
Article https://doi.org/10.1038/s41467-022-34383-6

Parent-of-Origin inference for biobanks

Robin J. Hofmeister 1,2, Simone Rubinacci 1,2, Diogo M. Ribeiro 1,2,
Alfonso Buil 3,4, Zoltán Kutalik 1,2,5 & Olivier Delaneau 1,2

Identical genetic variations can have different phenotypic effects depending
on their parent of origin. Yet, studies focusing on parent-of-origin effects have
been limited in terms of sample size due to the lack of parental genomes or
known genealogies. We propose a probabilistic approach to infer the parent-
of-origin of individual alleles that does not require parental genomes nor prior
knowledge of genealogy. Our model uses Identity-By-Descent sharing with
second- and third-degree relatives to assign alleles to parental groups and
leverages chromosome X data in males to distinguish maternal from paternal
groups. We combine this with robust haplotype inference and haploid impu-
tation to infer the parent-of-origin for 26,393 UK Biobank individuals. We
screen 99 phenotypes for parent-of-origin effects and replicate the discoveries
of 6 GWAS studies, confirming signals on body mass index, type 2 diabetes,
standing height andmultiple blood biomarkers, including the knownmaternal
effect at theMEG3/DLK1 locus on platelet phenotypes. We also report a novel
maternal effect at the TERT gene on telomere length, thereby providing new
insights on the heritability of this phenotype. All our summary statistics are
publicly available to help the community to better characterize the molecular
mechanisms leading to parent-of-origin effects and their implications for
human health.

Parent-of-Origin (PofO) effects refer to genetic variations having an
effect on a phenotype that depends on the parent from which alleles
are inherited1,2. PofO effects are thought tomainly result fromgenomic
imprinting, a mechanism relying on parent-specific DNA methylation,
named imprints, that silence one of the parental copies of a gene. Such
parent-specific imprints are established during spermatogenesis and
oogenesis and aremaintained in all somatic cells of the offspring3. This
leads to some genes, called imprinted genes, to exhibit an allele-
specific expressionpattern thatdepends on the PofOof the underlying
genetic sequence. This allele-specific expression can be maintained
throughout life or specific to some development states4. One of most
studied imprinted loci in the human genome is probably theH19 loci at
11p15.5 that is involved in growth and development disorders such as
the Beckwith–Wiedemann or Silver–Russel syndromes5. Multiple stu-
dies have investigated PofO effects on complex traits, notably for the

KCNQ1 and KLF14 genes whose associations with type 2 diabetes risk
depends only on the maternal copies6, as well as for the MEG3/DLK1
imprinted locus associated with age at menarche7 and platelet count8.

Searching for PofO effects on a genome-wide scale requires
knowing the PofO of each individual allele. The most direct approach
to obtain this information relies on the availability of parental gen-
omes, which allows using the Mendelian principles of inheritance to
determine the parent from which a specific allele is inherited. Study
cohorts usually include a small number of genotyped parent-offspring
duos and trios, resulting in a low discovery power and a challenging
detection of PofO effects. To alleviate this problem, multiple approa-
ches have been explored so far. First, by deploying large efforts in data
collection, such as the study performed on the DiscovEHR cohort9,
representing one of the largest PofO study done to date, with hun-
dreds of phenotypes assessed for more than 22,000 samples with at
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least one genotyped parent. Alternatively, this can also be achieved by
meta-analysis across multiple cohorts regrouping duos and trios, with
the caveat of restricting the analysis to the subset of phenotypes in
common across datasets7,10. Second, statistical approaches have been
proposed to test for PofO effects in large collections of unrelated
samples by exploiting the differences in phenotypic variance between
heterozygous and homozygous individuals, with the caveat of also
detecting effects unrelated to PofO such as gene-environment
interactions11. Third, it has been shown that the PofO of an indivi-
dual’s alleles can also be determined by the use of cousins as surrogate
parentswhenparental genomes are not available6. This latter approach
is particularly well suited for datasets comprising many samples from
the same generation but also requires the genealogy of most indivi-
duals in the study cohort, which is not the case in large datasets such as
the UK Biobank12.

In this work, we present a probabilistic method to infer the PofO
of alleles in biobank scale datasets from second- and third-degree
relatives without requiring any parental genomes nor explicit geneal-
ogy to be known. To do so, our approach combines multiple estima-
tion steps, involving surrogate parent groups formation, parental
status assignment based on chromosome X, haplotype inference,
Identity-By-Descent (IBD) detection, and haploid imputation. When
applied to the UK Biobank dataset, this allows us to infer the PofO for
21,484 samples with high confidence in addition to the 4909 duos/
trios for which we perform direct inference from parental genomes,
resulting in a dataset comprising a total of 26,393 samples and 7.6
million variants. Considering duos/trios as the ground truth, we show
that our PofO estimations from second- and third-degree relatives
have a high call rate (~75%) and low error rate (<1%) at heterozygous
genotypes. Taking advantage of the vast phenotypic diversity of the
UK Biobank, we carrie out genome-wide association scans for PofO
effects for a total of 99 phenotypes, replicating well-known imprinted
loci as well as discovering novel putative PofO associations, thereby
demonstrating that our method has the potential to further reveal the
contribution of PofO effects to complex traits. All the summary sta-
tistics for the conducted association scans are publicly available
(http://poedb.dcsr.unil.ch/) and allow the exploration of the PofO
effects for variants of interest across phenotypes.

Results
PofO inference from genotype data
To infer the PofO of all alleles carried by a given target sample, we
proceed in two consecutive steps as detailed below:
1. Identification of surrogate parents (Fig. 1a). For each target sample

(white British individual of the UK Biobank), we identify close
relatives, and we determine which of the two parents (mother or
father) conveys the relatedness. For this, we first look at pairwise
kinship estimates given by KING13 to identify second- or third-
degree relatives and group them into the two parental groups
based on their relatedness: they cluster in the same group if they
are related and in different groups otherwise. Then, we assign
parental status (maternal or paternal) to parental groups for male
targets only by exploiting the fact that their single chromosomeX
copy is maternally inherited. Therefore, we search for relatives
sharing portions of their chromosome X Identical-By-Descent
(IBD) with the target sample and we label them as surrogate
mothers. We also propagate the information to other relatives:
those from the same parental group are also labeled as surrogate
mothers and those from the other parental group as surrogate
fathers. In case no IBD is found, we cannot annotate parental
groups as maternal or paternal and we exclude the target sample
from the dataset. Hereafter, we call surrogate parents the close
relatives we identified using this approach.

