panel,
the x-axis represents the number of NNI rearrangements separating the underlying clusters, so that increasing values along this axis correlate with
the clustering problem becoming easier.
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Materials and Methods. The likelihood increase from the orig-
inal data is compared with the expected increase from the
empirical distribution to determine significance (fig. 3 and
supplementary fig. S4, Supplementary Material online).

Let us now consider the results over multiple problem in-
stances. We simulated data sets using the procedure corre-
sponding to the “small uniform” setup (see Simulating Data
Sets with Incongruence), with two levels of difficulty: we gener-
ated 100 data sets from trees separated by 1 SPR move (referred
to as “difficult”), and 100 separated by 5 SPR moves (“moder-
ate”). Each data set was analyzed under the four combinations of
Euclidean or geodesic distances with spectral or Ward’s method
clustering. This resulted in a total of 800 problem instances.

To investigate the overall performance of the three stop-
ping criteria, we first consider the aggregate results for all 400
difficult and 400 moderate problem instances, that is, 100
each under all four combinations of distance metric and clus-
tering procedure (fig. 4). For both the difficult and moderate
cases, the distribution of the number of clusters chosen is
centered on the true value, 4, for all three criteria. However, in
the difficult case, the distributions of the permutation and

bootstrap tests are much tighter than the silhouette score,
indicating that these two stopping criteria make correct calls
more often. The results are consistent in the moderate case,
although the differences between criteria are smaller, with all
of them making many more correct calls (supplementary fig.
S5E–H, Supplementary Material online).

We also considered the performance of the stopping cri-
teria separately for the different distance metrics and cluster-
ing methods. In terms of distance metrics, we see little
difference between geodesic and Euclidean distances. In con-
trast, we observe that all three stopping criteria perform no-
ticeably better in combination with spectral clustering than
with Ward’s method (supplementary fig. S5, Supplementary
Material online). This is particularly the case for our two new
criteria (permutation and bootstrap), which outperform the
silhouette by a greater margin on the spectral clustering runs.

Dealing with Incomplete Occupancy across Loci
In the simulations considered so far, we have covered cases in
which there has been no missing data. When analyzing real
data, we cannot guarantee that all loci will be present for all
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FIG. 3. Comparison of the criteria used to determine the number of clusters on a single problem instance—in this example, data simulated for 60
loci belonging to 4 clusters, each of size 15, with the clusters’ trees separated by 1 SPR. As the proposed number of clusters increases, the likelihood
increases, which is expected because of the greater number of free parameters in the model. (A) Permutation test: the improvement in likelihood
for each additional cluster (red curve) is significantly greater than that observed for permuted data sets (green dots show the distribution of values
over 100 permutations) until the comparison between four and five clusters is reached, correctly implying that the use of four clusters is optimal.
(B) Parametric bootstrap test: again, the improvement for each additional cluster (red curve) is significantly greater than that for data sets
simulated for one fewer cluster (blue dots) until the true number of clusters (four) has been reached. (C) Silhouette score: the general-purpose
silhouette stopping criterion has its maximum at the true value of 4. We note that in this instance, comprising a single data set from one simulation
design, the three methods agree on the true answer.
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taxa. The effect that missing data have on our method is that
we are required to compare trees with different leaf sets, a
circumstance for which distance metrics have not been de-
fined. A simple measure to counteract this is to prune trees to
the intersection of their taxon sets, and then measure the
distance between these reduced trees.

To assess the impact of incomplete occupancy on our
approach’s ability to infer the correct clusters, we generated
additional simulated data sets containing a varying propor-
tion of randomly selected missing genes (see Materials and
Methods) and analyzed the data using the best combination
of distance measure and clustering method (geodesic dis-
tances and spectral clustering). With missing data, when
the number of clusters is known in advance, the true partition
of the data is recovered with high accuracy (measured by

variation of information) as long as the clusters are separated
by a few topological rearrangements—even when data are
sparse (fig. 5A). When clusters are not well separated—
differing by just 1 or 2 SPRs—sparseness has a detrimental
effect on accuracy. Both of the permutation and bootstrap
stopping criteria show high accuracy when inferring the num-
ber of clusters, strongly outperforming the silhouette (fig. 5B
and supplementary fig. S6, Supplementary Material online).

Application to Empirical Data
We applied the best combination of distance measure (geo-
desic distance), clustering method (spectral clustering), and
stopping criterion (permutation test) to two empirical
data sets.
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FIG. 4. Aggregate results for 400 difficult problem instances (left) and 400 moderate instances (right). The true number of clusters is 4. In both sets,
our new stopping criteria (permutation and bootstrap) perform better than the general-purpose silhouette method.

