
Diao et al. Alzheimer’s Research & Therapy          (2023) 15:193  
https://doi.org/10.1186/s13195-023-01328-0

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Alzheimer’s
Research & Therapy

Subject classification and cross‑time 
prediction based on functional connectivity 
and white matter microstructure features 
in a rat model of Alzheimer’s using machine 
learning
Yujian Diao1,2, Bernard Lanz1 and Ileana Ozana Jelescu1,3* 

Abstract 

Background  The pathological process of Alzheimer’s disease (AD) typically takes decades from onset to clinical 
symptoms. Early brain changes in AD include MRI-measurable features such as altered functional connectivity (FC) 
and white matter degeneration. The ability of these features to discriminate between subjects without a diagnosis, 
or their prognostic value, is however not established.

Methods  The main trigger mechanism of AD is still debated, although impaired brain glucose metabolism is taking 
an increasingly central role. Here, we used a rat model of sporadic AD, based on impaired brain glucose metabolism 
induced by an intracerebroventricular injection of streptozotocin (STZ). We characterized alterations in FC and white 
matter microstructure longitudinally using functional and diffusion MRI. Those MRI-derived measures were used 
to classify STZ from control rats using machine learning, and the importance of each individual measure was quanti-
fied using explainable artificial intelligence methods.

Results  Overall, combining all the FC and white matter metrics in an ensemble way was the best strategy to discrimi-
nate STZ rats, with a consistent accuracy over 0.85. However, the best accuracy early on was achieved using white 
matter microstructure features, and later on using FC. This suggests that consistent damage in white matter in the STZ 
group might precede FC. For cross-timepoint prediction, microstructure features also had the highest performance 
while, in contrast, that of FC was reduced by its dynamic pattern which shifted from early hyperconnectivity to late 
hypoconnectivity.

Conclusions  Our study highlights the MRI-derived measures that best discriminate STZ vs control rats early 
in the course of the disease, with potential translation to humans.
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Background
Alzheimer’s disease (AD) as a progressive neurodegen-
erative disorder is the main cause of dementia, which is 
characterized by a decline in cognitive functions such 
as thinking, remembering, and reasoning. AD can be 
divided into two major categories: sporadic AD and 
familial AD. The familial AD that accounts for less than 
5% of all AD cases [9] is usually caused by a genetic muta-
tion, whereas sporadic AD accounting for the majority 
of AD cases is multifactorial [18]. Pathologically, AD is 
characterized by extracellular deposits of Aβ peptides 
as senile plaques, intraneuronal neurofibrillary tangles, 
reduced brain glucose metabolism and large-scale neu-
ronal loss in the most affected regions of the brain, such 
as the medial temporal lobe and neocortical structures 
[13, 23, 31, 67, 68].

Non-invasive brain imaging techniques such as mag-
netic resonance imaging (MRI) play a vital role in detect-
ing early changes in the brain associated with AD. Gross 
cerebral atrophy [37], white matter (WM) degeneration 
[3, 19, 20, 29, 51] and altered functional connectivity (FC) 
[2, 12, 15, 34, 39] were found to be relevant biomarkers. 
Recently, resting-state FC has been proposed to identify 
individuals at risk for Alzheimer’s disease in the early 
stages [45, 110, 112]. The characterization of the tempo-
ral progression of microstructural and FC changes prom-
ises to provide an understanding of disease mechanisms, 
an effective disease staging, and a window for therapeutic 
intervention.

As the pathological cascade of AD takes up to years 
or even decades from the dementia onset to full-blown 
manifestations, it remains challenging to acquire com-
prehensive longitudinal data on prospective AD subjects. 
As an alternative, animal models can be valuable tools 
to obtain data across the lifespan and study each of the 
contributors to the AD cascade individually, thus untan-
gling direct effects of contributors and their interactions. 
Although numerous animal models have been devel-
oped to replicate the AD phenotype, most of them are 
transgenic models which are less representative of spo-
radic AD and are primarily based on the Aβ hypothesis 
[16, 59], which is increasingly challenged [56]. However, 
with glucose hypometabolism being increasingly rec-
ognized as a potential cause of AD [21, 46, 62], animal 
models of brain insulin resistance have been developed 
by an intracerebroventricular (icv) injection of streptozo-
tocin (STZ) [60, 61, 91]. The icv-STZ animals have been 
reported to manifest typical pathological features of AD 
such as extracellular accumulation of Aβ, tau hyperphos-
phorylation, neuronal loss, axonal damage, and demy-
elination in the hippocampus and fimbria [30, 60, 91, 
97], reduced glucose uptake [43, 97] and oxidative stress 
[66, 91], without developing systemic diabetes. From a 

behavioral perspective, STZ rats demonstrate lower post-
shock latency time in the passive avoidance test [60], 
higher escape latency in the elevated plus maze, shorter 
exploration time of the novel arm in the Y-maze, poorer 
object recognition and tone fear memory [75, 95], all 
pointing to impaired short-term memory.

In a previous work, we performed a comprehensive 
longitudinal study [97] in an icv-STZ rat model to quanti-
tatively characterize alterations in FC and in WM micro-
structure using resting-state functional MRI (fMRI) and 
advanced diffusion MRI techniques, respectively, as well 
as in brain glucose uptake captured by 18FDG-PET. By 
comparing the STZ group to the control group, non-inva-
sive MRI-derived measures of functional breakdown and 
WM degeneration were identified and evaluated in the 
context of brain glucose hypometabolism. Alterations in 
resting-state FC in STZ rats were found in brain regions 
closely associated with AD [2, 15] with broadly increased 
then decreased connectivity at early and late timepoints, 
respectively. WM microstructure metrics derived from 
DKI (an extension of diffusion tensor imaging (DTI) that 
provides complementary information about tissue heter-
ogeneity [53]) and the WMTI-Watson biophysical model 
[32, 54] revealed specifically intra-axonal damage and 
axonal loss in the corpus callosum, fimbria and cingulum 
of STZ rats. The temporal dynamics of both WM integ-
rity and FC were consistent with previously reported 
nonmonotonic trajectories of brain alterations along AD 
progression in humans [26, 29, 84, 88]. These findings 
not only reinforced the suitability of the icv-STZ animal 
model for sporadic AD but also proposed MRI-derived 
features to identify alterations in the prodromal stage and 
monitor disease progression.

