Combined cetuximab and trastuzumab are superior to gemcitabine in the treatment of human pancreatic carcinoma xenografts

C. Larbouret^{1,2,3,4}, B. Robert^{1,2,3,4}, C. Bascoul-Mollevi⁴, F. Penault-Llorca⁵, A. Ho-Pun-Cheung⁴, S. Morisseau^{1,2,3,4}, I. Navarro-Teulon^{1,2,3,4}, J.-P. Mach⁶, A. Pèlegrin^{1,2,3,4} & D. Azria^{1,2,3,4,7}

¹Institut de Recherche en Cancérologie de Montpellier, Montpellier; ²Institut National de la Santé et de la Recherche Médicale, U896, Montpellier; ³Université Montpellier; ⁴CRLC Val d'Aurelle Paul Lamarque, Montpellier; ⁵Department of Pathology Centre Jean Perrin, Clermont-Ferrand; ⁶Institut de Biochimie, Université de Lausanne, Epalinges, Switzerland and ⁷Department of Radiotherapy CRLC Val d'Aurelle Paul Lamarque, Montpellier, France

Received 17 August 2009; accepted 8 September 2009

Background: Pancreatic carcinoma remains a treatment-refractory cancer with a poor prognosis. Here, we compared anti-epidermal growth factor receptor (EGFR) and anti-HER2 monoclonal antibodies (2mAbs) injections with standard gemcitabine treatment on human pancreatic carcinoma xenografts.

Materials and methods: Nude mice, bearing human pancreatic carcinoma xenografts, were treated with either combined anti-EGFR (cetuximab) and anti-HER2 (trastuzumab) or gemcitabine, and tumor growth was observed. **Results and conclusion:** In first-line therapy, mice survival was significantly longer in the 2mAbs group compared with gemcitabine (P < 0.0001 for BxPC-3, P = 0.0679 for MiaPaCa-2 and P = 0.0019 for Capan-1) and with controls (P < 0.0001). In second-line therapy, tumor regressions were observed after replacing gemcitabine by 2mAbs treatment, resulting in significantly longer animal survival compared with mice receiving continuous gemcitabine injections (P = 0.008 for BxPC-3, P = 0.05 for MiaPaCa-2 and P < 0.001 for Capan-1). Therapeutic benefit of 2mAbs was observed despite K-Ras mutation. Interestingly, concerning the mechanism of action, coinjection of P = 0.001, indicating that the 2mAbs had an Fc fragment-independent direct action on tumor cells. This preclinical study demonstrated a significant improvement of survival and tumor regression in mice treated with anti-EGFR/anti-HER2 2mAbs in first-and second-line treatments, compared with gemcitabine, independently of the K-Ras status.

Key words: EGFR, gemcitabine, HER2, monoclonal antibodies, pancreatic carcinoma

introduction

Pancreatic cancer is the fourth leading cause of cancer death in both men and women. Currently, most pancreatic cancer patients die within a year of diagnosis. When the tumor becomes symptomatic, 60%–80% of the patients already have locally advanced or metastatic disease, allowing essentially palliative therapy, with a 5-year survival rate of <5% [1].

Recent evaluation of gemcitabine-based combination chemotherapy trials in advanced pancreatic cancer has demonstrated significant, but low response rates and disappointing effects on survival [2]. The strategies of earlier attack on cancer by perioperative adjuvant or neo-adjuvant therapy were expected to be more promising. However, the

*Correspondence to: Dr A. Pèlegrin, Institut de Recherche en Cancérologie de Montpellier, CRLC Val d'Aurelle Paul Lamarque, 34298 Montpellier Cedex 5, France. Tel: +33-0-467613032; Fax: +33-0-467613787; E-mail: Andre.Pelegrin@valdorel.fnclcc.fr

recently reported retrospective and prospective analyses of adjuvant chemoradiotherapy of pancreas carcinoma [3], as well as the results of preoperative chemoradiation therapies [4], have again demonstrated significant, but very modest therapeutic gains. Similarly, the results from a recent phase III trial, evaluating the advantage of the association of erlotinib with gemcitabine, showed a significant, but low improvement, as compared with gemcitabine-alone treatment, with a median survival of 6.24 versus 5.91 months, as well as a 1-year survival of 23% versus 17%, respectively [5].