A B

FIG. 5. (A) Distance of the spectral clustering of geodesic distances from the “true” clustering for varying levels of taxon occupancy. Just as with
complete groups, partial groups converge to the correct assignment as the distance between clusters increases. When clusters differ from the
underlying species tree by three SPRs or more, the effect of incomplete occupancy on performance is very slight. (B) Effect of incomplete taxon
occupancy on cluster number selection criteria. Nonparametric permutation and parametric bootstrap recover the true number of clusters (four)
in more than 90% of cases. The clusters were separated by three SPRs, and each locus had 40% mean taxon occupancy, which corresponds to the
point on panel (A) indicated by the gray arrow.
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Yeast Data Set
The first empirical data set consists of 344 curated orthologous
sets of genes from 18 ascomycetous yeast species, which was
previously used to infer a species phylogeny robust to intergene
heterogeneities (Hess and Goldman 2011). Applying our
method to this data set resulted in a partition of the 344 loci
into 3 clusters (supplementary fig. S7, Supplementary Material
online). The clusters are of unequal sizes: there is a large cluster,
consisting of 307 loci, and two small clusters containing 26 loci
and 11 loci. Although the numbering of clusters produced by
treeCl has no special meaning, for clarity “cluster 1” will consis-
tently refer to the cluster of 307 loci, and “cluster 2” and “cluster
3” to the clusters of 26 and 11 loci, respectively.

Despite the high degree of incongruence among trees es-
timated from individual loci, the overall species tree relating
these yeasts has been well-studied, and has been established
with little controversy (Dujon 2010). This species tree can be
seen as the tree on the left in figure 6, which is also the cluster
tree derived from cluster 1. The trees on the right of figure 6
are the cluster trees inferred for clusters 2 and 3.

The tree for cluster 2 yields nearly the same topology as
that for cluster 1, with the sole modification that
Saccharomyces kudriavzevii appears basal to, rather than

within, the Saccharomyces sensu stricto clade. Branch lengths
are also modified in the cluster 2 tree: minor changes aside,
note that the branch leading to S. kudriavzevii is very much
longer than in the cluster 1 tree.

A similar observation can be made of the inferred tree
from cluster 3. In this case, it is Saccharomyces kluyveri
that is incorrectly placed relative to the species tree, again
with a very long branch. The cluster 3 tree also differs
from the cluster 1 tree in the arrangement of the clade
consisting of the species Kluyveromyces waltii, Ashbya
gossypii, and Kluyveromyces lactis, the clade to which S.
kluyveri belongs in the other two trees. The cluster 3 tree
is also the only one for which the branch support values,
as measured using approximate Bayes, are below 100%.
The lowest branch support, 81%, is found within the rear-
ranged K. waltii, A. gossypii, and K. lactis clade. With this
exception, the remaining branches all show greater than
95% approximate Bayes branch support, even though
there is incongruence among the loci underlying these
trees. However, this may not necessarily be a strong
case for these topologies being correct, as it has been
suggested that concatenation tends to inflate branch sup-
port values (Larget et al. 2010; Weisrock et al. 2012).

FIG. 6. Phylogenetic trees inferred from the three clusters found in the yeast analysis with treeCl. The tree on the left is that inferred from the largest
cluster of 307 loci. This matches the established species tree for these 18 species of yeast. The taxa highlighted in red (Saccharomyces kudriavzevii)
and blue (Saccharomyces kluyveri) are those that are found on long branches in the trees inferred from clusters 2 and 3 (shown respectively right,
upper, and right, lower). In these trees, the branches leading to S. kudriavzevii (in cluster 2) and S. kluyveri (in cluster 3) have been truncated so as to
fit reasonably on the plot. Their full lengths are as indicated. Otherwise, branch lengths can be determined by the scale bars shown (all equal scales).
Branch support measures were calculated using approximate Bayes (aBayes). Where aBayes branch supports are less than the maximum possible
value of 100%, their values are indicated by a number to the right of the branch.
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As an attempt to visualize the distribution of the individual
locus trees, we embedded them in two-dimensional space
using MDS (fig. 7). In this representation, cluster 1 appears
as a very tight cluster of points in the center of the figure,
while clusters 2 and 3 are more diffuse. Although clusters 1
and 3 appear to overlap, keep in mind that while it may seem
to be difficult to assign these clusters on the basis of this
figure, the actual clustering is done in a higher dimensional
space and using a different coordinate transform than the
one visualized here. What can be noted from this figure is that
all members of clusters 2 and 3 are positioned relatively large
distances away from cluster 1, which suggests that these clus-
ters consist of loci for which the underlying tree distances are
large, when measured from those loci from cluster 1.