2. Assignment of PofO to alleles (Fig. 1b). After the identification of
surrogate parents, we assign PofO to the target’s alleles. First, we

search for autosomal shared IBD segments between the target
and the surrogate parents using IBD mapping robust to both
phasing and genotyping errors (see Methods, Supplementary
Fig. 1). Then, we classify the resulting IBD segments as being
maternally or paternally inherited depending on the surrogate
parent they map to. This delimits a subset of alleles that are co-
inherited from the same parent within and across chromosomes
(i.e., that co-localize on the transmitted set of homologous
chromosomes). This leaves another subset of alleles for which we
do not know the PofO (i.e., those not shared IBD with any of the
surrogate parents). For those, we extrapolate the PofO using
statistical phasing: we model alleles for which we know the PofO
status as a haplotype scaffold14 ontowhichall remaining alleles are
probabilistically phased using SHAPEIT415 (Supplementary Fig. 1).
The PofO assignment of these remaining alleles is then given by
their frequency of co-localization onto each haplotype scaffold,
which also reflects how reliable the phasing is (i.e., phasing
certainty, Supplementary Fig. 1). Finally, we extrapolate the PofO
for untyped variants by performing haploid imputation of each
parental haplotype in turn using IMPUTE516 and the HRC as
reference panel17.

Validation of the PofO inference on duos and trios
To assess the accuracy of our approach, we used 443,993 genotyped
UK Biobank samples of British or Irish ancestry, together with their
pairwise kinship estimates, to identify a subset of samples with parents
and second-to-third degree relatives. For these samples, we inferred
the PofO using two approaches: directly from the parents or using
second-to-third degree relatives as surrogate parents. We compared
the quality of the PofO inference given by surrogate parents to the
direct approach based on parental genomes, considered to be the
ground truth.We found a total of 3872 parent-offspring duos and 1037
trios, of which 1090 duos and 309 trios also have groups of surrogate
parents. We used this subset of 1399 samples to assess optimal para-
meters and the accuracy of themethod.We focused on twometrics: (i)
the error rate, which is the percentage of heterozygous genotypeswith
incorrectPofOassignment and (ii) the call rate,which is thepercentage
of heterozygous genotypes for which a PofO call could be made (see
Methods).We explored a range of different parameter settings for the
IBD detection and PofO confidence score (i.e., phasing certainty onto
the haplotype scaffold) and found that using haplotype segments
longer than 3 cMas scaffold and a phasing certainty above 0.7 lead to a
good trade-off between call rate and error rate (Fig. 2a). This resulted
in a whole genome error rate of 0.51% and a call rate of 74.5%. As
expected, the error and call rate depend on the number of available
surrogate parents per target, with the call rate increasing and the error
rate decreasing as the number of surrogate parents increases (Fig. 2b).
Themajority of our targets only have a single surrogate parent (75.95%
of the target samples, Fig. 2c) and even in this case, a call rate of 70.9%
and an error rate of 0.6% is achieved (Fig. 2b). We then considered the
genomic localization of variants: we found a lower call rate and a
slightly higher error rate as we approach telomeres, which results from
phasing edge effects (Fig. 2d). Overall, we found small error rates for
the majority of the variants: 79% have an error rate <1% and 56%
inferred perfectly (Fig. 2e). This low error rate mostly results from the
high phasing accuracy that can be achieved in the UK Biobank using
SHAPEIT415. Overall, we obtained a whole genome switch error rate of
0.0845% between consecutive heterozygous genotypes when com-
paring to parental genomes, with only small variations across chro-
mosomes (Supplementary Fig. 2A).When looking at the distribution of
these switcherrors along the genome,we found that theymostly occur
within small segments and that long range errors are almost entirely
corrected by the use of haplotype scaffolds (Supplementary Fig. 2B).
As a result, we obtained haplotypes that are resolved across entire
chromosomes with only a few sporadic errors that, given their
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frequency (<0.1% error rate), we believe to result mostly from geno-
typing errors.

PofO inference in 26,393 individuals
For all genotyped British and Irish individuals in the UK Biobank
without any genotyped parent (N = 438,993), we inferred the PofO
using the method based on surrogate parents, as described above. In
total, we found 105,826 samples with second-to-third degree relatives
forming groups of surrogate parents. Amongst those, we could assign
parental status to surrogate parent groups to a subset of 21,484 sam-
ples using IBD matching on chromosome X. Comparing the distribu-
tion of surrogate parents per target sample, we found a remarkable
match between the full (N = 21,484) and the validation (N = 1399)
datasets (Fig. 2c), suggesting that we can expect similar error rates
between datasets. As our method requires IBD sharing between the
targets and the surrogate parents, no inference can be made for
chromosomes where no IBD sharing is found. The number of samples
with PofO inference thus varies across chromosomes depending on
their length, ranging from 15,645 samples (72.8%) for chromosome 21
to 20,381 samples (94.8%) for chromosome 1 (Fig. 2f). It follows that
the call rate also varies across chromosomes, ranging from 66% for
chromosome 21 to 77.9% for chromosome 2 (Fig. 2f). From the sample

point-of-view, we found that 31.3% of the samples have inference for
the 22 autosomes and 96.1% have inference for more than 15 chro-
mosomes (Supplementary Fig. 3). Finally, we merged the 21,484 sam-
ples with PofO inferred from surrogate parents together with the
4909 samples with PofO inferred from genotyped parents (3872 duos
and 1037 trios) to get afinal set comprising a total of 26,393 individuals
with PofO inference (22,652males and 3741 females) across 7.6million
variants genome-wide (Supplementary Table 1). Together with deep
phenotyping provided by the UK Biobank, this represents a unique
dataset to study PofO effects on complex traits.