In the field of mAb therapies and following the demonstration of the expression of both epidermal growth factor receptor (EGFR) and HER2 in pancreatic carcinomas [6, 7] and the known implication of those receptors in the malignant phenotype [8–11], we have recently demonstrated that the coinjection of anti-EGFR and anti-HER2 mAbs had a significant synergic effect in the treatment of human pancreatic carcinoma xenografts, as compared with the effect of each mAb alone [12]. Our results were recently confirmed and

extended by the demonstration that different pairs of anti-HER2 mAbs had a synergistic antitumor effect [13].

Here, we are evaluating, if the combined anti-EGFR/anti-HER2 mAbs (2mAbs) targeted therapy can result in better efficacy than the current standard chemotherapy, gemcitabine, in a first- and second-line therapy.

methods

monoclonal antibodies and drugs

Cetuximab was purchased from Merck KGaA (Darmstadt, Germany), trastuzumab from Roche Pharma AG (Grenzach-Wyhlen, Germany) and gemcitabine from Lilly France (Pages, France). F(ab')2 fragments of cetuximab and trastuzumab were prepared by pepsine digestion followed by filtration on a Superdex 200 column. Absence of intact mAb contamination was checked by lack of any cytotoxicity induction by natural killer cells on antigen-positive target cells [14].

cell lines

BxPC-3 and MiaPaCa-2 pancreatic cell lines were from ATCC (Rockville, MD). The Capan-1 was provided by L. Buscail (Toulouse, France).

xenograft study and treatment procedure

All in vivo experiments were carried out in compliance with the national regulations and ethical guidelines for experimental animal studies in an accredited establishment (Agreement No. B34-172-27). Six-week-old female athymic mice (Harlan, Le Malcourlet, France) were xenografted subcutaneously with BxPC-3 (3.5×10^6) , MiaPaCa-2 (5×10^6) and Capan-1 (10×10^6) cells. Tumor-bearing mice were randomized when tumors reached a minimum of 50 mm³ and killed when tumor reached a volume larger than 1000 mm³.

In first line, mice were treated twice a week either by intraperitoneal injections of combined trastuzumab/cetuximab (ratio 1:1; 2 mg/kg of each mAb) or gemcitabine (150 mg/kg) diluted in 0.15-ml saline.

In second line, 20 mice were treated twice a week with gemcitabine alone (150 mg/kg). For 10 mice presenting a tumor progression (volume increase at least two-fold from initial measurement) the gemcitabine treatment was replaced by the combined trastuzumab/cetuximab intraperitoneal injections twice a week (ratio 1:1; 2 mg/kg). The other 10 mice were continuously treated by gemcitabine.

To determine the implication of the Fc fragment portion of antibodies, BxPC-3 xenografted mice were treated twice a week for 4 weeks with F(ab')₂ fragments from both trastuzumab and cetuximab (ratio 1:1; 1.35 mg/kg of each fragment) or cetuximab F(ab')₂ alone, at the same dose, or intact trastuzumab and cetuximab (ratio 1:1; 2 mg/kg). The concentration of fragments was adjusted to be at the same molarity (2 µM) as the intact antibodies.

Tumor dimensions were measured with a caliper and the volumes calculated by the formula: $D_1 \times D_2 \times D_3/2$. In Figure 3, tumor growth is expressed as the log of tumor progression: log [final volume (t)/initial volume (t_0)].

K-Ras mutation analysis

High-molecular weight DNA was extracted using a Qiamp DNA mini kit (Qiagen, Courtaboeuf, France). Direct sequencing of the K-Ras gene codon 12 and 13 was done with a 3130 Genetic Analyzer (Applied Biosystems, Courtaboeuf, France), using the Bigdye terminators v1.1 cycle sequencing kit (Applied Biosystems).

immunohistochemical analyses

Seven days after treatment, tumors were harvested and fixed 12 h in buffered formalin and embedded in paraffin.

