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Abstract

We derive how directional and disruptive selection operate on scalar traits in heterogeneous group-

structured populations for a general class of models. In particular, we assume that each group in

the population can be in one of a finite number of states, where states can affect group size and/or

other environmental variables, at a given time. Using up to second-order perturbation expansions of

the invasion fitness of a mutant allele, we derive expressions for the directional and disruptive selection

coefficients, which are sufficient to classify the singular strategies of adaptive dynamics. These expressions

include first- and second-order perturbations of individual fitness (expected number of settled offspring

produced by an individual, possibly including self through survival); the first-order perturbation of the

stationary distribution of mutants (derived here explicitly for the first time); the first-order perturbation

of pairwise relatedness; and reproductive values, pairwise and three-way relatedness, and stationary

distribution of mutants, each evaluated under neutrality. We introduce the concept of the individual k-

fitness (defined as the expected number of settled offspring for which k−1 randomly chosen neighbors are

lineage members) and show its usefulness for calculating relatedness and its perturbation. We then show

that the directional and disruptive selection coefficients can be expressed in terms individual k-fitnesses

with k = 1, 2, 3 only. This representation has two important benefits. First, it allows for a significant

reduction in the dimensions of the system of equations describing the mutant dynamics that needs to be

solved to evaluate explicitly the two selection coefficients. Second, it leads to a biologically meaningful
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interpretation of their components. As an application of our methodology, we analyze directional and

disruptive selection in a lottery model with either hard or soft selection and show that many previous

results about selection in group-structured populations can be reproduced as special cases of our model.

1 Introduction

Many natural populations are both group-structured – with the number of individuals interacting at the

local scale being finite – and heterogeneous – with different groups being subject to different demographic

and environmental conditions (e.g., varying group size and temperature, respectively). Understanding

how evolution, and in particular natural selection, moulds phenotypic traits in such systems is compli-

cated as both local heterogeneity and demographic stochasticity need to be taken into account. In order

to predict the outcome of evolution in heterogeneous populations, evolutionists are generally left with

the necessity to approximate the evolutionary dynamics, as a full understanding of this process is yet

out of reach.

A standard approximation to predict evolutionary outcomes is to assume that traits are quantitative,

that the details of inheritance do not matter (“phenotypic gambit”, Grafen, 1991), and that mutations

have weak (small) phenotypic effects (e.g. Grafen, 1985; Taylor, 1989; Parker and Maynard Smith, 1990;

Rousset, 2004). Under these assumptions, directional trait evolution can be quantified by a phenotypic

selection gradient that captures first-order effects of selection. Thus, phenotypic change occurs in an up-

hill direction on the fitness landscape. This directional selection either causes the trait value to change

endlessly (for instance, due to macro environmental changes or cycles in the evolutionary dynamics), or

the trait value eventually approaches a local equilibrium point, a so-called singular strategy, where di-

rectional selection vanishes. Such a singular strategy may be locally uninvadable (“evolutionary stable”)

and thus a local end-point of the evolutionary dynamics. However, when the fitness landscape is dynamic

due to selection being frequency-dependent, then it is also possible that, as the population evolves uphill

on the fitness landscape, this landscape changes such that the population eventually finds itself at a

singular strategy that is located in a fitness valley. In this case, directional selection turns into disruptive

selection, which means that a singular strategy that is an attractor of the evolutionary dynamics (and

thus convergence stable) is invadable by nearby mutants and thus an evolutionary branching point (Metz

et al., 1996; Geritz et al., 1998). Further evolutionary dynamics can then result in genetic polymorphism

in the population, thus possibly favoring the maintenance of adaptive diversity in the long term (see

Rueffler et al., 2006, for a review). Disruptive selection at a singular point is quantified by the disruptive

selection coefficient (called quadratic selection gradient in the older literature: Lande and Arnold, 1983;

Phillips and Arnold, 1989), which involves second-order effects of selection.

A central question concerns the nature and interpretation of the components of the selection gradient

and the disruptive selection coefficient on a quantitative trait in heterogeneous populations. For the

selection gradient, this question has been studied for a long time and a general answer has been given

under the assumption that individuals can be in a finite number of states (summarized in Rousset, 2004).

Then, regardless of the complexity of the spatial, demographic, environmental, or physiological states

individuals can be in or experience (in the kin-selection literature commonly referred to as class-structure,
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e.g. Taylor, 1990; Frank, 1998; Rousset, 2004), the selection gradient on a quantitative trait depends on

three key components (Taylor, 1990; Frank, 1998; Rousset, 2004). The first component are individual

fitness differentials, which capture the marginal gains and losses of producing offspring in particular

states to parents in particular states. The second component are (neutral) reproductive values weighting

these fitness differentials. These capture the fact that offspring settling in different states contribute

differently to the future gene pool. The third component are (neutral) relatedness coefficients. These

also weight the fitness differentials, and capture the fact that some pairs of individuals are more likely to

carry the same phenotype (inherited from a common ancestor) than randomly sampled individuals. This

results in correlations between the trait values of interacting individuals. Such correlations matter for

selection (“kin selection”, e.g. Michod, 1982) and occur in populations subject to limited genetic mixing

and small local interaction groups. At the risk of oversimplifying, reproductive values can be thought

of as capturing the effect of population heterogeneity on directional selection, while relatedness captures

the effect of demographic stochasticity.

The situation is different with respect to the coefficient of disruptive selection, i.e., the second-order

effects of selection. The components of the disruptive selection coefficient have not been worked out in

general and are studied only under the assumptions of well-mixed or spatially structured populations,

but with otherwise homogeneous individuals. For the spatially structured case the effects of selection on

relatedness has been shown to matter, as selection changes the number of individuals expressing similar

trait values in a certain group (Ajar, 2003; Wakano and Lehmann, 2014; Mullon et al., 2016), resulting in

a reduced strength of disruptive selection under limited dispersal. For the general case that individuals

can be in different states one expects intuitively that disruptive selection also depends on how selection

affects the distribution of individuals over the different states. But this has not been analyzed so far

even though it is captured implicitly when second-order derivatives of invasion fitness are computed as

has been done in several previous works investigating evolutionary branching in some specific models of

class-structured populations (e.g. Massol et al., 2011; Rueffler et al., 2013; Massol and Débarre, 2015;

Kisdi, 2016; Parvinen et al., 2018, in press).

In the present paper, we develop an evolutionary model for a heterogeneous group-structured pop-

ulation that covers a large class of biological scenarios. For this model, we show that the disruptive

selection coefficient can be expressed in terms of individual fitness differentials weighted by the neutral

quantities appearing in the selection gradient. This both significantly facilitates concrete calculations

under complex scenarios and allows for a clear biological interpretation of selection. Our results contain

several previous models as special cases.

The remainder of this paper is organized as follows. (1) We start by describing a demographic model

for a heterogeneous group-structured population and present some background material underlying the

characterization of uninvadable (“evolutionary stable”) strategies by way of invasion fitness for this

model. We here also introduce a novel concept for individual fitness – individual k-fitness – defined as

the expected number of settled offspring for which k − 1 randomly chosen neighbors are relatives (i.e.,

members of the same lineage). This fitness concept plays a central role in our analysis. (2) Assuming

quantitative scalar traits, we present first- and second-order perturbations of invasion fitness (i.e., the
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selection gradient and disruptive selection coefficient, respectively), discuss their components and the

interpretations thereof, and finally express all quantities in terms of individual k-fitness with k = 1, 2, 3.

(3) We present a generic lottery model under spatial heterogeneity for both soft and hard selection

regimes and show that the selection gradient and the disruptive selection coefficient can be computed

explicitly under any scenario falling into this class of models. We then apply these results to a concrete

local adaptation scenario. In doing so, we recover and extend previous results from the literature and

show how our model connects seemingly different approaches.

2 Model

2.1 Biological assumptions

We consider a population of haploid individuals that is subdivided into infinitely many groups that are

connected to each other by dispersal (i.e., the infinite island model). Dispersal between groups may occur

by individuals alone or by groups of individuals as in propagule dispersal. We consider a discrete-time

reproductive process and thus discrete census steps. At each census, each group is in a state s ∈ S with

S = {s1, s2, ..., sN} where N denotes the number of possible states. The state s determines the number

of individuals in a group and/or any environmental factor determining the survival, reproduction, and

dispersal of all individuals within a group. The state s does not need to be a fixed property of a group

but can change in time and be affected by individual trait values. The states are assumed to follow an

ergodic Markov chain regardless of whether they change endogenously or exogenously. We denote by

ns the finite number of adult individuals in a group in state s, which can thus change over time if the

group state changes. We assume that group size is bounded as a result of density dependence acting at

the local scale (hence there is an upper bound on group size). The described set-up includes a variety of

classical models.

1. Purely spatially structured populations: The state s is identical for all groups (N = 1) and so there

is only one group size. This is essentially the island model as developed by Wright (1943), which

has been a long-term work horse for understanding the effect of spatial structure on evolutionary

dynamics (e.g. Eshel, 1972; Bulmer, 1986; Rousset, 2004).

2. Stochastic population dynamics at the group level: The state s determines the number of individu-

als in a group, which can potentially vary in time (e.g. Chesson, 1981; Metz and Gyllenberg, 2001;

Rousset and Ronce, 2004).

3. Environmental heterogeneity: The state s determines an aspect of the within-group environment,

which affects the survival and/or reproduction of its group members. An example is heterogeneity

in patch quality or size (e.g. Wild et al., 2009; Massol et al., 2011; Rodrigues and Gardner, 2012).

We note that in the limit of infinite group size this coincides with models of temporal and spatial

heterogeneity as reviewed in Svardal et al. (2015).

4. Group splitting: This is a special case in which migration between groups is in fact absent but

groups can be connected to each other if they originate through splitting of a parental group. The
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state s again determines the number of adults in a group. This model is inspired by compart-

mentalized replication in prebiotic evolution (stochastic corrector model, Szathmary and Demeter,

1987; Grey et al., 1995).

5. Purely physiologically structured population: In the special case with only a single individual in a

group, the state s can be taken to represent the physiological state of an individual such as age or

size or combinations thereof (e.g. Ronce and Promislow, 2010).

Since we are mainly interested in natural selection driven by recurrent invasions by possibly different

mutants, we can focus on the initial invasion of a mutant allele into a monomorphic resident population.

Hence, we assume that at any time at most two alleles segregate in the population, a mutant allele

whose carriers express the trait value x and a resident allele whose carriers express the trait value y. We

furthermore assume that traits are one-dimensional and real-valued (x, y ∈ R). Suppose that initially

the population is monomorphic (i.e., fixed) for the resident allele y and a single individual mutates to

trait value x. How do we ascertain the extinction or spread of the mutant?

2.2 Multitype branching process and invasion fitness

Since any mutant is initially rare, we can focus on the initial invasion of the mutant into the total

population and approximate its dynamics as a discrete-time multitype branching process (Harris, 1963;

Karlin and Taylor, 1975; Wild, 2011). In doing so, we largely follow the model construction and notation

used in Lehmann et al. (2016) (see Appendix A for a mathematical description of the stochastic process

underlying our model). In particular, in order to ascertain uninvadability of mutants into a population

of residents it is sufficient to focus on the transition matrix A = {a(s′, i′|s, i)} whose entry in position

(s′, i′; s, i), denoted by a(s′, i′|s, i), is the expected number of groups in state s′ with i′ ≥ 1 mutant

individuals that descend from a group in state s with i ≥ 1 mutant individuals over one time step in a

population that is otherwise monomorphic for y. In the following, we refer to a group in state s with

i mutants and ns − i residents as an (s, i)-group for short. The transition matrix A is a square matrix

that is assumed to be primitive. Thus, a positive integer ` (possibly depending on x and y) exists such

that every entry of A` (`th power of A) is positive. The entries a(s′, i′|s, i) of the matrix A generally

depend on both x and y, but for ease of exposition we do not write these arguments explicitly unless

necessary. The same convention applies to all other variables that can in principle depend on x and y.

From standard results on multitype branching processes (Harris, 1963; Karlin and Taylor, 1975) it

follows that a mutant x arising as a single copy in an arbitrary group of the population, i.e., in any

(s, 1)-group, goes extinct with probability one if and only if the largest eigenvalue of A, denoted by ρ, is

less than or equal to one,

ρ ≤ 1, (1)

where ρ satisfies

Au = ρu (2)

and where u is the leading right eigenvector of A. We refer to ρ as the invasion fitness of the mutant.

If eq.(1) holds, then we say that y is uninvadable by x. To better understand what determines invasion

5



fitness, we introduce the concept of the mutant lineage, which we define as the collection of descendants

of the initial mutant: its direct descendants (including self through survival), the descendants of its

immediate descendants, and so on. Invasion fitness then gives the expected number of mutant copies

produced over one time step by a randomly sampled mutant from its lineage in an otherwise monomorphic

resident population that has reached demographic stationarity (Mullon et al., 2016; Lehmann et al.,

2016). The mutant stationary distribution is given by the vector u with entries u(s, i) describing, after

normalization, the asymptotic probability that a randomly sampled group containing at least one mutant

is in state s and contains i ≥ 1 mutants. In other words, invasion fitness is the expected number of mutant

copies produced by a lineage member randomly sampled from the distribution u (see eq.(C8) and the

explanation thereafter).

2.3 Statistical description of the mutant lineage

We use the matrix A = {a(s′, i′|s, i)} and its leading right eigenvector u to derive several quantities

allowing us to obtain an explicit representation of invasion fitness, which will be the core of our sensitivity

analysis.

2.3.1 Asymptotic probabilities and relatedness of k-individuals

We start by noting that the asymptotic probability for a mutant to find itself in an (s, i)-group is given

by

q(s, i) ≡ iu(s, i)∑
s′∈S

∑ns′
i′=1 i

′u(s′, i′)
. (3)

From this, we can compute two state probabilities. First, the asymptotic probability that a randomly

sampled mutant finds itself in a group in state s is given by

q(s) ≡
ns∑
i=1

q(s, i). (4)

Second, the asymptotic probability that, conditional on being sampled in a group in state s, a randomly

sampled mutant finds itself in a group with i mutants is given by

q(i|s) ≡ q(s, i)

q(s)
. (5)

Let us further define

φk(s, i) ≡



1 (k = 1)

k−1∏
j=1

i− j
ns − j

(2 ≤ k ≤ i)

0 (i+ 1 ≤ k ≤ ns),

(6)

which, for k > 1, can be interpreted as the probability that, given a mutant is sampled from an (s, i)-

group, k− 1 randomly sampled group neighbors without replacement are all mutants. This allows us to

define relatedness of k individuals in a group in state s as

rk(s) ≡
ns∑
i=1

φk(s, i)q(i|s). (7)
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This is the probability that k−1 randomly sampled neighbors without replacement of a randomly sampled

mutant in state s are also mutants (i.e., they all descend from the lineage founder). For example,

r2(s) =

ns∑
i=1

i− 1

ns − 1
q(i|s) (8)

is the asymptotic probability of sampling a mutant among the neighbors of a random mutant individual

from a group in state s and thus provides a measure of pairwise relatedness among group members.

Likewise,

r3(s) =

ns∑
i=1

(i− 1)(i− 2)

(ns − 1)(ns − 2)
q(i|s) (9)

is the asymptotic probability that, conditional on being sampled in a group in state s, two random

neighbors of a random mutant individual are also mutants.

2.3.2 Individual fitness and individual k-fitness

Consider a mutant in an (s, i)-group and define

w(s′|s, i) ≡ 1

i

ns′∑
i′=1

i′a(s′, i′|s, i). (10)

The sum on the right-hand side of eq.(10) counts the expected total number of mutants in groups in state

s′ produced by an (s, i)-group, and the share from a single mutant in this (s, i)-group is calculated by

dividing this lineage productivity by i. Hence, w(s′|s, i) is the expected number of offspring of a mutant

individual (possibly including self through survival), which settle in a group in state s′, given that the

mutant resided in a group in state (s, i) in the previous time period. Thus w(s′|s, i) is an individual

fitness1.

We now extend the concept of individual fitness to consider a collection of offspring descending from

a mutant individual. More formally, for any integer k (1 ≤ k ≤ ns′) we let

wk(s′|s, i) ≡ 1

i

ns′∑
i′=1

φk(s′, i′)i′a(s′, i′|s, i). (11)

be the expected number of mutant individuals produced by an individual in an (s, i)-group (possibly

including self through survival) that settle in a group in state s′ and have k−1 randomly sampled group

neighbors (without replacement) that are also mutants. We refer to wk(s′|s, i) as “individual k-fitness”

regardless of the states s′ and (s, i) (see Figure 1 for an illustrative example).

Note that individual 1-fitness equals w(s′|s, i) as defined in eq.(10). Hence, individual k-fitness

wk(s′|s, i) is a generalization of this fitness concept. Note that under our assumption of infinitely many

groups, more than one dispersing offspring can settle in the same group only with propagule dispersal.

Thus, without propagule dispersal dispersing offspring do not contribute to k-fitness for k > 1. Thus,

under full migration wk(s′|s, i) = 0 for k > 1.

1It is important to note that the conditioning in w(s′|s, i) is only on the state of the parental generation (as emphasized
by the notation) and that w(s′|s, i) depends on group transition probabilities in models in which the state s of a group can
change in each generation. See eqs.(E.1–E.2) in Lehmann et al. (2016) as well as Appendix G.2 for more details.
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Figure 1: A schematic example for the calculation of individual k-fitness. Symbols M and R represent
mutants and resident individuals, respectively. In this example, an (s, 2)-group “produced” one (s′, 3)-
group and one (s′, 1)-group. Individual 1-fitness of each mutant in the parental generation is the total
number of mutants in the following generation (3 + 1 = 4) divided by the number of mutants in the
(s, 2)-group (= 2). Thus w1(s′|s, 2) = 4/2 = 2. For individual 2-fitness we calculate the weighted number
of mutants in the following generation, where the weights are the probabilities that a random neighbor of
a mutant is also a mutant, and then divide it by the number of mutants in the (s, 2)-group (= 2). These
probabilities are 2/4 for the (s′, 3)-group and 0/4 for the (s′, 1)-group. Thus, the weighted number of
mutants is 3 ·(2/4)+1 ·(0/4) = 3/2, and the individual 2-fitness is w2(s′|s, 2) = (3/2)/2 = 3/4. Similarly,
w3(s′|s, 2) = {3 · (1/6) + 1 · (0/6)}/2 = 1/4 and w4(s′|s, 2) = w5(s′|s, 2) = 0.
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2.3.3 Notation for perturbation analysis

Since our goal is to perform a sensitivity analysis of ρ to evaluate the selection gradient and disruptive

selection coefficient, we assume that mutant and resident traits are close to each other and write

x = y + δ (12)

with δ sufficiently small (i.e., |δ| � 1). Thus, ρ can be Taylor-expanded with respect to δ.

For invasion fitness ρ, or more generally, for any smooth function F that depends on δ, we will use

the following notation throughout this paper. The Taylor-expansion of F with respect to δ is written as

F (δ) = F (0) + δF (1) + δ2F (2) + · · · , (13a)

where F (`) is given by

F (`) =
1

`!

d`F (δ)

dδ`

∣∣∣∣
δ=0

. (13b)

2.3.4 Properties of the monomorphic resident population

The zeroth-order coefficient in eq.(13) corresponds to the situation where the function F is evaluated

under the supposition that individuals labelled as “mutant” and “resident” are the same. In that case,

individuals in groups with the same state are assumed to be exchangeable in the sense that they have

the same reproductive characteristics (the same distribution of fitnesses, i.e., the same mean fitness, the

same variance in fitness, and so on). This results in a neutral evolutionary process, i.e., a monomorphic

population.

We now characterize the mutant lineage dynamics under a neutral process as this plays a crucial role

in our analysis. From eq.(10), the individual 1-fitness in an (s, i)-group, written under neutrality, equals

w
(0)
1 (s′|s, i) =

1

i

ns′∑
i′=1

i′a(0)(s′, i′|s, i), (14)

where each a(0)(s′, i′|s, i) is an entry of the matrix A under neutrality. By our exchangeability assump-

tion, eq.(14) does not depend on i, the number of the individuals labeled as “mutants” in this group (see

Appendix A.2 (iv)). If this would not be the case, mutants in a group (s, i1) and in a group (s, i2) with

i1 6= i2 would have different reproductive outputs and mutants and residents would not be exchangeable.

Therefore, from now on we write w
(0)
1 (s′|s, i) simply as w

(0)
1 (s′|s). We collect these neutral fitnesses

in the N × N matrix W (0) = {w(0)
1 (s′|s)}. Its entry (s′, s) gives the expected number of descendants

(possibly including self through survival) settling in groups of state s′ that descend from an individual

residing in an s-group (mutant or resident since they are phenotypically indistinguishable).

The assumptions that each group is density regulated (see Section 2.1) and that the resident popula-

tion has reached stationarity guarantee that the in absolute value largest eigenvalue of W (0) equals 1 (see

Appendix A.2 (v)). This is the unique largest eigenvalue because W (0) is primitive due to the assump-

tion that A is primitive. Thus, there is no demographic change in populations in which all individuals

carry the same trait y and that have reached stationarity.

The fact that under neutrality w
(0)
1 (s′|s, i) is independent of i and W (0) has the unique largest

eigenvalue of 1 imposes constraints on the matrix A(0) = {a(0)(s′, i′|s, i)} that describes the growth
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of a mutant lineage under neutrality. Let us denote the left eigenvector of W (0) corresponding to

the eigenvalue 1 by v(0) = {v(0)(s)}, which is a strictly positive row vector of length N . Each entry

v(0)(s) gives the reproductive value of an individual in state s, which is the asymptotic contribution of

that individual to the gene pool. Note that v(0)(s) does not depend on δ because it is defined from

W (0), which is independent of δ. We now construct a row vector v̂ = {v̂(s, i)} of length n ≡
∑
s∈S ns

by setting v̂(s, i) = v(0)(s)i. It has been shown that v̂ is a positive left eigenvector of the matrix

A(0) = {a(0)(s′, i′|s, i)} corresponding to the eigenvalue 1, and therefore – since v̂ is strictly positive –

the Perron-Frobenius theorem implies that the largest eigenvalue of A(0) is ρ(0) = 1 (see Appendix A

in Lehmann et al., 2016, for a proof and more details). We also show that the column vector {q(0)(s)}

of length N , denoting the stable asymptotic distribution given by eq.(4) under neutrality, is the right

eigenvector of the matrix W (0) corresponding to the eigenvalue of 1 (see Appendix C.2.1). There is

freedom of choice for how to normalize the left eigenvector v(0) and here we employ the convention

that
∑
s∈S v

(0)(s)q(0)(s) = 1. This means that the reproductive value of a randomly sampled mutant

individual from its lineage is unity.

To summarize, under neutrality, the stable asymptotic distribution of mutants and the reproductive

value of individuals satisfy

q(0)(s′) =
∑
s∈S

w
(0)
1 (s′|s)q(0)(s) (q(0) = W (0)q(0)), (15a)

v(0)(s) =
∑
s′∈S

v(0)(s′)w
(0)
1 (s′|s) (v(0) = v(0)W (0)), (15b)

1 =
∑
s∈S

v(0)(s)q(0)(s) (1 = v(0)q(0)), (15c)

where v(0) is a row-vector with entries v(0)(s) and q(0) is a column-vector with entries q(0)(s).

2.4 Invasion fitness as reproductive-value-weighted fitness

Equation (2) for the leading eigenvalue and eigenvector of the matrix A can be left-multiplied on both

sides by any non-zero vector of weights. This allows to express ρ in terms of this vector of weights and

A and u. If one chooses for the vector of weights the vector of neutral reproductive values v̂ discussed

above, then invasion fitness can be expressed as

ρ =
1

V

∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1(s′|s, i)q(i|s)q(s), (16a)

where

V ≡
∑
s∈S

v(0)(s)q(s) (16b)

(see Lehmann et al., 2016, Appendix C, eq.(C.5), for the proof). This representation of ρ is useful to

do concrete calculations. The intuition behind it is as follows. The inner sum, taken over i, represents

the reproductive-value-weighted average number of offspring in states s′ given a parental mutant resides

in an s-group, where the average is taken over all possible mutant numbers experienced by the parental

mutant in an s-group. The middle sum takes the average over all states s in which mutants can reside in
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the parental generation, and the outer sum takes the average over all possible states s′ in which mutant

offspring can reside (possibly including parents through survival).

Hence, the numerator in eq.(16a) is the reproductive-value-weighted average individual 1-fitness of

a mutant individual randomly sampled from the mutant lineage, while the denominator V can be in-

terpreted (in force of eq.(15b)) as the reproductive-value-weighted average of the neutral 1-fitness of an

individual sampled from asymptotic state distribution of the mutant lineage. Hence, ρ is the ratio of

the reproductive-value-weighted average fitness of a mutant individual and that of a mutant individual

under neutrality where both individuals are sampled from the same distribution. Note that in eq.(16a)

the quantities w1(s′|s, i), q(s) and q(i|s) depend on δ while v(0)(s′) does not.

Our goal is to compute from eq.(16a) the selection gradient and disruptive selection coefficients,

ρ(1)(y) ≡ ∂ρ

∂δ

∣∣∣∣
δ=0

and ρ(2)(y) ≡ 1

2

∂2ρ

∂δ2

∣∣∣∣
δ=0

. (17)

These coefficients are all we need to classify singular strategies (Metz et al., 1996; Geritz et al., 1998).