Discovery of PofO associations
Distinguishing paternally frommaternally inherited alleles allows us to
design different association scans to test the PofO specificity of asso-
ciations: (i) maternal, to test only the maternally inherited alleles, (ii)
paternal, to test only the paternally inherited alleles, (iii) differential, to
compare paternally and maternally inherited alleles at heterozygous
genotypes only and (iv) additive, as a control to test minor alleles
regardless of PofO. Using these models we scanned for association 99
quantitative phenotypes of the UK biobank using BOLT-LMM18 (Sup-
plementary Data 1), for which we provide all summary statistics online
(http://poedb.dcsr.unil.ch/).

Fig. 1 | Rationale ofPofO inference. a Identificationof surrogate parents in 3 steps:
(1) identification of close relatives for a target sample of interest using the pairwise
kinship estimates, (2) clustering of close relatives by maximizing and minimizing
the inter- and intra-groups relatedness, respectively, (3) assignment of parental
status to close relatives’ groups (i.e., surrogate parents) using IBD sharing on
chromosome X for male targets. b Parent-of-origin inference in 4 steps: (1)

identification of autosomal IBD segments shared between the target and the sur-
rogate parents, (2) scaffold construction with co-inherited alleles localized on the
same homologous chromosome across all autosomes, (3) statistical phasing of all
remaining alleles against the scaffold and (4) whole genome deduction of the
maternal and paternal origins of alleles from phasing probabilities.
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In a first pass, we focused on variants being Bonferroni significant
in both the differential and additive scans (p < 5 × 10−08) and used the
paternal and maternal scans to determine the parental origin and the
direction of the effect. We found two signals fulfilling these criteria.
The first is a PofO association with platelet phenotypes at the MEG3/
DLK1 imprinted locus19 (Table 1 and Fig. 3a, b). The lead SNP
rs59228823 is an eQTL for MEG3 in blood samples20 and is associated
with platelet count and platelet crit under the additive, maternal and
differential scans but not under the paternal scan (Table 1). The minor
allele C at this SNP significantly decreases the platelet count and crit
when maternally inherited (Table 1 and Fig. 3c). A similar maternal
effect has been previously reported on platelet count for another SNP
in the same locus8,9: rs1555405, which is in linkage disequilibrium with
rs59228823 (R2 = 0.59). We also replicated the association at rs1555405
(maternal, paternal, differential p-values = 2 × 10−16, 0.13, 1.4 × 10−06,
Supplementary Fig. 4A), suggesting that these two associations cap-
ture the same effect. The second PofO association we found is at SNP
rs2735940 for the leukocyte Telomere Length (TL) phenotype, with
the minor allele G decreasing TL only when maternally inherited
(Table 1 and Fig. 4a–c). This SNP is located ~1.5 kb upstream of the

promoter ofTERT (Fig. 4b), a gene encoding for the catalytic subunitof
the telomerase, an enzyme involved in TLmaintenance21. This SNP is in
high linkage disequilibrium with the SNP rs2853677 (r2 = 0.6), pre-
viously reported in different GWAS for multiple cancers22,23, blood cell
counts24, aging25 and telomere length26. When directly testing
rs2853677 in our data, we find a strong maternal effect similarly to the
lead SNP (maternal, paternal, differential p-values = 4.6 × 10−17, 0.8,
7.9 × 10−11, Supplementary Fig. 4B). This suggests that a parent-of-
origin effect underlies this pleiotropic locus.

In a second pass, we focused on associations that are Bonferroni
significant in the differential scans but not supported by the additive
scans. In total, we found 14 of these associations that we classified as
putative PofO effects (Supplementary Table 2). This includes three
maternal associations, four paternal associations, and seven associa-
tions with opposite effect between the paternally and maternally
inherited alleles which are consistent with a pattern of bipolar
dominance2. To confirm these results, we used amethod developed by
Hoggart et al.11 designed to capture PofO effects by detecting an
increased variance across heterozygous compared to homozygous.
Using this method on the full set of British samples (N = 443,993), all

Fig. 2 | Validation of the PofO inference. a Call rate (x-axis) and error rate (y-axis)
as a function of (i) theminimal lengthof IBD tracks for scaffold construction and (ii)
the minimal phasing probability used to call a heterozygote as phased. Each point
corresponds to a given phasing probability threshold going from 0.5 (right most
point) to 1.0 (left most point) with steps of 0.05. The grey arrow indicates the
parameters we used in our analysis (3 cM long IBD tracks and 0.7 minimal phasing
probability). b Call rate (left y-axis) and error rate (right y-axis) as a function of the
composition of the parental groups (x-axis). The latter ranges from one parental
group with one surrogate parent (left) to two parental groups comprising multiple
surrogate parents (right). c Fraction of targets as a function of the composition of

the parental groups (x-axis): in the validation data (N = 1399) in gray and in the call
set (N = 21,484) in black. d Error rate (top panel; y-axis) and call rate (bottom panel;
y-axis) per variant site as a function of their normalized positions relative to each
telomere (x-axes). Red lines are fitted density curves. Error rates greater than 10%
are capped to 11% as indicated by the dashed gray line. e Distribution of error rates
per number of variant sites (y-axis, log scale). f Fraction of samples (purple) and
heterozygotes (i.e., call rate; orange) in the call set for which PofO is inferred, as a
function of chromosome length (cM, x-axis). Chromosome numbers are shown
next to the points in black. Source data are provided as a Source Data file.
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associations have p-values <0.007 (Supplementary Table 2). The
strongest opposite PofO effect involves the variant rs77403171 at
2q22.3, intronic to ARHGAP15 and decreasing the eosinophil percen-
tage when maternally inherited while increasing the trait when pater-
nally inherited. ARHGAP15 is a Rho GTPase-activating protein that has
already been associated with multiple blood cell phenotypes, notably
neutrophils, leukocytes, and eosinophils27–29. These are examples of
genetic effects missed by the additive model as paternal and maternal
contribution at heterozygous sites cancel out when considered
together.