To try to understand the source of incongruence in the
smaller clusters, we examined the sequences associated with

the long branch in the gene tree associated with each of their
37 loci. They each included one particularly long terminal
branch, but none of the single-locus topologies matched
the ones inferred for cluster 2 or cluster 3 as a whole. The
37 trees are reproduced in supplementary figure S8,
Supplementary Material online. Reciprocal best hit analyses
of these sequences with Saccharomyces cerevisiae indicate
that they were erroneously classified as orthologs (supplemen
tary table S1, Supplementary Material online). We thus con-
clude that the major source of incongruence in this 344 gene
yeast data set is derived from erroneous orthology calling,
particularly involving the S. kudriavzevii and S. kluyveri ge-
nomes. In this example, treeCl has identified 307 loci that
support the species tree; of 37 that do not, it has detected two
clusters, one primarily consisting of cases where the
S. kudriavzevii gene has been misannotated and one where

FIG. 7. Visualization of application of treeCl to the yeast data set. The scatterplot shows the embedding, by MDS, of the geodesic distances between
the 344 trees. Three clusters were found by spectral clustering: red circles indicate the largest cluster, with 307 members; the 37 remaining loci are
indicated by blue triangles (cluster 2) and green squares (cluster 3). Loci belonging to the first, largest cluster are tightly grouped and yield the
correct species phylogeny, whereas trees belonging to the second and third clusters are disparate and all have odd and inconsistent phylogenies as
a result of incorrectly called orthology (see text for full details).
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S. kluyveri misannotations are similarly implicated. Even for
these two clusters, the inferred phylogeny agrees fully or very
nearly with the species tree, aside from the position of the
primary misannotated species.

Given the “outlier” nature of the loci identified in the small
cluster, we also applied a specialized outlier detection pack-
age, kdetrees (Weyenberg et al. 2014). Remarkably, with geo-
desic distances, it identified the exact same 37 loci as outliers
(supplementary fig. S9, Supplementary Material online). This
provides additional evidence that these 37 loci should indeed
be excluded in the inference of the species tree.

Chiastocheta Data Set
The globeflower flies, genus Chiastocheta, are pollinators and
seed parasites of the plant species from the Trollius genus
(Ranunculaceae) (Pellmyr 1992; Suchan et al. 2015).
Chiastocheta have a recent origin, with most diversification
events occurring less than ca. 1.6 Ma, and their phylogenetic
relationships are uncertain (Despr�es et al. 2002; Esp�ındola
et al. 2012). Particularly, only two globeflower fly species
were found to be phylogenetically supported using mito-
chondrial markers (Esp�ındola et al. 2012).

RAD-sequencing of 306 samples from 7 European
Chiastocheta species (25 Chiastocheta dentifera individuals,
48 Chiastocheta inermella, 52 Chiastocheta lophota, 34
Chiastocheta macropyga, 70 Chiastocheta rotundiventris, 36
Chiastocheta setifera, and 41 Chiastocheta trollii) collected
across their whole ranges yielded a data matrix of 5,574
orthologous sets of sequences (loci), containing in total

253,866 variable, and 81,379 parsimony informative sites.
Because of inherent technical limitations of RAD-sequencing,
the majority of these loci had sparse coverage over the indi-
viduals. To focus on the phylogenetically most informative
loci, we disregarded loci present in fewer than 100 individuals.
This resulted in a matrix of 176 loci (i.e., 10.2% of the overall
number of loci identified). Each locus contained, on average,
44.2% of the taxon set.

Application of treeCl (with geodesic distance, spectral clus-
tering, and permutation test stopping criterion) identified
eight clusters. However, the plot of the likelihood improve-
ment against the number of clusters (fig. 8) is not smooth:
most of the improvement is obtained by increasing the num-
ber of clusters up to four and by increasing it from five to six;
in contrast, adding a fifth or seventh cluster only moderately
improves the fit. Thus, a cautious interpretation of this anal-
ysis is that there are at least four distinct clusters of loci. This
conclusion is also supported by the parametric bootstrap
criterion (supplementary fig. S10, Supplementary Material
online).

The trees inferred for the four clusters (fig. 9) substantially
differ, both in topology and branch lengths. In particular,
many of the deep relationships are well-resolved but different
across clusters, suggesting genuine differences in the history of
the loci. However, with very few exceptions, each species
forms a distinct monophyletic group. This is consistent
with well-documented differences in genital morphology
across most of these species (Despr�es et al. 2002). With
greater data available, phylogeny and morphology now agree.