Indeed, a singular strategy y∗ satisfies

ρ(1)(y∗) = 0. (18)

This strategy is locally convergence stable (i.e., a local attractor point of the evolutionary dynamics)

when

c(y∗) ≡ dρ(1)(y)

dy

∣∣∣∣
y=y∗

< 0. (19)

Note that convergence stability hinges on mutants with small phenotypic deviation δ invading and substi-

tuting residents (“invasion implies substitution”), which holds true under the demographic assumptions

of our model (Rousset, 2004, pp. 196 and 206). Furthermore, the singular point is locally uninvadable if

ρ(2)(y∗) < 0. (20)

A singular strategy can then be classified by determining the combination of signs of the disruptive

selection coefficient ρ(2)(y∗) and the convergence stability coefficient c(y∗) at y∗ (Metz et al., 1996;

Geritz et al., 1998).

3 Sensitivity analysis

3.1 Eigenvalue perturbations

Using eq.(16a), as well as the normalization of reproductive values given in eq.(15c), we show in Ap-

pendix B that the first-order perturbation of ρ with respect to δ is given by

ρ(1) =
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(1)
1 (s′|s, i)q(0)(i|s)q(0)(s). (21)

Thus, ρ(1) is simply a weighted perturbation of individual 1-fitnesses w1. For the second-order pertur-

bation of ρ with respect to δ, given that ρ(1) = 0, we find that

ρ(2) = ρ(2w) + ρ(2q) + ρ(2r) (22a)
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where

ρ(2w) =
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(2)
1 (s′|s, i)q(0)(i|s)q(0)(s) (22b)

ρ(2q) =
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(1)
1 (s′|s, i)q(0)(i|s)q(1)(s) (22c)

ρ(2r) =
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(1)
1 (s′|s, i)q(1)(i|s)q(0)(s) (22d)

(Appendix B). The first term, labelled ρ(2w), comes from the second-order perturbation of individual

1-fitnesses. The second term, labelled ρ(2q), comes from the first-order perturbation of the stationary

distribution of mutants in the different states, and the third term, labelled ρ(2r), comes from the first-

order perturbation of the stationary distribution of the number of mutants in any given state.

While eqs.(21) and (22) give some insights into how selection acts on mutants, in particular, they

emphasize the role of selection on the distributions q(s) and q(i|s), these expressions remain complicated

as they involve weighted averages of fitness derivatives w
(`)
k (s′|s, i) (` = 1, 2) over the neutral and

perturbed mutant distributions q(1)(i|s) and q(1)(s). To obtain more insightful expressions for these

sensitivities, we express in the next section wk(s′|s, i) for k = 1, 2, 3 in terms of trait values. This will

allow us to carry out rearrangements and simplifications of ρ(1) and ρ(2).

3.2 Individual fitness functions

3.2.1 Individual 1-fitness

Consider a focal individual in a focal group in state s and denote by z1 the trait value of that individual.

Suppose that the other ns − 1 neighbors adopt the trait values z2, · · · , zns and almost all individuals

outside this focal group adopt the trait value z. Let then

w1,s′|s(z1, z2, · · · , zns , z) (s′, s ∈ S, z1, · · · , zns , z ∈ R) (23a)

be the expected number of offspring in state s′ that descend from a focal in state s. Equation (23a)

expresses individual 1-fitness in terms of the phenotypes of all interacting individuals and will be referred

to as an individual fitness function. It is a common building block of phenotypic models (see Frank,

1998; Rousset, 2004, for textbook treatments) and is the fitness that has to be considered if an exact

description of a population is required, for instance, in an individual-based stochastic model, where each

individual may have a different phenotype.

Because the only heterogeneity we consider are the different group states (we have no heterogeneity in

individual states within groups), the individual 1-fitness function w1,s′|s is invariant under permutations

of z2, · · · , zns . With this, we can rewrite eq.(23a) as

w1,s′|s(z1, z{2,··· ,ns}, z) or w1,s′|s(z1, z−{1}, z), (23b)

where the set-subscripted vector z{2,··· ,ns} represents a vector of length ns−1 in which each of z2, · · · , zns
appears in an arbitrary order but exactly once. The subscript −{1} is used as a shorthand notation of

the set difference {1, 2, · · · , ns} \ {1} = {2, · · · , ns} and used when the baseline set {1, 2, · · · , ns} is clear
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from the context. Therefore, z−{1} is the same as z{2,··· ,ns}. Similarly, in the following the subscript

−{1, 2} represents the set difference {1, 2, · · · , ns} \ {1, 2} = {3, · · · , ns}, and so forth. For example,

z−{1,2} = z{3,··· ,ns} represents a vector of length ns − 2 in which each of z3, · · · , zns appears in an

arbitrary order but exactly once.

For our two allele model zi, z ∈ {x, y}, we can write a mutant’s individual 1-fitness as

w1(s′|s, i) = w1,s′|s(x, x, · · · , x︸ ︷︷ ︸
i−1

, y, · · · , y︸ ︷︷ ︸
ns−i

, y).
(24)

By using the chain rule and permutation invariance, the zeroth, first, and second order perturbations

of w1(s′|s, i) with respect to δ are

w
(0)
1 (s′|s, i) = w1,s′|s, (25a)

w
(1)
1 (s′|s, i) =

∂w1,s′|s

∂z1
+ (i− 1)

∂w1,s′|s

∂z2
, (25b)

w
(2)
1 (s′|s, i) =

1

2

∂2w1,s′|s

∂z21
+
i− 1

2

∂2w1,s′|s

∂z22
+ (i− 1)

∂2w1,s′|s

∂z1∂z2
+

(i− 1)(i− 2)

2

∂2w1,s′|s

∂z2∂z3
. (25c)

Here, all functions and derivatives that appear without arguments are evaluated at the resident popula-

tion, (y, · · · , y), a convention we adopt throughout. Note that some derivatives appearing in eqs.(25) are

ill-defined for ns = 1 and ns = 2, but they are always nullified by the factors (i− 1) and (i− 1)(i− 2).

Thus, by simply neglecting these ill-defined terms, eq.(25) is valid for any 1 ≤ i ≤ ns.

3.2.2 Individual 2- and 3-fitness

Consider again a focal individual with trait value z1 in a group in state s in which the ns − 1 group

neighbors have the trait values z−{1} = z{2,··· ,ns} in a population that is otherwise monomorphic for z.

For this setting, we define two types of individual 2-fitness functions. First, let

wI
2,s′|s(z1, z−{1}, z) (s′, s ∈ S, z1, · · · , zns , z ∈ R) (26)

be the expected number of offspring in state s′ that descend from the focal individual and that have

a random neighbor that also descends from the focal individual (see Figure 2). Intuitively speaking,

wI
2,s′|s measures the number of sibling pairs produced by a focal individual. Hence, when one considers

the reproductive process backward in time, this corresponds to a coalescence event. We call wI
2,s′|s the

“same-parent individual 2-fitness”, because the offspring involved in it descend from the same individual.

Second, for ns ≥ 2 consider a neighbor of the focal individual with trait value z2, called the target

individual, in a group in which the remaining ns− 2 neighbors have the trait profile z−{1,2} = z{3,··· ,ns}.

Let

wII
2,s′|s(z1, z2, z−{1,2}, z) (s′, s ∈ S, z1, · · · , zns , z ∈ R) (27)

be the expected number of offspring in state s′ that descend from the focal individual and that have

a random neighbor with trait value z2 that descends from the target individual (see Figure 2). We

call wII
2,s′|s(z1, z2, z−{1,2}, z) the “different-parent individual 2-fitness”, because the offspring involved

13
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Figure 2: A schematic example of how we calculate the individual 2-fitnesses wI
2 and wII

2 . Gray arrows
represent reproduction (or survival). We label by “1” the focal individual with trait value z1 in the
parental generation and its offspring (possibly including self through survival) in the following generation.
Similarly, we label by “2” the target individual with trait value z2 in the parental generation and its
offspring (possibly including self through survival) in the offspring generation. Because each of the two
descendants of the focal individual in the bottom-left group (those with label “1”) finds with probability
1/4 a random neighbor whose label is “1”, whereas the one descendant of the focal individual in the
bottom-right group in the offspring generation finds no neighbors whose label is “1”, the same-parent
individual 2-fitness of the focal is calculated as wI

2,s′|s(z1, z−{1}, z) = 2 · (1/4)+1 · (0/4) = 1/2. Similarly,
because each of the two descendants of the focal individual in the bottom-left group finds a random
neighbor whose label is “2” with probability 1/4, and because the one descendant of the focal in the
bottom-right group finds a random neighbor whose label is “2” with probability 1/4, the different-parent
individual 2-fitness of the focal is wII

2,s′|s(z1, z2, z−{1,2}, z) = 2 · (1/4) + 1 · (1/4) = 3/4.
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in it descend from two different individuals. We note that this fitness function is invariant under the

permutation of z1 and z2.2

Using the notation of mutant and resident phenotypes we have for 2 ≤ i ≤ ns that

w2(s′|s, i) = wI
2,s′|s(x, x, · · · , x︸ ︷︷ ︸

i−1

, y, · · · , y︸ ︷︷ ︸
ns−i

, y) + (i− 1)wII
2,s′|s(x, x, x, · · · , x︸ ︷︷ ︸

i−2

, y, · · · , y︸ ︷︷ ︸
ns−i

, y), (28)

because a mutant neighbor of an offspring of a focal mutant either descends from the focal itself or is an

offspring of one of the i − 1 mutant neighbors of the focal. The zeroth and first order perturbations of

w2(s′|s, i) with respect to δ are given by

w
(0)
2 (s′|s, i) = wI

2,s′|s + (i− 1)wII
2,s′|s, (29a)

w
(1)
2 (s′|s, i) =

∂wI
2,s′|s

∂z1
+ (i− 1)

∂wI
2,s′|s

∂z2
+ 2(i− 1)

∂wII
2,s′|s

∂z1
+ (i− 1)(i− 2)

∂wII
2,s′|s

∂z3
. (29b)

Note that some derivatives in eqs.(29) are ill-defined for ns = 1, 2 but they are always nullified by the

factor (i− 1) or (i− 1)(i− 2). Thus, by simply neglecting these ill-defined terms eq.(29) is valid for any

1 ≤ i ≤ ns.

Following the same line of reasoning as for individual 1- and 2-fitness, we show in Appendix D that

the zeroth-order perturbation of 3-fitness with respect to δ is given by

w
(0)
3 (s′|s, i) = wI

3,s′|s + 3(i− 1)wII
3,s′|s +

(i− 1)(i− 2)

2
wIII

3,s′|s, (30)

where wI
3,s′|s, w

II
3,s′|s, w

III
3,s′|s are three different types of individual 3-fitness functions to be evaluated under

neutrality. Specifically, wI
3,s′|s(z1, z−{1}, z) is the expected number of offspring in state s′ that descend

from a focal individual in state s with trait value z1 and that have two random neighbors sampled

without replacement both descending from the focal individual; wII
3,s′|s(z1, z2, z−{1,2}, z) is the expected

number of offspring in state s′ that descend from the focal individual in state s and with two random

neighbors sampled without replacement both descending from a target individual with trait value z2; and

wIII
3,s′|s(z1, z2, z3, z−{1,2,3}, z) is the expected number of offspring in state s′ that descend from the focal

individual in state s with two random neighbors sampled without replacement, one of which descends

from a first target individual with trait value z2 and the other descends from a second target individual

with trait value z3. See Appendix D for more explanations.

3.3 Sensitivity results

We now write ρ(1) and ρ(2) from Section 3.1 in terms of the just defined derivatives of the individual

fitness functions.

2This can be seen by noting that when the focal and target individual leave a realized number of A1 and A2 offspring,
respectively, in a single group of size ns, then this group contributes to the focal’s 2-fitness wII

2 with A1 (the number of
focal’s offspring) times A2/(ns − 1) (the probability that a random neighbor of focal’s offspring is the target’s offspring),
which equals to A1A2/(ns − 1). Since A1A2/(ns − 1) is symmetric with respect to A1 and A2 changing the roles of
the focal and target individual does not alter the realized fitness count. The same applies when the focal and target
individuals leave offspring to multiple groups, because in this case the counts per group are simply summed over all groups.
A single individual’s wII

2 is the expectation of such counts over all realizations of offspring number over all groups (where
the expectation is taken over all single generation stochastic events affecting reproduction and survival), and the invariance
holds because it holds for each realization.
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3.3.1 Selection gradient

By substituting eq.(25b) into eq.(21) we obtain

ρ(1) =
∑
s′∈S

∑
s∈S

v(0)(s′)

[
∂w1,s′|s

∂z1
+

ns∑
i=1

(i− 1)
∂w1,s′|s

∂z2
q(0)(i|s)

]
q(0)(s), (31)

and by applying eq.(8) to the second term in square brackets we obtain

ρ(1) =
∑
s′∈S

∑
s∈S

v(0)(s′)

[
∂w1,s′|s

∂z1
+ (ns − 1)

∂w1,s′|s

∂z2
r
(0)
2 (s)

]
q(0)(s). (32)

Thus, in order to be able to evaluate ρ(1) it is sufficient to compute the neutral pairwise relatedness

r
(0)
2 (s) while the explicit evaluation of the q(0)(i|s) distribution is not needed. It is indeed a well-known

result that the selection gradient ρ(1) can be expressed in terms of reproductive values and relatedness-

weighted fitness derivatives (see Frank, 1998; Rousset, 2004, for textbook treatments) and where q(0)(s)

and v(0)(s) are given by eq.(15) with w1,s′|s = w
(0)
1 (s′|s).

Equation (32) can be interpreted as the expected first-order effect of all members of a lineage changing

to expressing the mutant allele on the fitness of a focal individual that is a random member of this lineage.

The recipient is sampled from state s with probability q(0)(s) and the derivative in the first term in the

square brackets of ρ(1) is the effect of the focal changing its own trait value on its individual fitness.

The derivative in the second term in the square brackets describes the effect of the group neighbors of

the focal changing their trait value on the focal’s individual fitness. This term is weighted by pairwise

neutral relatedness since this is the likelihood that any such neighbor carries the same allele as the focal.

Equation (32) is the inclusive fitness effect of mutating from the resident to the mutant allele for a

demographically and/or environmentally structured population and the term in brackets can be thought

of as the state-s-specific inclusive fitness effect on offspring in state s′. Equation (32) has previously

been derived by Lehmann et al. (2016, Box 2) and is in agreement with eqs.(26) and (27) of Rousset

and Ronce (2004), who derived the first-order perturbation ρ(1) in terms of other quantities under the

assumptions of fluctuating group size.

We show in Appendix E that by substituting eq.(29a) into eq.(C15), pairwise relatedness (eq.8) under

neutrality satisfies the recursion

r
(0)
2 (s′) =

1

q(0)(s′)

∑
s∈S

[
wI

2,s′|s + (ns − 1)wII
2,s′|sr

(0)
2 (s)

]
q(0)(s). (33)

This expression for r
(0)
2 (s), formulated in terms of individual 2-fitnesses, is novel but is in full agreement

with previous results. In particular, eq.(29) of Rousset and Ronce (2004) can be shown to reduce to

eq.(33) (see Appendix G.2 for a proof of this connection).

In summary, consistent with well established results, we present a biologically meaningful represen-

tation of ρ(1). The ingredients in this representation can be obtained from the three systems of linear

equations defined by eqs.(15a), (15b) and (33). This system of equations is fully determined once the

individual k-fitnesses functions for k = 1, 2, namely, w1,s′|s, w
I
2,s′|s, and wII

2,s′|s are specified for a resident

population, and the k-fitness functions can usually be evaluated once a life-cycle has been specified. The

dimension of this combined equation system has maximally three times the number of states N . This is
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significantly lower than the dimension of the matrix A we began with, especially, if group size > 10. In

the next section, we extend these results to the disruptive selection coefficient.

3.3.2 Disruptive selection coefficient

Assuming that ρ(1) = 0 and substituting eq.(25) into eq.(22), rearrangements given in Appendix E show

that

ρ(2w) =
1

2

∑
s′∈S

∑
s∈S

v(0)(s′)

[
∂2w1,s′|s

∂z21
+ (ns − 1)

∂2w1,s′|s

∂z22
r
(0)
2 (s)

+ 2(ns − 1)
∂2w1,s′|s

∂z1∂z2
r
(0)
2 (s) + (ns − 1)(ns − 2)

∂2w1,s′|s

∂z2∂z3
r
(0)
3 (s)

]
q(0)(s) (34a)

ρ(2q) =
∑
s′∈S

∑
s∈S

v(0)(s′)

[
∂w1,s′|s

∂z1
+ (ns − 1)

∂w1,s′|s

∂z2
r
(0)
2 (s)

]
q(1)(s) (34b)

ρ(2r) =
∑
s′∈S

∑
s∈S

v(0)(s′)

[
(ns − 1)

∂w1,s′|s

∂z2
r
(1)
2 (s)

]
q(0)(s). (34c)

Equation (34a) depends on four different types of qualitative effects on the fitness of a focal individual:

(i) The second-order effect on own fitness of the focal changing its trait value, which is positive, and then

contributes to disruptive selection, if fitness is convex in own phenotype. (ii) The second-order effect

resulting from the neighbors of the focal changing their trait values, which is positive if the focal’s fitness

is convex in phenotype of group neighbors. This contributes to disruptive selection proportionally to

pairwise relatedness r
(0)
2 (s), since this is the likelihood that neighbors carry the mutant allele. (iii) The

joint effect of the focal individual and any of its neighbors changing their trait value, which is positive if

the effect of increased trait values of own and others complement each other. This again contributes to

disruptive selection in proportion to the likelihood that any neighbor is a mutant. (iv) The joint effect of

pairs of neighbors of the focal changing their trait values, which is positive if the effect of increased trait

values in neighbors complement each other. This contributes to disruptive selection with the probability

r
(0)
3 (s) that a pair of neighbors carry the mutant allele.

Equation (34b) depends, for each state, on the product of the state specific inclusive fitness effect

(recall the term in brackets in eq.(32)) multiplied with the perturbation q(1)(s) of the group state prob-

ability. A contribution to disruptive selection occurs if the mutant allele increases its probability to

be in a given state while simultaneously increasing the individual fitness of its carriers in that state.

Similarly, eq.(34c) depends, for each state, on the product of the state specific indirect effect of others

on own fitness (recall the second term in brackets in eq.(32)) and the relatedness perturbation r
(1)
2 (s).

This contributes to disruptive selection if the mutant allele increases the probability that a focal has

mutant neighbors while simultaneously increasing the individual fitness of those neighbors. Finally, we

note that in the presence of a single state (i.e., no state heterogeneity among groups) ρ(2q) = 0. This is

the case in all previously published expressions for the disruptive selection coefficient (Day, 2001; Ajar,

2003; Wakano and Lehmann, 2014; Mullon et al., 2016), which therefore reduce to ρ(2w) +ρ(2r) as defined

by eqs.(34a) and (34c).

In order to compute ρ(2) we need, in addition to eqs.(15a), (15b) and (33), expressions for q(1)(s),

r
(0)
3 (s), and r

(1)
2 (s). In Appendix E, we derive the corresponding recursions for ρ(1) = 0. In particular,
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we show that q(1)(s) satisfies

q(1)(s′) =
∑
s∈S

[
∂w1,s′|s

∂z1
+ (ns − 1)

∂w1,s′|s

∂z2
r
(0)
2 (s)

]
q(0)(s) +

∑
s∈S

w1,s′|sq
(1)(s) (35)

and that r
(0)
3 (s) satisfies

r
(0)
3 (s′) =

1

q(0)(s′)

∑
s∈S

[
wI

3,s′|s + 3(ns − 1)wII
3,s′|sr

(0)
2 (s) +

(ns − 1)(ns − 2)

2
wIII

3,s′|sr
(0)
3 (s)

]
q(0)(s). (36)

Finally, we show that r
(1)
2 (s) satisfies the recursion

r
(1)
2 (s′) =

1

q(0)(s′)

∑
s∈S

[
∂wI

2,s′|s

∂z1
+ (ns − 1)

∂wI
2,s′|s

∂z2
r
(0)
2 (s)

+ 2(ns − 1)
∂wII

2,s′|s

∂z1
r
(0)
2 (s) + (ns − 1)(ns − 2)

∂wII
2,s′|s

∂z3
r
(0)
3 (s)

]
q(0)(s)

+
1

q(0)(s′)

∑
s∈S

[
(ns − 1)wII

2,s′|sr
(1)
2 (s)

]
q(0)(s)

+
1

q(0)(s′)

∑
s∈S

[
wI

2,s′|s + (ns − 1)wII
2,s′|sr

(0)
2 (s)

]
q(1)(s)

− r(0)2 (s′)
q(1)(s′)

q(0)(s′)
. (37)

Equation (35) shows that q(1)(s) depends on the state-specific inclusive fitness effect (compare the

first summand in eq.(35) to the term in brackets in eq.(32)). Thus, the probability that a mutant is

in a certain state s increases with its state-specific inclusive fitness effect. Equation (36) for the three-

way relatedness coefficient depends on wI
3,s′|s, w

II
3,s′|s and wIII

3,s′|s and it is a generalization of the pairwise

relatedness coefficient given by eq.(33). Finally, eq.(37) shows that r
(1)
2 (s) depends on direct and indirect

effects on wI
2,s′|s and wII

2,s′|s. Note, that eq.(37) together with eqs.(15a), (15b), (33), (35), and (36) form

a linear system of equations with a dimension equal to six times the number of states N . Its solution

allows us to determine the disruptive selection coefficient ρ(2). This system of equations in turn is fully

determined once the the k-fitnesses for k = 1, 2, 3 are specified for a resident population, namely, w1,s′|s,

wI
2,s′|s, w

II
2,s′|s, w

I
3,s′|s, w

II
3,s′|s, and wIII

3,s′|s.

In general, if the state space S is large, solving this system of equations may be complicated. Similarly,

the 2- and 3-fitnesses may be complicated. We thus note two directions for simplification. First, indi-

vidual fitness generally depends on vital rates, like fecundity or survival (see eq.(45)–(46) for a concrete

example) and variation of these vital rates may have small effects on fitness, which is a form of weak

selection (“w-weak selection” according to Wild and Traulsen, 2007). For w-weak selection, ρ(2) ≈ ρ(2w)

because one can neglect ρ(2q) and ρ(2r). Both these terms involve products of marginal changes in fitness,

which implies only second-order effect under w-weak selection (while ρ(2w) is of first order, see Wakano

and Lehmann (2014) and Mullon et al. (2016) for concrete examples of using such a simplification). This

approximation can in principle be used for any trait that directly affects fecundity and or survival.

Second, for some specific life-cycles the 2- and 3-fitness functions can be expressed in terms of com-

ponents of the 1-fitness functions. This greatly simplifies the calculations because all recursions can then

be solved explicitly. We will now provide an application of our model along these lines, which still covers

a large class of models.
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4 Application to a lottery model with spatial heterogeneity

We now study a lottery model with overlapping generations and spatial heterogeneity. Such a model

can be formulated for a variety of life-cycles and we here take a hierarchical approach in which we make

increasingly more specific assumptions. Accordingly, this section is divided in three parts. Section 4.1

provides general results about the components of the selection coefficients based on the assumption of

fixed group states s. In Section 4.2 we introduce two forms of population regulation resulting in hard and

soft selection, respectively. Finally, in Section 4.3 we specify an explicit fecundity function which allows

us to present a fully worked example for the effect of group size and spatial heterogeneity on disruptive

selection.

4.1 Spatial lottery model

4.1.1 Decomposition into philopatric and dispersal components

We start by making the following three assumptions. (i) Group states s describe environmental variables

that do not change in time. Thus, group states are fixed and we here refer to them as habitats. By πs

we denote the relative proportion of groups in habitat s, hence
∑
s∈S πs = 1. (ii) Individuals survive

independently of each other with probability γs < 1 to the next time step in a group in habitat s. (iii)

Dispersal occurs individually and independently to a random destination (no propagule dispersal). (iv)

The evolving trait does not affect survival. With these assumptions we can decompose the 1-fitness of a

focal individual into a philopatric and dispersal component as

w1,s′|s(z1, z−{1}, z) =


wp

1,s|s(z1, z−{1}, z)︸ ︷︷ ︸
philopatric

+wd
1,s|s(z1, z−{1}, z)︸ ︷︷ ︸

dispersal

(s′ = s)

wd
1,s′|s(z1, z−{1}, z)︸ ︷︷ ︸

dispersal

(s′ 6= s).
(38a)

Offspring that have left from their natal group and successfully settled elsewhere are counted in the dis-

persal component wd
1,s′|s(z1, z−{1}, z). The philopatric component wp

1,s|s(z1, z−{1}, z) counts the number

of non-dispersing offspring, possibly including self trough survival. Thus, we further decompose the

philopatric part into a survival part and a reproduction part as

wp
1,s|s(z1, z−{1}, z) = γs︸︷︷︸

philopatric survival

+ (1− γs)wpr
1,s|s(z1, z−{1}, z)︸ ︷︷ ︸

philopatric reproduction

.
(38b)

Similarly, for the dispersal part we write

wd
1,s′|s(z1, z−{1}, z) = (1− γs′)wdr

1,s′|s(z1, z−{1}, z)︸ ︷︷ ︸
dispersal reproduction

. (38c)

4.1.2 General results for spatial lottery model

For this model, we explicitly compute the components of the selection gradient and disruptive selection

coefficients in Appendix F.1 and F.2. In particular, we show that

q(0)(s) =
πsns∑

s′∈S πs′ns′
. (39)
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Equation (39) shows that the probability that a random lineage member is sampled from a patch in state

s under neutrality equals the weighted frequency of patches in state s where the weights are the number

of individuals in the patch states.