Finally, we used the PofO associations at theMEG3/DLK1 locus and
at the TERT locus to illustrate the benefit of using our PofO inference
on the discovery power of PofO effects. To do so, we used 4909 UK
Biobank duos/trios as baseline and gradually added random subsets of
5000 samples for which PofO inference could bemade from surrogate
parents, ending upwith the full set of 26,393 samples. Doing so led to a
clear boost in association strength for the additive, maternal and dif-
ferential signals, with maternal scans ranging from non-significant on
the duos/trios for both platelet crit and TL (n = 4909; p-value =
6.28 × 10−04 and 8.36 × 10−05, respectively) to strongly significant on the
full sample size (n = 26,393; p-value = 6.6 × 10−17 and 2.1 × 10−19,
respectively; Fig. 5a, b), while the paternal signal remained non-
significant. Similarly, we also looked at the effects of errors in the PofO
inference on the discovery power by randomizing the PofO assign-
ment for an increasing number of samples. This progressively diluted
the maternal signal onto the two parental origins while leaving the
additive signal unchanged (Fig. 5c, d). Interestingly, the association
with TL remains significant with up to 10% of errors in the PofO
inference, suggesting that PofO testing could tolerate relatively high
error rates with our sample size.

Replication of PofO associations
The PofO callset for the UK Biobank generated with our method pro-
vides a powerful resource to replicate independent PofO associations
or to annotate other types of associations as PofOeffects. To showthis,
we assessed the ability of our method to replicate the results of seven
GWAS studies acrossmultiple phenotypes often studied in the context
of PofO effects. These studies belong to three different categories: (i)
PofO studies using trios or known genealogies, (ii) PofO studies across
unrelated individuals using an increased-variance method, and (iii)
studies investigating genotype-environment (GxE) interactions.

Standing height. We focused on the 11 PofO associations reported in
three studies making use of genealogy-based PofO inference30–32, 9 of
which could be assessed in our data (identical SNP-phenotype pair in
the UK Biobank). Seven of these associations are located in two well-
known imprinted regions, 11p15.5 and 14q32, and the remaining two
are located in theHLA region.Only one associationhasbeen replicated
across the two of the three studies at rs143840904. In contrast, we
replicated 8 associations out of the 9 we could test, with the same
parent and direction of effects (Table 2A–C), thereby reinforcing the
role of these two well-known imprinted regions on height and pro-
viding further evidence on the PofO effect at the HLA region.

Blood biomarkers. A recent study9 examined multiple blood bio-
markers and reported a total of 10 PofO associations within imprinted
loci using trios-based PofO inference. In our dataset we were able to
assess 7 of these associations and replicated 5 of them, with the same
parent and direction of effects (Table 2D). This included the PofO
effect on platelet phenotypes at the MEG3/DLK1 locus we reported
earlier.

Type 2diabetes. Kong et al.6 reported a total of 4 PofO associations on
type 2 diabetes (T2D) using genealogy-based PofO inference. They fall
within two distinct regions that harbor well-documented imprintedTa
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Fig. 3 | Association scans for PofO effects on platelet crit. a Manhattan plots of
four association scans with platelet crit. From top to bottom plots are shown results
for additive (black), maternal (red), paternal (blue) and differential (green) scans.
The lead variantmentioned in this study (rs59228823) is shownwith a diamond. Red
horizontal lines indicate genome-wide significance threshold at −log10(5 × 10−08).
b Locus zoom at rs59228823 on the differential scan. c Box plot of the normalized
platelet crit (y-axis) stratified by risk alleles and origin at SNP rs59228823; paternal in

blue and maternal in red (x-axis). The horizontal dotted lines represent the pheno-
typic median of the major allele G. Boxes bound the 25th, 50th (median), and the
75thquantiles.Whiskers range fromminima (lower) tomaxima (upper). Sample sizes
are npaternal(G/C) = 16,285/4,769 and nmaternal(G/C) = 16,368/4686 individuals. N.S
non-significant (p-value =0.66); ***=significant (p-value = 6.6 × 10−17) (computed with
BOLT-LMM18). Source data for (a) and (b) are provided as a Source Data file.
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Fig. 4 | Association scans for PofO effects on telomere length. aManhattan plots
of four association scanswith telomere length. From top to bottomplots are shown
results for additive (black), maternal (red), paternal (blue) and differential (green)
models. The lead variant mentioned in this study (rs2735940) is shown with a
diamond. Red horizontal lines indicate genome-wide significance threshold at
−log10(5 × 10−08). b Locus zoom at rs2735940 on the differential scan. c Box plot of
the normalized telomere length (y-axis) stratified by risk alleles and origin at SNP

rs2735940; paternal in blue andmaternal in red (x-axis). The horizontal dotted lines
represent the phenotypicmedian of themajor allele A. Boxes bound the 25th, 50th
(median), and the 75th quantile. Whiskers range from minima (lower) to maxima
(upper). Sample sizes are npaternal(A/G) = 10,627/10,337 and nmaternal(A/G) = 10,635/
10,329 individuals. N.S non-significant (p-value = 0.46); *** = significant (p-value =
2.1 × 10−19) (computed with BOLT-LMM18). Source data for (a) and (b) are provided
as a Source Data file.
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gene clusters, 11p15.533 and 7q3234,35. As we could not directly test T2D
status due to the small number of cases in our dataset, we tested the
biomarker most correlated with T2D: glycated hemoglobin
(HbA1c,https://ukbb-rg.hail.is/). By doing so, we replicated the three
strongest associations with the same parental effect (Table 2E). In
addition, we phenome-wide analyzed these four variants in our dataset
and found 22 associations with differential p-value <0.01 (Supple-
mentary Data 2) for 20 distinct phenotypes, many of them closely
related to T2D. This illustrates how the deep phenotyping of UK Bio-
bank can help to provide new mechanistic insights for these four T2D
risk alleles at the biomarker level.

BMI by increased variance. Hoggart et al.11 reported a total of 6 PofO
associations with BMI using an increased-variance method designed
to capture PofO effects, two of which were replicated using inde-
pendent family datasets. These include variants associated with
known imprinted genes, SLC2A10 at 20q13.12 and KCNK9 at 8q24.3.
We could replicate the strongest association in our dataset at the
KCNK9 locus, with the T allele of rs2471083 increasing BMI when
maternally inherited (Table 2F). Here, our replication offers addi-
tional support for the KCNK9 locus and confirmation of thematernal
origin of this effect, an information that the increased-variance
approach can not provide.