In this study, we go beyond descriptive statistics and 
evaluate the microstructural and functional measures 
for their potential to discriminate between control and 
STZ groups at a given timepoint and across time. The 
data used is the current analysis is more extensive than 
the ones underlying the group difference analysis in [97] 
through the addition of a fourth longitudinal timepoint 
and the inclusion of more animals, in particular for FDG-
PET, to better evaluate regional brain glucose metabo-
lism in the icv-STZ rats. We utilize quantitative MRI 
measures as features using machine learning (ML) to 
train classification models such as logistic regression (LR) 
to differentiate individual subjects. Moreover, we employ 
explainable artificial intelligence methods to interpret 
ML model outcomes. For example, the importance of 
each feature in terms of the absolute value of LR coef-
ficients is used to identify features best discriminating 
STZ rats from controls. SHAP values (SHapley Additive 
exPlanations) [69], a model-agnostic approach, are used 
to interpret the model outcomes and to improve model 
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transparency. Finally, the dynamic relationships between 
the functional and microstructural measures in STZ rats 
are highlighted at the early and late timepoints of disease 
progression. In a nutshell, our study highlights the MRI-
derived measures that best discriminate STZ vs control 
rats at various stages of the disease, with potential trans-
lation to humans.

Methods
Study design
Male Wistar rats (236 ± 11  g) underwent a bilateral icv-
injection of either streptozotocin (3  mg/kg, STZ group) 
or buffer (CTL group) as previously described [97]. 
When delivered exclusively to the brain, streptozotocin 
induces impaired brain glucose metabolism and is used 
as a model of sporadic AD [40, 66]. Resting-state fMRI, 
diffusion MRI, and FDG-PET data were acquired longitu-
dinally at four timepoints (2, 6, 13, and 21 weeks since icv 
injection) (Fig. 1). Timepoints were chosen to be consist-
ent with previous rat STZ studies while also accommo-
dating for constraints of repeated MRI scanning related 
to anesthesia, cannulations, and scanner availability.

MRI data acquisition
Animals were initially anesthetized using isoflurane 
(4% for induction and 1–2% for maintenance in an oxy-
gen/air mixture of 30%/70%) and positioned in a home-
made MRI cradle equipped with a fixation system (bite 

bar and ear bars). A catheter was inserted subcutane-
ously on the back of the animal for later medetomidine 
delivery. One hour before starting the resting-state 
fMRI acquisition, anesthesia was switched from isoflu-
rane to medetomidine (Dorbene, Graeub, Switzerland), 
which preserves neural activity and vascular response 
better than isoflurane [83, 104], with an initial bolus 
of 0.1  mg/kg followed by a continuous perfusion of 
0.1 mg/kg/h [85]. The commercial solution at 1 mg/mL 
was diluted to 0.033  mg/mL. Throughout the experi-
ment, the breathing rate was monitored using a respi-
ration pillow and a rectal thermometer, respectively. 
Body temperature was maintained around (37 ± 0.5) °C. 
The breathing rate under medetomidine was around 
85  bpm. At the end of the scanning session, animals 
were woken up with an intramuscular injection of ati-
pamezole (Alzane, Graeub, Switzerland) at 0.5 mg/kg.

MRI experiments were conducted on a 14.1  T small 
animal scanner. As a result of the system upgrade, data 
were acquired with two different consoles for the mag-
net: Varian system (Varian Inc.) equipped with 400 
mT/m gradients (cohort 1, N = 17 rats) and Bruker 
system (Ettlingen, Germany) equipped with 1  T/m 
gradients (cohort 2, N = 7 rats), both using the same in-
house built quadrature surface transceiver. The acqui-
sition parameters were the same for the two cohorts. 
Each cohort comprised animals from both groups: 

Fig. 1  Experimental timeline. MRI: fMRI and diffusion MRI data were collected at 2, 6, 13, and 21 weeks after icv-STZ injection. N = 24 rats were 
included in total (12 STZ / 12 CTL) as reflected in the diffusion MRI datasets at 13 weeks. A lower number of datasets at other timepoints are due 
to poor data quality (2, 6 weeks) or missing datasets at 21 weeks due to an MRI system upgrade. For fMRI, two runs per rat were acquired for each 
MRI session which increased the number of datasets. The 4 timepoints were further grouped into early and late time groups and finally the pooled 
dataset. Sample sizes (STZ/CTL) in the 3 datasets for fMRI and diffusion MRI are as follows. Early: 47/47 (fMRI), 21/24 (diffusion); late: 34/34 (fMRI), 
19/19 (diffusion); pooled: 81/81 (fMRI), 40/43 (diffusion). PET: FDG-PET data were also collected at the four timepoints in a subset of rats (N = 20 
total) and were used to assess group differences in regional brain glucose uptake. Dataset numbers at each timepoint vary due to PET scanner 
unavailability (especially fewer datasets at 2 weeks) or missing MRI at 21 weeks which also prompted dropping the PET scan acquisition
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cohort 1 (CTL/STZ, N = 8/9 rats) and cohort 2 (CTL/
STZ, N = 4/3 rats).

Structural T2-weighted images were collected using 
a fast spin-echo sequence with the following param-
eters: TE/TR = 10.17/3000 ms, echo train length: 4, 
matrix size = 128 × 128, FOV = 19.2 × 19.2 mm2, voxel 
size = 0.15 × 0.15 mm2, 30 coronal 0.5-mm slices, scan 
time = 10 min.