For the reproductive value, it is instructive to provide a formula for v(0)(s′)q(0)(s) because the repro-

ductive value always appears as a product with q(0)(s) in ρ(1) (eq.32) and ρ(2) (eq.34) (the only exception

is eq.(34b), but see the discussion below eq.(43)). This product is given by

v(0)(s′)q(0)(s) =
wdr

1,s|s′

(1− γs′)(1− wpr
1,s′|s′)(1− w

pr
1,s|s)

/(∑
s′′∈S

wdr
1,s′′|s′′

(1− γs′′)(1− wpr
1,s′′|s′′)

2

)
(40)

(Appendix F.1). Furthermore, the neutral pairwise relatedness coefficient equals

r
(0)
2 (s) =

2γsw
pr
1,s|s + (1− γs)

(
wpr

1,s|s

)2
ns(1 + γs)− 2(ns − 1)γsw

pr
1,s|s − (ns − 1)(1− γs)

(
wpr

1,s|s

)2 (41)

(Appendix F.2). The general solution for r
(0)
3 (s) remains complicated (see eq.(F32) for the full expres-

sion), but for special cases it is

r
(0)
3 (s) =

(
wpr

1,s|s

)3 [
ns + 2(ns − 1)

(
wpr

1,s|s

)2]
[
ns − (ns − 1)

(
wpr

1,s|s

)2] [
n2s − (ns − 1)(ns − 2)

(
wpr

1,s|s

)3] (Wright-Fisher process, γs = 0),

2
(
wpr

1,s|s

)2
[
ns − (ns − 1)wpr

1,s|s

] [
ns − (ns − 2)wpr

1,s|s

] (Moran process, γs ∼ 1).

(42)

If the resident trait value is equal to the singular strategy where ρ(1) = 0, then the first-order

perturbation of the stationary mutant distribution is

q(1)(s) =

{
1

1− wpr
1,s|s

[
∂wpr

1,s|s

∂z1
+ (ns − 1)

∂wpr
1,s|s

∂z2
r
(0)
2 (s)

]

−
∑
s′∈S

1

1− wpr
1,s′|s′

[
∂wpr

1,s′|s′

∂z1
+ (ns′ − 1)

∂wpr
1,s′|s′

∂z2
r
(0)
2 (s′)

]
q(0)(s′)

}
q(0)(s)

(43)

(Appendix F.1). Note that we can obtain the fraction q(1)(s)/q(0)(s) by dividing both sides of eq.(43) by

q(0)(s), which, when combined with eq.(40), allows to directly obtain the product v(0)(s′)q(1)(s). This

quantity is required to compute eq.(34b). Finally, for ρ(1) = 0 we have

r
(1)
2 (s) = 2r

(0)
2 (s)

γs + (1− γs)wpr
1,s|s

2γsw
pr
1,s|s + (1− γs)

(
wpr

1,s|s

)2
×

{
[1 + (ns − 1)r

(0)
2 (s)]

∂wpr
1,s|s

∂z1
+ (ns − 1)[2r

(0)
2 (s) + (ns − 2)r

(0)
3 (s)]

∂wpr
1,s|s

∂z2

} (44)

(Appendix F.2).

With eqs.(40) and (41) we can compute the first-order perturbation of invasion fitness, eq.(32),

explicitly given specific life-cycle assumptions (since all recursions have been solved). Similarly, under

the assumption that ρ(1) = 0 and with eqs.(39)–(44) in hand, we can explicitly compute the second-order

perturbation of invasion fitness, eq.(34).
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4.2 Fecundity selection under two different forms of density regulation

We further refine our assumptions in order to arrive at two life-cycles with concrete expressions for wpr
1,s|s

and wdr
1,s′|s. The first one is as follows. (1) Each adult individual in a group in habitat s produces

on average a very large number fs of offspring, and then either survives with probability γs or dies

with the complementary probability. (2) Offspring disperse independently of each other to a uniformly

randomly chosen non-natal group with the non-zero probability ms. An offspring survives dispersal with

probability ps when dispersing from a group in habitat s. (3) All offspring aspiring to settle in a group

in habitat s compete for the average number (1− γs)ns of breeding sites vacated by the death of adults

and are recruited until all ns breeding sites are occupied. (4) The evolving trait does not affect dispersal.

In this life cycle, density-dependent population regulation occurs after dispersal when offspring aspire

to settle and we refer to this regime as hard selection. We also consider a soft-selection variant in which

density regulation occurs in two steps (as in Fig. 1 of Svardal et al., 2015). First, a local trait-dependent

stage of density-dependent regulation occurs immediately after reproduction (after stage (1) in the above

life cycle) in which the offspring pool in each group is brought back to a size proportional to the local

group size ns, say size Kns, where K is a large number. From here on dispersal and recruitment (second

regulation step) proceed as in the hard-selection life cycle.

For these two life cycles, the philopatric and dispersal fitness components can be written as

wpr
1,s|s(z1, z−{1}, z) =



ns
(1−ms)fs(z1, z−{1}, z)

(1−ms)
∑ns
i=1 fs(zi, z−{i}, z) + Ihard(z)

(hard selection)

ns
(1−ms)

(1−ms)ns + Isoft︸ ︷︷ ︸
trait independent recruitment

× ns
fs(z1, z−{1}, z)∑ns
i=1 fs(zi, z−{i}, z)︸ ︷︷ ︸

trait dependent regulation

(soft selection),

(45a)

(45b)

and

wdr
1,s′|s(z1, z−{1}, z) =



πs′ns′
psmsfs(z1, z−{1}, z)

(1−ms′)
∑ns′
i=1 fs′(z, z, z) + Ihard(z)

(hard selection)

πs′ns′
psms

(1−ms′)ns′ + Isoft︸ ︷︷ ︸
trait independent recruitment

× ns
fs(z1, z−{1}, z)∑ns
i=1 fs(zi, z−{i}, z)︸ ︷︷ ︸

trait dependent regulation

(soft selection),

(46a)

(46b)

respectively, where fs(zi, z−{i}, z) is the fecundity of individual i in a group in habitat s and

Ihard(z) ≡
∑
s∈S

πsnspsmsfs(z, z, z) (47a)

Isoft ≡
∑
s∈S

πsnspsms (47b)

are the trait-dependent immigration terms for the hard-selection model and trait-independent immigra-

tion term for the soft selection model, respectively.

Equations (45b) and (46b) can be understood as follows. During the stage of trait-dependent reg-

ulation the local offspring pool in a group in habitat s is brought back to a size proportional to ns,

namely Kns, whereby the proportion of individuals among the surviving offspring descending from a

focal individual is fs(z1, z−{1}, z)/
∑ns
i=1 fs(zi, z−{i}, z). Each of these offspring either disperses or stays

local and then competes to be recruited. With probability 1 − ms an offspring is philopatric, and
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this philopatric offspring gets recruited with probability 1/ [K((1−ms)ns + Isoft)] per open spot. Here

K((1 − ms)ns + Isoft) is the expected number of local competitors, where the number of migrant off-

spring competing in a given group for recruitment and coming from a group in habitat s is proportional

to πsnspsms. Offspring dispersing to a group in habitat s′ experience on average K ((1−ms′)ns′ + Isoft)

competitors and the probability to compete in such a group is πs′ . The likelihood to be recruited (either

after dispersing or without dispersing) is then multiplied by the expected number of open breeding sites,

which equals ns(1 − γs) in the natal group and ns′(1 − γs′) in non-natal groups in habitat s′, but the

factors (1 − γs) and (1 − γs′) are already accounted for in eqs.(38b) and (38c). Note that the constant

K does not appear in eqs.(45b) and (46b) because it appears both in the numerator and denominator

of these equations and thus cancels out.

Using eq.(45) and eq.(46) along with eqs.(39)–(44) allows to compute ρ(1) and ρ(2) for a large class of

models. In Appendices G, H.3 and I.3, we show that we recover a number of previously published results

belonging to this class of models, some of which were derived with quite different calculations (Pen, 2000;

Ohtsuki, 2010; Lehmann and Rousset, 2010; Rodrigues and Gardner, 2012; Wakano and Lehmann, 2014;

Svardal et al., 2015; Mullon et al., 2016; Parvinen et al., 2018). This indirectly confirms the validity

of our calculations. For simplicity of notation we assumed that the evolving trait does neither affect

survival nor dispersal (it only affects fecundity), extensions to include effects on survival and dispersal

are in principle straightforward.

4.3 Selection analysis

In this section, we finally present explicit expressions for the selection gradient ρ(1) and the coefficient

of disruptive selection ρ(2) for both the model of hard and soft selection. We then introduce an explicit

fecundity function, which, under some additional symmetry assumptions, allows us to have a completely

worked example.

4.3.1 Hard selection

Inserting eqs.(45a) and (46a) into eqs.(38b) and (38c), respectively, we show in Appendix H that the

selection gradient for the hard selection lottery model is

ρ(1) ∝
∑
s∈S

πsnspsmsfs
ds,hard

{
∂fs
∂z1

fs
+ r

(0)
2 (s)(ns − 1)

∂fs
∂z2

fs
− (1− ds,hard)2r

(0)
2,R(s)

(
∂fs
∂z1

fs
+ (ns − 1)

∂fs
∂z2

fs

)}
,

(48)

where the proportionality constant is positive (and given by the inverse of eq.(H4)) and ds,hard is the

backward migration rate from groups in state s under neutrality defined as

ds,hard ≡
Ihard

(1−ms)nsfs + Ihard
. (49)

This rate depends on y because Ihard and fs are evaluated at (y, · · · , y). Equation (48) further depends

on

r
(0)
2,R(s) ≡ 1

ns
+
ns − 1

ns
r
(0)
2 (s), (50)
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which is the relatedness between two individuals sampled with replacement in a group in state s and

where

r
(0)
2 (s) =

2γs(1− ds,hard) + (1− γs)(1− ds,hard)2

ns(1 + γs)− 2(ns − 1)γs(1− ds,hard)− (ns − 1)(1− γs)(1− ds,hard)2
. (51)

Equation (48) can be understood as follows. The first term in the curly brackets is the marginal

fecundity effect by a focal individual on itself, while the second term is the marginal fecundity effect

conferred by all group members to the focal individual weighted by the coefficient of pairwise relatedness.

Finally, the third term reflects competition for the finite number of breeding spots in a group. A change

in the trait value of a focal individual that increases its fecundity or that of its neighbors increases the

strength of local competition. This reduces the fitness of the focal individual if the additional offspring

remain philopatric and compete with own offspring. Equation (48) is a generalization of previous results

obtained for the island model with class-structure (see Appendix H for the detail of these connections).

Similarly, inserting eqs.(45a) and (46a) into eqs.(38b) and (38c), respectively, and using these in

eq.(34), we obtain a general expression for the disruptive selection coefficient ρ(2) under hard selection.

The resulting expression, while useful for numerical calculations, is too lengthy to be presented here and

we refer to Appendix H for details. Therein, we show that under a Wright-Fisher process (γs = 0) the

results of Parvinen et al. (2018) are recovered, who obtained an expression of ρ(2) expressed in terms of

first- and second-order derivatives of fs.

To complement these results and to approach a fully worked example, we assume a Moran pro-

cess (i.e., γs ∼ 1) and that fecundity of an adult individual depends only on its own phenotype (i.e.,

fs(z1, z−{1}, z) = fs(z1)). Under these assumptions, we show in Appendix J.1 that the selection gra-

dient is a weighted sum of dfs/dz1 over different states s (see eq.J1), and that the disruptive selection

coefficient is

ρ(2) ∝
∑
s∈S

πsnspsmsfs
ds,hard

X1,s,hard

d2fs
dz21

fs
+X2,s,hard

(
dfs
dz1

fs

)2
 , (52a)

where the positive proportionality constant is the same as in eq.(48), and

X1,s,hard =
1

2

ds,hard(1− ds,hard + ns)

1 + ds,hard(ns − 1)
(≥ 0) (52b)

X2,s,hard =
ds,hard(1− ds,hard)(1− ds,hard + ns)ns
{2 + ds,hard(ns − 2)}{1 + ds,hard(ns − 1)}

(≥ 0). (52c)

For complete dispersal (i.e., ds,hard = 1)3 we obtain that X1,s,hard = 1/2 and X2,s,hard = 0. As the

dispersal rate ds,hard decreases, the ratio X2,s,hard/X1,s,hard increases monotonically. Hence, as dispersal

becomes more limited, relatively more weight is put on the squared first-order derivative (dfs/dz1)2

compared to the second-order derivative d2fs/dz
2
1 , indicating that limited dispersal facilitates disruptive

selection (and, if the singular strategy y∗ is convergence stable and remains so when varying disper-

sal, then evolutionary branching is facilitated). On the other hand, for a fixed ds,hard < 1, the ratio

X2,s,hard/X1,s,hard monotonically decreases as group size decreases. Hence, with decreasing group size

less weight is put on the squared first-order derivative (dfs/dz1)2, which acts to limit disruptive selection.

3For a homogeneous population with a single habitat s, a singular point is characterized by dfs/dz1 = 0, and therefore
eq.(52) predicts that the sign of the disruptive selection coefficient is solely determined by the sign of d2fs/dz21 no matter
whether dispersal is complete or locally limited. A similar result has been shown in Parvinen et al. (2017) by assuming a
Wright-Fisher process.
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We now make two further assumptions. First, we follow Svardal et al. (2015) and assume that

fecundity is under Gaussian stabilising selection with habitat specific optimum yop,s. Thus,

fs(z1) = fmax exp

[
− (z1 − yop,s)2

2σ2
st

]
, (53)

where fmax is the maximal fecundity of an individual and σ2
st is inversely proportional to the strengh of

stabilising selection. Second, we assume that group size, migration and juvenile survival are identical for

all habitats, i.e., ns = n, ms = m, and ps = p for all s. Hence, habitats only differ in the trait value

yop,s that maximizes fecundity.

Under these assumptions, the singular strategy y∗ is implicitly given by

y∗ =
∑
s∈S

ψs(y
∗)yop,s, (54)

which is a weighted average of the habitat specific trait optima with the weights ψs being complicated

functions of the model parameters (see Appendix J.1). The condition for the disruptive selection coeffi-

cient at the singular point y∗ (eq.52a) being positive can be expressed as∑
s∈S

Ψs(y
∗)(yop,s − y∗)2 > σ2

st, (55)

where the functions Ψs are again complicated weights (Appendix J.1).

These expressions greatly simplify when we consider only two habitats with equal proportions, i.e.

S = {1, 2} with π1 = π2 = 1/2, no mortality in dispersal, p = 1, and symmetric optima in the sense that

yop,2 = −yop,1. Due to this symmetry, y∗ = 0 is a solution of eq.(53) and therefore a singular strategy.

Furthermore, in Appendix J.1, we find that under the aforementioned assumptions

Ψs(y
∗) =

1

2

(
2−m
m

− 4(1−m)2

m(2 +m(n− 2))

)
. (56)

Then, by using the variance of the habitat optima defined by

σ2
op =

∑
s∈S

πs (yop,s − y∗)2 (57)

(in the current case, with π1 = π2 = 1/2), condition (55) can be written as2−m
m

− 4(1−m)2

m(2 +m(n− 2))︸ ︷︷ ︸
→ 0 when n→∞

σ2
op > σ2

st. (58)

The first term in the parenthesis is the effect of limited dispersal on disruptive selection in the absence

of kin selection (that is, under infinite group size). This term increases with decreasing dispersal, which

facilitates disruptive selection. Indeed, low dispersal increases the probability that lineage members

experience the same group-specific state favoring local adaptation. The second term in the parenthesis

captures the effect of kin selection. The absolute value of this negative term increases with both decreasing

dispersal and decreasing group size, which inhibits disruptive selection. This effect can be understood

as follows. All philopatric offspring within a group compete with each other for the limited number of

spots to settle within a group. Relatedness among individuals within a group increases with decreasing
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group size. Thus, in smaller groups competing individuals are more likely to be related with each other

and this diminishes the benefit of mutations increasing adaptation to the group-specific state. This effect

becomes more pronounced with decreasing dispersal since this increases relatedness within groups even

more. We therefore expect that the singular point y∗ is more likely to be uninvadable for small groups

and this is indeed what we observe in Figure 3, especially evident in panel (f). It can be shown that the

effect of decreasing dispersal on the first term on the left-hand side of (58) dominates the effect on the

second term. Thus, decreasing m indeed facilitates disruptive selection as illustrated in Figure 3(b-f).

In the limit of m = 0 and m = 1 the condition for the disruptive selection coefficient being positive

(58) becomes (1 + n)σ2
op > σ2

st when m→ 0

σ2
op > σ2

st when m = 1.
(59)

Thus, at very low dispersal the singular point changes from being uninvadable to invadable when group

size exceeds n = (σ2
st − σ2

op)/σ2
op (as can be seen in Figure 3(f) where the boundary between CSS and

branching point for very low m occurs at n = 4). At complete dispersal, the singular point is uninvadable

for σ2
op < σ2

st and invadable otherwise. Finally, the singular strategy is more likely to be under stabilizing

selection the larger the ratio σ2
st/σ

2
op, as is clearly illustrated in Figure 3(a-f).

A singular point at which selection is disruptive is an evolutionary branching point if it is also

convergence stable. Substituting eq.(48) under all mentioned assumptions into eq.(19) we obtain after

rearrangements that y∗ = 0 is convergence stable if2−m− (1−m)2(1−m+ (1 +m)n)

(1 +m(n− 1))(1−m+ n)︸ ︷︷ ︸
→ 0 when n→∞

σ2
op < σ2

st (60)

and repelling otherwise. From inspecting the left-hand side of this condition, the coefficient of σ2
op is a

unimodal function of m and takes the minimum value 1 at m = 0, 1 and the maximum at

m =

√
1 + n

n+
√

1 + n
(61)

for any fixed n. Therefore, it is clear that σ2
op < σ2

st is a necessary but not sufficient condition for

convergence stability. More generally, increasing σ2
st relative to σ2

op increases the space in the (m,n)-

plane for which the singular point is convergence stable (cf. Figure 3(a-f)). In Appendix J.1 we show

that 2σ2
op < σ2

st is a sufficient condition for convergence stability (cf. Figure 3(e-f)). Interestingly, from

the unimodality above, the singular point can be repelling for intermediate values of m as can be seen in

Figure 3(b-d). For large group size, condition (60) becomes (2−m)σ2
op < σ2

st and therefore convergence

stability changes at m = 2 − (σ2
st/σ

2
op), which coincides very well with where the singular point turns

from convergence stable to repelling at group size n = 100 in Figure 3(b-d). For the effect of group

size n on convergence stability, the coefficient of σ2
op in condition (60) is, for any fixed 0 < m < 1, an

increasing function of n. Thus, smaller group sizes are more favorable for convergence stability of the

singular point y∗ = 0.

An immediate conclusion from these observations is that for m = 1 evolutionary branching does not

occur under hard selection (with fecundity given by eq.(53)). This is so because for m = 1 competition is
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global and never occurs between same group individuals. This removes any frequency-dependent selection

effects. Indeed, under our assumptions setting m = 1 (and p = 1) in eq.(45a) and eq.(46a) results in

wpr
1,s|s(z1, z−{1}, z) = 0 and wdr

1,s′|s(z1, z−{1}, z) = πs′ns′fs(z1)/Ihard(z) for all s′ and s. Thus, there is no

longer any state specific frequency-dependence, since Ihard(z) is common to all fitness functions. In this

case, the singular point is both convergence stable and uninvadable if σ2
op < σ2

st and both repelling and

invadable if σ2
op > σ2

st. This is in agreement with the well-known finding that under hard selection and

complete dispersal selection is frequency-independent and adaptive polymorphism cannot be maintained

by spatial heterogeneity (Dempster, 1955; Ravigné, 2004; Ravigné et al., 2009; Débarre and Gandon,

2011).

4.3.2 Soft selection

Inserting eqs.(45b) and (46b) into eqs.(38b) and (38c), respectively, we show in Appendix I that the

selection gradient for the soft selection lottery model is

ρ(1) ∝
∑
s∈S

πsnspsms

ds,soft

{
∂fs
∂z1

fs
+ r

(0)
2 (s)(ns − 1)

∂fs
∂z2

fs
− r(0)2,R(s)

(
∂fs
∂z1

fs
+ (ns − 1)

∂fs
∂z2

fs

)}
, (62)

where the positive proportionality constant is positive (and given by the inverse of eq.(I4)) and

ds,soft ≡
Isoft

(1−ms)ns + Isoft
(63)

is the backward migration rate from groups in habitat s under neutrality. In contrast to the case of hard

selection, eq.(63) is independent of y. Pairwise relatedness under neutrality r
(0)
2 (s) takes the same form

as in eq.(51) where all ds,hard have to be replaced with ds,soft. The key difference between eq.(48) and

eq.(62) is that under soft selection the competition term is larger than under hard selection because the

weighting by the backward dispersal probability has disappeared in the latter case. This reflects the fact

that under soft selection density regulation occurs before dispersal. Again, eq.(62) is a generalization of

previous results as detailed in Appendix I.

Similarly, inserting eqs.(45b) and (46b) into eqs.(38b) and (38c), respectively, and using these in

eq.(34), we obtain a general expression for the disruptive selection coefficient ρ(2) under soft selection.

As was the case for hard selection, the resulting expression can be useful for numerical calcualtions, but

is too lengthy to be presented here and we refer to Appendix I for details.

Paralleling the analysis under hard selection, we assume a Moran process (i.e., γs ∼ 1) and that

fecundity of adult individuals depends only on their own phenotype (fs(z1, z−{1}, z) = fs(z1)). Under

these assumptions we show in Appendix J.2 that

ρ(2) ∝
∑
s∈S

πsnspsms

ds,soft

X1,s,soft

d2fs
dz21

fs
+X2,s,soft

(
dfs
dz1

fs

)2
 , (64a)

where the positive proportionality constant is the same as in eq.(62), and

X1,s,soft =
1

2

ds,soft(ns − 1)

1 + ds,soft(ns − 1)
(≥ 0) (64b)

X2,s,soft =
ds,soft(ns − 1){ds,soft(1− ds,soft)(ns − 1)(ns − 2)− 2ds,soft(ns − 1) + (ns − 2)}

{2 + ds,soft(ns − 2)}{1 + ds,soft(ns − 1)}2
. (64c)
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Figure 3: Bifurcation diagrams for the singular point y∗ = 0 as a function of the migration rate m
(x-axis) and group size n (y-axis) for six different values of the within group selection parameter σ2

st

(see eq.(53)). (a-f) Hard selection, (g-l) soft selection. Purple: evolutionary repellor, blue: evolutionary
branching point, white: uninvadable and convergence stable singular point, i.e., continuously stable
strategy (CSS). Other parameter values: yop,1 = 1 = −yop,2 (implying σ2

op = 1).
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The ratio of these weights, X2,s,soft/X1,s,soft, shows qualitatively the same behavior as the corresponding

expressions under hard selection (eqs.(52b) and (52c)) with respect to changes in ds,soft and ns. However,

a notable difference from the hard selection case is that X2,s,soft (and hence the ratio, X2,s,soft/X1,s,soft)

can be negative for small ns and large ds.

Under the assumption of Gaussian fecundity selection (eq.53) and ns = n, ms = m, ps = p = 1 for all

states s, which entails dsoft = m, we again obtain a fully worked example. The value y∗ for the singular

strategy is given by the average habitat optimum,

y∗ =
∑
s∈S

πsyop,s (65)

(Appendix J.2). Furthermore, the coefficient of disruptive selection is positive if and only if2−m
m

− 4 + 2m (2−m) (n− 2)

m(2 +m(n− 2))(1 +m(n− 1))︸ ︷︷ ︸
→ 0 when n→∞

σ2
op > σ2

st, (66)

where σ2
op is the variance in the habitat optima defined by eq.(57). Note that condition (66) is valid only

for n ≥ 2 (because otherwise eqs.(64b) and (64c) evaluate to zero). The two terms in parenthesis on the

left-hand side of condition (66) have the same interpretation as the corresponding terms in condition (58)

for the case of hard selection and they respond in the same direction with respect to changes in dispersal

m and group size n. In the limit of infinitely large group size (n→∞) the second term vanishes and we

recover eq.(C.15) of Svardal et al. (2015).

In Appendix J.2, we show that y∗ as given by eq.(65) is convergence stable for any value of σ2
st and σ2

op

and independent of group size n and dispersal probability m. Thus, the singular point is an evolutionary

branching point when it is invadable and an endpoint of the evolutionary dynamics (continuously stable

strategy, CSS) when uninvadable. For the special case of only two habitats with yop,1 = 1 = −yop,2,

Figure 3 shows how n, m and σ2
st determine whether y∗ = 0 is a branching point or a CSS. In summary,

stronger selection (smaller values of σ2
st), lower migration and larger groups favor adaptive diversification

at an evolutionary branching point.

5 Discussion

The main result of this paper is an expression for the disruptive selection coefficient ρ(2) in heterogeneous

group-structured populations (eq.34). We show that ρ(2) depends on three types of differentials: (a) the

first- and second-order perturbations of the expected number of offspring in different states produced by

an individual in a given state, (b) the first-order perturbation of the probability that an individual is in the

different states, and (c) the first-order perturbation of the probability that a randomly sampled neighbor

of an individual carries alleles identical by descent (perturbation of relatedness). These differentials

depend on and are weighted by three quantities evaluated under neutrality: (i) the reproductive values

v(0)(s) of individuals in state s, (ii) the pairwise and three-way relatedness coefficients r
(0)
2 (s) and r

(0)
3 (s)

in state s, and (iii) the probability q(0)(s) that a randomly sampled individual resides in a group in state

s.
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At a conceptual level, our results about the components of ρ(2) can be thought of as a direct extension

of the result that the three types of neutral weights – reproductive values, relatednesses, and probabilities

of occurrence in state s – are needed to evaluate the selection gradient ρ(1) for quantitative traits in group-

structured populations (Taylor, 1996; Frank, 1998; Rousset, 2004). All the above mentioned differentials

and their weights can be obtained by solving systems of linear equations that are at most of dimension

N , i.e., the number of states groups can be in. This represents a significant reduction compared to the

dimension of the state space of the original evolutionary process, which is equal to the dimension of the

mutant transition matrix A.