Fig. 5 | Robustness of the PofO testing. a, b Association strength as −log10(p-
value) for rs59228823 and rs2735940 (y-axis) onplatelet crit andTL, respectively, as
a function of the number of randomly chosen samples included in the analysis
under the additive (black), paternal (blue), maternal (red) and differential
(green) scans. Eachpoint forN = [10,000; 15,000; 20,000] represents themedianp-
value obtainedafter 10 randomizationswith vertical bars representing the standard
error. Points for N = 4909 and N = 26,393 represent the p-values obtained using
only the samples with genotyped parents and using our full sample size,

respectively. c, d Association strength as −log10(p-value) for rs59228823 and
rs2735940 (y-axis) on platelet crit and TL, respectively, as a function of the fraction
of samples for which PofO has been randomly drawn (x-axis, 100% = 26,393).
Samples included are those for which the PofO has been inferred from the surro-
gate parents. Each point represents the median p-value obtained after 10 rando-
mizations with vertical bars representing the standard errors. P-values are
computed with BOLT-LMM18. Source data are provided as a Source Data file.
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BMI by GxE. We hypothesized that some GxE signals detected for BMI
could be due to PofO effects. Using the UK Biobank, Kerin et al.36

reported two GxE associations at rs2153960 and rs539515, mapping to
FOXO3 and SEC16B, respectively, with the latter replicated by another
study37. In our study, we found a paternal effect of rs539515 on BMI
(Table 2G, maternal, paternal, differential p-values = 0.047, 7.3 × 10−09,
0.0069). Interestingly, when performing a phenome-wide scan of the
1q25.2 locus harboring rs539515, we found paternal associations
between four SNPs in high LD (rs527065, rs539515, rs8030 and
rs531385; r2 > 0.5)withweight,waist circumference, hip circumference,
basal metabolic rate and arm/leg mass (maternal p-values > 0.05,
paternal p-values <5 × 10−8, differential p-values <0.005; Supplemen-
tary Table 3). All these SNPs also map to SEC16B (either intronic or
splicing QTLs) and have already been associated with weight- or
obesity-related phenotypes under the additive model38–40. Altogether,
this suggests that the GxE effect of SEC16B on BMI is likely due to a
paternal effect.

Birth weight. We investigated the 22 PofO associations reported with
birth weight phenotype41 and were not able to replicate any of these
associations in our data, nor any of the additive ones (Supplementary
Data 3). This is most likely due to some phenotype misspecification of
birth weight in the UK Biobank as this phenotype is self-reported by
individuals between 39 and 73 years old, which is likely less reliable
than newborn birth weight reported by the mother. Additionally, the
individualswith available birth weight specification represent only half
of our samples (Supplementary Data 1) which considerably decreases
the discovery power.

Discussion
Studying PofO effects requires parental genomes or genealogies to
determine the set of alleles transmitted to the offspring by each of
the two parents. As a consequence, this prevents the study of PofO
effects in biobanks, usually comprising a large and diverse panel of
phenotypes. In this work, we propose an approach that leverages the
high degree of relatedness between individuals inherent to biobank-
scale datasets in order to infer the PofO of alleles for many indivi-
duals and variant sites without any parental genomes or genealogy
being available. When applied on the UK Biobank, this approach
could predict the PofO of alleles for around 5% of the total number of
samples, resulting in a dataset comprising the PofO inference for
more than 26,000 samples at 7.6 million variants. Together with
deep phenotyping, this dataset allows studying PofO effects on a
large scale with improved discovery power, as demonstrated by our
ability to replicate many known PofO associations as well as discover
new ones.

We looked at PofO associations at three different levels. First, we
reported two clear PofO associations supported by additive signals: a
maternal effect on platelet phenotypes located in the MEG3/DLK1
imprinted locus that has already been described8,9 and another
maternal effect on TL at the TERT locus, a gene repeatedly associated
with TL under an additive model. This new PofO signal at the TERT
locus is particularly interesting, not only for its implication in
cancer42, but also because TL has been found to be highly heritable
and proposed to be under imprintingmechanisms43–47, which has not
yet been confirmed. In this work, we highlight a strong maternal
genetic effect at the TERT locus, thereby providing additional evi-
dence of the parent-of-origin component in TL heritability and
hypothesis on the imprinting status of TERT. In addition to this, we
also reported 14 new putative PofO associations across multiple
complex traits and confirmed them by replicating the signals in a
larger UK Biobank sample set using an increased variance method.
These new associations represent interesting candidates of PofO
effects in the human genome and would deserve further investiga-
tion and replication in independent datasets. Interestingly, none of

them fall in imprinting regions, suggesting that the current annota-
tion of imprinted genes is still incomplete or that the molecular
mechanisms underlying PofO effects are not necessarily directly
linked to genomic imprinting48. Finally, we replicated the results of 6
GWAS on PofO out of the 7 we investigated, confirming PofO effects
onBMI, T2D, standing height andmultiple blood biomarkers.We also
showed that the summary statistics we provide can be used to
annotate additive signals (e.g., TERT) or variance QTL (GxE, e.g.,
SEC16B) as PofO. We believe that an increase of power is still neces-
sary to detect additional PofO effects with strong confidence but that
the current approach already provides a useful resource that can
reveal many other associations by meta-analysis. Besides, we also
believe that our dataset can be used for more targeted GWAS scans
and reveal new putative PofO effects by focusing only on known
imprinted loci, only on additive associations or on both criteria
together6,9, thereby decreasing the cost of multiple testing
corrections.

One of the strengths of our PofO inference method resides in its
ability to make PofO calls with a low error rate. Regardless, the pre-
sence of errors in the inference is unlikely to produce false positive
PofO associations, but only decrease the statistical power of the study,
since inference errors are expected to be drawn independently from
the phenotypes. Instead, errors are expected to lead to false negatives
as PofO signals get diluted onto the two parental origins and thus
decrease association power. In this work, we controlled for this by
focusing exclusively onhigh-confidence PofO calls,which corresponds
to a call for 74.5% of heterozygous genotypes with an estimated error
rate below 1%. The overall high accuracy in our estimates could be
achieved thanks to recent progress in the statistical estimation of
haplotypes for very large sample sizes15,49 so that the PofO status
inferred within IBD tracks could be confidently propagated to entire
chromosomes. Further improvements in phasing algorithms could be
made by explicitly modeling IBD sharing between close relatives,
eventually through inter- and intra-chromosomal scaffolding as we
performed in this work.