FIG. 8. Likelihood improvement gained when partitioning the Chiastocheta data into increasing numbers of clusters (red points). Resampled
distributions (boxplots) were generated using the permutation procedure. The number of clusters selected by the stopping criterion is indicated
by the vertical dashed line. For two to eight clusters, the improvement is statistically significant; increasing to nine clusters is not.
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Furthermore, the even cluster size distribution (cluster sizes of
29, 58, 42, and 47 loci) suggests that the method is not simply
finding groups that consist of one or two outliers. The great-
est departure from monophyly is shown in the group con-
sisting of 29 loci. In this group, the majority of the
representatives of species C. lophota are found at the base
of a clade that also contains C. macropyga, C. trollii, C. setifera,
and C. inermella. For partitions into greater numbers of clus-
ters than four, we observe at least one tree in which species
monophyly is largely absent (supplementary fig. S11,
Supplementary Material online), which may indicate that
likelihood improvements gained when clustering into more
than four groups are due to fitting to the noise in the data,
extracting loci with weak or conflicting signal. In this case,
attempting to visualize the individual locus trees in two-di-
mensional space does not yield informative results (supple
mentary fig. S12, Supplementary Material online).

Overall, the picture that emerges from the analysis con-
firms the existence of seven distinct species in the
Chiastocheta genus, but implies that the branching order
among them varies substantially across loci. Such variation
is suggestive of ILS, particularly as six of the seven species
(except C. rotundiventris) are thought to have radiated
more or less synchronously (Esp�ındola et al. 2012). To rigor-
ously test this hypothesis, future work could assess the fit of
this data under a mechanistic model of ILS.

Discussion
In this study, we investigated clustering multilocus data sets
into evolutionarily similar groups based on their inferred phy-
logenies. This work is motivated by the observation that phy-
logenetic incongruence among loci can arise through various

evolutionary processes, in which case a single tree is insuffi-
cient to describe the disparate processes underlying the data.
At the other extreme, reporting one tree for each locus suffers
from the drawbacks of single-locus phylogenetics—lack of
signal, sampling error, unrepresentativeness—and in addition
it is difficult to interpret a large and unwieldy collection of
trees. By clustering loci, we allow the possibility that a mean-
ingful representation be given by some intermediate number
of trees, each capturing a common evolutionary history for
some of the loci. We do this in a process-agnostic way, in that
we do not seek to view our observations through the lens of
any particular mechanism. This may lose inferential power in
the case where organisms have evolved mainly through a
process that we fail to model explicitly, but has the advantage
that we will not bias the analysis by imposing mathematical
models inappropriate for the processes that have occurred.

To investigate the performance of this approach, we as-
sessed combinations of different distance metrics and clus-
tering methods using simulation. Overall, Euclidean and
geodesic distances, which take branch lengths into account,
performed better than Robinson-Foulds distances. Spectral
clustering and Ward’s method gave the best clusters, most
reliably over the range of simulations analyzed. We note that
two methods—MDS and k-medoids—are successful in many
cases, but produce some anomalous results in which perfor-
mance becomes worse as the problems become easier (sup
plementary figs. 1D, 2A, and 3E, Supplementary Material
online).

We introduced new statistical tests to determine the best-
supported number of clusters, and compared them with a
general-purpose cluster assessment statistic. In simulation the
new measures outperformed the general-purpose criterion. If
we look at the results from the difficult case, it seems that all

FIG. 9. Trees obtained when clustering RAD-seq data from globeflower flies of the genus Chiastocheta. The trees are drawn to scale, and are rooted
at their midpoint, as the outgroup is unknown. Leaves are colored according to species membership. Branch support is indicated as follows:
branches with support values below 0.9 are collapsed into multifurcations; those with support in the range 0.9–0.95 are colored gray; those with
support >0.95 are colored black. Support values are calculated using approximate Bayes (Anisimova et al. 2011).
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criteria have a tendency to be conservative and underesti-
mate the number of clusters (fig. 4 and supplementary fig. S5,
Supplementary Material online). We consider this a valuable
feature; it is more parsimonious to erroneously infer too few
rather than too many clusters. When moving from simulated
data to a real data set of 344 orthologous groups from yeast
(Hess and Goldman 2011), subtle errors in orthology infer-
ence could be detected and corrected. This highlights the
high potential of the approach for quality control in multi-
locus phylogenetic analyses. Furthermore, the unexpected
nature of the errors observed in that data set is a good illus-
tration of the flexibility of process-agnostic methods for de-
tecting incongruence. The examination of a large data set of
Chiastocheta flies demonstrates that our method is applicable
to data sets of the scale that is routinely produced by high-
throughput sequencing approaches such as RAD-seq, and
not only to more artificial simulations.