A distinctive and novel feature of our analysis is the introduction of the concept of individual k-

fitness, wk(s′|s, i), which describes the expected number of descendants of a mutant in an (s, i) group

(possibly including self through survival) that settle in state-s′ groups and have k− 1 randomly sampled

neighbors that are also mutant (i.e., that descend from the same common ancestor). We show that

wk(s′|s, i) for k = 1, 2, 3 allow us to compute all the aforementioned quantities and their perturbations

and are thus sufficient to evaluate ρ(1) and ρ(2). These individual k-fitnesses are thus sufficient biological

ingredients to determine whether or not disruptive selection occurs. In a well-mixed populations in which

individuals do not interact with relatives only individual 1-fitnesses are required to evaluate ρ(1) and ρ(2).

Individual 2- and 3-fitnesses describe the possibility that under limited dispersal the offspring of a given

parent can have neighbors (here one or two) that belong to the same lineage and are thus more likely

to have the same trait value than randomly sampled individuals from the population. This causes non-

random mutant-mutant interactions, which is well known to critically affect the nature of selection on

traits affecting own and others’ reproduction and survival (Hamilton, 1964; Michod, 1982; Frank, 1998;

Rousset, 2004). Because the individual k-fitnesses describe group configurations in which offspring have

neighbors that belong to the same lineage, the ancestral lineages of the k interacting individuals must

coalesce in a common ancestor, and this can occur only if there is a non-zero probability that at least

two individuals descend from the same parent over a generation (see Appendix G.2 for the connection

to coalescence theory). Neutral relatedness in evolutionary models is indeed usually computed by using

coalescence arguments and thus use a “backward” perspective on allele transmission (e.g. Taylor, 1996;

Frank, 1998; Rousset, 2004). This may somewhat disconnect relatedness from the “forward” perspective

of allele transmission induced by reproduction. Using individual 2-fitnesses to evaluate relatedness (see

eq.33) brings upfront the connection between relatedness and reproduction (note that the “backward”

approach may nevertheless be sometimes more useful for concrete calculations of relatedness).

As an application of our results, we analyze a lottery model with overlapping generations in hetero-

geneous habitats that allows for both hard and soft selection regimes. For this scenario, we show that

ρ(1) and ρ(2) can in principle be solved explicitly (all systems of equation can be solved explicitly) but

that generic expressions remain complicated functions, since they apply to any kind of social interactions

(i.e., any “game”) and different ecologies. In doing these calculations, we recover a number of previous

results concerning relatedness, selection gradients and disruptive selection coefficients for lottery models

(in particular those of Pen, 2000; Rousset and Ronce, 2004; Ohtsuki, 2010; Lehmann and Rousset, 2010;

Rodrigues and Gardner, 2012; Wakano and Lehmann, 2014; Svardal et al., 2015; Mullon et al., 2016;
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Parvinen et al., 2018, see Appendices G, H.3 and I.3 for details), which confirms the validity of our ap-

proach. Finally, as a fully worked example, we investigate the evolution of adaptive polymorphism due

to local adaption by extending the soft selection model of Svardal et al. (2015) to finite group size and

hard selection. We confirm that adaptive polymorphism is generally favored by limited migration under

soft selection and that small group size does not change this result qualitatively but tends to inhibit

disruptive selection. For hard selection, however, the situation is more complicated as limited dispersal

and finite group size favors not only disruptive selection but also repelling generalist strategies so that it

becomes less likely that polymorphism can emerge from gradual evolution (Figure 3). With respect to

limited migration this finding is also described by Débarre and Gandon (2011).

While our model allows for many different types of interactions between individuals within groups, it

also has several limitations. At the individual level, we consider only scalar traits, but multidimensional

(or functional-valued) traits can be taken into account by replacing derivatives by directional derivatives,

which will not change the structure of our perturbation analysis. At the group level, we do not consider

heterogeneity within groups, but in natural populations individuals within groups are likely to differ in

their physiological state such as age, size and sex. To incorporate physiological heterogeneity requires

an extension of the state space S and to take into account the distribution of mutants within sub-groups

of individuals belonging to the same physiological state in a group. The structure of our perturbation

analysis, however, will remain unchanged by adding within-group heterogeneity, and only additional

reproductive values and relatednesses will be needed. Likewise, in order to take isolation-by-distance into

account, one again needs to extend the state space S, while to include diploidy one needs to extend the

number of genetic states and this should only impact the relatedness coefficients. While such extensions

remain to be done (and have all been done for the selection gradient ρ(1) (e.g. Rousset, 2004)), they are

unlikely to change the required components of the disruptive selection coefficient ρ(2) and how they are

connected algebraically. We thus conjecture that the representation of ρ(2) holds generally.

In conclusion, for a large class of models we describe the consequences of limited dispersal and finite

group size on evolutionary stability and diversification in heterogeneous populations, which we hope will

help to formulate and analyze concrete biological models.
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Massol, F., A. Duputiè, P. David, and P. Jarne. 2011. Asymmetric patch size distribution leads to

disruptive selection on dispersal. Evolution 65:490–500.
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A Mathematical properties of the baseline model

In this section, we provide a mathematical description of the stochastic process underlying the mutant

dynamics that we consider in our paper.

A.1 Multitype branching process

We study the process of invasion of a mutant arising as a single copy (or a finite number of copies) in

a monomorphic resident population and consider mutant dynamics as long as the mutant remains rare.

Specifically, we pay attention to the number of groups including at least one adult mutant. Groups can

differ in their state s ∈ S and in the number i ∈ {1, · · · , ns} of mutants. We therefore count the number

of each “type” of group, where a type, denoted by τ here and thereafter, is specified by the vector

τ = (s, i). The set of all possible types is T ≡ ∪s∈S{(s, i) | i ∈ {1, · · · , ns}} and there are n ≡
∑
s∈S ns

different group types.

A “population state” describes how a mutant is distributed as long as it is rare in a population

otherwise monomorphic for the resident type. It is specified by a vector M = {Mτ} ∈ Nn, where

N = {0, 1, 2, · · · } and where each Mτ represents the number of type-τ groups at a given time. We

consider that the change in state is given by a discrete-time Markov chain, denoted by M, defined on

Nn, where the transition probability from population state M to M ′ is given by P (M →M ′). Here,

P implicitly depends both on the mutant and resident trait values, x and y, respectively, and allows to

define the generating function

GM (ξ) ≡
∑

M ′∈Nn

(
P (M →M ′)

∏
τ∈T

ξ
M ′τ
τ

)
(A1)

induced by the Markov chain, where ξ ≡ {ξτ}τ∈T is a vector of dummy variables. This Markov chain

has one absorbing state, which is the extinction of the mutant, and otherwise only transient states with

the possibility that the absorbing state is never reached and so the number of mutants grows without

bound.

We assume that the Markov chain M is a multitype branching process, meaning that each group

“behaves” independently of the other groups. Mathematically, this assumption is embodied by the

generating function of the Markov chain (eq.(A1)) being given by

GM (ξ) =
∏
τ∈T

{GEτ (ξ)}Mτ , (A2)

where Eτ is a vector of length n whose τ -th component is 1 and all the others are zero. Intuitively

speaking, eq.(A2) shows that P (M → M ′) is uniquely determined by the “fundamental” transitions

probabilities, P (Eτ →M ′) (τ ∈ T), each representing how many groups of the same and different types

are “produced” by a single type-τ group in the previous time step (by “produced” we mean that the

survival and reproduction of individuals in a single type-τ group affect the composition of that group in

the descendant generation, as well as the composition of other groups by emigration of offspring, e.g.,

eq.(1) of Lehmann et al., 2016).
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For a given initial population stateM0 ∈ Nn, the ultimate extinction probability of mutants is defined

as

π(M0) = Prob(Mt=∞ = 0 |M0), (A3)

where Mt=∞ is the population state vector when the number of time steps t → ∞, and 0 represents a

vector of zeroes of length n. Now we define

a(τ ′|τ) =
∑

M ′∈Nn
M ′τ ′P (Eτ →M ′), (A4)

which is the expected number of type-τ ′ groups that are “produced” by a single type-τ group4. We collect

the expectations a(τ ′|τ) for all τ, τ ′ to construct matrix A = {a(τ ′|τ)}. We assume that (i) matrix A is

primitive, as specified in Section 2.2 in the main text, and that (ii) M is not “singular” (where M being

“singular” means that all of GEτ (ξ) (τ ∈ T) are linear functions without a constant term). Let ρ be the

largest eigenvalue of A (since A is primitive it follows from the Perron-Frobenius theorem that such a

unique positive ρ exists). Then, a standard result in multitype branching process theory (Harris, 1963;

Karlin and Taylor, 1975) guarantees that the following relations hold between ρ and the π(Eτ ):

ρ ≤ 1 =⇒ π(Eτ ) = 1 (for all τ ∈ T),

ρ > 1 =⇒ π(Eτ ) < 1 (for all τ ∈ T).
(A5)

It is precisely matrix A = {a(τ ′|τ)} = {a(s′, i′|s, i)} that we study in the main text. Because our focus is

only on the uninvadability of the resident with respect to invasion of single mutants, which translates to

whether or not π(E(s,1)) = 1, we do not have to distinguish two different multitype branching processes

that yield the same A-matrix. Therefore, an evolutionary invasion analysis can be started from A, and

does not need to detail the transition probabilities of the underlying multitype branching process.

A.2 List of assumptions and their implications

We here summarize the basic mathematical assumptions for our model and their biological implications.

(i) A Markov chain M, which depends on x, y and whose state space is {(Mτ )τ∈T ∈ Nn}, is a multi-

type branching process. This implies that each group that includes at least one mutant behaves

independently of all other groups.

(ii) Matrix A = {a(τ ′|τ)}, calculated from M as in eq.(A4), is primitive. This implies that each type

of group has a positive contribution to the production of any other type of group after some finite

number of time steps.

(iii) M is not singular. Hence, we do not consider a degenerate multitype branching process in which

each group always produces exactly one group at the next time step.

(iv) Individual fitness w
(0)
1 (s′|s, i) as defined in eq.(14) does not depend on i (and therefore can be

written as w
(0)
1 (s′|s)). This implies that resident and mutant individuals are indistinguishable (and

exchangeable) under neutrality.

4We assume that this expectation exists for all τ and τ ′. Using generating the function GEτ (ξ), eq.(A4) is calculated

as ∂
∂ξτ′

GEτ (ξ)
∣∣∣
ξ=1

, where 1 is a vector of ones.
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(v) Matrix W (0), whose entries are determined by w
(0)
1 (s′|s), has 1 as its largest eigenvalue. This

implies that a monomorphic population of resident individuals stays at the same average group size

due to density-dependent regulation.

B Derivation of perturbations of invasion fitness

We here prove eq.(21) and eq.(22). Before doing so, we list some frequently used relations:

w
(0)
1 (s′|s, i) = w

(0)
1 (s′|s) (see Section 2.3.4) (B1a)∑

s∈S

q(s) = 1 (see eqs.(3) and (4)) (B1b)

ns∑
i=1

q(i|s) = 1 (see eqs.(4) and (5)). (B1c)

We decompose w1(s′|s, i) in eq.(16a) into a neutral part and a non-neutral part,

w1(s′|s, i) = w
(0)
1 (s′|s, i)︸ ︷︷ ︸
neutral

+w1,sel(s
′|s, i)︸ ︷︷ ︸

non-neutral

=
eq.(B1a)

w
(0)
1 (s′|s) + w1,sel(s

′|s, i).
(B2)

Note that, by definition, the `-th order perturbation of w1,sel(s
′|s, i) with respect to δ equals

w
(`)
1,sel(s

′|s, i) =

{
0 (` = 0)

w
(`)
1 (s′|s, i) (` ≥ 1).

(B3)

From eq.(16a), we then have

ρ =
1

V


∑
s′∈S

∑
s∈S

v(0)(s′)w
(0)
1 (s′|s)

ns∑
i=1

q(i|s)︸ ︷︷ ︸
=1

(from eq.(B1c))

q(s)

+
1

V

[∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

]

=
1

V


∑
s∈S

∑
s′∈S

v(0)(s′)w
(0)
1 (s′|s)︸ ︷︷ ︸

=v(0)(s) (from eq.(15b))

q(s)

+
1

V

[∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

]

=
1

V

∑
s∈S

v(0)(s)q(s)︸ ︷︷ ︸
=V (from eq.(16b))

+
1

V

[∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

]

= 1 +
1

V

[∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

]
.

(B4)
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As a check, the zeroth order perturbation is

ρ(0) = 1 +
(
V −1

)(0) [∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

](0)

= 1 +
(
V −1

)(0) ∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′) w
(0)
1,sel(s

′|s, i)︸ ︷︷ ︸
=0 (from eq.(B3))

q(0)(i|s)q(0)(s)


= 1,

(B5)

as expected. The first-order perturbation of eq.(B4) is

ρ(1) =
(
V −1

)(1) [∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

](0)
︸ ︷︷ ︸

=0 (shown in eq.(B5))

+
(
V −1

)(0)︸ ︷︷ ︸
=(V (0))−1

[∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

](1)

=


∑
s∈S

v(0)(s)q(0)(s)︸ ︷︷ ︸
=1 (from eq.(15c))


−1 [∑

s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

](1)

=
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(1)
1,sel(s

′|s, i)︸ ︷︷ ︸
=w

(1)
1 (s′|s,i)

(from eq.(B3))

q(0)(i|s)q(0)(s)

=
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(1)
1 (s′|s, i)q(0)(i|s)q(0)(s),

(B6)

which reproduces eq.(E.14) in Lehmann et al. (2016). Note that the first-order perturbation of the term

in square brackets in the third line of eq.(B6) can potentially produce more terms in the fourth line, but

they are null because w
(0)
1,sel(s

′|s, i) = 0 (see eq.(B3)). Equation (B6) proves eq.(21) in the main text.
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Next, we study ρ(2) under the condition ρ(1) = 0. The second-order perturbation of eq.(B4) is

ρ(2) =
(
V −1

)(2) [∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

](0)
︸ ︷︷ ︸

=0 (shown in eq.(B5))

+
(
V −1

)(1) [∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

](1)
︸ ︷︷ ︸

=ρ(1)=0, (shown in (B6) & assumption)

+
(
V −1

)(0)︸ ︷︷ ︸
=1 (shown in eq.(B6))

[∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w1,sel(s
′|s, i)q(i|s)q(s)

](2)

=
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(2)
1,sel(s

′|s, i)︸ ︷︷ ︸
=w

(2)
1 (s′|s,i)

(from eq.(B3))

q(0)(i|s)q(0)(s)

+
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(1)
1,sel(s

′|s, i)︸ ︷︷ ︸
=w

(1)
1 (s′|s,i)

(from eq.(B3))

q(0)(i|s)q(1)(s)

+
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(1)
1,sel(s

′|s, i)︸ ︷︷ ︸
=w

(1)
1 (s′|s,i)

(from eq.(B3))

q(1)(i|s)q(0)(s)

=
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(2)
1 (s′|s, i)q(0)(i|s)q(0)(s)︸ ︷︷ ︸

=ρ(2w)

+
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(1)
1 (s′|s, i)q(0)(i|s)q(1)(s)︸ ︷︷ ︸

=ρ(2q)

+
∑
s′∈S

∑
s∈S

ns∑
i=1

v(0)(s′)w
(1)
1 (s′|s, i)q(1)(i|s)q(0)(s)︸ ︷︷ ︸

=ρ(2r)

.

(B7)

Note that the second-order perturbation of the term in square brackets in the third line of eq.(B7) can

potentially produce more terms in the following lines, but they are null because w
(0)
1,sel(s

′|s, i) = 0 (see

eq.B3). Equation (B7) proves eq.(22) in the main text.

C Derivation of recursions

In order to practically use the general formulae for the first and second order derivatives of invasion fitness,

eq.(21) and eq.(22), or to use the corresponding formulae derived for the individual fitness functions,

eq.(32) and eq.(34), we need to know q(s) (the asymptotic distribution that a randomly sampled mutant

finds itself in a group of state s) and q(i|s) (the asymptotic distribution that a randomly sampled mutant,

given that it is sampled from a group in state s, finds itself in a group with i mutants) under neutrality

as well as the first-order perturbation of these quantities with respect to δ. Due to eq.(7), knowing

q(i|s) (i = 1, · · · , ns) is equivalent to knowing relatedness, rk(s) (k = 1, · · · , ns). The purpose of this

section is to derive recursions that q(s) and rk(s) satisfy. Specifically, in Section C.1 we derive recursions

that are valid for any δ, and in Section C.2 we describe their perturbations to the zeroth- (hence under
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neutrality) and first-order of δ.

C.1 Recursions of q(s) and rk(s) for arbitrary δ

For simplicity, we will from here on occasionally omit the lower and upper bound of the summation when

obvious from the context.

C.1.1 Recursion for q(s)

Writing ρu = Au component-wise gives

ρu(s′, i′) =
∑
s

∑
i

a(s′, i′|s, i)u(s, i). (C1)

By multiplying both sides with i′ we obtain

ρi′u(s′, i′) =
∑
s

∑
i

i′a(s′, i′|s, i)u(s, i). (C2)

Summing eq.(C2) over s′ and i′ gives

ρ
∑
s′

∑
i′

i′u(s′, i′) =
∑
s′

∑
i′

∑
s

∑
i

i′a(s′, i′|s, i)u(s, i). (C3)

Dividing eq.(C2) by eq.(C3) results in

i′u(s′, i′)∑
s′′
∑
i′′ i
′′u(s′′, i′′)

=

∑
s

∑
i i
′a(s′, i′|s, i)u(s, i)∑

s′′
∑
i′′
∑
s

∑
i i
′′a(s′′, i′′|s, i)u(s, i)

. (C4)

Using eq.(3) we note that the left-hand side equals q(s′, i′). Thus, eq.(C4) can be rewritten as

q(s′, i′) =

∑
s

∑
i{i′a(s′, i′|s, i)/i}{iu(s, i)}∑

s′′
∑
i′′
∑
s

∑
i{i′′a(s′′, i′′|s, i)/i}{iu(s, i)}

. (C5)

We divide both the numerator and the denominator of the right-hand side of eq.(C5) by the constant,∑
s′
∑
i′ i
′u(s′, i′). By using eq.(3) once again we obtain

q(s′, i′) =

∑
s

∑
i{i′a(s′, i′|s, i)/i}q(s, i)∑

s′′
∑
i′′
∑
s

∑
i{i′′a(s′′, i′′|s, i)/i}q(s, i)

, (C6)

which is the general recursion that q(s, i) obeys.

To obtain the recursion that q(s) obeys, we sum eq.(C6) over i′ and obtain

q(s′) =
∑
i′

q(s′, i′) =

∑
s

∑
i

∑
i′{i′a(s′, i′|s, i)/i}q(s, i)∑

s′′
∑
s

∑
i

∑
i′′{i′′a(s′′, i′′|s, i)/i}q(s, i)

=
eq.(10)

∑
s

∑
i w1(s′|s, i)q(s, i)∑

s′′
∑
s

∑
i w1(s′′|s, i)q(s, i)

=
eq.(5)

∑
s

∑
i w1(s′|s, i)q(i|s)q(s)∑

s′′
∑
s

∑
i w1(s′′|s, i)q(i|s)q(s)

.

(C7)
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Interpretation of ρ: Dividing eq.(C3) by the constant
∑
s

∑
i iu(s, i) gives

ρ =

∑
s′
∑
i′
∑
s

∑
i i
′a(s′, i′|s, i)u(s, i)∑

s′′
∑
i′′ i
′′u(s′′, i′′)

=
∑
s′

∑
s

∑
i

∑
i′

{i′a(s′, i′|s, i)/i}︸ ︷︷ ︸
=w1(s′|s,i) (from eq.(10))

iu(s, i)∑
s′′
∑
i′′ i
′′u(s′′, i′′)

=
∑
s′


∑
s

∑
i

w1(s′|s, i) iu(s, i)∑
s′′
∑
i′′ i
′′u(s′′, i′′)︸ ︷︷ ︸

=q(s,i)
=q(i|s)q(s)

 , (C8)

which reproduces eq.(5) of Lehmann et al. (2016). The term inside the square bracket of eq.(C8) can be

interpreted as the state-s′ component of the expected individual fitness of a mutant randomly sampled

from the asymptotic distribution u(s, i) (i.e., the probability for a randomly sampled mutant to find itself

in an (s, i)-group is proportional to iu(s, i)). Thus, invasion fitness ρ can be interpreted as the expected

number of mutant copies produced by a lineage member randomly sampled from the distribution u.

Combining eqs.(C7) and (C8) gives us a useful relationship

q(s′) =
1

ρ

{∑
s

∑
i

w1(s′|s, i)q(i|s)q(s)

}
. (C9)

C.1.2 Recursion for rk(s)

From the definition of r1 in eq.(7) we have r1(s) = 1. Thus, we are interested in the recursions for rk(s)

for k ≥ 2. Using the definition for q(s, i) in eq.(5) and the expression eq.(C6), we have

q(i′|s′) =

∑
s

∑
i{i′a(s′, i′|s, i)/i}q(s, i)∑

i′′
∑
s

∑
i{i′′a(s′, i′′|s, i)/i}q(s, i)

. (C10)

Multiplying both sides of the last equation by φk(s′, i′) and summing over i′ gives

rk(s′) =
∑
i′

φk(s′, i′)q(i′|s′) =

∑
s

∑
i

∑
i′ φk(s′, i′){i′a(s′, i′|s, i)/i}q(s, i)∑

s

∑
i

∑
i′′{i′′a(s′, i′′|s, i)/i}q(s, i)

=
eqs.(10, 11)

∑
s

∑
i wk(s′|s, i)q(s, i)∑

s

∑
i w1(s′|s, i)q(s, i)

=
eq.(5)

∑
s

∑
i wk(s′|s, i)q(i|s)q(s)∑

s

∑
i w1(s′|s, i)q(i|s)q(s)

,

(C11)

where wk denotes k-fitness as defined in eq.(11) in the main text.

C.2 Perturbations of q(s) and rk(s)

Here, we derive recursions satisfied by the zeroth- and first-order perturbations of q(s) and rk(s). These

will be of practical use when computing the selection gradient and disruptive selection coefficient, e.g.,

eq.(21) and eq.(22) or eq.(32) and eq.(34). We also show that the recursions for the perturbation of rk(s)

can be greatly simplified if we make an additional assumption on fitness functions.
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C.2.1 Perturbation of q(s)

The following observation is useful in later calculations. For the perturbations of eqs.(B1b) and (B1c)

we obtain ∑
s

q(0)(s) = 1,
∑
s

q(1)(s) = 0,
∑
i

q(0)(i|s) = 1,
∑
i

q(1)(i|s) = 0. (C12)

Zeroth-order perturbation of q(s): The zeroth-order perturbation of eq.(C9) with respect to δ is

given by

q(0)(s′) =
1

ρ(0)︸︷︷︸
=1

{∑
s

∑
i

w1(s′|s, i)q(i|s)q(s)

}(0)

=
∑
s

∑
i

w
(0)
1 (s′|s, i)︸ ︷︷ ︸
=w

(0)
1 (s′|s)

(from eq.(B1a))

q(0)(i|s)q(0)(s)

=
∑
s

w
(0)
1 (s′|s)

∑
i

q(0)(i|s)︸ ︷︷ ︸
=1 (from eq.(C12))

q(0)(s)

=
∑
s

w
(0)
1 (s′|s)q(0)(s).

(C13)

This proves eq.(15a) in the main text.

First-order perturbation of q(s): Assuming ρ(1) = 0 and using the quotient rule the first-order

perturbation of eq.(C9) with respect to δ is given by

q(1)(s′) =
1

ρ(0)︸︷︷︸
=1

{∑
s

∑
i

w1(s′|s, i)q(i|s)q(s)

}(1)

− 1(
ρ(0)

)2
{∑

s

∑
i

w1(s′|s, i)q(i|s)q(s)

}(0)

ρ(1)︸︷︷︸
=0

=
∑
s

∑
i

w
(1)
1 (s′|s, i)q(0)(i|s)q(0)(s)

+
∑
s

∑
i

w
(0)
1 (s′|s, i)︸ ︷︷ ︸
=w

(0)
1 (s′|s)

(from eq.(B1a))

q(1)(i|s)q(0)(s) +
∑
s

∑
i

w
(0)
1 (s′|s, i)︸ ︷︷ ︸
=w

(0)
1 (s′|s)

(from eq.(B1a))

q(0)(i|s)q(1)(s)

=
∑
s

∑
i

w
(1)
1 (s′|s, i)q(0)(i|s)q(0)(s)

+
∑
s

w
(0)
1 (s′|s)

∑
i

q(1)(i|s)︸ ︷︷ ︸
=0

(from eq.(C12))

q(0)(s) +
∑
s

w
(0)
1 (s′|s)

∑
i

q(0)(i|s)︸ ︷︷ ︸
=1

(from eq.(C12))

q(1)(s)

=
∑
s

∑
i

w
(1)
1 (s′|s, i)q(0)(i|s)q(0)(s) +

∑
s

w
(0)
1 (s′|s)q(1)(s).

(C14)

C.2.2 Perturbation of rk(s)

Zeroth-order perturbation of rk(s): With respect to the zeroth-order perturbation of eq.(C11) with

respect to δ we obtain

r
(0)
k (s′) =

{
∑
s

∑
i wk(s′|s, i)q(i|s)q(s)}(0)

{
∑
s

∑
i w1(s′|s, i)q(i|s)q(s)}(0)

=
eq.(C13)

1

q(0)(s′)

∑
s

∑
i

w
(0)
k (s′|s, i)q(0)(i|s)q(0)(s). (C15)
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Of practical importance for k ≥ 2 is the case that w
(0)
k (s′|s, i) = 0 holds for all s′ 6= s and all

i = 1, · · · , ns. This applies, for example, when the state of a given group does not change and mutants

settle in new groups only as single individuals (no propagule dispersal). Then eq.(C15) simplifies to

r
(0)
k (s) =

∑
i

w
(0)
k (s|s, i)q(0)(i|s), (C16)

and r
(0)
k (s) can be calculated independently of {q(0)(s)}s∈S.