Our ability to infer PofO depends on the availability of close
relatives. Surprisingly, even when only a single third-degree relative
is available for IBD mapping, we achieve a high call rate and a low
error rate. We believe this could be further improved by using more
distant relatives, even if they will contribute less to the inference
than second- and third-degree relatives. In addition, our PofO
inference depends on the ability to assign parental status to relatives
based on IBD sharing on chromosome X, which comes with some
flaws. First, our current inference is only possible for males as it
leverages chromosome X haploidy, which means that only non-sex
specific and male specific PofO effects can be investigated. As a
results, female specific PofO effects, which could be of great interest
given the recent findings on sexual dimorphisms50, notably for
anthropomorphic traits, are likelymissed by this approach. Potential
improvements should come with whole genome sequencing (WGS)
data: parental status assignment based on rare variant matching on
chromosome Y and mitochondrial DNA would likely become possi-
ble. In the UK Biobank, this has the potential to substantially increase
the sample size above the ~26,000 samples we have so far to a the-
oretical upper bound of 105,826 samples, which corresponds to the
number of samples for which we found groups of close relatives in
the dataset. This could further boost the discovery power of down-
stream PofO association scans. Second, this approach can be con-
founded by high levels of inbreeding which could lead a sample to
share portions of the chromosome X IBDwith close relatives on both
sides of the family, therefore greatly complexifying sex assignment.
However, we consider this issue to be almost negligible in this study
as the UK biobank mostly comprises outbred individuals. Con-
versely, admixture affects kinship estimation and therefore our
ability to find surrogate parents, although this can be compensated
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by using a robust method for kinship estimation in admixed
populations51.

Overall, this study is a valuable resource to further characterize
PofO effects and investigate the impact of imprinting genes on com-
plex traits. Although the multiple successive steps of this approach
(IBD mapping, phasing, imputation) are difficult to fully automatize,
we expect it to be applicable to other biobanks, such as those collected
by the FinnGen research project (https://finngen.gitbook.io/
documentation/), the Million Veteran Program52 or The Estonian
Biobank53. Collective efforts would allow the detection of PofO effects
with an unprecedented sample size by meta-analyzing PofO effects
acrossmultiple biobanks and therefore greatly help future research on
the molecular mechanisms leading to PofO effects and their implica-
tion for human health.

Methods
Duos/Trios identification
To identify trios and duoswe used pairwise kinship and IBS0 estimates
up to third degree relative computed using KING13 and provided as
partof theUKbiobank study. FollowingManichaikul et al.13 andBycroft
et al.12, we defined offspring-parent pairs as having a kinship coefficient
between 0.1767 and 0.3535 and an IBS0 below 0.0012 (Supplementary
Fig. 5). We also added the condition of age difference greater than 15
years between parent-offspring pairs. We used the age and sex of the
individuals to distinguish parents and offspring. For the trios, we also
ensured that the two parents have different sex. Starting from 147,731
UKB individuals with at least one third degree relative, we found a total
of (i) 1064 samples with both mother and father (i.e., trios) and (ii)
4123 samples with mother or father (i.e., duos). We used the reported
ancestry of individuals to keep only genotyped individuals of British
and Irish ancestry (N = 443,993), which resulted in 1037 trios and
3872 duos.

IBD based group inference
We used pairwise kinship and IBS0 estimates up to the third degree
relative to identify sibling pairs (kinship between 0.1767 and 0.3535
and IBS0 above 0.0012), and second- and third-degree relatives’ pairs
(kinship below 0.1767) for all genotyped individuals of British and Irish
ancestry (N = 443,993) (Supplementary Fig. 5). For the following steps,
we used only second- and third-degree relatives to form surrogate
parent groups. We excluded siblings as they share the same two par-
ental genomes and therefore are not informative to distinguish the
paternal from the maternal genome. We found 106,414 individuals
with at least one second or third degree relative and 21,255 sibling
pairs. For individuals with two or more second- and third-degree
relatives, we separated those relatives into groups, representing the
groupsof relatives on each sideof the family (i.e.,mother-side relatives
and father-side relatives). To do so, we used the relatedness in-
between these relatives: those related to each other are expected to
be on the same side of the family, while those unrelated to each other
are expected to be on different sides of the family. We built for each
individual a kinship symmetric matrix of size N×N, where N is the
number of second-to-third relatives of the target individual con-
sidered, filled with the kinship values in-between each relative. We
then used the ‘igraph’Rpackage to cluster these relatives into groups
based on their relatedness similarly towhat has been done by Bycroft
et al.12. As we wanted a maximum of two distinct groups (i.e., one
paternal andonematernal), we excluded sampleswithmore than two
clusters of relatives from the analysis as it indicates ambiguous cases.
Similarly, if a second-to-third degree relative is related to the two
clusters, we also excluded the sample to avoid ambiguous cases.
Importantly, this is often a symmetric assignment: when A is part of
the group of relatives of B, this usually involves B is part of the
relatives of A.We identified a total of 105,826 individuals with groups
of relatives, ranging from one group of one relative to two groups of

more than two relatives. This includes 309 individuals having also
both parents genotyped (i.e., trios) and 1090 having a single parent
genotyped in the data (i.e., duos). These 1399 individuals with at least
one genotyped parent and groups of close relatives constitute our
validation data set on which we applied our PofO inference method
using the close relatives as surrogate parents, ignoring the parental
genomes. We then used parental genomes to compute the accuracy
of our inference.