Diffusion-weighted data were acquired using a pulsed-
gradient spin-echo segmented echo-planar-imaging 
(EPI) sequence, with the following protocol: 4 b = 0 
images and 3 shells at b = 0.8/1.3/2.0  ms/µm2, with 12, 
16 and 30 directions, respectively; δ/Δ = 4/27  ms; TE/
TR = 48/2500 ms; 4 shots; matrix size = 128 × 64, field-of-
view = 23 × 17 mm2, voxel size = 0.18 × 0.27 mm2, 9 coro-
nal 1-mm slices, 4 repetitions, scan time = 1 h.

Resting-state fMRI data were acquired using a two-
shot gradient-echo EPI sequence as follows: TE/
TR = 10/800  ms, TRvolume = 1.6  s, matrix size = 64 × 64, 
field-of-view = 23 × 23 mm2, voxel size = 0.36 × 0.36 mm2 
and 8 coronal 1.12-mm slices, 370 repetitions, scan 
time = 10  min. Two fMRI runs were acquired in each 
MRI session.

It should be noted that the phrase “resting-state fMRI” 
refers to the fact that the fMRI acquisition was per-
formed during an idle state of the rat, as opposed to 
“task fMRI” which would present the animals with a sen-
sory stimulation paradigm for example. Nonetheless, all 
animals were in fact anesthetized using medetomidine, 
which does alter brain activity as compared to awake 
animals. While awake rodent fMRI is a promising lead 
in the field, anesthetized fMRI is still the norm in rodent 
experiments [38].

FDG‑PET data acquisition
All procedures are identical to those described in [97], 
where more details can be found. Briefly, rats housed 
with free access to food and water were anesthetized 
using isoflurane (2% for induction) for tail vein cannu-
lation for tracer delivery, and subsequently transferred 
on a temperature-regulated PET scanner bed. Within 
the first minute of PET acquisition, a bolus of roughly 
50  MBq 18F-FDG (Advanced Accelerator Applica-
tions, Geneva, Switzerland) in 50–300 µL was manually 
injected through the tail vein and followed by a saline 
chase.

All PET experiments were performed on an avalanche 
photodiode-based LabPET-4 small-animal scanner 
(Gamma Medica-Ideas Inc.) as described in [63]. Briefly, 
data were collected in list-mode and images of the labe-
ling steady-state were reconstructed from coincidences 
between 30 and 50  min after tracer injection using the 
built-in maximum likelihood expectation maximization 

(MLEM) iterative reconstruction algorithm (30 itera-
tions) with a circular field of view (FOV) of 80 mm. The 
reconstructed voxel size was 0.25 × 0.25 × 1.18  mm. 
Steady-state radioactivity density images were then nor-
malized for the effective injected FDG dose and the ani-
mal weight to generate standardized uptake value (SUV) 
maps.

Data processing
FMRI data processing followed the PIRACY pipeline [25] 
which included denoising [100], susceptibility distor-
tion correction [94], slice-timing correction [42], spatial 
smoothing, and removal of physiological noise following 
independent component (IC) analysis decomposition. 
FC matrices between 28 regions of interest (ROIs) based 
on the Waxholm Space Atlas were computed, co-vary-
ing for the global signal [25]. Statistical comparisons of 
FC between the STZ and CTL groups at each timepoint 
were performed using NBS [109] to identify network 
connections that showed significant between-group dif-
ferences. Specifically, NBS uses one-tailed two-sample 
t-test to detect differences in group averaged FC between 
the two groups. Thereby, two contrasts (STZ > CTL and 
STZ < CTL) were tested separately. A t-statistic threshold 
of 2.2 was chosen on the basis of medium-to-large sizes 
of the subnetwork comprised connections with their 
t-statistic above the threshold [98] as well as the under-
lying p-values. Significance (p ≤ 0.05) was tested after 
family-wise error rate correction using non-parametric 
permutation (N = 5000).

Diffusion data processing included MP-PCA denois-
ing [100], Gibbs-ringing correction [57], and correction 
for susceptibility distortions and eddy currents using 
FSL’s eddy [5]. The diffusion and kurtosis tensors were 
estimated using a weighted linear least squares algo-
rithm [101], and typical DTI and DKI-derived metrics 
were computed: fractional anisotropy (FA), mean/axial/
radial diffusivity and mean/axial/radial kurtosis. The DTI 
diffusivities correspond to the average overall diffusiv-
ity in the voxel, along the main orientation of the WM 
bundle (AD), perpendicular to that (RD), and averaged 
over all directions (MD). Kurtosis is a clinically feasible 
extension of DTI that also estimates the non-Gaussian 
nature of diffusion in the tissue, and is thus a measure 
of heterogeneity or variance in the diffusion properties 
of the water molecules at the voxel level (AK, RK, MK). 
The biophysical WMTI-Watson model [54] (Fig.  2) was 
estimated voxel-wise in WM regions using nonlinear 
least squares fitting to extract its microstructure param-
eters: axonal water fraction f  , a proxy for axonal density; 
intra-axonal diffusivity Da , a proxy for the crowding of 
the intra-axonal space and thus for axon integrity; extra-
axonal parallel and perpendicular diffusivities De,�,De,⊥ , 
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sensitive to myelination, packing, and cell crowding in 
the extra-axonal space; and axon’s orientation coherence 
within the WM bundle c2 , where 1 corresponds to axons 
perfectly parallel to each other and 1/3 to isotropically 
distributed axons (without a preferential orientation of 
the bundle). In parallel, fractional anisotropy (FA) maps 
were registered to an FA template in the Waxholm Space 
using linear and non-linear registration in FSL [52] and 
the corpus callosum (CC), cingulum (CG) and fimbria 
(Fi) of the hippocampus were automatically segmented. 
For each ROI, average tensor and biophysical model met-
rics were calculated. Group differences were tested using 
t-test.

FDG-PET steady-state SUV maps were registered to 
their corresponding T2-weighted anatomical MR images 
with cross-correlation using ANTs [7, 8], which was in 
turn registered to the Waxholm Space Atlas of the rat 
brain (https://​www.​nitrc.​org/​proje​cts/​whs-​sd-​atlas) using 
linear and non-linear registration [8] and 26 ROIs were 
automatically segmented. SUV images were normalized 
by the mean SUV over the brain to obtain SUVr maps cor-
rected for inter-rat experimental variability [44]. Regional 
differences in SUVr between STZ and CTL groups were 
evaluated at each timepoint using a one-tailed Mann–
Whitney U-test (STZ < CTL), at a significance level of 
α = 0.05.