First-order perturbation of rk(s): Assuming ρ(1) = 0 and using the quotient rule the first-order

perturbation of eq.(C11) with respect to δ equals

r
(1)
k (s′) =

{
∑
s

∑
i wk(s′|s, i)q(i|s)q(s)}(1)

{
∑
s

∑
i w1(s′|s, i)q(i|s)q(s)}(0)

−
{
∑
s

∑
i wk(s′|s, i)q(i|s)q(s)}(0)

{
∑
s

∑
i w1(s′|s, i)q(i|s)q(s)}(0)︸ ︷︷ ︸

=r
(0)
k (s′) (from eq.(C15))

·
{
∑
s

∑
i w1(s′|s, i)q(i|s)q(s)}(1)

{
∑
s

∑
i w1(s′|s, i)q(i|s)q(s)}(0)

.
(C17)

For ρ(1) = 0 we observed in eq.(C14) that {
∑
s

∑
i w1(s′|s, i)q(i|s)q(s)}(1) = q(1)(s′) holds. Applying

this relation and eq.(C13) we obtain

r
(1)
k (s′) =

1

q(0)(s′)

{∑
s

∑
i

wk(s′|s, i)q(i|s)q(s)

}(1)

− r(0)k (s′)
q(1)(s′)

q(0)(s′)
, (C18)

which, upon expanding the first-order perturbation on the right hand side more explicitly, becomes

r
(1)
k (s′) =

1

q(0)(s′)

[{∑
s

∑
i

w
(1)
k (s′|s, i)q(0)(i|s)q(0)(s)

}

+

{∑
s

∑
i

w
(0)
k (s′|s, i)q(1)(i|s)q(0)(s)

}

+

{∑
s

∑
i

w
(0)
k (s′|s, i)q(0)(i|s)q(1)(s)

}]
− r(0)k (s′)

q(1)(s′)

q(0)(s′)
.

(C19)

When considering the case that w
(0)
k (s′|s, i) = 0 holds for all s′ 6= s and all i = 1, · · · , ns, just as we

did for the case of the zeroth-order perturbation, eq.(C19) simplifies to

r
(1)
k (s) =

∑
i

w
(1)
k (s|s, i)q(0)(i|s) +

∑
i

w
(0)
k (s|s, i)q(1)(i|s)

+

{∑
i

w
(0)
k (s|s, i)q(0)(i|s)

}
︸ ︷︷ ︸

=r
(0)
k (s) (from eq.(C16))

q(1)(s)

q(0)(s)
− r(0)k (s)

q(1)(s)

q(0)(s)

=
∑
i

w
(1)
k (s|s, i)q(0)(i|s) +

∑
i

w
(0)
k (s|s, i)q(1)(i|s),

(C20)

and r
(1)
k (s) can be calculated independently of {q(0)(s)}s∈S and {q(1)(s)}s∈S.

C.3 Closedness of the recursions in q(s) and rk(s)

In the previous sections, we obtained recursions for q(s), rk(s) and the perturbations thereof to the first

order. However, it is not clear whether these actually form a closed system of equations in terms of
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the variables. The purpose of this section is to show that eqs.(C7) and (C11) (and the perturbation

thereof) indeed constitute such a closed system of equations. To do this, we pay attention to the sum∑
i wk(s′|s, i)q(i|s), which frequently appears in eqs.(C7) and (C11). We prove that this sum can be

written as a linear combination of the ns relatedness coefficients r1(s), · · · , rns(s). With this, it follows

that the desired result indeed holds.

Proof: For fixed k, s′ and s (and for fixed x and y), consider ns distinct points on a two-dimensional

plane, (i, wk(s′|s, i)) ∈ R2 (i = 1, . . . , ns). Then, from a standard result of polynomial interpolation,

there exists a unique polynomial in ξ, denoted by Lk,s′,s(ξ) (called a Lagrange polynomial), whose graph

{(ξ, Lk,s′,s(ξ)) | ξ ∈ R} passes through the above ns points and whose order as a polynomial in ξ is equal

to or less than ns − 1. Take such a polynomial Lk,s′,s. By definition

wk(s′|s, i) = Lk,s′,s(i) (i = 1, . . . , ns) (C21)

holds. We define further a set of polynomials in ξ, {Φ1,s(ξ), · · · ,Φns,s(ξ)}, as

Φ`,s(ξ) =

`−1∏
j=1

ξ − j
ns − j

(1 ≤ ` ≤ ns, s ∈ S), (C22)

where we define Φ1,s(ξ) = 1. This set of ns polynomials of order 0 to ns−1 can be written more explicitly

as {
1,

ξ − 1

ns − 1
,

(ξ − 1)(ξ − 2)

(ns − 1)(ns − 2)
, · · · , (ξ − 1)(ξ − 2) · · · (ξ − ns + 1)

(ns − 1)(ns − 2) · · · 1

}
. (C23)

It is thus a basis of the vector space composed of all polynomials in ξ of order equal to or less than ns−1.

Because Lk,s′,s(ξ) is one such polynomial it can be written as

Lk,s′,s(ξ) =

ns∑
`=1

a`,k,s′,sΦ`,s(ξ) (C24)

for some a`,k,s′,s ∈ R (` = 1, · · · , ns). By construction

Φ`,s(i) = φ`(s, i) (i = 1, · · · , ns) (C25)

holds (compare eq.(C22) with eq.(6)).

We now consider
∑
i wk(s′|s, i)q(i|s). Using Lk,s′,s and eqs.(C21),(C24) and (C25) we obtain

ns∑
i=1

wk(s′|s, i)q(i|s) =
eq.(C21)

ns∑
i=1

Lk,s′,s(i)q(i|s)

=
eq.(C24)

ns∑
i=1

ns∑
`=1

a`,k,s′,sΦ`,s(i)q(i|s)

=
eq.(C25)

ns∑
i=1

ns∑
`=1

a`,k,s′,sφ`(s, i)q(i|s)

=

ns∑
`=1

a`,k,s′,s

ns∑
i=1

φ`(s, i)q(i|s)

=
eq.(7)

ns∑
`=1

a`,k,s′,sr`(s).

(C26)

Given r1(s) = 1 for all s ∈ S, eqs.(C7) and (C11) form a large but closed system of equations with q(s)

and rk(s) for all k = 2, · · · , ns and all s ∈ S. Its size is N +
∑
s∈S(ns − 1) = N + (n −N) = n, which

makes sense since n is the dimension of matrix A.
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D Individual 3-fitness

We define the following four different individual 3-fitness functions. For that purpose, consider a focal

individual in a group in state s who adopts z1, and its ns−1 neighbors who adopt z−{1} in an otherwise

monomorphic population for z.

Individual 3-fitness of type I: Define

wI
3,s′|s(z1, z−{1}, z) (D1)

as the expected number of offspring in state s′ that descend from the focal individual adopting z1 in

state s and that have two random neighbors (sampled without replacement) that both descend from the

focal individual.

Individual 3-fitness of type II: Consider one of the focal’s neighbor, called the target individual,

who adopts z2. We define

wII
3,s′|s(z1, z2, z−{1,2}, z) (D2)

as the expected number of offspring in state s′ that descend from the focal individual adopting z1 in

state s and whose two random neighbors (sampled without replacement) both descend from the target

individual (adopting z2).

Individual 3-fitness of type II’: Consider one of the focal’s neighbor, called the target individual,

who adopts z2. We define

wII’
3,s′|s(z1, z2, z−{1,2}, z) (D3)

as the expected number of offspring in state s′ that descend from the focal individual adopting z1 in state

s, and where one of its two random neighbors (sampled without replacement) descends from the focal

individual while the other descends from the target individual (adopting trait value z2). The following

useful symmetry between wII’
3,s′|s and wII

3,s′|s holds:

wII’
3,s′|s(z1, z2, z−{1,2}, z) = 2wII

3,s′|s(z2, z1, z−{1,2}, z). (D4)

The reason for this symmetry is as follows. Consider a focal individual adopting z1 and a target individual

adopting z2 in the same state-s group. Suppose that a group in state s′ at the next time step comprises

A1 individuals that descend from the focal individual and A2 individuals that descend from the target

individual. Then, by definition such a group contributes to the 3-fitness of type II’ of the focal individual

wII’
3,s′|s(z1, z2, z−{1,2}, z) by

A1 ·
2(A1 − 1)A2

(ns′ − 1)(ns′ − 2)
. (D5)

The same group contributes to the 3-fitness of type II of the target individual, wII
3,s′|s(z2, z1, z−{1,2}, z),

by

A2 ·
A1(A1 − 1)

(ns′ − 1)(ns′ − 2)
. (D6)

Equation (D5) is twice as large as eq.(D6), and therefore the symmetry eq.(D4) holds.
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Individual 3-fitness of type III: Consider two neighbors of the focal individual, the one who adopts

z2 (called the first target individual) and the one who adopts z3 (called the second target individual).

Then we define

wIII
3,s′|s(z1, z2, z3, z−{1,2,3}, z) (D7)

as the expected number of offspring in state s′ that descend from the focal individual adopting z1 in

state s, and where one of its two random neighbors (sampled without replacement) descends from the

first target individual (adopting z2) and the other descends from the second target individual (adopting

z3). The following symmetry exists for a similar reason as above. For any permutation of σ of the set

{1, 2, 3} holds

wIII
3,s′|s(zσ(1), zσ(2), zσ(3), z−{1,2,3}, z) = wIII

3,s′|s(z1, z2, z3, z−{1,2,3}, z). (D8)

Calculation of w3: With these four individual 3-fitness functions the individual 3-fitness of a mutant

in an (s, i)-group, for 3 ≤ i ≤ ns, can be written as

w3(s′|s, i)

= wI
3,s′|s(x, x, · · · , x︸ ︷︷ ︸

i−1

, y, · · · , y︸ ︷︷ ︸
ns−i

, y) + (i− 1)wII
3,s′|s(x, x, x, · · · , x︸ ︷︷ ︸

i−2

, y, · · · , y︸ ︷︷ ︸
ns−i

, y)

+ (i− 1)wII’
3,s′|s(x, x, x, · · · , x︸ ︷︷ ︸

i−2

, y, · · · , y︸ ︷︷ ︸
ns−i

, y) +
(i− 1)(i− 2)

2
wIII

3,s′|s(x, x, x, x, · · · , x︸ ︷︷ ︸
i−3

, y, · · · , y︸ ︷︷ ︸
ns−i

, y)

=
eq.(D4)

wI
3,s′|s(x, x, · · · , x︸ ︷︷ ︸

i−1

, y, · · · , y︸ ︷︷ ︸
ns−i

, y)

+ 3(i− 1)wII
3,s′|s(x, x, x, · · · , x︸ ︷︷ ︸

i−2

, y, · · · , y︸ ︷︷ ︸
ns−i

, y) +
(i− 1)(i− 2)

2
wIII

3,s′|s(x, x, x, x, · · · , x︸ ︷︷ ︸
i−3

, y, · · · , y︸ ︷︷ ︸
ns−i

, y).

(D9)

Its zeroth-order perturbation with respect to δ is

w
(0)
3 (s′|s, i) = wI

3,s′|s + 3(i− 1)wII
3,s′|s +

(i− 1)(i− 2)

2
wIII

3,s′|s, (D10)

where all 3-fitness functions w3 are evaluated at (y, · · · , y). Equation (D10) is the expected number of

offspring in state s′ under neutrality that descend from a focal mutant individual in state s and have

two random neighbors (sampled without replacement) that are both mutants.

Note that the derivation above assumed 3 ≤ i ≤ ns, but we can separately confirm that eq.(D10) is

valid for any 1 ≤ i ≤ ns, because some ill-defined terms for ns = 1 and 2 become nullified by the factors

i− 1 and i− 2.

E Derivation of the quantities with individual fitness functions

Here, we derive all the key results presented in Section 3.3 in the main text.

Equation (33): By setting k = 2 in eq.(C15) and substituting w
(0)
2 with eq.(29a), we obtain

r
(0)
2 (s′) =

1

q(0)(s′)

∑
s

∑
i

[
wI

2,s′|s + (i− 1)wII
2,s′|s

]
q(0)(i|s)q(0)(s)

=
eqs.(8,C12)

1

q(0)(s′)

∑
s

[
wI

2,s′|s + (ns − 1)wII
2,s′|sr

(0)
2 (s)

]
q(0)(s).

(E1)
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This proves eq.(33).

If wI
2,s′|s = wII

2,s′|s = 0 for s′ 6= s (this is the case, for example, when propagule dispersal is not

allowed), we can use eq.(C16) instead of eq.(C15). Substituting eq.(29a) in eq.(C16) for k = 2 gives

r
(0)
2 (s) =

∑
i

[
wI

2,s|s + (i− 1)wII
2,s|s

]
q(0)(i|s)

=
eqs.(8,C12)

wI
2,s|s + (ns − 1)wII

2,s|sr
(0)
2 (s).

(E2)

Equation (34): First, substituting w
(2)
1 in eq.(22b) with eq.(25c) gives

ρ(2w) =
1

2

∑
s′

∑
s

∑
i

v(0)(s′)

[
∂2w1,s′|s

∂z21
+ (i− 1)

∂2w1,s′|s

∂z22

+ 2(i− 1)
∂2w1,s′|s

∂z1∂z2
+ (i− 1)(i− 2)

∂2w1,s′|s

∂z2∂z3

]
q(0)(i|s)q(0)(s)

=
eqs.(8,9,C12)

1

2

∑
s′

∑
s

v(0)(s′)

[
∂2w1,s′|s

∂z21
+ (ns − 1)

∂2w1,s′|s

∂z22
r
(0)
2 (s)

+ 2(ns − 1)
∂2w1,s′|s

∂z1∂z2
r
(0)
2 (s) + (ns − 1)(ns − 2)

∂2w1,s′|s

∂z2∂z3
r
(0)
3 (s)

]
q(0)(s).

(E3a)

Second, substituting w
(1)
1 in eq.(22c) with eq.(25b) gives

ρ(2q) =
∑
s′

∑
s

∑
i

v(0)(s′)

[
∂w1,s′|s

∂z1
+ (i− 1)

∂w1,s′|s

∂z2

]
q(0)(i|s)q(1)(s)

=
eqs.(8,C12)

∑
s′

∑
s

v(0)(s′)

[
∂w1,s′|s

∂z1
+ (ns − 1)

∂w1,s′|s

∂z2
r
(0)
2 (s)

]
q(1)(s).

(E3b)

Third, substituting w
(1)
1 in eq.(22d) with eq.(25b) gives

ρ(2r) =
∑
s′

∑
s

∑
i

v(0)(s′)

[
∂w1,s′|s

∂z1
+ (i− 1)

∂w1,s′|s

∂z2

]
q(1)(i|s)q(0)(s)

=
eqs.(8,C12)

∑
s′

∑
s

v(0)(s′)

[
(ns − 1)

∂w1,s′|s

∂z2
r
(1)
2 (s)

]
q(0)(s).

(E3c)

Equation (35): Substituting w
(0)
1 and w

(1)
1 in eq.(C14) with eq.(25a) and eq.(25b), respectively, gives

q(1)(s′) =
∑
s

∑
i

[
∂w1,s′|s

∂z1
+ (i− 1)

∂w1,s′|s

∂z2

]
q(0)(i|s)q(0)(s) +

∑
s

w1,s′|sq
(1)(s)

=
eqs.(8,C12)

∑
s

[
∂w1,s′|s

∂z1
+ (ns − 1)

∂w1,s′|s

∂z2
r
(0)
2 (s)

]
q(0)(s) +

∑
s

w1,s′|sq
(1)(s).

(E4)

Equation (36): By setting k = 3 in eq.(C15) and substituting w
(0)
3 with eq.(30) we obtain

r
(0)
3 (s′) =

1

q(0)(s′)

∑
s

∑
i

[
wI

3,s′|s + 3(i− 1)wII
3,s′|s +

(i− 1)(i− 2)

2
wIII

3,s′|s

]
q(0)(i|s)q(0)(s)

=
eqs.(8,9,C12)

1

q(0)(s′)

∑
s

[
wI

3,s′|s + 3(ns − 1)wII
3,s′|sr

(0)
2 (s) +

(ns − 1)(ns − 2)

2
wIII

3,s′|sr
(0)
3 (s)

]
q(0)(s).

(E5)

This proves eq.(36) in the main text.
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If wI
3,s′|s = wII

3,s′|s = wIII
3,s′|s = 0 for s′ 6= s (this is the case, for example, when propagule dispersal is

not allowed), we can use eq.(C16) instead of eq.(C15). Substituting eq.(30) in eq.(C16) for k = 3 then

gives us

r
(0)
3 (s) =

∑
i

[
wI

3,s|s + 3(i− 1)wII
3,s|s +

(i− 1)(i− 2)

2
wIII

3,s|s

]
q(0)(i|s)

=
eqs.(8,9,C12)

wI
3,s|s + 3(ns − 1)wII

3,s|sr
(0)
2 (s) +

(ns − 1)(ns − 2)

2
wIII

3,s|sr
(0)
3 (s).

(E6)

Equation (37): By setting k = 2 in eq.(C19), substituting w
(0)
2 and w

(1)
2 with eq.(29a) and (29b),

respectively, we obtain

r
(1)
2 (s′) =

1

q(0)(s′)

∑
s

∑
i

[
∂wI

2,s′|s

∂z1
+ (i− 1)

∂wI
2,s′|s

∂z2

+ 2(i− 1)
∂wII

2,s′|s

∂z1
+ (i− 1)(i− 2)

∂wII
2,s′|s

∂z3

]
q(0)(i|s)q(0)(s)

+
1

q(0)(s′)

∑
s

∑
i

[
wI

2,s′|s + (i− 1)wII
2,s′|s

]
q(1)(i|s)q(0)(s)

+
1

q(0)(s′)

∑
s

∑
i

[
wI

2,s′|s + (i− 1)wII
2,s′|s

]
q(0)(i|s)q(1)(s)

− r(0)2 (s′)
q(1)(s′)

q(0)(s′)

=
eqs.(8,9,C12)

1

q(0)(s′)

∑
s

[
∂wI

2,s′|s

∂z1
+ (ns − 1)

∂wI
2,s′|s

∂z2
r
(0)
2 (s)

+ 2(ns − 1)
∂wII

2,s′|s

∂z1
r
(0)
2 (s) + (ns − 1)(ns − 2)

∂wII
2,s′|s

∂z3
r
(0)
3 (s)

]
q(0)(s)

+
1

q(0)(s′)

∑
s

[
(ns − 1)wII

2,s′|sr
(1)
2 (s)

]
q(0)(s)

+
1

q(0)(s′)

∑
s

[
wI

2,s′|s + (ns − 1)wII
2,s′|sr

(0)
2 (s)

]
q(1)(s)

− r(0)2 (s′)
q(1)(s′)

q(0)(s′)
.

(E7)

This proves eq.(37) in the main text.

If wI
2,s′|s = wII

2,s′|s = 0 for s′ 6= s (this is the case, for example, when propagule dispersal is not

allowed), we can use eq.(C20) instead of eq.(C19). Substituting eq.(29) in eq.(C20) for k = 2 gives us

r
(1)
2 (s) =

∑
i

[
∂wI

2,s|s

∂z1
+ (i− 1)

∂wI
2,s|s

∂z2
+ 2(i− 1)

∂wII
2,s|s

∂z1
+ (i− 1)(i− 2)

∂wII
2,s|s

∂z3

]
q(0)(i|s)

+
∑
i

[
wI

2,s|s + (i− 1)wII
2,s|s

]
q(1)(i|s)

=
∂wI

2,s|s

∂z1
+ (ns − 1)

∂wI
2,s|s

∂z2
r
(0)
2 (s) + 2(ns − 1)

∂wII
2,s|s

∂z1
r
(0)
2 (s) + (ns − 1)(ns − 2)

∂wII
2,s|s

∂z3
r
(0)
3 (s)

+ (ns − 1)wII
2,s|sr

(1)
2 (s).

(E8)
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Therefore, r
(1)
2 (s) is solved as

r
(1)
2 (s) =

{
1− (ns − 1)wII

2,s|s

}−1
×[

∂wI
2,s|s

∂z1
+ (ns − 1)

∂wI
2,s|s

∂z2
r
(0)
2 (s) + 2(ns − 1)

∂wII
2,s|s

∂z1
r
(0)
2 (s) + (ns − 1)(ns − 2)

∂wII
2,s|s

∂z3
r
(0)
3 (s)

]
.

(E9)

From eq.(E2) we see that {1− (ns− 1)wII
2,s|s}

−1 = r
(0)
2 (s)/wI

2,s|s holds, so eq.(E9) can also be written as

r
(1)
2 (s) =

r
(0)
2 (s)

wI
2,s|s

×[
∂wI

2,s|s

∂z1
+ (ns − 1)

∂wI
2,s|s

∂z2
r
(0)
2 (s) + 2(ns − 1)

∂wII
2,s|s

∂z1
r
(0)
2 (s) + (ns − 1)(ns − 2)

∂wII
2,s|s

∂z3
r
(0)
3 (s)

]
.

(E10)

F Derivation of the results for the lottery model

Here, we derive all the results presented in Section 4.1 of the main text.

F.1 Calculations for q(s) and v(0)(s)

Under the assumptions (i)-(iii) described in Section 4.1 of the main text, eq.(38c) therein can be further

decomposed as

wd
1,s′|s(z1, z−{1}, z) = (1− γs′)wdr

1,s′|s(z1, z−{1}, z)︸ ︷︷ ︸
allopatric, reproduction

= (1− γs′)wcol
s′ (z)︸ ︷︷ ︸

colonization success

·wem
s (z1, z−{1}, z)︸ ︷︷ ︸

emigrant production

,
(F1)

where wcol
s′ represents a component of colonization success of dispersing offspring arriving in groups in

state s′, wem
s represents the emigrant production in groups in state s, and wdr

1,s′|s is given as a product of

these two terms. This multiplicative decomposition is a key property that greatly simplifies the following

analysis. It follows from the fact that when dispersal occurs individually and independently to a random

destination, the production of emigrants in a group in habitat s does not depend on the habitat s′ of

the destination group and the colonization success depends only on the habitat of the destination group

and the resident trait value.

Before proceeding to the derivation, we show that

w1,s|s < 1, wp
1,s|s < 1, wpr

1,s|s < 1 (F2)

hold for all s ∈ S, because we will frequently use these facts without a particular notice below. The proof

starts from the observation that eq.(15a) is rewritten as

(1− w1,s′|s′)q
(0)(s′) =

∑
s∈S,s 6=s′

w1,s′|sq
(0)(s). (F3)

Remember that q(0)(s) > 0 holds for all s ∈ S, and therefore the right hand side of eq.(F3) is non-

negative. Suppose the right hand side of eq.(F3) is zero. Then we have w1,s′|s = 0 for all s 6= s′, which
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contradicts that matrix W (0) is primitive (see Section 2.3.4). Therefore, the right hand side of eq.(F3)

must be strictly positive. Because q(0)(s′) > 0, it follows that w1,s′|s′ < 1 holds, and this argument is

valid for all s′ ∈ S. Second, because w1,s|s = wp
1,s|s+wd

1,s|s < 1, we have wp
1,s|s < 1. Third, from eq.(38b),

one can see that the relation

1− wp
1,s|s = (1− γs)(1− wpr

1,s|s) (F4)

holds. Because we have just proven that wp
1,s|s < 1 and because γs < 1, one concludes that wpr

1,s|s < 1

holds. End of the proof.

We now first calculate explicitly q(0)(s) and v(0)(s). For that purpose, the vector-matrix notation in

eqs.(15a) and (15b) is helpful. In fact, from eqs.(38) and (F1), the fitness under neutrality is written as

W (0) =

w
p
1,s1|s1 0

. . .

0 wp
1,sN |sN


︸ ︷︷ ︸

diagonal matrix (N×N)

+

 (1− γs1)wcol
s1

...
(1− γsN )wcol

sN


︸ ︷︷ ︸

N×1

(
wem
s1 · · · wem

sN

)︸ ︷︷ ︸
1×N

. (F5)

Note that wcol
s ’s and wem

s1 ’s without variables are evaluated respectively at y and (y, · · · , y) here and

thereafter. To solve eq.(15a), we right-multiply eq.(F5) by the column vector q(0) and obtain

q(0) =

w
p
1,s1|s1 0

. . .

0 wp
1,sN |sN

 q(0) +

 (1− γs1)wcol
s1

...
(1− γsN )wcol

sN

(wem
s1 · · · wem

sN

)
q(0)︸ ︷︷ ︸

=some constant

=⇒

1− wp
1,s1|s1 0

. . .

0 1− wp
1,sN |sN

 q(0) ∝
 (1− γs1)wcol

s1
...

(1− γsN )wcol
sN


=⇒ q(0)(s) ∝ (1− γs)wcol

s

1− wp
1,s|s

=
eq.(F4)

(1− γs)wcol
s

(1− γs)(1− wpr
1,s|s)

=
wcol
s

1− wpr
1,s|s

.

(F6)

To solve eq.(15b) we left-multiply eq.(F5) by the row vector v(0) and obtain

v(0) = v(0)

w
p
1,s1|s1 0

. . .

0 wp
1,sN |sN

+ v(0)

 (1− γs1)wcol
s1

...
(1− γsN )wcol

sN


︸ ︷︷ ︸

=some constant

(
wem
s1 · · · wem

sN

)

=⇒ v(0)

1− wp
1,s1|s1 0

. . .