Group assignment
We assigned parental status (i.e., mother or father) to groups of close
relatives by examining shared IBD segments on chromosome X using
XIBD54, a software specifically designed to map IBD on chromosome
X (Fig. 1c). This assignment was only possible formales as they inherit
their only chromosome X copy from their mother: a close relative,
male or female, sharing IBD on chromosome X with the target is
expected to be from the maternal side of the family. To empirically
determine the IBD threshold above which only mother-side relatives
are found, we used the 1399 samples of our validation set (i.e., with
close relatives’ groups and genotyped parents). We computed the
IBD sharing on chromosome X for each target-relative pair, knowing
the correct parental side of the relatives from the kinship in between
the relatives and the available parents. We found that only mother-
side relatives share more than 0.1 of IBD1 on chromosome X (Sup-
plementary Fig. 6), a value that we used as a threshold to assign
maternal status. Across the 107,038 individuals having groups of
close relatives, 48,814 individuals are males, and we assigned the
group of close relatives to the maternal side of the family for 20,620
of them. By extension, we propagated the maternal status to the
relatives from the same parental group, and we labeled as paternal
the relatives from the other group. We then used the underlying idea
that siblings share the same set of cousins, uncle, and aunt to enrich
our set of samples. We searched for siblings of these 20,620 indivi-
duals having the exact same close relatives’ groups. We found
864 such siblings, resulting in a total of 21,484 individuals with close
relatives’ groups assigned to parental status (i.e., surrogate parents).
Notably, this strategy allowed us to assign parental status for a small
additional subset of female individuals (N = 775, Supplementary
Table 1).

Genotype processing
We used the UK biobank SNP array data in PLINK format. We con-
verted the UK biobank PLINK files into VCF format using PLINK
v1.90b555, which resulted in 784,256 variant sites across the auto-
somes for 488,377 individuals.We thenused theUKbiobank SNPsQC
file (UK biobank resource 1955) to keep only variants used for the
phasing of the original UK biobank release, resulting in 670,741
variant sites.

Validation and production datasets
We assembled two distinct datasets comprising different collections
of samples of British or Irish ancestries by subsampling the original
dataset with BCFtools v1.8. The first one includes all UK Biobank
samples excluding the parental genomes for the N = 1399 validation
samples for which we have both parental genomes and surrogate
parents. We ran our inference on N = 1399 validation samples and we
assessed its performance by comparing our estimates to the truth
given by parental genomes. It is important to note that parental
genomes have been used only at the validation stage and not during
any phasing runs nor PofO inference. The second dataset includes
this time all available UK Biobank samples and has been used to
produce the final set of individuals with PofO inference that has been
used for association testing. This includes N = 21,484 samples for
which PofO could be inferred from surrogate parents and
N = 4909 samples for which PofO could be directly inferred from the
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trios/duos. The final dataset includes 22,652 males (85.8%) and 3741
females (14.2%).

PofO inference step1: IBD mapping
In this first stage, we inferred PofO for alleles shared IBD with sur-
rogate parents. To do so, we started by an initial phasing run of the
data using SHAPEIT v4.2.115 with default parameters so that all data
consists of haplotypes. Then, we designed a Hidden Markov Model
(HMM)56 to identify IBD sharing between the target haplotypes and a
reference panel mixing haplotypes from two different sources: from
the surrogate parents of the target (labeled as mother or father) and
from unrelated samples. We aimed for such a probabilistic model for
its robustness to phasing and genotyping errors compared to
approaches based on exact matching such as the positional
Burrows–Wheeler transform (PBWT). Themodel then uses a forward-
backward procedure to compute, for each allele of a target haplo-
type, the probability of copying the allele from (i) the surrogate
mother haplotypes, (ii) the surrogate father haplotypes or (iii)
unrelated haplotypes. Here, we used 100 unrelated haplotypes as
decoys so that the model is not forced to systematically copy from
surrogate parents. When themodel copies the target haplotype from
a specific surrogate parent at a given locus with high probability, we
can therefore infer the PofO at this locus from the parental group the
surrogate parent belongs to. When the model copies from unrelated
haplotypes, no inference can be made at the locus (Supplementary
Figs. 1, 7 panels 1, 2). We implemented this approach in an open-
source tool available on GitHub57.As a result of this procedure, we
obtained PofO calls within haplotypes segments shared IBD with
surrogate parents.

PofO inference step2: extrapolation by phasing
In this second stage, we inferred PofO for all remaining genotyped
alleles. First, we built a haplotype scaffold comprising all alleles for
which we know PofO from IBD sharing with surrogate parents14. In
other words, we forced all alleles that we knew to be co-inherited
from the same ancestor to locate on the same homologous chro-
mosome (Supplementary Figs. 1, 2B). In the scaffolds, we only
included IBD tracks longer than 3 cM.We empirically determined this
length on the validation set of samples by maximizing and minimiz-
ing the call rate and the error rate, respectively (see “Methods” sec-
tion ‘Accuracy and parameters optimization’). In addition, we
considered in the haplotype scaffold only alleles having a PofO
probability greater or equal to 95%. As a result, we could build
paternal and maternal haplotype scaffolds that we used in a second
step to rephase the entire dataset using SHAPEIT4 v4.2.115. The goal of
this second round of phasing is three-folds: (i) to ensure that the pool
of alleles coming from the same parent land onto the same haplo-
type, (ii) to propagate the PofO assignment from IBD tracks to all
alleles along the chromosomes and (ii) to correct long range switch
errors. Point (ii) is made possible as all alleles with PofO unknown
(i.e., not in IBD tracks) are phased relatively to the haplotype scaffold
so that we can extrapolate their PofO from the scaffold they co-
localize with (paternal/maternal). In practice, we ran SHAPEIT4 with
two main options: -scaffold to specify the scaffolds of haplotypes to
be used in the estimation and -bingraph to output the haplotype
reconstructions together with phasing uncertainties. The latter pro-
vides the haplotype reconstructions as parsimonious graphs encap-
sulating phasing uncertainty so that likely haplotype pairs can be
rapidly sampled without being forced to rerun the complete phasing
run. As a consequence, we sampled for each target sample a 1000
haplotype pairs using different seeds and computed the probability
for a given allele to be paternal or maternal from its frequency of co-
localization across the 1000 pairs onto the paternal and maternal
haplotype scaffolds, respectively (Supplementary Figs. 1 and 7A–H
panels 3). This frequency indicates the certainty we have in phasing

and therefore is a probabilistic measurement of the confidence in the
PofO assignment. For instance, a specific allele being phased with a
certainty of 0.8 onto the paternal haplotype scaffold has an 80%
chance to be of paternal origin. In all downstream analysis, we con-
sidered only heterozygous genotypes with a phasing probability
above 0.7; a threshold that we empirically determined from the
validation set of samples by maximizing and minimizing the call rate
and the error rate (see “Methods” section on ‘Accuracy and para-
meters optimization’).