Classification using logistic regression
For FC-based classification, correlation coefficients 
between ROIs in the FC matrix were taken as classifica-
tion features by vectorizing the upper triangle of the FC 

matrix since FC is symmetric. To study the connection 
between statistical differences and classification per-
formance in discriminating the two groups, significant 
edges from the NBS analysis were selected as a reduced 
list of features for classification. Datasets were grouped 
as early (2 and 6 weeks, N = 94) and late timepoints (13 
and 21 weeks, N = 68), as well as all timepoints (pooled, 
N = 162). At each timepoint, the number of available 
samples was relatively small, which can pose challenges 
in building robust machine learning models. By merging 
data from two or four time points, we aimed to enhance 
the dataset size, thereby improving the model’s ability to 
generalize and make reliable predictions. Furthermore, 
the datasets combined from distinct timepoints are not 
purely duplicates, and they exhibit inherent variabilities 
due to disease progression and MRI inter-run variabil-
ity. STZ/CTL classification using a LR model was trained 
and tested on each subset (pooled, early, and late), which 
was normalized to [-1, 1] and randomly split into train-
ing (70%) and test datasets (30%). Since the data size was 
relatively small, the procedure of data splitting, training, 
and testing was repeated 1000 times, and results were 
aggregated in order to reduce bias.

For microstructure-based classification, there were two 
types of features for each of the three WM ROIs: I) DKI 
tensor metrics including FA, axial, mean, and radial dif-
fusivities (AxD, MD, RD), axial, mean, and radial kurto-
sis (AK, MK, RK); II) WMTI-Watson model parameters 
including f, Da , De,‖ , De,⊥ , and c2 (Fig. 2). These two kinds 
of features were used in two ways: as independent fea-
ture sets (i.e., DKI only and WMTI only) and combined 

Fig. 2  A Schematic of the WMTI-Watson biophysical model. The diffusion signal is described in terms of two non-exchanging compartments, 
the intra and extra-axonal spaces. Here, the axons are modeled as sticks with a radius equal to zero. The intra-axonal space is described by a relative 
volume fraction of water f and by the parallel intra-axonal diffusivity Da . The perpendicular intra-axonal diffusivity is negligible at the relevant 
diffusion times and weightings. The bundle of axons is embedded in the extra-axonal space, characterized by its parallel De,‖ and perpendicular 
extra-axonal diffusivities De,⊥ . The axons’ orientations are modeled by a Watson distribution, which is characterized by �(cosψ)2� ≡ c2 . B The white 
matter ROIs

https://www.nitrc.org/projects/whs-sd-atlas
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as a single feature set. As for FC, diffusion datasets were 
grouped as early (2  and  6  weeks, N = 45), late (13 and 
21  weeks, N = 38), and all timepoints (pooled, N = 83). 
LR models of STZ/CTL classification were trained and 
tested on the three datasets independently with 70% data 
for training and 30% for testing. The procedure was also 
repeated 1000 times.

Considering the small data size, feature dimension-
ality reduction was also tried for each classification by 
employing the principal component analysis (PCA) with 
various numbers of components.

Moreover, we tested classifying STZ and CTL rats by 
combining the FC and WM microstructure metrics in 
two distinct ways. One was to create a single classifier 
based on the concatenation of features of FC and micro-
structure metrics. The second way was using ensemble 
learning [81, 87] where three independent classifiers were 
built each based on one of the three types of features 
(FC, DKI, and WMTI). Their predictions for each class 
were aggregated and the class with the majority vote was 
retained. Datasets for which both FC and dMRI were not 
available jointly (e.g., as a result of partial or artefacted 
data) were removed, resulting in a slightly reduced sam-
ple size (STZ/CTL = 38/41, instead of 40/43 possible 
datasets across both groups and timepoints).

Finally, cross prediction was performed, which means 
a classifier was trained on the dataset of one timepoint 
(e.g., early) and tested on the other timepoint (e.g., late) 
and vice versa. Cross prediction was tested on classifiers 
built on both separate and joint features.

Model explainability and feature importance
Classification accuracy was used to assess the perfor-
mance of a LR model in classifying STZ and CTL rats. 

However, to better interpret and explain the model out-
come, we further calculated the importance of each 
feature in driving a model to predict the STZ class in 
terms of the absolute values of LR coefficients [93]. The 
mean feature importance was computed by averaging 
the absolute LR coefficient of each feature over the 1000 
repetitions of training/test data splits, along with mean 
classification accuracy and standard deviation.

SHAP values that have been widely used for interpret-
ing ML models were also calculated. In this study, SHAP 
values were computed for different types of features 
(i.e., significant FC connections, DKI metrics, or WMTI 
parameters) at each of the three timepoints (early, late, 
and pooled) to measure the individual impact of each 
feature on the model outcome. With the combination of 
classification accuracy and SHAP values, we were able to 
validate each measure’s ability to discriminate STZ rats 
from controls. As SHAP values are instance-based, they 
cannot be averaged over repeated training scenarios like 
the LR coefficient. Instead, we selected representative 
SHAP value sets from the 1000 candidates by choosing 
the ones that had relatively high classification accura-
cies (> 0.9) in both training and test datasets such that 
the model would have good performance as well as high 
generalizability.

Results
FDG uptake differences
The SUVr in STZ rats was reduced in multiple brain 
regions as compared to CTL, confirming the locally 
impaired glucose metabolism (Fig.  3). Glucose hypo-
metabolism concerned mainly DMN and LCN regions. 
Differences were present across time, with the most wide-
spread changes occurring at 6 weeks after icv injection.