Ki-67 (MiB1; Dako Corporation, Glustrup, Denmark), EGFR (3C6; Ventana Medical Systems, llkirch, France) and pEGFR (tyr 1068, 1H12; Cell Signalling Technology, Beverly, MA) immunostaining were carried out on 3-mm sections with a BenchmarkXT immunostainer (Ventana Medical Systems). Sections were scored under light microscopy by two independent pathologists, who analyzed five different fields per section. Error bars correspond to results obtained in the different fields.

For EGFR the two plus or more intensity staining of tumor cells membrane was scored positively, while for Ki-67 index and pEGFR the percentage of tumor cells with one plus nuclear and/or cytoplasmic staining was recorded positively. The results are expressed on histograms.

western blot analysis

Seven days after treatment, tumors were harvested and lysed as described [12].

After electrophoresis, the proteins were transferred to a polyvinylidene difluoride membranes (Millipore Co., Bedford, MA) which were saturated in phosphate-buffered saline containing 0.1% Tween 20 and 5% nonfat dry milk and then incubated with the antibodies against the phosphorylated forms of AKT (Cell Signaling Technology). To ensure equal loading, immunoblots were also probed with anti-glyceraldehyde-3-phosphate dehydrogenase antibody (Chemicon International, Millipore SAS, Molsheim, Australia).

statistical analyses

A linear mixed regression model was used to determine the relationship between tumor growth and the number of days after implantation. The fixed part of the model included variables corresponding to the number of days after implantation and to different groups. Interaction terms were built into the model. Random intercept and random slope were included to take into account time effect. The coefficients of the model were estimated by maximum likelihood and considered significant at the 0.05 level.

Survival rates were estimated from the date of the xenograft until the date when the tumor reach a volume of 1000 mm³ using the Kaplan-Meier method. Median survival was presented with 95% confidence intervals. Survival curves were compared using the log-rank test. Statistical analysis was carried out using STATA 10.0 software.

results

pancreatic cell lines characteristics

Immunohistochemical analyses of the three human pancreatic carcinoma xenografted in nude mice showed a very low HER2 expression, but a high level of EGFR, classified as +++ for both BxPC-3 and Capan-1 and as ++ for MiaPaCa-2 (Table 1). When tested by flow cytometry [15], the three pancreatic carcinoma cell lines showed a moderate expression of HER2 (Table 1).

Table 1. EGFR and HER2 expression and K-Ras status of the three human pancreatic cell lines

Cell lines	ines EGFR		HER2		Sequencing
	IHC	FACScan	IHC	FACScan	K-Ras
		(MFI)		(MFI)	status
BxPC-3	3+	156	ND	37.0	WT
MiaPaCa-2	2+	31	ND	10.7	M
Capan-1	3+	135	ND	10.4	M

EGFR, epidermal growth factor receptor; IHC, immunohistochemistry; ND, nondetectable; MFI, mean fluorescence intensity; WT, wild type; M, mutation.

original article

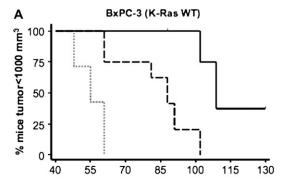
The presence of G12C mutation was confirmed in the MiaPaCa-2 and Capan-1 carcinoma cell line, while it was not observed in BxPC-3 line (Table 1) [16, 17].

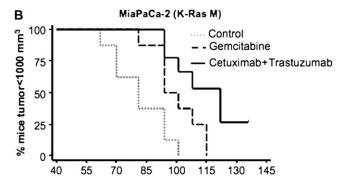
first-line combined antibody therapy versus gemcitabine

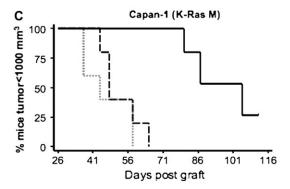
Gemcitabine dose was fixed at 150 mg/kg per injection and antibody doses were selected on the basis of our previous experiments [12].