The range of methods and conditions investigated in this
study is considerable, but inevitably not exhaustive. There are
other distance metrics and clustering methods not tested
here. These were omitted mainly for reasons of being too
numerous for their inclusion to be practical. Some were not
considered because they overlapped closely with metrics and
methods that were considered: for instance, kernel Principal
Components Analysis (PCA) is a coordinate transformation
procedure that could have been used in a similar way to
spectral embedding and MDS; however, it is largely analogous
to spectral embedding (Ng et al. 2001) and initial investiga-
tion showed it to give very similar results. Other clustering
methods such as Markov Clustering (Enright et al. 2002),
DBScan (Ester et al. 1996), and Affinity Propagation (Frey
and Dueck 2007) were not investigated as they provide no
means to specify the number of clusters they return, which is
a property we specifically wanted so we could test our stop-
ping criteria. Similar concerns led to us to exclude such dis-
tance measures as Quartet Distance (Estabrook et al. 1985) or
Matching (Lin et al. 2012) as they provide discrete topology-
only measures similar to Robinson-Foulds. Tree edit measures
such as the SPR distance are highly computationally difficult
to calculate (Bordewich and Semple 2005) and so were not
investigated. This method may become tractable with the
advent of fast approximation algorithms (Chung et al. 2013;
Whidden et al. 2013).

We tested our method under a range of simulation criteria.
However, the combinatorics of the range of parameters that
can be varied are such that it was not possible to test them all.
This also limits the degree to which we can test whether
tuning certain clustering procedures might improve their per-
formance (for instance, the number of dimensions to embed
the intertree distances in when using MDS). Likewise, many
biological phenomena leading to incongruence were not in-
vestigated (including variation in rate of evolution across
genes and between taxa, differential duplication and loss be-
tween species within gene families, etc.). Nevertheless, we
think that the variety of problems studied, and in particular
the range of levels of difficulty, are enough to provide con-
vincing evidence that process-agnostic clustering methods
can work effectively and give useful results.

The clustering methods investigated in this work are also
applicable to data sets with incomplete “occupancy” among
species, such as the one obtained for Chiastocheta flies by
RAD sequencing, a technique that is typically prone to having
a large proportion of missing data. Indeed, our simulations
suggest that as long as the clusters are separated by a few
topological moves, occupancy as low as 40% incurs negligible
performance degradation. Likewise, the new stopping criteria
introduced in this study cope well with sparse data matrices,
in contrast to the general-purpose silhouette method.

It is unclear how sensitive the method is to the quality of
the inferred single-locus trees. Inferring these is the first step in
our analyses, and all further steps proceed as if the trees are
correct; the distance matrix is calculated based on these initial
trees, which are not re-estimated. To improve our approach
we could introduce a cycle in our algorithm in which the
single-locus trees are re-estimated based on parameters esti-
mated while inferring the cluster trees, and the distance ma-
trix and cluster assignments updated. However, this is likely to
be computationally expensive. Another possibility is to incor-
porate measures of phylogenetic uncertainty—such as
the bootstrap—into the distance estimation and the cluster-
ing step.

Practically, however, the amount of computation required
to apply distance metrics and clustering methods to whole-
genome-scale data poses a challenge. For instance, calculating
geodesic distances takes time of order O(n4) (Owen and
Provan 2011), where n is the number of leaves in the tree,
while Euclidean and Robinson-Foulds distances can be com-
puted in linear time (Pattengale et al. 2007). There is also the
burden of pruning trees to their overlapping taxa. These fac-
tors could prove prohibitive in the case of very large trees.
Whatever the details of the distance calculations, they must

be performed
m
2

� �
times, where m is the number of loci in

the data set. Clustering the resulting m � m distance
matrix using any spectral technique—requiring eigen
decomposition—takes time of order O(m3). This burden
can be reduced by applying an approximation such as the
Nystr€om method (Fowlkes et al. 2004), which produces ap-
proximations to the eigenvalues and eigenvectors from a re-
duced input set, reducing the number of pairwise tree
distance comparisons required. We have demonstrated that
the relatively efficient Euclidean distance and Ward’s method
for hierarchical clustering produce good results, and may thus
be preferred in large data sets. In the work carried out in this
article, by far the largest amount of time is spent in tree
inference; this remains the bottleneck.

We applied our method to two empirical data sets, one
from yeasts and one from Chiastocheta flies. Both data sets
show a high degree of phylogenetic incongruence, although
this is likely to be for different reasons: misannotated orthol-
ogy for the yeast data set, and ILS for Chiastocheta. Due to its
process-agnostic nature, we were able to apply our method in
the same way to both data sets, and learn something about
the incongruent signals in the data. This allows us to identify
the likely processes at play, and prioritize different types of
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follow-up analysis—stringent orthology identification in the
first case, and analysis under a mechanistic ILS model in the
second. In this way, our process-agnostic is complementary,
rather than in opposition, to mechanistic models of
incongruence.