Fig. 3  Group differences in SUVr at each timepoint. Green: ROIs with significantly lower SUVr in STZ (p < 0.05 using one-tailed Mann–Whitney U 
test, STZ < CTL). Dark yellow: trend of lower SUVr (p < 0.1). Correction for multiple comparisons was not applied given the small number of animals 
per group. ACC, anterior cingulate cortex; RSC, retrosplenial cortex; PPC, posterior parietal cortex; MTL, medial temporal lobe; Hip, hippocampus; 
Sub, subiculum; Au, auditory; V, visual; S1/S2, primary/secondary somatosensory; M, motor cortices; Str, striatum; Tha, thalamus; HTh, hypothalamus; 
L/R, left/right
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FC‑based classification
In Fig. 4, graph networks highlight the group differences 
in nodal connections in the pooled, early, and late data-
sets. Up to 6  weeks after icv injection (early), the STZ 
group displayed increased connectivity within the default 
mode network (DMN) (including the anterior cingulate 
cortex (ACC), retrosplenial cortex (RSC), hippocampus 
and subiculum) as well as striatum, and decreased con-
nectivity between the DMN (RSC, posterior parietal 
cortex (PPC) and hippocampus) and the lateral cortical 
network including primary and secondary somatosen-
tory cortex (S1, S2) and the motor cortex, as compared 
to CTL rats. From 13 weeks on (late), reduced connectiv-
ity became more widespread within the DMN and lateral 
cortical network in STZ rats.

When using all connections as features (N = 378), pre-
diction accuracy on the pooled, early, and late datasets 
was 0.75, 0.69, and 0.83, respectively. The most relevant 
edges involved the ACC, hypothalamus, RSC, hippocam-
pus, and subiculum as nodes (Fig. 5A), in agreement with 
edges found as significantly different between groups in 
the NBS analysis (Fig.  4). When only significant edges 
from the NBS analysis were selected as a reduced list 
of features for classification (N = 49, 38, and 71 features 
in the pooled, early, and late datasets, respectively), the 
classification accuracy improved to 0.79 for pooled, 0.72 
for early, and 0.90 for late datasets (Fig.  5B). Improved 
accuracy was not strictly related to feature reduction: 
reducing features using PCA deteriorated classification 
accuracy (data not shown). Notably, the highest classi-
fication accuracy was found on the late dataset which is 
consistent with the advanced stage of disease and more 
marked differences between STZ and CTL.

However, the top 10 edges with the highest feature 
importance in the first classification (all features, Fig. 5A) 

did not overlap strongly with that from the second clas-
sification (reduced features, Fig.  5B) perhaps due to 
the small sample size. The nodes involved in the top 10 
edges did however overlap strongly between the two 
classifications.

Figure  6 displays SHAP plots for each instance of the 
most important features used to classify STZ and CTL 
subjects in each of the three datasets. Top features were 
generally consistent with those from LR in Fig. 5A. Dis-
tribution of values for each feature (edge) in the STZ and 
CTL groups also agreed with the group difference test 
in the form of graph networks (Fig.  4). For example, in 
the early timepoints, both methods revealed the STZ 
group had stronger connectivity between the right hip-
pocampus and motor cortex, left ACC and S1, left hypo-
thalamus and right S1, and reduced connectivity between 
right PPC and left visual cortex, as well as right PPC and 
left hippocampus. In the late timepoints, the STZ group 
had increased connectivity between left S2 and striatum, 
left ACC and right striatum, left S1 and striatum, and 
weaker connectivity between left subiculum and hypo-
thalamus, left RSC, and visual cortex. Overall, the distri-
bution of SHAP values demonstrated that the STZ group 
had hyperconnectivity in the early timepoint but hypo-
connectivity in the late timepoint, which confirmed the 
findings in the previous study [97].

Microstructure‑based classification
For classification based on WM microstructure features, 
the mean test accuracy and top features with the high-
est importance are displayed in Fig.  7. When using the 
combined diffusion metrics (DKI + WMTI) as features, 
the FA in fimbria and corpus callosum stood out as the 
best discriminating features in the early timepoints while 
the axonal density (f) of the WMTI-Watson model in the 

Fig. 4  Graph networks of significant group difference using NBS with p < 0.05 (family-wise error rate corrected) for the 3 datasets (Pooled, Early 
and Late). Blue/red edges represent edges where STZ rats have weaker/stronger FC than CTL
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fimbria was the most important feature in the late time-
points as well as in the pooled data. Overall, the fim-
bria microstructure was the best discriminator between 
groups. FA was sensitive to early changes in STZ rats, 
which drove the DKI-based model to achieve better 
classification accuracy than the WMTI-based model at 

the Early timepoint (Table 1). While the accuracy of the 
DKI-based classifier decreased significantly at the Late 
timepoint, the accuracy of the WMTI-based classifier 
remained stable across time. The classifier built on com-
bined DKI + WMTI metrics obtained the highest accu-
racy in the early stage and similar accuracy in the late.

Fig. 5  A Top ten features (out of 378) and their importance in terms of absolute LR coefficient in rat classification on the FC dataset 
(mean ± standard deviation, averaged over 1000 repetitions). Each feature is an edge. The most relevant edges that discriminate between CTL 
and STZ rats involve ACC, hypothalamus (HTh), RSC, hippocampus (Hip), and subiculum (Sub). B Only connections surviving the NBS significance 
test were selected as features for classification (top 10 displayed). Classification accuracy was improved from 0.75 to 0.79 for pooled, 0.69 to 0.72 
for early, and 0.83 to 0.90 for Late dataset by this feature pre-selection. Higher classification accuracy in late dataset is consistent with the advanced 
stage of disease and more marked differences between STZ and CTL