In the three human pancreatic carcinoma xenografts, the survival of mice treated with the 2mAbs was significantly greater compared with gemcitabine (P = 0.0006 for BxPC-3, P = 0.0679 for MiaPaCa-2 and P = 0.0018 for Capan-1) and control groups (P = 0.0001 for BxPC-3, P = 0.0006 for MiaPaCa-2 and P = 0.0025 for Capan-1) (Figure 1). Median delays for each of the three tumors to reach a volume of 1000 mm^3 under 2mAbs, gemcitabine or no treatment are reported in Table 2. Only the groups treated with the 2mAbs showed complete responses with 20%–33% of tumor-free mice after 2 months of follow-up (Table 2).

second-line combined antibody therapy after progression under gemcitabine


The two mAbs were injected to mice with larger tumors, compared with first-line therapy, since a minimum two-fold tumor progression had to be recorded at the time of 2mAbs treatment initiation (Figure 2). In BxPC-3 and Capan-1 models significant tumor regressions were observed when the mice received 2mAbs, compared with continuous gemcitabine injection group (P < 0.001), while in the MiaPaCa-2 model, 3 of 10 mice showed a marked tumor regression and the others showed only a stabilization of tumor growth (P = 0.003). Despite moderate tumor regrowth, observed after tumor regressions or stabilization, survival was significantly longer in mice from the three pancreatic carcinoma models, treated in second line with 2mAbs compared with mice treated only with gemcitabine (P = 0.008 for BxPC-3, P = 0.052 for MiaPaCa-2 and P = 0.0018 for Capan-1).


immunohistochemistry and western blot analysis


To assess the *in vivo* mechanisms underlying the antitumor activity of the two mAbs combination, we analyzed in BxPC-3 tumor xenografts, by immunohistochemistry (IHC), the EGFR expression, the EGFR phosphorylation level and the proliferative Ki-67 index, after 1 week of 2mAbs or gemcitabine treatment. As shown in Figure 3, the 2mAbs treatment induced a marked decrease of the EGFR expression, EGFR phosphorylation and Ki-67 index compared with untreated controls and gemcitabine treatment. The AKT phosphorylation after the same two treatments was assessed by western blot analysis, which showed almost complete inhibition of P-AKT after 2mAbs treatment and only minor inhibition after gemcitabine treatment compared with untreated tumor control.

comparison of F(ab')₂ fragments from the 2mAbs with intact antibodies

In order to separately analyze the *in vivo* direct effect of the mAbs binding sites on the EGFR and HER2 receptor, as

Figure 1. Kaplan–Meier survival curves of first-line combined antiepidermal growth factor receptor and anti-HER2 monoclonal antibodies versus gemcitabine therapy. Percentage of mice with a tumor volume <1000 mm³ as a function of time after graft under either combined antiepidermal growth factor receptor and anti-HER2 mAbs or gemcitabine or no treatment controls. K-Ras WT, K-Ras wild type; K-Ras M, K-Ras mutation.

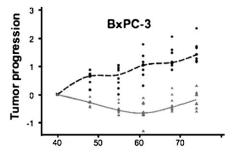
compared with the Fc fragment-dependent effector functions of the antibodies, $F(ab')_2$ fragments from both cetuximab and trastuzumab were prepared and their therapeutic properties evaluated. As shown in Figure 4, the $F(ab')_2$ fragments from the two mAbs had a significant antitumor effect compared with untreated controls (P < 0.001), as well as with $F(ab')_2$ from anti-EGFR mAb alone, which had no antitumor effect (P = 0.510). As expected, injection of the two intact mAbs had a more pronounced antitumor effect compared with the two fragments (P = 0.002).