Looking ahead, it seems clear that the assumption in
multilocus phylogenetics that all loci are derived from the
same tree is too strong, and should be relaxed. Partitioning
model parameters is commonplace (Hess and Goldman 2011;
Lanfear et al. 2012); tree-topology partitioning is a logical
next step.

Materials and Methods
In the following sections, we first describe the components of
this clustering process in more detail, including the various dis-
tance and clustering algorithms investigated in this study. Next,
we describe a partition likelihood quality score that we use to
compare the performance of combinations of distances and
clustering methods, and introduce new tests to infer the optimal
number of clusters in a data set. Finally, we describe the simu-
lated and empirical data used in our analyses. The analyses were
carried out using our treeCl software, which is available as an
open source python package (http://git.io/treeCl).

Input Data
The input data are a set of multiple sequence alignments, one
per locus being examined. The sequences can be of nucleo-
tides or proteins.

Tree Inference
In principle, any method of tree estimation can be used. We
use maximum likelihood (ML) estimation of phylogenies,
which is statistically robust (Felsenstein 2004) and enables
us to use a likelihood criterion for cluster membership com-
parisons and cluster number decisions. For each locus, we
infer the ML phylogenetic tree using the Phylogenetic
Likelihood Library (PLL) (Flouri et al. 2015).

In the experiments described in this article, we use PLL’s
full ML estimation with tree search. We use either the General
Time Reversible model (GTR) model (Tavar�e 1986) for nucle-
otide data or the Whelan and Goldman model (WAG;
Whelan and Goldman 2001) for proteins, coupled with a
gamma distributed model of rate variation with four discrete
categories (Yang 1994), and the RAxML search strategy
(Stamatakis 2014).

Intertree Distances
Once the tree for each locus has been estimated, their sim-
ilarities are assessed according to a particular distance metric.
We have investigated three distance measures: Robinson-
Foulds (Robinson and Foulds 1981), Euclidean (Kuhner and
Felsenstein 1994), and geodesic (Billera et al. 2001) (table 1).
With a set of m trees we compute all m(m�1)/2 pairwise
distances. We implemented the tree distance algorithms in
Cþþ and Python. The geodesic distance algorithm used is
that of Owen and Provan (2011). Source code is available
from https://pypi.python.org/pypi/tree_distance/0.0.6 (last
accessed March 1, 2016).

Missing Data
For pairwise tree comparisons when taxon sets differ, the
trees are pruned to the taxa they have in common.
Distances are calculated on the resulting reduced trees. In
the case that the intersection of taxon sets contains fewer
than four taxa—the minimum number required that can
produce a tree with at least one internal edge—the distance
is taken to be zero.

Clustering
The resulting distance matrix is used as the input for a clus-
tering algorithm. We have investigated seven such algorithms,
detailed in table 2. Each algorithm presumes that the required
number of clusters is known in advance; we investigate
approaches for choosing the optimal number of clusters be-
low. All methods work directly on the distance matrix, except
the coordinate transform methods. These transform the dis-
tance matrix into the coordinates of a set of points, then use
k-means to perform the final clustering step. k-means is not
suitable for use directly on a distance matrix.

Partition Likelihood for Assessing Clustering
In order to assess partitions, which may be obtained from
different clustering approaches, we describe the “partition
likelihood.” This can be used as a quality score to assess the
best combination of distance and clustering method.

Each cluster comprises a subset of the loci, and is a collec-
tion of genes putatively sharing a common evolutionary his-
tory. Hoping to benefit from a more robust evolutionary
inference by combining the data from homogeneous sources,
we therefore concatenate the alignments of the member loci
and infer the ML tree using the same model as for the indi-
vidual loci. The log likelihood is calculated for each cluster tree
conditioned on the concatenated cluster alignment. The par-
tition log likelihood, LP, is the sum of all optimal cluster log
likelihoods, and is in effect the maximum log likelihood under
a model where the genes within each cluster share a common
evolutionary history and evolutionary dynamics, but there are
no constraints that different clusters share any evolutionary
parameters.