Fig. 6  Exemplary SHAP summary plots for the three datasets (pooled, early, and late) based on the model using FC significant connections 
as features. The summary plot combines feature importance with feature effects. Each point on the summary plot is a SHAP value for a feature 
and an instance. The position on the y-axis is determined by the feature and on the x-axis by the SHAP value. The color represents the value 
of the feature from low (blue) to high (red). The features are ordered according to their importance (top 9 displayed). Positive SHAP values lead 
the model to predict 1 (STZ) while negative ones lead the model to predict 0 (CTL)
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Figures  8 and 9 report the SHAP value for each fea-
ture and each prediction of the LR classifiers based on 
DKI and WMTI parameters. As for FC, a high degree of 
consistency was found between metrics with high SHAP 
values and those displaying group differences between 
STZ and CTL rats. Specifically, lower FA and higher 
RD in corpus callosum, and lower FA and RK in fimbria 
were major drivers of STZ difference to CTL in the early 
timepoints. In the late timepoints, reduced AxD and AK 
in the corpus callosum; decreased MK, AK, and RK in 
the cingulum; and decreased FA, MK, and RK, as well 
as increased RD in fimbria, were found to be the most 
prominent features distinguishing the STZ group from 
the CTL. WMTI-Watson parameters provided us with 
more specificity to differences between STZ and CTL 
groups. In both early and late timepoints, the white mater 
of STZ rats was characterized by lower intra-axonal dif-
fusivity (Da) in CC, indicating intra-axonal damage, and 

lower axonal water fraction (f) in CC, cingulum, and fim-
bria, indicating demyelination and axonal loss.

Combining the FC and microstructure features
After combining the FC and microstructure features, the 
number of total rat subjects in the pooled dataset was 
reduced from 83 to 79 (Table  1) due to the absence of 
either fMRI or diffusion MRI data for four datasets. The 
two combination methods — concatenation vs ensemble 
— had similar mean classification accuracy on the Late 
dataset, but the ensemble method achieved much higher 
accuracy (10% improvement) on the Early dataset, and 
slightly better accuracy on the Pooled dataset. Overall, 
neither combined classifier outperformed single classifi-
ers at a given timepoint: best early classification accuracy 
was achieved by DKI + WMTI and best late classification 
accuracy by FC.

Fig. 7  Feature importance and test classification accuracy using different microstructure metrics (mean ± std over 1000 repetitions). Displayed 
are the top 5 most import features on the three datasets using DKI metrics (blue) and WMTI parameters (green) altogether. fi, fimbria; cc, corpus 
callosum; cg, cingulum; FA, fractional anisotropy; AD/RD, axial/radial diffusivity; AK, axial kurtosis; f, axonal density; Da, intra-axonal diffusivity; De,||, 
extra-axonal parallel diffusivity; c2: orientation dispersion

Table 1  The accuracy of classification on the three datasets and cross predictions in the different cases of employing separate and 
joint features. The last column is the total data size in the pooled dataset. The FC dataset has a larger sample size because each rat 
subject had two fMRI scans for each experiment. Dimension reduction using PCA did not improve the classification accuracy in most 
cases except for FC-based classification on the Early dataset and the late-to-early cross prediction where the new accuracies and the 
optimal numbers of PCA components were indicated. In FC-based classification, only connections with significant group differences 
were retained except for cross predictions where all FC connections were used. For pooled, early, and late timepoints, the classification 
accuracy is the average over 1000 random data splits into 70% training and 30% testing. For early-to-late, the training set was all early 
datasets and the test set all late datasets (and vice versa for late-to-early)

Features Pooled Early Late Early-to-late Late-to-early Sample size

FC 0.79 ± 0.05 0.72 ± 0.07
(0.75, PCA = 10)

0.90 ± 0.06 0.69 0.61
(0.7, PCA = 15)

N = 162

DKI 0.81 ± 0.07 0.87 ± 0.09 0.79 ± 0.10 0.74 0.76 N = 83

WMTI 0.84 ± 0.07 0.81 ± 0.10 0.82 ± 0.09 0.87 0.78

DKI + WMTI 0.84 ± 0.06 0.88 ± 0.10 0.81 ± 0.09 0.82 0.78

FC + DKI + WMTI 0.82 ± 0.08 0.77 ± 0.09 0.87 ± 0.09 0.79 0.76 N = 79

Ensemble (FC, DKI, WMTI) 0.85 ± 0.07 0.85 ± 0.09 0.86 ± 0.09 0.82 0.73
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Looking at the cross-prediction performance for all 
classifiers, the WMTI classifier trained on the early data-
set obtained an outstanding accuracy on the late dataset, 
which was even higher than that of the classifier trained 
on the late data (0.87 vs 0.82). In addition, both cross-pre-
diction classifiers (late-to-early and early-to-late) based 
on WMTI features had better accuracy than those based 
on DKI features or combined DKI + WMTI features. The 
FC classifier however had poor cross-prediction perfor-
mance. This may indicate inter-group differences in FC 
evolved significantly from the early stage towards the late 
stage, which was consistent with early hyperconnectivity 
and late hypoconnectivity in STZ (Fig. 3). The combina-
tion methods had moderate performance both in early-
to-late and late-to-early predictions. With the exception 
of DKI, all classifiers had higher accuracy in early-to-late 
prediction than late-to-early.

Based on Table 1, a summary plot of classification accu-
racy based on either FC or microstructure metrics as well 
as the ensemble method on the three datasets (pooled, 
early, and late) is shown in Fig. 10. On the Pooled data, 
the ensemble method achieved the highest overall accu-
racy among classifiers, which revealed that the best 
strategy was to combine all three types of features (FC, 
DKI, WMTI) in an ensemble-learning way. However, at 
the early timepoint, classification based on WM micro-
structure, especially DKI, provided substantially higher 
accuracy than FC-based classification while at the late 
timepoint, the FC-based classification significantly out-
performed the microstructure-based classification. One 
possible explanation is that WM microstructure damage 
happens earlier than alterations in functional connectiv-
ity in the STZ group. However, this assumption needs to 
be further validated in human Alzheimer’s studies.