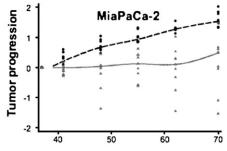
discussion

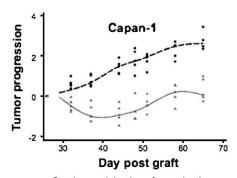
This preclinical study demonstrates a significant improvement of survival and tumor regression in mice treated with combined

Table 2. Median survival and percent of cured mice after first-line treatment

Xenograft	Treatment	Median ^a survival	Benefit ^b	Tumor-free mice % (number)
BxPC-3	Control	55		0
	Gemcitabine	88	+33	0
	2mAbs	109	+54	33 (3/9)
MiaPaCa-2	Control	81		0
	Gemcitabine	94	+13	0
	2mAbs	122	+41	22 (2/9)
Capan-1	Control	44		0
	Gemcitabine	48	+4	0
	2mAbs	105	+61	20 (2/10)


^aMedian: days after graft where 50% of the mice present a 1000 mm³ tumor


anti-EGFR (cetuximab) and anti-HER2 (trastuzumab) mAbs in first and second line of treatment compared with gemcitabine, the gold standard in pancreatic cancers [2].


Of particular interest was the positive impact of this treatment despite the low HER2 expression by all three target carcinomas and despite the presence of a K-Ras mutation on two of them. It was recently shown that the efficacy of cetuximab in metastastic colorectal carcinoma was almost abolished in K-Ras-mutated tumors [18]. In pancreatic cancer, where K-Ras mutations are the norm (90%), trials evaluating cetuximab plus gemcitabine-cisplatin versus gemcitabinecisplatin did not increase response or survival of patients [19]. Here, a clear therapeutic benefit of cetuximab and trastuzumab combination was observed in two K-Ras-mutated pancreatic carcinomas, suggesting that the lack of clinical benefit of anti-EGFR mAb could be bypassed by combining this mAb with the anti-HER2 mAb.

All three tested pancreatic carcinoma lines responded better to 2mAbs whatever their respective sensitivity to gemcitabine. In case of high sensitivity to chemotherapy (BxPC-3), i.e. in the best condition of gemcitabine efficacy, 2mAbs significantly increased tumor responses and cured three of nine mice, while no cure was obtained with gemcitabine.

The mechanism of action of the synergism of the two anti-EGFR and HER2 mAbs is not yet entirely understood, as is the case for several approved mAbs whose mode of action is not entirely unraveled. It was shown that an anti-EGFR mAb could increase the in vitro growth inhibition of an anti-HER2 mAb [9] or that two anti-EGFR and HER2 mAbs had a synergistic effect in the down-regulation of the receptor tyrosine kinases activity [10]. However, our in vivo results were the first to demonstrate unequivocally that the two anti-EGFR and HER2 mAbs can act synergistically in the treatment of human carcinoma xenografts [12]. Thus, we concentrated our effort on some in vivo experiments that could shed some light on the mechanism of action of 2mAbs.

◆- ◆-Continuous injection of gemcitabine * * Cetuximab+trastuzumab after progression under gemcitabine

Figure 2. Tumor size evolution of second-line combined anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies (2mAbs) therapy after gemcitabine progression. Pancreatic carcinoma-bearing mice were first treated with gemcitabine. At day 26, 37 or 40 for Capan-1, MiaPaCa-2 and BxPC-3, respectively, half of the mice in each tumor group were treated with the 2mAbs combination, while the other half received continuous gemcitabine treatment.

First, we showed that the 2mAbs induced a decrease of the proliferation index Ki-67 and a down-regulation of the EGFR. These results were in agreement with those from other groups obtained after the injection of a single anti-EGFR or anti-HER2 mAbs [9-11] or by treatment with two mAbs directed against different epitopes of either EGFR [20] or HER2 receptor [10].

Second, our more original in vivo results were obtained by the combined injection of F(ab')₂ fragments from cetuximab and trastuzumab in order to determine whether the tumor growth inhibition observed with the two intact mAbs was due to a direct action of the two antibody-binding sites on the two receptors, by inhibiting their dimerizations or triggering of a negative intracellular signal, as indicated by in vitro results [8-11] or if it was due to an antibody-dependent cellular cytotoxicity enhancement, as indicated by in vivo experiments [21]. Our results show for the first time in vivo that F(ab')2 from two anti-EGFR and HER2 receptor mAbs significantly inhibited the

^bBenefit: gain in days of the treatment versus control group. 2mAbs, anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies

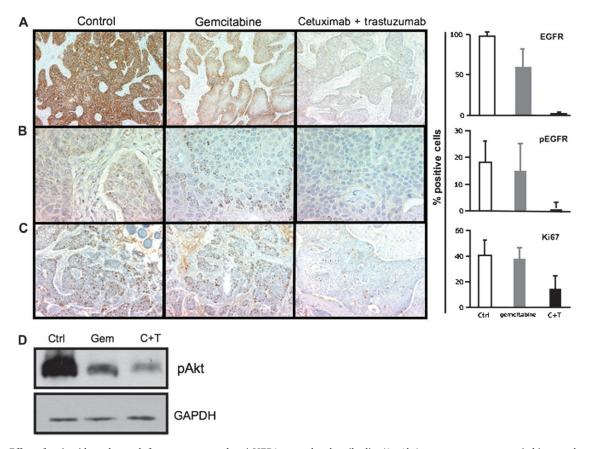
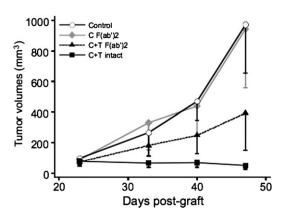



Figure 3. Effect of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies (2mAbs) treatment, versus gemcitabine, on the epidermal growth factor receptor (EGFR) expression, EGFR phosphorylation, proliferation index Ki-67 and AKT phosphorylation in BxPC-3 xenografts. Tumors were resected 7 days after the beginning of therapy. Immunohistochemistry shows in (A) EGFR expression (magnification ×10); (B) EGFR phosphorylation (magnification ×40); (C) Ki-67 index (magnification ×40). On the right respective histograms in % positive cells. Western blot analysis shows in (D) the AKT phosphorylation. Glyceraldehyde-3-phosphate dehydrogenase served as leading control. Cetuximab + trastuzumab (C + T): 2mAbs.

Figure 4. Antitumor effect of the combined treatment with two F(ab')2 fragments mAbs, compared with two intact mAbs. Mice bearing BxPC-3 pancreatic carcinoma were treated either by coinjection with $F(ab')_2$ fragments from both cetuximab and trastuzumab or with the intact antiepidermal growth factor receptor and anti-HER2 monoclonal antibodies or by injection with $F(ab')_2$ fragments from cetuximab alone or were untreated controls.

growth of a pancreatic carcinoma xenograft, indicating that they can have a therapeutic efficiency independently from the Fc fragment-mediated effector functions and thus due to their direct binding activity to the HER1 and HER2 receptors. The therapeutic activity of the two intact mAbs was superior to that observed with the two $F(ab')_2$ fragments, suggesting that the recruitment of effector cells also played a role in the therapeutic efficiency of our 2mAbs treatment. Another explanation for the more efficient therapeutic activity of the two intact mAbs is that due to the property of their Fc fragment to react with FcRn receptor [22], they have a much longer circulating half-life than the $F(ab')_2$ [23].

Whatever the contribution of the two mentioned antitumor mechanisms, the present results show that the combined use of two anti-EGFR and anti-HER2 mAbs, broadly used in the clinic, can be efficient in the treatment of human pancreatic carcinoma xenografts with low expression of HER2 and in two of them with K-Ras mutations. Most importantly, it demonstrates that the combined anti-EGFR and HER2 therapy is more efficient than the present standard chemotherapy, gemcitabine. In this context, a phase I–II clinical trial evaluating the combined cetuximab and trastuzumab in second-line treatment of pancreatic carcinoma after gemcitabine first-line progression appears justified and promising.

funding

Fondation Gustave and Simone Prévot (to C.L.).

acknowledgements

We thank G. Heintz, S. Bousquié, V. Garambois, R. Lavaill and A. Cayre for excellent technical assistance and M. Brissac and I. Aït-Arsa for help in carrying out the animal experiments.