PofO inference step3: extrapolation by imputation
In this third stage, we inferred PofO for untyped alleles, i.e., not
included on the SNP array. To do so, we imputed the data using
IMPUTE5 v1.1.416 with the Haplotype Reference Consortium17 as a
reference panel. As our data is phasedwith each haplotype assigned to
a specific parent, we used the parameter -out-ap-field to run a haploid
imputation of the data and separately imputed the paternal haplotype
and the maternal haplotype. Of note, we filtered out all heterozygous
genotypes with a phasing certainty below 0.7 prior to imputation (see
previous section). As a result of haploid imputation, the PofO of
imputed alleles can be probabilistically deduced from the imputation
dosages: an allele imputed with a dosage of 0.85 on the paternal
haplotype has 85% probability of being inherited from the father (i.e.,
PofO probability = 85%). Finally, we filtered out variants with an INFO
score below 0.8 and obtained a dataset comprising 22,156,064
variants.

Accuracy and parameters optimization
We used samples with both genotyped parents and groups of surro-
gate parents (i.e., validation set of samples N = 1399) to compute the
errors in the PofO inference and to optimize the parameters of our
inference method. For the trios (N = 309) and the duos (N = 1090), we
determined the correct parental origin of offspring heterozygous
genotypes at sites where a parent is homozygous, excluding sites with
Mendel inconsistencies.We assessed the impact of two parameters on
the call rate (percentage of heterozygous genotypes with PofO
assignment) and the error rate (percentageof heterozygous genotypes
with incorrect PofO assignment) of the PofO inference: (i) the length in
centimorgan (cM) of the haplotype segments that we included in the
scaffold for the second phasing run and (ii) the phasing certainty
threshold we used to assume PofO to be known at heterozygous
genotypes. To do so, we compute the call rate and the error rate for all
combinations of the following parameters (Fig. 2a): haplotype seg-
ments of 2, 3, 5, 8, and 10 cM and threshold on the phasing certainty
between 0.5 and 1.0 by steps of 0.05. Overall, we found that a phasing
certainty above 0.7 and haplotype segments above 3 cM to be a good
trade-off between call rate and error rate and used these values in all
downstream analyses.

Association testing for PofO
We tested 99 quantitative phenotypes of the UK biobank data set
(Supplementary Data 1) from 4 phenotypic categories to allow
phenome-wide association analysis of variants of interest: body size
measurements, body composition by impedance, blood biochemistry
and blood count. We additionally tested telomere length and birth
weight which are not included in one of these categories. For telomere
length, we removed individuals with reported blood cancer or malig-
nancies.We considered only phenotypes with less than 50% ofmissing
data. We rank-transformed each phenotype using the ‘rntransform’

function from the GenABEL v1.8-0R package58. We used the sex, age
and the method used to infer the PofO of alleles as covariates (i.e.,
surrogate parents or direct parents). We used BOLT-LMM v2.3.418 to
run all association tests. As recommended by the authors, we per-
formed the model fitting only on the genotyped variants. For the
additive GWAS scans, we used the -dosageFile parameter to test
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imputed alleles dosages, as recommended in the documentation. For
the PofO GWAS scans (i.e., maternal scan and paternal scan), we used
the -dosageFile parameter to test the PofO dosages of alleles. In prac-
tice, we only used imputed allele dosages (i) of the paternal haplotype
for the paternal-specific GWAS and (ii) of the maternal haplotype for
the maternal-specific GWAS, so that PofO assignment uncertainty is
propagated to association testing. We conducted a third PofO GWAS
scan that compares the effect of maternally and paternally inherited
minor alleles at heterozygous genotypes (i.e., differential scan). For
this, we used only heterozygous genotypes with imputed minor allele
dosages greater or equal to 0.95 to keep only genotypes with high
confidence in the PofO. We encoded such alleles as 0 when inherited
from the father and 1 when inherited from the mother. We again used
the -dosageFile parameter to test whether the paternal and maternal
alleles have differential effect at heterozygous sites with all homo-
zygous genotypes set to missing. Prior to running association testing,
we coded all variants so that we systematically tested the effects of
minor alleles. We filtered out all variants with a minor allele frequency
(MAF) below 1% which resulted in 7,645,537 variants for association
testing.

GWAS hits identification
We identify independent hits as having Linkage Disequilibrium (LD, R2,
computed with PLINK v1.90b555) < 0.05 and being located at least
500 kb apart. If two hits are not independent, we select the one with
the lowest p-value. We identify PofO associations as being Bonferroni
significant (p < 5 × 10−08) in the differential scan and in the additive
scan. We inferred the parent and direction of the effect using the
paternal and maternal scans.

Replication of PofO hits using the increased-variance method
We used the QUICKTEST software11, designed to capture PofO effects
as described by Hoggart et al. Software and documentation were
accessed on 12.22.2021 (https://wp.unil.ch/sgg/program/quicktest/).
We restricted the analysis to the subset of 443,993 genotyped samples
of British or Irish ancestry. We used as covariates age, sex and the first
ten PCs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The summary statistics for the four GWAS models across the 99 phe-
notypes are available here for download: http://poedb.dcsr.unil.ch/.
The UK Biobank genetic data are available under restricted access for
privacy policy reason, access canbe obtained by application via theUK
Biobank Access Management System (https://www.ukbiobank.ac.uk/
enable-your-research/apply-for-access). Source data are provided with
this paper.

Code availability
Repository https://github.com/RJHFMSTR/PofO_inference hosts the
source code of the IBD mapper used as part of this study, a full doc-
umentation of the pipeline57, as well as the custom code used for the
analysis and for the data visualization.
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