Choice of Number of Clusters
The number of clusters, k, can take any integer value in the
interval [1, m], where m is the number of loci in the data set.
Let us consider the case of choosing between k and k þ 1
clusters. This is equivalent to choosing between the hypoth-
eses that the loci are sampled from k evolutionary trees, or k
þ 1 evolutionary trees. These form our null and alternative
hypotheses, respectively. The alternative hypothesis is able to
recapitulate the null model, and therefore the hypotheses are
nested. To illustrate that the alternative hypothesis nests the
null, consider that if two of the trees associated with clusters
in the alternative model are identical it is equivalent to the
case that those clusters are combined, decreasing the effective
number of clusters by one and reproducing the null. We can
thus calculate the partition log likelihood of each hypothesis,
LP

k and LP
k þ 1, and the increase in log likelihood,

Dk ¼ LP
kþ1 � LP

k .
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With nested hypotheses, 2Dk is asymptotically chi-squared
distributed, with the number of degrees of freedom corre-
sponding to the difference in the number of parameters be-
tween the null and alternative hypotheses (Wilks 1938).
However, counting parameters prove difficult in this case:
the extra parameters in the alternative hypothesis include
an inferred tree topology, and tree topology parameters are
difficult to quantify (Goldman 1993). This means we cannot
specify which chi-squared distribution we should use for our
test. This also precludes the application of information criteria
such as the Akaike Information Criterion (AIC) and Bayes
Information Criterion (BIC) (Akaike 1974; Schwarz 1978).

Alternatively, we can estimate the distribution of Dk by
repeatedly calculating Dk values from new data sets gener-
ated under the null hypothesis. Such a procedure does not
require that the difference in degrees of freedom be known or
even that the hypotheses be nested. We devised two such
procedures: a nonparametric permutation test, in which the
new data sets are produced by randomizing the original data,
and a parametric bootstrap test, in which new data sets are
generated via simulation. These permit us to compare
whether kþ 1 clusters are statistically supported over k clus-
ters, and we apply such tests successively for k ¼ 1, 2, 3, . . .
and use the stopping criterion that k* clusters are taken to be
optimal where k* is the smallest value of k for which k þ 1
clusters are not statistically supported over k clusters.

Permutation Test
The permutation test generates a new data set from the input
data set by permuting the columns of all the multiple sequence
alignments—the alignments are concatenated, the columns
are shuffled, and the concatenated alignment is broken back
into individual alignments of the same lengths as the original
ones. The effect of this is to uniformly distribute the columns
over the data set, removing any between-locus incongruence
that might form the basis for clustering. These resampled data
are analyzed twice, by partitioning into k and kþ 1 clusters,
and we calculate Dk. The whole permutation procedure is
repeated 100 times to estimate the distribution of Dk.

Note that it would be conceptually preferable to permute
the columns such that a distribution of loci among exactly k
underlying trees is preserved (as per the null hypothesis).
However, we have not found a good way to do so. Thus,
we implicitly assume that the distribution of the improve-
ment in likelihood from k to k þ 1 is the same whether the
true number of clusters is 1 or k. Our extensive simulations
suggest that this approximation works well in practice.

Parametric Bootstrap
As a parametric alternative to the nonparametric permutation
test, we use simulation to generate new data sets using param-
eters estimated during the analysis of the original data. After the
analysis, each locus belongs to one of k clusters, and is therefore
associated with one of k cluster trees. In the simulated data set,
each locus is simulated along its associated cluster tree, using
evolutionary model parameters estimated in the analysis.
Alignment length and gap positions are duplicated from the
initial data (Goldman et al. 1998). Consequently, the data are

simulated under the null hypothesis that loci evolved along k
underlying trees. The simulated data are clustered and separately
analyzed with k clusters and with kþ 1 clusters to calculate the
increase in the partition log likelihood, Dk. This “parametric
bootstrap” procedure is repeated for 100 data sets to estimate
the distribution of Dk. The simulation code makes use of the
Bioþþ libraries (Gu�eguen et al. 2013).

Simulating Data Sets with Incongruence
The simulated data used in this study were generated to
represent evolutionary histories with incongruent phyloge-
nies. Consequently, generating the simulated data involved
three stages: 1) deciding on the number of taxa, clusters, loci,
and distribution of loci into clusters; 2) for each cluster, gen-
erating an evolutionary tree; and 3) for each locus, simulating
sequences along its cluster’s tree.

Number of Taxa, Clusters, Loci, and Distribution

of Loci into Clusters
We produced data sets according to four scenarios with vary-
ing numbers of taxa, loci, clusters, and distribution of loci
among these clusters, as described in table 3.

Generating Cluster Trees
All cluster trees are derived from an underlying “species tree.”
For each data set, we simulated a random species tree using a
Yule pure speciation model (Yule 1925), implemented in
Dendropy (Sukumaran and Holder 2010).

To generate incongruent cluster trees, we started from this
species tree and applied sequences of random rearrange-
ments of potential biological relevance. The type of rearrange-
ments was either NNI or Subtree Prune and Regraft (SPR).
NNI makes local rearrangements, such as those that might be
found as a result of ILS. SPRs were used to make rearrange-
ments involving branches at a greater separation within the
tree, consistent with the kind of rearrangements observed in
HGT (Galtier 2007).