0 1− wp
1,sN |sN

 ∝ (wem
s1 · · · wem

sN

)
=⇒ v(0)(s) ∝ wem

s

1− wp
1,s|s

=
eq.(F4)

wem
s

(1− γs)(1− wpr
1,s|s)

.

(F7)

We normalize q(0)(s) and v(0)(s) to satisfy eq.(15c) and eq.(B1b) and obtain the following result:

q(0)(s) =
wcol
s

1− wpr
1,s|s

/(∑
s′

wcol
s′

1− wpr
1,s′|s′

)
(F8)

v(0)(s) =
wem
s

(1− γs)(1− wpr
1,s|s)

(∑
s′

wcol
s′

1− wpr
1,s′|s′

)/(∑
s′

wdr
1,s′|s′

(1− γs′)(1− wpr
1,s′|s′)

2

)
. (F9)

Combining eqs.(F8) and (F9) gives eq.(40) in the main text. In particular, their product

v(0)(s)q(0)(s) =
wdr

1,s|s

(1− γs)(1− wpr
1,s|s)(1− w

pr
1,s|s)

/(∑
s′

wdr
1,s′|s′

(1− γs′)(1− wpr
1,s′|s′)

2

)
, (F10)

50



can be recognized as the the class reproductive value of a group in habitat s (Rousset, 2004).

We note that q(0)(s) can also be derived via a different pathway. To ease our understanding, let

us temporarily consider a finite population that consists of NG groups (later we will take the limit,

NG → ∞, because we actually consider an infinitely large population in this paper) and consider the

neutral case. The total number of individuals in groups in habitat s′ in a next time step is the sum of

the number of individuals in habitat s′ produced by individuals in habitat s over all s ∈ S, which is∑
s

w1,s′|sNGπsns. (F11)

Here, NGπs is the total number of groups in habitat s, and NGπsns is the total number of individuals in

groups in habitat s. However, eq.(F11) can also be written as NGπs′ns′ , so equating these two quantities

cancels out NG and gives us

πs′ns′ =
∑
s

w1,s′|sπsns, (F12)

and therefore eq.(F12) is valid for NG →∞ as well (see also eq.(E.21) of Lehmann et al., 2016). Equation

(F12) suggests that the column vector {πsns}s∈S is an eigenvector of matrix W (0) corresponding to

the leading eigenvalue of 1. From the Perron-Frobenius theorem the eigenspace of the matrix W (0)

corresponding to the leading eigenvalue 1 is one-dimensional. Thus, from the uniqueness of the normalized

eigenvector we obtain

q(0)(s) =
πsns∑
s′ πs′ns′

. (F13)

Note that eq.(F8) and eq.(F13) are both correct. Their equivalence suggests the existence of the following

constraint in the choice of wcol
s and 1 − wpr

1,s|s in our spatial lottery model, namely, that there exists a

positive constant C which is independent of s and

wcol
s

1− wpr
1,s|s

= Cπsns (F14)

is satisfied for all s ∈ S.

Finally, we calculate q(1)(s) under the assumption that ρ(1) = 0. From eq.(35), we then obtain

q(1)(s) =
eq.(38a)

[
∂wp

1,s|s

∂z1
+ (ns − 1)

∂wp
1,s|s

∂z2
r
(0)
2 (s)

]
q(0)(s) + wp

1,s|sq
(1)(s)

+
∑
s′

[
∂wd

1,s|s′

∂z1
+ (ns′ − 1)

∂wd
1,s|s′

∂z2
r
(0)
2 (s′)

]
q(0)(s′) +

∑
s′

wd
1,s|s′q

(1)(s′)

=
eqs.(38b, F1)

(1− γs)

[
∂wpr

1,s|s

∂z1
+ (ns − 1)

∂wpr
1,s|s

∂z2
r
(0)
2 (s)

]
q(0)(s) + {γs + (1− γs)wpr

1,s|s}q
(1)(s)

+ (1− γs)wcol
s

{∑
s′

[
∂wem

s′

∂z1
+ (ns′ − 1)

∂wem
s′

∂z2
r
(0)
2 (s′)

]
q(0)(s′) +

∑
s′

wem
s′ q

(1)(s′)

}
,

(F15)

which is implicitly solved as

q(1)(s) =
1

1− wpr
1,s|s

[
∂wpr

1,s|s

∂z1
+ (ns − 1)

∂wpr
1,s|s

∂z2
r
(0)
2 (s)

]
q(0)(s)

+
wcol
s

1− wpr
1,s|s

{∑
s′

[
∂wem

s′

∂z1
+ (ns′ − 1)

∂wem
s′

∂z2
r
(0)
2 (s′)

]
q(0)(s′) +

∑
s′

wem
s′ q

(1)(s′)

}
.

(F16)
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Using
∑
s q

(1)(s) = 0 (see eq.(C12)), we have∑
s

q(1)(s) =
∑
s

1

1− wpr
1,s|s

[
∂wpr

1,s|s

∂z1
+ (ns − 1)

∂wpr
1,s|s

∂z2
r
(0)
2 (s)

]
q(0)(s)

+

(∑
s

wcol
s

1− wpr
1,s|s

){∑
s′

[
∂wem

s′

∂z1
+ (ns′ − 1)

∂wem
s′

∂z2
r
(0)
2 (s′)

]
q(0)(s′) +

∑
s′

wem
s′ q

(1)(s′)

}
= 0,

(F17)

which shows that∑
s′

[
∂wem

s′

∂z1
+ (ns′ − 1)

∂wem
s′

∂z2
r
(0)
2 (s′)

]
q(0)(s′) +

∑
s′

wem
s′ q

(1)(s′)

= −

(∑
s′

wcol
s′

1− wpr
1,s′|s′

)−1(∑
s′

1

1− wpr
1,s′|s′

[
∂wpr

1,s′|s′

∂z1
+ (ns′ − 1)

∂wpr
1,s′|s′

∂z2
r
(0)
2 (s′)

]
q(0)(s′)

)
.

(F18)

holds. Putting eq.(F18) back into eq.(F16) and using eq.(F8) gives us

q(1)(s) =

{
1

1− wpr
1,s|s

[
∂wpr

1,s|s

∂z1
+ (ns − 1)

∂wpr
1,s|s

∂z2
r
(0)
2 (s)

]

−
∑
s′

1

1− wpr
1,s′|s′

[
∂wpr

1,s′|s′

∂z1
+ (ns′ − 1)

∂wpr
1,s′|s′

∂z2
r
(0)
2 (s′)

]
q(0)(s′)

}
q(0)(s),

(F19)

which proves eq.(43) in the main text.

F.2 Individual 2-fitness and 3-fitness for the lottery model and calculations
for relatedness

The purpose of this subsection is to derive pairwise relatedness and three-way relatedness under neu-

trality, as well as the first-order perturbation of pairwise relatedness under the assumption of the lottery

model in Section 4.1. For that purpose we will show that for this lottery model individual 2-fitness

and individual 3-fitness are written in terms of the philopatric component of individual 1-fitness as in

eq.(F23) and eq.(F31).

Let us label individuals in a focal group in habitat s from 1 to ns, and let their trait values be z1

to zns , respectively. Let us also operationally define “positions” in this group, from “position 1” to

“position ns”. If adult k survives (with occurs with probability γs) we operationally assume that he/she

occupies “position k” in the next generation. If adult k dies (which occurs with probability 1 − γs) we

assume that “position k” in the next generation becomes open to competition. In the latter case, adult

i bears a descendant in this “position k” with probability wpr
1,s|s(zi, z−{i}, z)/ns, which we will write as

ωi in what follows as a short-hand notation.

With these, the probability ζi,k that an individual in position k in the next generation in the focal

group “descends” from adult i in that group in the previous generation (thus including self through

survival) is, for the lottery model, given by

ζi,k ≡ γsδi,k + (1− γs)ωi, (F20)

where δi,k equals one if i = k and otherwise zero. In eq.(F20), the first term represents the probability that

adult i survives and occupies position k (thus equal to γs if i = k, zero otherwise), and the second term

represents the probability that adult k dies, position k becomes open to competition, and a descendant

of adult i occupies this position.
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F.2.1 Pairwise relatedness

Then, same-parent individual 2-fitness of adult 1, which we take as a focal individual, denoted by

wI
2,s|s(z1, z−{1}, z) (recall eq.(26)), is written as

wI
2,s|s(z1, z−{1}, z)

=

ns∑
k1=1

ζ1,k1

 1

ns − 1

ns∑
k2=1
k2 6=k1

ζ1,k2


=

1

ns − 1

∑
1≤k1,k2≤ns

k1 6=k2

[γsδ1,k1 + (1− γs)ω1] [γsδ1,k2 + (1− γs)ω1]

=
1

ns − 1

[
γ2s

 ∑
1≤k1,k2≤ns

k1 6=k2

δ1,k1δ1,k2


︸ ︷︷ ︸

=0

+γs(1− γs)

 ∑
1≤k1,k2≤ns

k1 6=k2

(δ1,k1 + δ1,k2)


︸ ︷︷ ︸

=2(ns−1)

ω1

+ (1− γs)2ω2
1

 ∑
1≤k1,k2≤ns

k1 6=k2

1


︸ ︷︷ ︸

=ns(ns−1)

]

= 2γs(1− γs)ω1 + ns(1− γs)2ω2
1

=
1

ns

{
2γs(1− γs)

[
wpr

1,s|s(z1, z−{1}, z)
]

+ (1− γs)2
[
wpr

1,s|s(z1, z−{1}, z)
]2}

.

(F21)
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In a similar vein, different-parent individual 2-fitness is

wII
2,s|s(z1, z2, z−{1,2}, z)

=

ns∑
k1=1

ζ1,k1

 1

ns − 1

ns∑
k2=1
k2 6=k1

ζ2,k2


=

1

ns − 1

∑
1≤k1,k2≤ns

k1 6=k2

[γsδ1,k1 + (1− γs)ω1] [γsδ2,k2 + (1− γs)ω2]

=
1

ns − 1

[
γ2s

 ∑
1≤k1,k2≤ns

k1 6=k2

δ1,k1δ2,k2


︸ ︷︷ ︸

=1

+γs(1− γs)


 ∑

1≤k1,k2≤ns
k1 6=k2

δ1,k1


︸ ︷︷ ︸

=ns−1

ω2 +

 ∑
1≤k1,k2≤ns

k1 6=k2

δ2,k2


︸ ︷︷ ︸

=ns−1

ω1



+ (1− γs)2ω1ω2

 ∑
1≤k1,k2≤ns

k1 6=k2

1


︸ ︷︷ ︸

=ns(ns−1)

]

=
γ2s

ns − 1
+ γs(1− γs)(ω1 + ω2) + ns(1− γs)2ω1ω2

=
γ2s

ns − 1
+

1

ns

{
γs(1− γs)

([
wpr

1,s|s(z1, z−{1}, z)
]

+
[
wpr

1,s|s(z2, z−{2}, z)
])

+ (1− γs)2
[
wpr

1,s|s(z1, z−{1}, z)
] [
wpr

1,s|s(z2, z−{2}, z)
]}

.

(F22)

In contrast, when s′ 6= s, we have wI
2,s′|s = 0 and wII

2,s′|s = 0 from the assumption of independent

dispersal. With these expressions, we obtain

wI
2,s|s =

1

ns
(1− γs)

{
2γsw

pr
1,s|s + (1− γs)

(
wpr

1,s|s

)2}
wII

2,s|s =
γ2s

ns − 1
+

1

ns
(1− γs)

{
2γsw

pr
1,s|s + (1− γs)

(
wpr

1,s|s

)2}
∂wI

2,s|s

∂z1
=

2

ns
(1− γs)

[
γs + (1− γs)wpr

1,s|s

] ∂wpr
1,s|s

∂z1
∂wI

2,s|s

∂z2
=

2

ns
(1− γs)

[
γs + (1− γs)wpr

1,s|s

] ∂wpr
1,s|s

∂z2

∂wII
2,s|s

∂z1
=

1

ns
(1− γs)

[
γs + (1− γs)wpr

1,s|s

] [∂wpr
1,s|s

∂z1
+
∂wpr

1,s|s

∂z2

]
∂wII

2,s|s

∂z3
=

2

ns
(1− γs)

[
γs + (1− γs)wpr

1,s|s

] ∂wpr
1,s|s

∂z2
.

(F23)

By substituting eq.(F23) in eq.(E2), we obtain a recursion on r
(0)
2 (s) as

r
(0)
2 (s) =

1

ns
(1− γs)

{
2γsw

pr
1,s|s + (1− γs)

(
wpr

1,s|s

)2}
+

[
γ2s +

ns − 1

ns
(1− γs)

{
2γsw

pr
1,s|s + (1− γs)

(
wpr

1,s|s

)2}]
r
(0)
2 (s),

(F24)

which is explicitly solved as eq.(41) in the main text.
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F.2.2 Three-way relatedness

Next we calculate individual 3-fitness of three different types (from type-I to III) in order to calculate

three-way relatedness. For type-I, we have

wI
3,s|s(z1, z−{1}, z)

=

ns∑
k1=1

ζ1,k1

 1

(ns − 1)(ns − 2)

∑
1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

ζ1,k2ζ1,k3


=

1

(ns − 1)(ns − 2)

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

[γsδ1,k1 + (1− γs)ω1] [γsδ1,k2 + (1− γs)ω1] [γsδ1,k3 + (1− γs)ω1]

=
1

(ns − 1)(ns − 2)

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

[
γs(1− γs)2(δ1,k1 + δ1,k2 + δ1,k3)ω2

1 + (1− γs)3ω3
1

]
= 3γs(1− γs)2ω2

1 + ns(1− γs)3ω3
1

=
1

n2s

{
3γs(1− γs)2

[
wpr

1,s|s(z1, z−{1}, z)
]2

+ (1− γs)3
[
wpr

1,s|s(z1, z−{1}, z)
]3}

,

(F25)

where we have used

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1δ1,k2δ1,k3 = 0,

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1δ1,k2 =
∑

1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1δ1,k3 =
∑

1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k2δ1,k3 = 0,

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1 =
∑

1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k2 =
∑

1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k3 = (ns − 1)(ns − 2),

 ∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

1

 = ns(ns − 1)(ns − 2).

(F26)
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For type-II, we obtain

wII
3,s|s(z1, z2, z−{1,2}, z)

=

ns∑
k1=1

ζ1,k1

 1

(ns − 1)(ns − 2)

∑
1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

ζ2,k2ζ2,k3


=

1

(ns − 1)(ns − 2)

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

[γsδ1,k1 + (1− γs)ω1] [γsδ2,k2 + (1− γs)ω2] [γsδ2,k3 + (1− γs)ω2]

=
1

(ns − 1)(ns − 2)

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

[
γ2s (1− γs)(δ1,k1δ2,k2 + δ1,k1δ2,k3)ω2

+ γs(1− γs)2(δ1,k1ω
2
2 + δ2,k2ω1ω2 + δ2,k3ω1ω2)

+ (1− γs)3ω1ω
2
2

]
=

2

ns − 1
γ2s (1− γs)ω2 + γs(1− γs)2(2ω1ω2 + ω2

2) + ns(1− γs)3ω1ω
2
2

=
2

ns(ns − 1)
γ2s (1− γs)

[
wpr

1,s|s(z2, z−{2}, z)
]

+
1

n2s

{
γs(1− γs)2

(
2
[
wpr

1,s|s(z1, z−{1}, z)
] [
wpr

1,s|s(z2, z−{2}, z)
]

+
[
wpr

1,s|s(z2, z−{2}, z)
]2)

+ (1− γs)3
[
wpr

1,s|s(z1, z−{1}, z)
] [
wpr

1,s|s(z2, z−{2}, z)
]2 }

,

(F27)

where we have used

∑
1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1δ2,k2δ2,k3 = 0,

∑
1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ2,k2δ2,k3 = 0,

∑
1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1δ2,k2 =
∑

1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1δ2,k3 = ns − 2,

∑
1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1 =
∑

1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ2,k2 =
∑

1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ2,k3 = (ns − 1)(ns − 2),

 ∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

1

 = ns(ns − 1)(ns − 2).

(F28)
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Finally, for type-III we obtain

wIII
3,s|s(z1, z2, z3, z−{1,2,3}, z)

=

ns∑
k1=1

ζ1,k1

 1

(ns − 1)(ns − 2)

ns∑
1≤k2,k3≤ns
k1 6=k2 6=k3 6=k1

(ζ2,k2ζ3,k3 + ζ3,k2ζ2,k3)


=

2

(ns − 1)(ns − 2)

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

ζ1,k1ζ2,k2ζ3,k3

=
2

(ns − 1)(ns − 2)

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

[γsδ1,k1 + (1− γs)ω1] [γsδ2,k2 + (1− γs)ω2] [γsδ3,k3 + (1− γs)ω3]

=
2

(ns − 1)(ns − 2)

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

[
γ3sδ1,k1δ2,k2δ3,k3

+ γ2s (1− γs)(δ1,k1δ2,k2ω3 + δ1,k1δ3,k3ω2 + δ2,k2δ3,k3ω1)

+ γs(1− γs)2(δ1,k1ω2ω3 + δ2,k2ω1ω3 + δ3,k3ω1ω2) + (1− γs)3ω1ω2ω3

]
=

2

(ns − 1)(ns − 2)
γ3s +

2

ns − 1
γ2s (1− γs)(ω1 + ω2 + ω3)

+ 2γs(1− γs)2(ω1ω2 + ω1ω3 + ω2ω3) + 2ns(1− γs)3ω1ω2ω3

=
2

(ns − 1)(ns − 2)
γ3s

+
2

ns(ns − 1)
γ2s (1− γs)

( [
wpr

1,s|s(z1, z−{1}, z)
]

+
[
wpr

1,s|s(z2, z−{2}, z)
]

+
[
wpr

1,s|s(z3, z−{3}, z)
] )

+
2

n2s

{
γs(1− γs)2

( [
wpr

1,s|s(z1, z−{1}, z)
] [
wpr

1,s|s(z2, z−{2}, z)
]

+
[
wpr

1,s|s(z1, z−{1}, z)
] [
wpr

1,s|s(z3, z−{3}, z)
]

+
[
wpr

1,s|s(z2, z−{2}, z)
] [
wpr

1,s|s(z3, z−{3}, z)
] )

+ (1− γs)3
[
wpr

1,s|s(z1, z−{1}, z)
] [
wpr

1,s|s(z2, z−{2}, z)
] [
wpr

1,s|s(z3, z−{3}, z)
]}

.

(F29)

Here we have used

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1δ2,k2δ3,k3 = 1,

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1δ2,k2 =
∑

1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1δ3,k3 =
∑

1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ2,k2δ3,k3 = ns − 2,

∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ1,k1 =
∑

1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ2,k2 =
∑

1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

δ3,k3 = (ns − 1)(ns − 2),

 ∑
1≤k1,k2,k3≤ns
k1 6=k2 6=k3 6=k1

1

 = ns(ns − 1)(ns − 2).

(F30)

In contrast, when s′ 6= s, from the assumption of random dispersal we have wI
3,s′|s = wII

3,s′|s =
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wIII
3,s′|s = 0. From these calculations we arrive at

wI
3,s|s =

1

n2s

{
3γs(1− γs)2

(
wpr

1,s|s

)2
+ (1− γs)3

(
wpr

1,s|s

)3}
wII

3,s|s =
2

ns(ns − 1)
γ2s (1− γs)wpr

1,s|s +
1

n2s

{
3γs(1− γs)2

(
wpr

1,s|s

)2
+ (1− γs)3

(
wpr

1,s|s

)3 }
wIII

3,s|s =
2

(ns − 1)(ns − 2)
γ3s +

6

ns(ns − 1)
γ2s (1− γs)wpr

1,s|s

+
2

n2s

{
3γs(1− γs)2

(
wpr

1,s|s

)2
+ (1− γs)3

(
wpr

1,s|s

)3 }
.

(F31)

Substituting eq.(F31) in eq.(E6) gives us a recursion on r
(0)
3 that includes r

(0)
2 . Solving it with the help

of eq.(41) gives the following result:

r
(0)
3 (s) =

(wpr
1,s|s)

2{a0 + a1(wpr
1,s|s) + a2(wpr

1,s|s)
2 + a3(wpr

1,s|s)
2}

{b0 + b1(wpr
1,s|s) + b2(wpr

1,s|s)
2}{c0 + c1(wpr

1,s|s) + c2(wpr
1,s|s)

2 + c3(wpr
1,s|s)

3}
, (F32a)

where 

a0 = 3nsγs(1 + 3γ2s )

a1 = {ns + (17ns − 12)γ2s}(1− γs)

a2 = 10(ns − 1)γs(1− γs)2

a3 = 2(ns − 1)(1− γs)3

b0 = ns(1 + γs)

b1 = −2(ns − 1)γs

b2 = −(ns − 1)(1− γs)

c0 = n2s(1 + γs + γ2s )

c1 = −3ns(ns − 2)γ2s

c2 = −3(ns − 1)(ns − 2)γs(1− γs)

c3 = −(ns − 1)(ns − 2)(1− γs)2.

(F32b)

Setting γs = 0 or γs ∼ 1 (note that setting γs = 1 means individuals never die and hence evolution does

not occur, so we need γs to be “close” to 1) in eq.(F32) gives eq.(42) in the main result.

F.2.3 First-order perturbation of pairwise relatedness

Here we assume ρ(1) = 0 and calculate the first-order perturbation of pairwise relatedness, r
(1)
2 .
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Substituting eq.(F23) in eq.(E10) yields

r
(1)
2 (s) =

r
(0)
2 (s)

1
ns

(1− γs)
{

2γsw
pr
1,s|s + (1− γs)

(
wpr

1,s|s

)2} · 2

ns
(1− γs)

[
γs + (1− γs)wpr

1,s|s

]
×

[
∂wpr

1,s|s

∂z1
+ (ns − 1)

∂wpr
1,s|s

∂z2
r
(0)
2 (s)

+ (ns − 1)

{
∂wpr

1,s|s

∂z1
+
∂wpr

1,s|s

∂z2

}
r
(0)
2 (s) + (ns − 1)(ns − 2)

∂wpr
1,s|s

∂z2
r
(0)
3 (s)

]

= 2r
(0)
2 (s)

γs + (1− γs)wpr
1,s|s

2γsw
pr
1,s|s + (1− γs)

(
wpr

1,s|s

)2
×

{
[1 + (ns − 1)r

(0)
2 (s)]

∂wpr
1,s|s

∂z1
+ (ns − 1)[2r

(0)
2 (s) + (ns − 2)r

(0)
3 (s)]

∂wpr
1,s|s

∂z2

}
,

(F33)

which is eq.(44) in the main text.

G Consistency with previous results about relatedenss

We here show that we recover several previous results concerning relatedness from our model.

G.1 Neutral relatedness in the lottery model

Our result for the neutral pairwise relatedness given in eq.(41) agrees with Rd in Pen (2000) (the solution

to his eq.(A2)). To see this one has to set S = γs, h = wpr
1,s|s and N = ns in Pen (2000). Furthermore,

for the special case that γs = 0 in eq.(41) we obtain

r
(0)
2 (s) =

(
wpr

1,s|s

)2
ns − (ns − 1)

(
wpr

1,s|s

)2 , (G1)

which agrees with Q̇ in eq.(2.9) in Rousset (2004), a standard results for the island model, by using

γ = 1, 1−m = wpr
1,s|s and N = ns there.

On the other hand, taking the limit γs → 1 in eq.(41) gives

r
(0)
2 (s) =

wpr
1,s|s

ns − (ns − 1)wpr
1,s|s

. (G2)

This result agrees with r2(z, z) = (1 −m(z))/(1 + m(z)(N − 1)) in Table 1 in Mullon et al. (2016) by

setting 1 −m(z) = wpr
1,s|s and N = ns in their formula. Note, that there was a typo in their original

expression, which we corrected here.

Finally, as for r
(0)
3 (s), the first line of eq.(42) agrees with R3 in eq.(12b) in Ohtsuki (2010) by setting

1−m = wpr
1,s|s and N = ns there. The second line agrees with r3(z, z) in Table 1 in Mullon et al. (2016)

by setting 1−m(z) = wpr
1,s|s and N = ns there.

G.2 Neutral relatedness under fluctuating group size

We here prove the connection between our eq.(33) and eq.(29) of Rousset and Ronce (2004). In this latter

model, individuals migrate independently from each other (no propagule migration) and states determine
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group size, which fluctuates stochasticaly between generations according to an ergodic Markov chain.

The probability p(0)(s) that a group is in state s in the neutral process at stationarity then satisfies

p(0)(s′) =
∑
s∈S

p(0)(s′|s)p(0)(s), (G3)

where p(0)(s′|s) = p(0)(s′|s;p(0)) is the forward transition probability that a group in state s in the

parental generation is in state s′ in the offspring generation and this generally depends on whole pop-

ulation state p(0) = (p(0)(s1), · · · , p(0)(sN )) (since groups are connected to each other by dispersal, see

Metz and Gyllenberg (2001); Lehmann et al. (2006); Alizon and Taylor (2008) for concrete examples of

such transition probabilities) and on the resident trait value.

In terms of these quantities, first note

q(0)(s)

q(0)(s′)
=

nsp
(0)(s)

ns′p(0)(s′)
, (G4)

where the equality follows from eq.(E.21) of Lehmann et al. (2016). Intuitively speaking, eq.(G4) tells

that the stationary fraction of individuals in group s under neutrality, nsp
(0)(s), is proportional to the

stationary distribution of mutants under neutrality, q(0)(s). Second, because the model of Rousset and

Ronce (2004) did not allow any propagule dispersal, the only way that a focal individual in a group

in state s earns individual 2-fitness is that the state of the group changes from state s in the parental

generation to state s′ in the offspring generation and the focal individual produces offspring in the focal

group. Thus, we obtain

wI
2,s′|s = wI

2,s′|(s′←s)p
(0)(s′|s)

wII
2,s′|s = wII

2,s′|(s′←s)p
(0)(s′|s),

(G5)

where wI
2,s′|(s′←s) and wII

2,s′|(s′←s) are conditional 2-fitness components of the focal individual (they follow

the same definition as wI
2,s′|s and wII

2,s′|s but are conditional on the parental generation being in state s

and the offspring generation being in state s′) evaluated under neutrality.