references

- 1. Nelson NJ. Pancreatic cancer research matures. J Natl Cancer Inst 2007; 99: 1432-1434.
- 2. Heinemann V, Boeck S, Hinke A et al. Meta-analysis of randomized trials: evaluation of benefit from gemcitabine-based combination chemotherapy applied in advanced pancreatic cancer. BMC Cancer 2008; 8: 82.
- 3. Herman JM, Swartz MJ, Hsu CC et al. Analysis of fluorouracil-based adjuvant chemotherapy and radiation after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: results of a large, prospectively collected database at the Johns Hopkins Hospital. J Clin Oncol 2008; 26:
- 4. Varadhachary GR, Wolff RA, Crane CH et al. Preoperative gemcitabine and cisplatin followed by gemcitabine-based chemoradiation for resectable adenocarcinoma of the pancreatic head. J Clin Oncol 2008; 26: 3487-3495.
- 5. Moore MJ, Goldstein D, Hamm J et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007: 25: 1960-1966.
- 6. Tobita K, Kijima H, Dowaki S et al. Epidermal growth factor receptor expression in human pancreatic cancer: significance for liver metastasis. Int J Mol Med 2003; 11: 305-309.
- 7. Dugan MC, Dergham ST, Kucway R et al. HER-2/neu expression in pancreatic adenocarcinoma: relation to tumor differentiation and survival. Pancreas 1997; 14: 229-236.
- 8. Ye D, Mendelsohn J, Fan Z. Augmentation of an anti-HER2 mAb 4D5 induced growth inhibition by a human-mouse chimeric anti-EGF receptor mAb C225. Oncogene 1999; 18: 731-738.
- 9. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127-137.
- 10. Friedman LM, Rinon A, Schechter B et al. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci U S A 2005; 102: 1915-1920.

- 11. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5: 341-354.
- 12. Larbouret C, Robert B, Navarro-Teulon I et al. In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas. Clin Cancer Res 2007; 13: 3356-3362.
- 13. Ben-Kasus T. Schechter B. Lavi S. Persistent elimination of ErbB-2/HER2overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis. Proc Natl Acad Sci USA 2009; 106(9): 3294-3299.
- 14. Germain C, Larbouret C, Cesson V et al. MHC class I-related chain A conjugated to antitumor antibodies can sensitize tumor cells to specific lysis by natural killer cells. Clin Cancer Res 2005; 11: 7516-7522.
- 15. Mimura K, Kono K, Hanawa M et al. Trastuzumab-mediated antibody-dependent cellular cytotoxicity against esophageal squamous cell carcinoma. Clin Cancer Res 2005: 11: 4898-4904.
- 16. Cogoi S, Codognotto A, Rapozzi V et al. Transcription inhibition of oncogenic KRAS by a mutation-selective peptide nucleic acid conjugated to the PKKKRKV nuclear localization signal peptide. Biochemistry 2005; 44: 10510-10519.
- 17. Butz J, Wickstrom E, Edwards J. Characterization of mutations and loss of heterozygosity of p53 and K-ras2 in pancreatic cancer cell lines by immobilized polymerase chain reaction. BMC Biotechnol 2003; 3: 11.
- 18. Lievre A, Bachet JB, Boige V et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008; 26: 374-379.
- 19. Cascinu S, Berardi R, Labianca R et al. Cetuximab plus gemcitabine and cisplatin compared with gemcitabine and cisplatin alone in patients with advanced pancreatic cancer: a randomised, multicentre, phase II trial. Lancet Oncol 2008;
- 20. Perera RM, Narita Y, Furnari FB et al. Treatment of human tumor xenografts with monoclonal antibody 806 in combination with a prototypical epidermal growth factor receptor-specific antibody generates enhanced antitumor activity. Clin Cancer Res 2005; 11: 6390-6399.
- 21. Clynes RA, Towers TL, Presta LG et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000; 6: 443-446.
- 22. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 2007; 7: 715-725.
- 23. Delaloye B, Bischof-Delaloye A, Buchegger F et al. Detection of colorectal carcinoma by emission-computerized tomography after injection of 123I-labeled Fab or F(ab')2 fragments from monoclonal anti-carcinoembryonic antigen antibodies. J Clin Invest 1996; 77: 301-311.