We applied a predetermined number of rearrangements
to the underlying tree for any given data set. This number was
varied to control the difficulty of the data set, that is, the
expected difficulty for a clustering method to reproduce the
correct partition of the data. A data set with a small number
of rearrangements is derived from cluster trees that are more
similar to each other than one with a large number of rear-
rangements, and therefore represents a more difficult case.
The number of rearrangements we used ranged from 1 to 10;
beyond 10 NNIs or SPRs the underlying trees were so different
that all clustering strategies performed so well that there was
no distinction between them.

Combining the 4 scenarios from the previous section with
the 2 rearrangement types and 10 difficulty levels yields 80
different parameterizations that describe the attributes of the
data sets we generate.

Simulating Data Sets for Testing Combinations
For each parameterization we generated 1,000 replicate data
sets according to the following process:
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• Randomly generate an ultrametric species tree according
to the Yule process.

• For each cluster, apply a sequence of random tree rear-
rangements to the species tree to generate the cluster
tree. The species tree is reset at the end of the sequence of
rearrangements, so that it is identical for each cluster
prior to the rearrangements being applied. The rearrange-
ments are either NNI or SPR. The branches at which these
operations are applied are selected randomly according
to the following procedure: the tree length, L, is the sum
of all branch lengths. A line (0, L) can be interpreted as all
the branches in the tree laid end-to-end. A random value
drawn from U(0, L) gives us both a randomly selected
branch—according to the branch segment it falls in—
and a position on that branch.

• Draw a set of branch lengths for the cluster trees: inner
branch lengths are set to values drawn from
Gamma(shape ¼ 0.67, scale ¼ 0.16), terminal branch
lengths to values drawn from Gamma(shape¼ 0.54, scale
¼ 0.48). These distributions were fit to the branch lengths
inferred for the yeast data set.

• Simulate alignments from each cluster tree according to
the distribution of loci into clusters. Protein sequences
were simulated using ALF (Dalquen et al. 2012), using the
WAG model of substitution (Whelan and Goldman
2001) with four categories of gamma distributed rates
(a ¼ 1); (Yang 1994). Sequence lengths were drawn
from a gamma distribution with shape¼ 1.772 and scale
¼ 279.9. These parameters were estimated from the dis-
tribution of alignment lengths of the yeast data set (see
Yeasts).

• Sequences were removed from the alignments with prob-
ability (1 � occupancy).

Empirical Data
Yeasts
After validating the performance of our method under the
controlled conditions of simulation, we investigated its per-
formance on a data set of 344 orthologous groups from 18
yeast species (Hess and Goldman 2011). We analyzed protein
sequences using the WAG model (Whelan and Goldman
2001). The loci were clustered based on geodesic distances
and spectral clustering, with the number of clusters deter-
mined by parametric bootstrap.

Chiastocheta
The second data set consisted of the RAD sequences ob-
tained from Chiastocheta flies (Diptera: Anthomyiidae) col-
lected across their whole European range. Samples were
genotyped using a modified ddRAD protocol (Peterson
et al. 2012; Mastretta-Yanes et al. 2015). De novo locus as-
sembly was performed using the pyRAD 2.0 package (Eaton
2014), with read clustering similarity threshold of 75%, both
on within- and among-sample level. Other parameters were
set as follows: all nucleotides with Phred quality lower than 20
were treated as unknown bases, and reads with more than 4
unknown bases were removed from the data set; possible

paralogs were removed by filtering out the loci that had
more than five heterozygous positions per locus within indi-
viduals, more than 10 heterozygotes per nucleotide position
among samples, and the loci for which more than two alleles
were present per individual. In total, 273 individuals were
sequenced, with 33 technical replicates. For the purpose of
this study, only high coverage loci (i.e., present in at least 100
samples) were retained. This resulted in a matrix of 176 loci
across 306 samples. Phylogenetic analysis was performed us-
ing the GTR model þ 4 categories of Gamma-distributed
rates across sites. Clustering parameters were geodesic dis-
tances, spectral clustering, and the number of clusters was
estimated using the nonparametric permutation test stop-
ping criterion.

Data Available for Download
Simulation data and results from “Performance of the
Combinations of Distance Metrics and Clustering
Methods,” “Performance of Methods for Determining the
Number of Clusters,” and “Dealing with Incomplete
Occupancy across Loci,” and the alignments and trees for
the original loci and for the optimal clusters for the yeast
(344 loci; 3 clusters) and Chiastocheta (176 loci; 4 clusters)
data sets, are available for download from http://www.ebi.ac.
uk/goldman-srv/treeCl (last accessed March 1, 2016).
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