Substituting eqs.(G4)–(G5) into eq.(33) and using the backward transition probability

p
(0)
back(s|s′) ≡ p(0)(s′|s)p(0)(s)

p(0)(s′)
(G6)

that a group in state s′ in the offspring generation was in state s in the previous generation, we obtain

that

r
(0)
2 (s′) =

∑
s∈S

[
F I
2,s′|(s′←s) + F II

2,s′|(s′←s)r
(0)
2 (s)

]
p
(0)
back(s | s′), (G7)

where

F I
2,s′|(s′←s) ≡

ns
ns′

wI
2,s′|(s′←s)

F II
2,s′|(s′←s) ≡

(ns − 1)ns
ns′

wII
2,s′|(s′←s).

(G8)

We now claim that F I
2,s′|(s′←s) is the probability that two randomly sampled offspring in state s′

both descend from the same parent in state s (i.e., the coalescence probability) under neutrality and

that F II
2,s′|(s′←s) is the probability that two randomly sampled offspring in state s′ both descend from
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two distinct parents in state s under neutrality. If this interpretation holds, then our eq.(G7) reduces to

eq.(29) of Rousset and Ronce (2004).

We now proceed to prove this claim. Given that the state of the group is s in the parental generation

and s′ in the offspring generation, from the definition of (conditional) same-parent 2-fitness, we can write

wI
2,s′|(s′←s) =

ns′∑
k1=1

ζ1,k1

 1

ns′ − 1

ns′∑
k2=1
k2 6=k1

ζ1,k2

 , (G9)

where, we use the ζ-notation once used in Section F.2; this time ζi,k represents the probability that an

individual in position k ∈ {1, · · · , ns′} in the next generation in the focal group descends from adult

i ∈ {1, · · · , ns} in that group in the previous generation under neutrality conditioned on that the group

state has changed (forwardly in time) from s to s′.

F I
2,s′|(s′←s) = ns ×

ns′∑
k1=1

ns′∑
k2=1
k2 6=k1

ζ1,k1ζ1,k2
ns′(ns′ − 1)

, (G10)

which, owing to neutrality (and thus exchangeability of individuals), can be rewritten as

F I
2,s′|(s′←s) =

ns∑
i=1

ns′∑
k1=1

ns′∑
k2=1
k2 6=k1

ζi,k1ζi,k2
ns′(ns′ − 1)

, (G11)

and therefore can be read as the ratio of the total number of ways of sampling two offspring from the

same parent in a group of size ns to the total number of ways of sampling two offspring in a group of

size ns′ (i.e., the coalescence probability). Likewise, we have

wII
2,s′|(s′←s) =

ns′∑
k1=1

ζ1,k1

 1

ns′ − 1

ns′∑
k2=1
k2 6=k1

ζ2,k2

 , (G12)

whereby

F II
2,s′|(s′←s) = (ns − 1)ns ×

ns′∑
k1=1

ns′∑
k2=1
k2 6=k1

ζ1,k1ζ2,k2
ns′(ns′ − 1)

, (G13)

which, owing to neutrality and exchangeability of individuals, can be rewritten as

F II
2,s′|(s′←s) =

ns∑
i1=1

ns∑
i2=1
i2 6=i1

ns′∑
k1=1

ns′∑
k2=1
k2 6=k1

ζi1,k1ζi2,k2
ns′(ns′ − 1)

, (G14)

and thus can be read as the ratio of the total number of ways of sampling two offspring from the distinct

parents in a group of size ns to the total number of ways of sampling two offspring in a group of size ns′

(i.e., the proability that offspring in state s′ descend from two distinct parents in state s). This ends the

proof of our aforementioned claim.

G.3 Perturbation of relatedness

As for r
(1)
2 (s), eq.(44) evaluated at γs = 0 reads

r
(1)
2 (s) = 2r

(0)
2 (s)

1

wpr
1,s|s

{[
1 + (ns − 1)r

(0)
2 (s)

] ∂wpr
1,s|s

∂z1
+ (ns − 1)

[
2r

(0)
2 (s) + (ns − 2)r

(0)
3 (s)

] ∂wpr
1,s|s

∂z2

}
,

(G15)
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which corresponds to the expression that appear in ∆r in Wakano and Lehmann (2014) (see the bottom of

their Appendix B, after their eq.(B.46)), which essentially shows that the perturbation of pair-relatedness

is

2R2
(1 + (N − 1)R2)wP

S + (2R2 + (N − 2)R3)wP
D

1−m
. (G16)

The correspondence between eq.(G15) and eq.(G16) is as follows. Set R2 = r
(0)
2 (s), R3 = r

(0)
3 (s), N =

ns, 1−m = wpr
1,s|s, w

P
S = ∂wpr

1,s|s/∂z1, and wP
D = (ns−1)(∂wpr

1,s|s/∂z2) in eq.(G16). Note that the original

expression at the bottom of Appendix B in Wakano and Lehmann (2014) contains the factor 4, not

2. This two-fold difference comes from the fact that Wakano and Lehmann (2014) considered variance

dynamics of a trait distribution, whereas we here consider directly the perturbation of r2(s).

H Perturbations for the hard selection lottery model

Here, we derive the expressions for ρ(1) and ρ(2) for the lottery model under hard selection. The resulting

expression are complicated and do not appear in the main text, but they can be useful for numerical

calculations as they apply to any fecundity function given the model’s other assumptions.

We recall that for hard selection, from eqs.(38b) and (38c) with eqs.(45a) and (46a), we have

wp
1,s|s(z1, z−{1}, z) = γs + (1− γs)

(1−ms)nsfs(z1, z−{1}, z)

(1−ms)
∑ns
i=1 fs(zi, z−{i}, z) + Ihard(z)︸ ︷︷ ︸
=wpr

1,s|s(z1,z−{1},z)

wd
1,s′|s(z1, z−{1}, z) = (1− γs′)

πs′ns′

(1−ms′)
∑ns′
i=1 fs′(z, z, z) + Ihard(z)︸ ︷︷ ︸

=wcol
s′ (z)

· psmsfs(z1, z−{1}, z)︸ ︷︷ ︸
=wem

s (z1,z−{1},z)︸ ︷︷ ︸
=wdr

1,s′|s(z1,z−{1},z)

. (H1)

H.1 First-order perturbation of invasion fitness

Our goal here is to calculate the first-order perturbation of invasion fitness, given by eq.(32). For that

purpose, we will calculate the components that appear in eq.(32), as below.

Firstly, we will calculate v(0)(s′)q(0)(s). With the definition of backward migration probability,

eq.(49), we see that 
wpr

1,s|s = 1− ds,hard

wdr
1,s′|s = ds′,hard

πs′ns′psmsfs
Ihard

(H2)

hold. Substituting them into eq.(40) gives

v(0)(s′)q(0)(s) =
πsnsps′ms′fs′

(1− γs′)ds′,hardIhard

/(∑
s′′

πs′′ns′′ps′′ms′′fs′′

(1− γs′′)ds′′,hardIhard

)

=
πsnsps′ms′fs′

(1− γs′)ds′,hard

/〈
npmf

(1− γ)dhard

〉
,

(H3)

where we set 〈
npmf

(1− γ)dhard

〉
≡
∑
s∈S

πs
nspsmsfs

(1− γs)ds,hard
. (H4)
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Secondly, we will calculate two different derivatives of individual 1-fitness that appear in eq.(32). A

direct calculation of eq.(H1) shows that

∂wpr
1,s|s

∂z1
= (1− ds,hard)︸ ︷︷ ︸

=wpr
1,s|s

∂fs
∂z1

fs
− (1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

∂wpr
1,s|s

∂z2
= (1− ds,hard)︸ ︷︷ ︸

=wpr
1,s|s

∂fs
∂z2

fs
− (1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

∂wdr
1,s′|s

∂z1
= ds′,hard

πs′ns′psmsfs
Ihard︸ ︷︷ ︸

=wdr
1,s′|s

·
∂fs
∂z1

fs

∂wdr
1,s′|s

∂z2
= ds′,hard

πs′ns′psmsfs
Ihard︸ ︷︷ ︸

=wdr
1,s′|s

·
∂fs
∂z2

fs
.

(H5)

Remember that from eq.(38)

w1,s′|s = δs′,s[γs + (1− γs)wpr
1,s|s] + (1− γs′)wdr

1,s′|s (H6)

(where δs′,s is Kronecker’s delta; it is 1 if s′ = s and is 0 if s′ 6= s) holds. Taking the first-order derivative

of eq.(H6), substituting eq.(H5) therein, and using eq.(H6) again for rewriting give us
∂w1,s′|s

∂z1
= (w1,s′|s − δs′,sγs)

∂fs
∂z1

fs
− δs′,s(1− γs)(1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
∂w1,s′|s

∂z2
= (w1,s′|s − δs′,sγs)

∂fs
∂z2

fs
− δs′,s(1− γs)(1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
.

(H7)

Now we are ready to calculate the first-order perturbation of invasion fitness, eq.(32). We substitute

eq.(H7) into eq.(32). We show this calculation piece by piece. Firstly,∑
s′

∑
s

v(0)(s′)
∂w1,s′|s

∂z1
q(0)(s)

=
∑
s

∑
s′

v(0)(s′)w1,s′|s︸ ︷︷ ︸
=v(0)(s)

(from eq.(15b))

∂fs
∂z1

fs
q(0)(s)−

∑
s

v(0)(s)γs

∂fs
∂z1

fs
q(0)(s)

−
∑
s

v(0)(s)(1− γs)(1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
q(0)(s)

=
∑
s

(1− γs)v(0)(s)q(0)(s)

{
∂fs
∂z1

fs
− (1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(H8)

Secondly, a quite similar calculation to above leads to∑
s′

∑
s

v(0)(s′)(ns − 1)
∂w1,s′|s

∂z2
r
(0)
2 (s)q(0)(s)

=
∑
s

(1− γs)v(0)(s)q(0)(s) · (ns − 1)r
(0)
2 (s)

{
∂fs
∂z2

fs
− (1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(H9)
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By combining eqs.(H8) and (H9) in eq.(32), we obtain the first-order perturbation as

ρ(1) =
∑
s

(1− γs)v(0)(s)q(0)(s)

{
∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)](1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(H10)

Rewriting it by using eqs.(50) and (H3) gives eq.(48) in the main text. Here, r
(0)
2 (s) is calculated by

substituting eq.(H2) into eq.(41). The result is shown in eq.(51) in the main text.

H.2 Second-order perturbation of invasion fitness

We now assume that ρ(1) = 0. Our goal here is to calculate the second-order perturbation of invasion

fitness, given by eq.(34). We have already calculated first-order derivatives that appear there, as given

in eq.(H7). We will then calculate various second-order derivatives that appear in eq.(34). A direct

calculation of eq.(H1) shows that relevant terms are

∂2wpr
1,s|s

∂z21
= (1− ds,hard)︸ ︷︷ ︸

=wpr
1,s|s

∂2fs
∂z21

fs
− (1− ds,hard)2

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


− 2(1− ds,hard)2

∂fs
∂z1

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

+ 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2

∂2wpr
1,s|s

∂z22
= (1− ds,hard)︸ ︷︷ ︸

=wpr
1,s|s

∂2fs
∂z22

fs
− (1− ds,hard)2

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


− 2(1− ds,hard)2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

+ 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2

∂2wpr
1,s|s

∂z1z2
= (1− ds,hard)︸ ︷︷ ︸

=wpr
1,s|s

∂2fs
∂z1z2

fs
− (1− ds,hard)2

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

− (1− ds,hard)2

(
∂fs
∂z1

fs
+

∂fs
∂z2

fs

)(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

+ 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2

∂2wpr
1,s|s

∂z2z3
= (1− ds,hard)︸ ︷︷ ︸

=wpr
1,s|s

∂2fs
∂z2z3

fs
− (1− ds,hard)2

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

− 2(1− ds,hard)2
∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

+ 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2

(H11a)
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and 

∂2wdr
1,s′|s

∂z21
= ds′,hard

πs′ns′psmsfs
Ihard︸ ︷︷ ︸

=wdr
1,s′|s

·
∂2fs
∂z21

fs

∂2wdr
1,s′|s

∂z22
= ds′,hard

πs′ns′psmsfs
Ihard︸ ︷︷ ︸

=wdr
1,s′|s

·
∂2fs
∂z22

fs

∂2wdr
1,s′|s

∂z1z2
= ds′,hard

πs′ns′psmsfs
Ihard︸ ︷︷ ︸

=wdr
1,s′|s

·
∂2fs
∂z1z2

fs

∂2wdr
1,s′|s

∂z2z3
= ds′,hard

πs′ns′psmsfs
Ihard︸ ︷︷ ︸

=wdr
1,s′|s

·
∂2fs
∂z2z3

fs
.

(H11b)
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Taking the second-order derivative of eq.(H6), substituting eq.(H11) therein, and using eq.(H6) again for

rewriting yields

∂2w1,s′|s

∂z21
= (w1,s′|s − δs′,sγs)

∂2fs
∂z21

fs
− δs′,s(1− γs)×{

(1− ds,hard)2

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


+ 2(1− ds,hard)2

∂fs
∂z1

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

− 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2w1,s′|s

∂z22
= (w1,s′|s − δs′,sγs)

∂2fs
∂z22

fs
− δs′,s(1− γs)×{

(1− ds,hard)2

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


+ 2(1− ds,hard)2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

− 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2w1,s′|s

∂z1z2
= (w1,s′|s − δs′,sγs)

∂2fs
∂z1z2

fs
− δs′,s(1− γs)×{

(1− ds,hard)2

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

+ (1− ds,hard)2

(
∂fs
∂z1

fs
+

∂fs
∂z2

fs

)(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

− 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2w1,s′|s

∂z2z3
= (w1,s′|s − δs′,sγs)

∂2fs
∂z2z3

fs
− δs′,s(1− γs)×{

(1− ds,hard)2

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

+ 2(1− ds,hard)2
∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

− 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
.

(H12)

Now we are ready to calculate eq.(34). We start from ρ(2w), which is given by eq.(34a). We substitute
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eq.(H12) in eq.(34a). The four terms in eq.(34a) are then calculated as follows. For example,

Z1,hard ≡
1

2

∑
s′

∑
s

v(0)(s′)
∂2w1,s′|s

∂z21
q(0)(s)

=
1

2

∑
s

∑
s′

v(0)(s′)w1,s′|s︸ ︷︷ ︸
=v(0)(s)

(from eq.(15b))

∂2fs
∂z21

fs
q(0)(s)− 1

2

∑
s

v(0)(s)γs

∂2fs
∂z21

fs
q(0)(s)

− 1

2

∑
s

v(0)(s)(1− γs)

{
(1− ds,hard)2

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


+ 2(1− ds,hard)2

∂fs
∂z1

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

− 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
q(0)(s)

=
1

2

∑
s

(1− γs)v(0)(s)q(0)(s)×{ ∂2fs
∂z21

fs
− (1− ds,hard)2

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


− 2(1− ds,hard)2

∂fs
∂z1

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

+ 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
.

(H13a)
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The other terms that appear in eq.(34a) are calculated in essentially the same way as

Z2,hard ≡
1

2

∑
s′

∑
s

v(0)(s′)(ns − 1)
∂2w1,s′|s

∂z22
r
(0)
2 (s)q(0)(s)

=
1

2

∑
s

(1− γs)v(0)(s)q(0)(s) · (ns − 1)r
(0)
2 (s)×

{ ∂2fs
∂z22

fs
− (1− ds,hard)2

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


− 2(1− ds,hard)2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

+ 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}

Z3,hard ≡
1

2

∑
s′

∑
s

v(0)(s′)2(ns − 1)
∂2w1,s′|s

∂z1z2
r
(0)
2 (s)q(0)(s)

=
1

2

∑
s

(1− γs)v(0)(s)q(0)(s) · 2(ns − 1)r
(0)
2 (s)×{

∂2fs
∂z1z2

fs
− (1− ds,hard)2

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

− (1− ds,hard)2

(
∂fs
∂z1

fs
+

∂fs
∂z2

fs

)(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

+ 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}

Z4,hard ≡
1

2

∑
s′

∑
s

v(0)(s′)(ns − 1)(ns − 2)
∂2w1,s′|s

∂z2z3
r
(0)
3 (s)q(0)(s)

=
1

2

∑
s

(1− γs)v(0)(s)q(0)(s) · (ns − 1)(ns − 2)r
(0)
3 (s)×{

∂2fs
∂z2z3

fs
− (1− ds,hard)2

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

− 2(1− ds,hard)2
∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)

+ 2(1− ds,hard)3

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
.

(H13b)

Collecting the Z-terms in eqs.(H13a) and (H13b) gives us

ρ(2w) = Z1,hard + Z2,hard + Z3,hard + Z4,hard. (H13c)

Here, r
(0)
3 (s) is calculated by substituting eq.(H2) in eq.(F32).

Next, we calculate ρ(2q), which is given by eq.(34b). We repeat the same calculations as eqs.(H8) and
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(H9), but this time q(0) is replaced with q(1) there. From eq.(H10), the result is

ρ(2q) =
∑
s

(1− γs)v(0)(s)q(1)(s)

{
∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)](1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}

=
∑
s

(1− γs)v(0)(s)q(0)(s)
q(1)(s)

q(0)(s)

{
∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)](1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(H14)

By substituting eqs.(H2) and (H5) into eq.(43) we obtain

q(1)(s)

q(0)(s)
=

{
1− ds,hard
ds,hard

∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

1− ds,hard
ds,hard

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)]

(1− ds,hard)2

ds,hard

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}

−
∑
s′

{
1− ds′,hard
ds′,hard

∂fs′
∂z1

fs′
+ (ns′ − 1)r

(0)
2 (s′)

1− ds′,hard
ds′,hard

∂fs′
∂z2

fs′

− [1 + (ns′ − 1)r
(0)
2 (s′)]

(1− ds′,hard)2

ds′,hard

(
1

ns′

∂fs′
∂z1

fs′
+
ns′ − 1

ns′

∂fs′
∂z2

fs′

)}
q(0)(s′).

(H15)

Now we substitute eq.(H15) into eq.(H14). Before doing so, we observe that the second term in eq.(H15),

which is made of the sum over s′, is just a constant, and that putting a constant in the place of

q(1)(s)/q(0)(s) in eq.(H14) gives ρ(1) times this constant (see eq.(H10)), which is zero by the assumption

in this subsection. Thus we can substitute only the first term of eq.(H15) into eq.(H14) to obtain ρ(2q),

which leads to

ρ(2q) =
∑
s

(1− γs)v(0)(s)q(0)(s)×{
1− ds,hard
ds,hard

∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

1− ds,hard
ds,hard

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)]

(1− ds,hard)2

ds,hard

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
×{

∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs
− [1 + (ns − 1)r

(0)
2 (s)](1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(H16)

Thirdly, we calculate ρ(2r), which is given by eq.(34c). For this, we repeat the calculation in eq.(H9),

but this time r
(0)
2 is replaced with r

(1)
2 there. The result is

ρ(2r) =
∑
s

(1− γs)v(0)(s)q(0)(s) · (ns − 1)r
(1)
2 (s)

{
∂fs
∂z2

fs
− (1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(H17)
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Here, we obtain r
(1)
2 (s) by substituting eqs.(H2) and (H5) in eq.(44), as

r
(1)
2 (s)

= 2r
(0)
2 (s)

γs + (1− γs)(1− ds,hard)

2γs(1− ds,hard) + (1− γs)(1− ds,hard)2

×

{
[1 + (ns − 1)r

(0)
2 (s)]

[
(1− ds,hard)

∂fs
∂z1

fs
− (1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)]

+ (ns − 1)[2r
(0)
2 (s) + (ns − 2)r

(0)
3 (s)]

[
(1− ds,hard)

∂fs
∂z2

fs
− (1− ds,hard)2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)]}
.

(H18)

H.3 Consistency with previous results about perturbations

We here show that we recover several previous results from our model.

H.3.1 A model with overlapping generations by Lehmann and Rousset (2010)

Suppose there is a single habitat (N = 1) and no mortality in migration (ps = 1). Then eq.(48) becomes

ρ(1) = (1− γ)

{
∂f
∂z1

f
+ (n− 1)r

(0)
2

∂f
∂z2

f
− (1−m)2

1 + (n− 1)r
(0)
2

n

(
∂f
∂z1

f
+ (n− 1)

∂f
∂z2

f

)}
, (H19)

which precisely recovers the inclusive fitness effect SIF shown in eq.(A.21) in Lehmann and Rousset

(2010) with the following correspondence; γ → s, (∂f/∂z1)/f → −C, r
(0)
2 → R, (n−1)(∂f/∂z2)/f → B,

and {1 + (n− 1)r
(0)
2 }/n→ RR.

H.3.2 A spatially heterogeneous model by Rodrigues and Gardner (2012)

Rodrigues and Gardner (2012) studied effects of spatial and temporal heterogeneity of patch quality on

the evolution of helping/harming. Their results on spatial heterogeneity (Results 1 and 2 therein) readily

follow from our eq.(48). To recover them, set N = 2 (high/low quality patches) and S = {1, 2}. Also, set

γ1 = γ2 = 0, n1 = n2 = n(≥ 2), p1 = p2 = 1, and m1 = m2 = m(> 0), which leads to

d1 =
m(π1f1 + π2f2)

(1−m)f1 +m(π1f1 + π2f2)

d2 =
m(π1f1 + π2f2)

(1−m)f2 +m(π1f1 + π2f2)
.

(H20)

Therefore, eq.(48) becomes

ρ(1) =

〈
f

d

〉−1 2∑
s=1

πsfs
ds

{
∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs

− 1 + (ns − 1)r
(0)
2 (s)

ns
(1− ds)2

(
∂fs
∂z1

fs
+ (ns − 1)

∂fs
∂z2

fs

)}
,

(H21a)

where 〈
f

d

〉
≡

2∑
s=1

πs
fs
ds
. (H21b)

For the Wright-Fisher update (γ1 = γ2 = 0), via a direct calculation of eq.(51) we can confirm

1 + (ns − 1)r
(0)
2 (s)

ns
(1− ds)2 = r

(0)
2 (s) (H22)
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holds for n ≥ 2. Simplifying eq.(H21) by using eq.(H22) leads to

ρ(1) =

〈
f

d

〉−1 2∑
s=1

πsfs
ds

{
1− r(0)2 (s)

}
︸ ︷︷ ︸

(>0)

(
∂fs
∂z1

fs

)
. (H23)

Notice that effect on others’ fecundity, ∂fs/∂z2, is completely absent above. Thus we conclude that, as

long as there is cost in helping/harming in both group states (i.e. ∂fs/∂z1 < 0 for s = 1, 2), neither

obligate nor facultative helping/harming evolves, which essentially echoes Results 1 and 2 in Rodrigues

and Gardner (2012).

H.3.3 A cancellation result by Mullon et al. (2016)

Consider N = 1 (only one state) and the limit of γs → 1 (Moran process). Also, suppose ρ(1) = 0

(first-order perturbation of invasion fitness is null). This means that the expression inside the curly

brackets of eq.(H10) is null. By applying eq.(51), this condition can be rewritten as

ds,hard(1− ds,hard + ns)

1 + ds,hard(ns − 1)

∂fs
∂z1

fs
+
ds,hard(1− ds,hard)(ns − 1)

1 + ds,hard(ns − 1)

∂fs
∂z2

fs
= 0. (H24)

Meanwhile, consider r
(1)
2 (s). It is proportional to the expression inside the curly brackets of eq.(H18),

that is

ns(1− ds,hard)

2 + ds,hard(ns − 2)
×

[
ds,hard(1− ds,hard + ns)

1 + ds,hard(ns − 1)

∂fs
∂z1

fs
+
ds,hard(1− ds,hard)(ns − 1)

1 + ds,hard(ns − 1)

∂fs
∂z2

fs

]
, (H25)

which is zero. Hence r
(1)
2 (s) = 0. This suggests that the first-order perturbation of relatedness in the

Moran process is null, and therefore that the component of second-order perturbation of invasion fitness

due to perturbation of relatedness is

ρ(2r) = 0 (H26)

in the Moran process.

Mullon et al. (2016) found essentially the same result (see their eq.(16)) for their Moran model,

although their model was slightly different from ours here; Mullon et al. (2016) assumed that in each

(non-extinct) patch exactly one adult individual always dies at each update step, whereas our model

assumes that death occurs randomly to each individual and that it occurs rarely (γs → 1).

H.3.4 Second-order results by Parvinen et al. (2018)

Parvinen et al. (2018) calculated the metapopulation fitness of mutants, Rm, in a subdivided population

by assuming non-overlapping generations, γs = 0 (Wright-Fisher process), uniform migration rate (ms =

m), and uniform death rate during dispersal (ps = p). It is known that Rm−1 has the same sign as ρ−1

(Lehmann et al. (2016)), and therefore that metapopulation fitness can be used as a proxy to determine

evolutionary success of mutants.

Parvinen et al. (2018) calculated a Taylor expansion of Rm with respect to mutational deviation, δ:

Rm = 1 + δR(1)
m + δ2R(2)

m + · · · , (H27)
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where R
(1)
m corresponds to their D1(sres) (see their eq.(3.5)), and R

(2)
m corresponds to their D2(sres)/2

(see their eq.(3.10)).