Fig. 8  A DKI estimates in three white matter ROIs (top row: corpus callosum (CC), middle row: cingulum (CG), and bottom row: fimbria 
of the hippocampus (Fi)). FA, fractional anisotropy; AxD/RD, axial/radial diffusivity; MK/AK/RK, mean/axial/radial kurtosis. Two-tailed t-test 
for inter-group comparison (red bars) and one-way ANOVA with Tukey-Cramer correction for within-group comparison across time (black and blue 
bars). ∗ : p < 0.05, ∗  ∗ : p < 0.01, ∗  ∗  ∗ : p < 0.001. + : outlier values (but not excluded from the analysis). B SHAP summary plots combining feature 
importance with feature effects based on DKI estimates. The position on the y-axis is determined by the feature and on the x-axis by the SHAP 
value. The color represents the value of the feature from low (blue) to high (red). The features are ordered according to their importance (top 10 
displayed). Positive SHAP values lead the model to predict 1 (STZ) while negative ones lead the model to predict 0 (CTL)
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Discussion
The classification of individuals with AD or mild cogni-
tive impairment from healthy controls using MRI-based 
features and ML has been increasingly proposed. Several 
studies have reported promising results of employing 
resting-state FC as major features to this end [45, 47, 58, 
76, 103, 105, 112]. A few studies have also proposed using 
WM DTI-based features such as FA and MD for the clas-
sification of AD subjects [11, 28, 55, 70].

Indeed, longitudinal studies of MCI and AD popula-
tions compared to healthy controls have revealed distinct 
WM degeneration patterns, as characterized using DTI, 
between patient and healthy populations. Decreased 

FA and increased MD over the course of one year were 
reported in the hippocampal cingulum of the AD group 
[72], both in the cingulum and fornix in an MCI and AD 
cohort [79], and genu of the corpus callosum in an MCI 
cohort [96]. Rates of WM structural decline were also 
faster in subjects initially enrolled in the preclinical phase 
of MCI and AD and who eventually developed dementia, 
mainly evidenced by a decrease in FA in the right inferior 
fronto-occipital fasciculus and splenium of corpus callo-
sum [90]. Another study reported higher rates of change 
in FA and RD in the splenium of the corpus callosum, 
posterior cingulum, and left superior temporal region 
over the course of one year in AD [1]. Cross-sectional 

Fig. 9  A WMTI-Watson model estimates in three white matter ROIs (top row: corpus callosum (CC), middle row: cingulum (CG), and bottom 
row: fimbria of the hippocampus (Fi)). Two-tailed t-test for inter-group comparison (red bars) and one-way ANOVA with Tukey-Cramer correction 
for within-group comparison across time (black and blue bars). ∗ : p < 0.05, ∗  ∗ : p < 0.01, ∗  ∗  ∗ : p < 0.001. + : outlier values (but not excluded 
from the analysis). B SHAP summary plots combining feature importance with feature effects based on WMTI-Watson model estimates. The position 
on the y-axis is determined by the feature and on the x-axis by the SHAP value. The color represents the value of the feature from low (blue) 
to high (red). The features are ordered according to their importance (top 10 displayed). Positive SHAP values lead the model to predict 1 (STZ) 
while negative ones lead the model to predict 0 (CTL)
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studies where FDG-PET and dMRI were available jointly 
suggested strong correlations between hypometabolism 
and altered DTI metrics in the hippocampus or posterior 
cingulate in early AD and amnestic MCI patients, with 
higher DTI sensitivity to early disease [107, 115].

Similarly, longitudinal fMRI studies showed early stages 
of the disease are characterized by hyperconnectivity of 
certain brain networks, while follow-up in time inevitably 
leads to decreased connectivity throughout the brain. For 
example, subjects with an initial Clinical Dementia Rat-
ing (CDR) of 0.5 displayed reduced activity in the right 
hippocampus after 2 years, while those CDR of 0 did not, 
while the rate of decline correlated positively with high 
hippocampal activity at baseline, further supporting the 
non-monotonic pattern of initial hippocampus hyper-
connectivity followed by hypoconnectivity as dementia 
progresses [80]. Similarly, initial hyperconnectivity of the 
anterior and ventral DMN transitioned to hypoconnec-
tivity at follow-up in AD patients [22]. In cross-sectional 
studies of simultaneous FDG-PET/fMRI, the spatial brain 
patterns of hypoconnectivity and hypometabolism over-
lapped only partially, while each maintaining the good 
predictive value of cognitive decline [71, 111].

However, multi-model longitudinal studies in humans 
over a significant time span are extremely challenging to 
achieve. To our knowledge, no study reported longitudi-
nal metabolic, microstructural, and functional connectiv-
ity changes jointly, allthemore using advanced diffusion 
metrics beyond DTI. Furthermore, the value of WM 

microstructure and FC features for subject classification 
and cross timepoint prediction has not been evaluated. 
A recent cross-sectional study has evaluated the value 
of amyloid, tau, glucose hypometabolism, and structural 
atrophy in classifying MCI and AD patients, with amy-
loid and tau being better predictors of MCI and early AD, 
while glucose hypometabolism and atrophy were better 
predictors of later AD [41].

Animal models are very well suited to perform compre-
hensive longitudinal studies over a time period that cov-
ers a broad range of pathology evolution. The icv-STZ rat 
model induces impaired brain glucose metabolism, which 
is an excellent biomarker for disentangling AD from 
other forms of dementia. Rats further exhibit several fea-
tures of Alzheimer’s at multiple levels: pathological (tau, 
amyloid, neuronal loss, atrophy), behavioral (short-term 
memory impairment), and neuroimaging (same trends in 
diffusion and rs-fMRI metrics as in humans).

To our knowledge, this study is the first one attempt-
ing to evaluate FC and WM microstructure features 
separately as well as their combination in a ML-based 
classification context. Furthermore, apart from the con-
ventional DTI metrics, features based on more advanced 
DKI metrics and especially on biophysical models were 
also assessed in this study.

In support of the empirical relevance of the icv-
STZ model for sporadic AD, the most important dis-
criminating features in FC and WM integrity aligned 
with brain regions and WM tracts affected in human 

Fig. 10  A summary plot of classification accuracy on the three datasets (pooled, early, and late) for each individual classifier and the ensemble 
classifier
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sporadic AD itself. Discriminating FC connections 
involved regions of the default mode network such as 
the hippocampus, cingulate, and posterior parietal 
cortex [2, 15, 97], as well as the hypothalamus which 
is responsible for recruiting alternative sources of 
energy to glucose, such as ketone bodies, in response 
to impaired brain glucose metabolism by the STZ [17, 
33, 36, 64, 106]. Many FC connections with top feature 
importance in the Early stage also involved the visual 
and motor cortices, areas that are related to non-cog-
nitive manifestations such as vision and motor decline 
and have been reported to precede the cognitive defi-
cits in humans [14, 27, 44, 48, 73, 74, 102]. For classifi-
cation based on WM integrity, microstructural features 
in the fimbria of the hippocampus played the most 
important role in distinguishing STZ rats, which was 
consistent with the fact that hippocampus is especially 
vulnerable to AD [77, 89] and to the icv-STZ rat model 
of AD [4, 92].

Our results show DKI brings valuable complemen-
tary information to DTI for classification purposes, 
and the WM model narrows down the identification of 
microstructure changes to intra-axonal damage, demy-
elination, and axonal loss. This is in line with the expec-
tation from biophysical models to increase specificity 
to microstructure features over signal representation 
metrics such as DTI or DKI [49, 50, 78]. Going forward, 
the acquisition of multi-shell diffusion MRI data (at 
least two non-zero b-values, e.g., b = 1000 and 2500  s/
mm2) in clinical studies of dementia or other brain dis-
eases is highly recommended to enable the estimation 
of DKI metrics brain-wide, and of WM microstructure 
features using the WMTI-Watson model, for which 
analysis code is readily available [24]. WMTI metrics 
were arguably the most stable features in discriminat-
ing STZ and CTL subjects compared to the DKI- and 
FC-based features, as evidenced in the cross-timepoint 
prediction accuracy (> 0.80). This might indicate the 
possibility of early screening and prognosis of AD in 
clinical applications using WM microstructure features 
derived from the WMTI-Watson model of diffusion. In 
other words, subjects with early WM alterations at high 
risk of developing further neurodegeneration might be 
identified and receive intervention when they are still 
in the early stage [99].

When using FC to classify STZ/CTL rats, only choos-
ing connections significantly different between groups 
(using NBS) as features naturally improved mean clas-
sification accuracy. When translating our classification 
approach to discriminate AD patients from healthy 
controls, FC edges identified as driving group differ-
ences between diagnosed AD patients and controls 
could be used as features for classification in future 

diagnostic-blind studies, or to discriminate prospective 
AD patients from controls.

From the perspective of pathological progression 
and biomarker timeline within the course of the dis-
ease, microstructure-based features achieved better 
performance than FC in the early timepoint as well as 
for cross-timepoint predictions. Performance in the 
early timepoint suggests that WM degeneration in the 
STZ group could happen earlier than FC breakdown. 
Similar findings have been reported by human stud-
ies in subjective cognitive impairment as well as AD 
[6, 70, 82]. Performance in the cross-timepoint predic-
tion suggests that microstructure degeneration is rela-
tively consistent across time. In contrast, the pattern in 
FC metrics was non-monotonic and shifted from early 
hyperconnectivity to late hypoconnectivity in the STZ 
rats, as also previously reported in human studies [26]. 
However, more data are required to fully validate these 
hypotheses, especially in humans.

Nevertheless, the best overall strategy for STZ vs 
CTL classification was aggregating the three indi-
vidual classifiers using ensemble learning. Not only 
was the ensemble classification more accurate on the 
pooled dataset (0.85) than any of the individual clas-
sifiers, but it also maintained a high level of accuracy 
at each of the separate timepoints. This demonstrated 
that microstructural and functional information can be 
complementary and have their unique value in iden-
tifying STZ rats, and possibly mild cognitive impair-
ment and early AD.

As to limitations, first, this study is based on a rela-
tively small dataset with 24 rats followed across four 
timepoints. Second, we only used male rats, which was 
based on practical reasons. As female rats are more 
resistant than males to STZ-induced alterations [10, 
35, 86] and hormonal modulation plays an important 
role in females, future studies should consider rats of 
both sexes. Third, in FC-based classification, each con-
nection (ROI pair) was treated as an individual fea-
ture leading to the loss of the topological information 
among them. For future studies, graph neural net-
works can be used to replace LR for the FC-based clas-
sification [65, 114] since they consider the functional 
network as a whole thus better preserving spatial infor-
mation. However, this will also require more advanced 
explainability methods to interpret the classification 
results [108, 113]. Finally, no amyloid or tau informa-
tion was available for these rats in vivo. However, his-
tological stainings performed after sacrifice at 21 weeks 
revealed amyloid plaques and neurofibrillary tangles in 
icv-STZ brains, as reported in our previously published 
study [97]  as well as other studies of this animal model 
[30, 60, 91].
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Conclusions
Our work examined potential discriminators of Alzhei-
mer’s disease in the icv-STZ rat model using functional 
connectivity and WM microstructure features. For the 
first time, we evaluated those two types of MRI-based 
features separately as well as in combination, in a con-
text of ML-based classification. WM microstructure 
features achieved higher classification accuracy in the 
early timepoints of neurodegeneration, and FC in the 
later timepoints, suggesting structural damage pre-
cedes functional damage. Combining all the FC and 
microstructure metrics in an ensemble way was the 
best strategy to discriminate between STZ and CTL 
rats, with a consistent accuracy over time above 0.85. 
However, for cross-time prediction, WMTI model fea-
tures yielded the highest accuracy from early-to-late 
timepoints and vice versa, possibly thanks to the more 
specific metrics they capture from the microstructure, 
that project well across timepoints. Foreseeably in 
human datasets, the best microstructure (or ensem-
ble microstructure + FC) classification features would 
be extracted from late timepoints with known subject 
diagnosis (e.g., healthy vs AD), the ML model trained 
on late timepoint datasets of those reduced features, 
and then applied to early timepoint populations to aid 
early diagnosis and prediction of disease evolution.
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