By using our eq.(H10) we can confirm (calculations are not shown here because they are too long)

that

R(1)
m =

〈
nf
dhard

〉
〈nf〉

ρ(1) (H28)

holds, where 〈
nf

dhard

〉
≡
∑
s

πs
nsfs(y,y, y)

ds,hard
, 〈nf〉 ≡

∑
s

πsnsfs(y,y, y). (H29)

This result was firstly shown by Parvinen et al. (2018) (see their eq.(B.26)). Similarly, when ρ(1) = 0,

by using eqs.(H13), (H16) and (H17) we can confirm (calculations are not shown here because they are

too lengthy) that

R(2)
m =

〈
nf
dhard

〉
〈nf〉

ρ(2) (H30)

holds, as expected. These work as indirect confirmations that our results, eq.(H10) (for first-order) and

eqs.(H13), (H16) and (H17) (for second-order), are correct.

I Perturbations for the soft selection lottery model

In this Appendix, we derive the expressions for ρ(1) and ρ(2) for the lottery model under soft selection.

Recall that for this model; namely, eqs.(38b) and (38c) with eqs.(45b) and (46b), we have

wp
1,s|s(z1, z−{1}, z) = γs + (1− γs)

(1−ms)ns
(1−ms)ns + Isoft

×
fs(z1, z−{1}, z)∑ns

i=1 fs(zi, z−{i}, z)/ns︸ ︷︷ ︸
=wpr

1,s|s(z1,z−{1},z)

wd
1,s′|s(z1, z−{1}, z) = (1− γs′)

πs′ns′

(1−ms′)ns′ + Isoft︸ ︷︷ ︸
=wcol

s′ (z)

· psms

fs(z1, z−{1}, z)∑ns
i=1 fs(zi, z−{i}, z)/ns︸ ︷︷ ︸
=wem

s (z1,z−{1},z)︸ ︷︷ ︸
=wdr

1,s′|s(z1,z−{1},z)

.
(I1)

I.1 First-order perturbation of invasion fitness

The goal here is to calculate the first-order perturbation of invasion fitness, given by eq.(32). For this

purpose we will calculate its components one by one. First, we derive v(0)(s′)q(0)(s). With the definition

of the backward migration probability (eq.63) we obtain
wpr

1,s|s = 1− ds,soft

wdr
1,s′|s = ds′,soft

πs′ns′psms

Isoft
.

(I2)

Substituting them into eq.(40) yields

v(0)(s′)q(0)(s) =
πsnsps′ms′

(1− γs′)ds′,softIsoft

/(∑
s′′

πs′′ns′′ps′′ms′′

(1− γs′′)ds′′,softIsoft

)

=
πsnsps′ms′

(1− γs′)ds′,soft

/〈
npm

(1− γ)dsoft

〉
,

(I3)
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where 〈
npm

(1− γ)dsoft

〉
≡
∑
s

πs
nspsms

(1− γs)ds,soft
. (I4)

Second, we calculate first-order derivatives of 1-fitness that appear in eq.(32). A direct calculation of

eq.(I1) shows that relevant first-order derivatives are

∂wpr
1,s|s

∂z1
= (1− ds,soft)︸ ︷︷ ︸

=wpr
1,s|s

{
∂fs
∂z1

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}

∂wpr
1,s|s

∂z2
= (1− ds,soft)︸ ︷︷ ︸

=wpr
1,s|s

{
∂fs
∂z2

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}

∂wdr
1,s′|s

∂z1
= ds′,soft

πs′ns′psms

Isoft︸ ︷︷ ︸
=wdr

1,s′|s

{
∂fs
∂z1

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}

∂wdr
1,s′|s

∂z2
= ds′,soft

πs′ns′psms

Isoft︸ ︷︷ ︸
=wdr

1,s′|s

{
∂fs
∂z2

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(I5)

Taking the first-order derivative of eq.(H6), substituting eq.(I5) therein, and using eq.(H6) again for

rewriting give us 
∂w1,s′|s

∂z1
= (w1,s′|s − δs′,sγs)

{
∂fs
∂z1

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
∂w1,s′|s

∂z2
= (w1,s′|s − δs′,sγs)

{
∂fs
∂z2

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(I6)

Finally, with eqs.(I3) and (I6) we can calculate ρ(1). We observe that each equation in eq.(I6) has

the factor (w1,s′|s− δs′,sγs) in common. Thus the following relation is useful in the following calculation;

for any function F (s) we have∑
s′

∑
s

v(0)(s′)
[
(w1,s′|s − δs′,sγs)F (s)

]
q(0)(s)

=
∑
s

∑
s′

v(0)(s′)w1,s′|s︸ ︷︷ ︸
=v(0)(s)

(from eq.(15b))

F (s)q(0)(s)−
∑
s

v(0)(s)γsF (s)q(0)(s)

=
∑
s

(1− γs)v(0)(s)q(0)(s)F (s).

(I7)

The first term in eq.(32) is then∑
s′

∑
s

v(0)(s′)
∂w1,s′|s

∂z1
q(0)(s)

=
∑
s′

∑
s

v(0)(s′)(w1,s′|s − δs′,sγs)

{
∂fs
∂z1

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
q(0)(s)

=
eq.(I7)

∑
s

(1− γs)v(0)(s)q(0)(s)

{
∂fs
∂z1

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(I8)
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The second term in eq.(32) is similarly calculated as∑
s′

∑
s

v(0)(s′)(ns − 1)
∂w1,s′|s

∂z2
r
(0)
2 (s)q(0)(s)

=
∑
s

(1− γs)v(0)(s)q(0)(s) · (ns − 1)r
(0)
2 (s)

{
∂fs
∂z2

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(I9)

By combining eqs.(I8) and (I9) we obtain

ρ(1) =
∑
s

(1− γs)v(0)(s)q(0)(s)

{
∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)]

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(I10)

Rewriting eq.(I10) with eqs.(50) and (I3) gives eq.(62) in the main text. Here, r
(0)
2 (s) is obtained by

substituting eq.(I2) into eq.(41). We find that r
(0)
2 (s) takes exactly the same form as eq.(51) except that

all ds,hard there should be replaced by ds,soft.

I.2 Second-order perturbation of invasion fitness

Below we assume ρ(1) = 0. The goal here is to calculate the second-order perturbation of invasion fitness,

given by eq.(34). As in the hard selection case, we have already calculated first-order derivatives that

appear there, as given in eq.(I6). We will then calculate various second-order derivatives that appear in

eq.(34). A direct calculation of eq.(I1) shows that relevant terms are

∂2wpr
1,s|s

∂z21
= (1− ds,soft)︸ ︷︷ ︸

=wpr
1,s|s

{ ∂2fs
∂z21

fs
−

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs



− 2

∂fs
∂z1

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2wpr

1,s|s

∂z22
= (1− ds,soft)︸ ︷︷ ︸

=wpr
1,s|s

{ ∂2fs
∂z22

fs
−

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs



− 2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2wpr

1,s|s

∂z1z2
= (1− ds,soft)︸ ︷︷ ︸

=wpr
1,s|s

{
∂2fs
∂z1z2

fs
−

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

−

(
∂fs
∂z1

fs
+

∂fs
∂z2

fs

)(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2wpr

1,s|s

∂z2z3
= (1− ds,soft)︸ ︷︷ ︸

=wpr
1,s|s

{
∂2fs
∂z2z3

fs
−

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

− 2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs
.

)2}
.

(I11a)
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and

∂2wdr
1,s′|s

∂z21
= ds′,soft

πs′ns′psms

Isoft︸ ︷︷ ︸
=wdr

1,s′|s

{ ∂2fs
∂z21

fs
−

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs



− 2

∂fs
∂z1

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2wdr

1,s′|s

∂z22
= ds′,soft

πs′ns′psms

Isoft︸ ︷︷ ︸
=wdr

1,s′|s

{ ∂2fs
∂z22

fs
−

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs



− 2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2wdr

1,s′|s

∂z1z2
= ds′,soft

πs′ns′psms

Isoft︸ ︷︷ ︸
=wdr

1,s′|s

{
∂2fs
∂z1z2

fs
−

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

−

(
∂fs
∂z1

fs
+

∂fs
∂z2

fs

)(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2wdr

1,s′|s

∂z2z3
= ds′,soft

πs′ns′psms

Isoft︸ ︷︷ ︸
=wdr

1,s′|s

{
∂2fs
∂z2z3

fs
−

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

− 2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
.

(I11b)
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Taking the second-order derivative of eq.(H6), substituting eq.(I11) therein, and using eq.(H6) again for

rewriting yields

∂2w1,s′|s

∂z21
= (w1,s′|s − δs′,sγs)

{ ∂2fs
∂z21

fs
−

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


− 2

∂fs
∂z1

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}

∂2w1,s′|s

∂z22
= (w1,s′|s − δs′,sγs)

{ ∂2fs
∂z22

fs
−

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


− 2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2w1,s′|s

∂z1z2
= (w1,s′|s − δs′,sγs)

{
∂2fs
∂z1z2

fs
−

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

−

(
∂fs
∂z1

fs
+

∂fs
∂z2

fs

)(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
∂2w1,s′|s

∂z2z3
= (w1,s′|s − δs′,sγs)

{
∂2fs
∂z2z3

fs
−

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

− 2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
.

(I12)

Now we are ready for calculating the second-order derivative of invasion fitness, given by eq.(34). We

start from from ρ(2w), given by eq.(34a). Substituting eq.(I12) in eq.(34) and using eq.(I7) produces the
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following four terms:

Z1,soft ≡
1

2

∑
s′

∑
s

v(0)(s′)
∂2w1,s′|s

∂z21
q(0)(s)

=
1

2

∑
s

(1− γs)v(0)(s)q(0)(s)

{ ∂2fs
∂z21

fs
−

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


− 2

∂fs
∂z1

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}

Z2,soft ≡
1

2

∑
s′

∑
s

v(0)(s′)(ns − 1)
∂2w1,s′|s

∂z22
r
(0)
2 (s)q(0)(s)

=
1

2

∑
s

(1− γs)v(0)(s)q(0)(s) · (ns − 1)r
(0)
2 (s)

{ ∂2fs
∂z22

fs
−

 1

ns

∂2fs
∂z21

fs
+
ns − 1

ns

∂2fs
∂z22

fs


− 2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}

Z3,soft ≡
1

2

∑
s′

∑
s

v(0)(s′)2(ns − 1)
∂2w1,s′|s

∂z1z2
r
(0)
2 (s)q(0)(s)

=
1

2

∑
s

(1− γs)v(0)(s)q(0)(s) · 2(ns − 1)r
(0)
2 (s)

{
∂2fs
∂z1z2

fs
−

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

−

(
∂fs
∂z1

fs
+

∂fs
∂z2

fs

)(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}

Z4,soft ≡
1

2

∑
s′

∑
s

v(0)(s′)(ns − 1)(ns − 2)
∂2w1,s′|s

∂z2z3
r
(0)
3 (s)q(0)(s)

=
1

2

∑
s

(1− γs)v(0)(s)q(0)(s) · (ns − 1)(ns − 2)r
(0)
3 (s)

{
∂2fs
∂z2z3

fs
−

(
2

ns

∂2fs
∂z1z2

fs
+
ns − 2

ns

∂2fs
∂z2z3

fs

)

− 2

∂fs
∂z2

fs

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)
+ 2

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)2}
,

(I13a)

and we have

ρ(2w) = Z1,soft + Z2,soft + Z3,soft + Z4,soft. (I13b)

Here, r
(0)
3 (s) is calculated by substituting eq.(I2) in eq.(F32).

Next, we calculate ρ(2q), given by eq.(34b). We repeat the same calculations as eqs.(I8) and (I9), but

q(0) there should be replaced with q(1). From eq.(I10) we have

ρ(2q) =
∑
s

(1− γs)v(0)(s)q(1)(s)

{
∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)]

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}

=
∑
s

(1− γs)v(0)(s)q(0)(s)
q(1)(s)

q(0)(s)

{
∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)]

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
.

(I14)
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By substituting eqs.(I2) and (I5) in eq.(43) we obtain q(1)(s)/q(0)(s) as

q(1)(s)

q(0)(s)
=

1− ds,soft
ds,soft

{
∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)]

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}

−
∑
s′

1− ds′,soft
ds′,soft

{
∂fs′
∂z1

fs′
+ (ns′ − 1)r

(0)
2 (s′)

∂fs′
∂z2

fs′

− [1 + (ns′ − 1)r
(0)
2 (s′)]

(
1

ns′

∂fs′
∂z1

fs′
+
ns′ − 1

ns′

∂fs′
∂z2

fs′

)}
q(0)(s′).

(I15)

Now we substitute eq.(I15) into eq.(I14). Note that the second term in eq.(I15), which consists of the

sum over s′, is just a constant, and that putting a constant in the place of q(1)(s)/q(0)(s) in eq.(I14)

gives ρ(1) times this constant (see eq.(I10)), which is zero by the assumption in this subsection. Thus we

can substitute only the first term of eq.(I15) into eq.(I14) to obtain ρ(2q), by which we obtain

ρ(2q) =
∑
s

(1− γs)v(0)(s)q(0)(s)
1− ds,soft
ds,soft

{
∂fs
∂z1

fs
+ (ns − 1)r

(0)
2 (s)

∂fs
∂z2

fs

− [1 + (ns − 1)r
(0)
2 (s)]

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}2

.

(I16)

Quite notably, ρ(2q) in eq.(I16) is always non-negative, which is apparently seen from its expression.

Thirdly, we calculate ρ(2r), given by eq.(34c). For this, we repeat the calculation in eq.(I9), but r
(0)
2

there should be replaced by r
(1)
2 . The result is

ρ(2r) =
∑
s

(1− γs)v(0)(s)q(0)(s) · (ns − 1)r
(1)
2 (s)

{
∂fs
∂z2

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)}
. (I17)

Here, we obtain r
(1)
2 (s) by substituting eqs.(I2) and (I5) in eq.(44), as

r
(1)
2 (s) = 2r

(0)
2 (s)

γs + (1− γs)(1− ds,soft)
2γs(1− ds,soft) + (1− γs)(1− ds,soft)2

×

{
[1 + (ns − 1)r

(0)
2 (s)](1− ds,soft)

[
∂fs
∂z1

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)]

+ (ns − 1)[2r
(0)
2 (s) + (ns − 2)r

(0)
3 (s)](1− ds,soft)

[
∂fs
∂z2

fs
−

(
1

ns

∂fs
∂z1

fs
+
ns − 1

ns

∂fs
∂z2

fs

)]}
.

(I18)

I.3 Consistency with previous results

Here, we again show that we recover previous results.

I.3.1 A model with “Regulation before dispersal” by Lehmann and Rousset (2010)

When there is a single habitat type (N = 1), no mortality in migration (ps = 1), and no overlap of

generations (γs = 0), eq.(62) reduces to

ρ(1) =
(

1− r(0)2

){ ∂f
∂z1

f
− 1

n

(
∂f
∂z1

f
+ (n− 1)

∂f
∂z2

f

)}
, (I19)

which reproduces eq.(A.7) of Lehmann and Rousset (2010) for their “regulation before dispersal” model

with the following correspondence; r
(0)
2 → R, (∂f/∂z1)/f → −C, n→ N , and (n− 1)(∂f/∂z2)/f → B.
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I.3.2 A model with local adaptation by Svardal et al. (2015)

Svardal et al. (2015) studied a soft selection model with spatial and temporal environmental heterogeneity

and effectively infinitely large group size. In the absence of temporal heterogeneity, their model fits

our soft selection framework by setting πs = cs, ns = n0(→ ∞), ps = 1, ms = m, γs = γ and

fs(z1, z−{1}, z) = fs(z1). Then our eq.(62) predicts

dρ

dx

∣∣∣∣
x=y

= ρ(1) = (1− γ)
∑
s

cs

dfs
dz1

fs
= (1− γ)

∑
s

cs
∂

∂x

(
fs(x)

fs(y)

) ∣∣∣∣
x=y

. (I20)

In the notation of Svardal et al. (2015) this can be written as (1−γ)Es[∂ρ], which equals their first-order

derivative of invasion fitness (see their Appendix B.1). Similarly, when the first-order derivative is null,

eqs.(I13), (I16), and (I17) predict

d2ρ

dx2

∣∣∣∣
x=y

= 2ρ(2) = (1− γ)
∑
s

cs


d2fs
dz21

fs
+ 2

1−m
m

(
dfs
dz1

fs

)2
 . (I21)

In the notation of Svardal et al. (2015) this can be written as (1−γ){ES[∂2ρ]+{2(1−m)/m}ES[(∂ρ)2]},

which agrees with their second-order derivative of invasion fitness, because in the absence of temporal

heterogeneity their eq.(B.27) becomes

(1− γ)

[
ES[∂2ρ− (∂ρ)2] + VarS[∂ρ] + 2

1−m
m

VarS[∂ρ]

]

= (1− γ)

ES[∂2ρ− (∂ρ)2] + ES[(∂ρ)2]− ES[∂ρ]2︸ ︷︷ ︸
=0

+2
1−m
m

ES[(∂ρ)2]− ES[∂ρ]2︸ ︷︷ ︸
=0




= (1− γ)

[
ES[∂2ρ] + 2

1−m
m

ES[(∂ρ)2]

]
.

J Evolutionary analysis of a lottery model with local adaptation

In this Appendix, we derive the results for the special case presented in Section 4.3 of the main text

based on the assumptions that (i) the demography follows the assumptions in Section 4.2 (either hard

or soft selection), (ii) the Moran process limit is considered (γs = γ ∼ 1 for all s), and (iii) fecundity of

an adult only depends on its trait value, as fs(z1, z−{1}, z) = fs(z1).

J.1 Hard selection

Analysis under assumptions (i) to (iii): Under these assumptions, eq.(48) simplifies to

ρ(1) ∝
∑
s

πsnspsmsfs
ds,hard

dfs
dz1

fs

{
1− r(0)2,R(s)(1− ds,hard)2

}
, (J1a)

where the proportionality constant is (∑
s∈S

πs
nspsmsfs

(1− γ)ds,hard

)−1
. (J1b)

Remember that in eq.(J1), ds,hard, fs and its derivative, and r
(0)
2,R(s) all depend on y. A singular strategy

y∗ is the one at which ρ(1) vanishes.
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Next we study the second order effect of selection at the singular point y∗ by using eqs.(H13), (H16)

and (H17). Note that our fs depends only on its bearer’s trait value, so most of the derivatives of fs

that appear there are null. We start from eq.(H13):

ρ(2w) = Z1,hard + Z2,hard + Z3,hard + Z4,hard, where

Z1,hard =
1

2

∑
s

(1− γ)v(0)(s)q(0)(s)×

{ d2fs
dz21

fs
− (1− ds,hard)2

ns

d2fs
dz21

fs
− 2

(1− ds,hard)2

ns

(
dfs
dz1

fs

)2

+ 2
(1− ds,hard)3

n2s

(
dfs
dz1

fs

)2}

Z2,hard =
1

2

∑
s

(1− γ)v(0)(s)q(0)(s) · (ns − 1)r
(0)
2 (s)×

{
− (1− ds,hard)2

ns

d2fs
dz21

fs
+ 2

(1− ds,hard)3

n2s

(
dfs
dz1

fs

)2}

Z3,hard =
1

2

∑
s

(1− γ)v(0)(s)q(0)(s) · 2(ns − 1)r
(0)
2 (s)×

{
− (1− ds,hard)2

ns

(
dfs
dz1

fs

)2

+ 2
(1− ds,hard)3

n2s

(
dfs
dz1

fs

)2}

Z4,hard =
1

2

∑
s

(1− γ)v(0)(s)q(0)(s) · (ns − 1)(ns − 2)r
(0)
3 (s)×

{
2

(1− ds,hard)3

n2s

(
dfs
dz1

fs

)2}
.

(J2)

Next we calculate eq.(H16):

ρ(2q) =
∑
s

(1− γ)v(0)(s)q(0)(s)×

{
1− ds,hard
ds,hard

− [1 + (ns − 1)r
(0)
2 (s)]

(1− ds,hard)2

ds,hardns

}

×
{

1− [1 + (ns − 1)r
(0)
2 (s)]

(1− ds,hard)2

ns

}( dfs
dz1

fs

)2

.

(J3)

Then, we calculate eq.(H17):

ρ(2r) =
∑
s

(1− γ)v(0)(s)q(0)(s) · (ns − 1)r
(1)
2 (s)×

{
− (1− ds,hard)2

ns

dfs
dz1

fs

}
. (J4)

Relatedness values are calculated from eqs.(51), (42) (with wpr
1,s|s = 1− ds,hard; see eq.(H2)), and (H18)

respectively, as 

r
(0)
2 (s) =

1− ds,hard
1 + ds,hard(ns − 1)

r
(0)
3 (s) =

2(1− ds,hard)2

{2 + ds,hard(ns − 2)}{1 + ds,hard(ns − 1)}

r
(1)
2 (s) =

ds,hard(1− ds,hard)(1− ds,hard + ns)ns
{2 + ds,hard(ns − 2)}{1 + ds,hard(ns − 1)}2

(
dfs
dz1

fs

)
.

(J5)

By using eqs.(J2)–(J5) and eq.(H3), and after doing some algebra, we arrive at the expression eq.(52) in

the main text.

With two additional assumptions: Here we add two more assumptions to make our model fully

tractable; (iv) group size ns, the probability to migrate ms, and survival of migrating individuals ps are

identical across habitats (ns = n, ms = m, and ps = p for all s), and (v) fecundity in groups in habitat

s is given by eq.(53) in the main text.
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For the selection gradient, by using eqs.(50), (53) and (J5), we calculate eq.(J1) as

ρ(1) ∝
∑
s

πsfs(y)
yop,s − y
σ2
st

1− ds,hard(y) + n

1 + ds,hard(y) · (n− 1)
, (J6a)

where the proportionality constant is(∑
s∈S

πs
fs(y)

(1− γ)ds,hard(y)

)−1
, (J6b)

and the dependence of fs and ds,hard on y is made explicit. The singular strategy y∗ is only implicitly

solved as

y∗ =
∑
s

ψs(y
∗)yop,s, (J7)

which is a weighted average of yop,s, the optimal trait values in groups in state s, with the weights ψs

given by

ψs(y
∗) ≡ πsfs(y∗)

1− ds,hard(y∗) + n

1 + ds,hard(y∗) · (n− 1)

/∑
s′

πs′fs′(y
∗)

1− ds′,hard(y∗) + n

1 + ds′,hard(y∗) · (n− 1)
. (J8)

For disruptive selection coefficient at the singular strategy, y∗, a direct calculation of derivatives of

eq.(53) in eq.(52a) leads to

ρ(2) ∝
∑
s

πsfs(y
∗)

ds,hard(y∗)

{
X1,s,hard(y∗)

(yop,s − y∗)2 − σ2
st

σ4
st

+X2,s,hard(y∗)
(yop,s − y∗)2

σ4
st

}
∝
∑
s

πsfs(y
∗)

ds,hard(y∗)

{
(X1,s,hard(y∗) +X2,s,hard(y∗))(yop,s − y∗)2 −X1,s,hard(y∗)σ2

st

}
,

(J9)

so the condition for ρ(2) > 0 can be expressed as∑
s

Ψs(y
∗)(yop,s − y∗)2 > σ2

st, (J10)

where

Ψs(y
∗) ≡ πsfs(y

∗)

ds,hard(y∗)
(X1,s,hard(y∗) +X2,s,hard(y∗))

/∑
s′

πs′fs′(y
∗)

ds′,hard(y∗)
X1,s′,hard(y∗)

= πsfs(y
∗)

(1− ds,hard(y∗) + n){2(n+ 1)− ds,hard(y∗) · (n+ 2)}
{2 + ds,hard(y∗) · (n− 2)}{1 + ds,hard(y∗) · (n− 1)}/∑

s′

πs′fs′(y
∗)

1− ds′,hard(y∗) + n

1 + ds′,hard(y∗) · (n− 1)
.

(J11)

With further more assumptions: Here we further make three more assumptions; (vi) no mortality

in dispersal, p = 1, (vii) there are only two habitats with equal proportions, S = {1, 2} and π1 = π2 = 1/2,

and (viii) optima are symmetric in the sense of, yop,2 = −yop,1.

In this case y∗ = 0 is a singular strategy due to symmetry. To see why, from the symmetry of

fecundity functions f1(y) and f2(y), we have f1(0) = f2(0) (see eq.(53)). Then, from the definition of

ds,hard (eq.(49); see also eq.(47)), we have

ds,hard(0) =
nm f1(0)+f2(0)

2

(1−m)nfs(0) + nm f1(0)+f2(0)
2

= m (J12)

for s = 1, 2. Putting these to eq.(J8) gives us ψ1(0) = ψ2(0) = 1/2, and hence eq.(J7) is satisfied.
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Now we are particularly interested in when ρ(2) > 0 holds. By using π1 = π2 = 1/2, f1(0) = f2(0),

and eq.(J12), the weight given by eq.(J11) can be written as

Ψs(0) =
1

2

(
2−m
m

− 4(1−m)2

m(2 +m(n− 2))

)
. (J13)

Therefore, when we define the variance of the habitat optima σ2
op by eq.(57), the condition (J10) can be

re-written as eq.(58) in the main text (note that we use π1 = π2 = 1/2 there).

Finally we study convergence stability of y∗ = 0. Explicitly calculating eq.(19) for the selection

gradient eq.(J6) gives us, after some algebra,

c(0) =
dρ(1)(y)

dy

∣∣∣∣
y=0

∝ (1 +m(n− 1))(1−m+ n)(σ2
op − σ2

st) + n2m(1−m)σ2
op (J14)

with a proportionality constant that is positive for m > 0. Rearranging the convergence stability

condition, c(0) < 0, gives condition (60) in the main text. To see a sufficient condition for convergence

stability, we we directly substitute eq.(61) into the coefficient of σ2
op in (60) and obtain2−m− (1−m)2(1−m+ (1 +m)n)

(1 +m(n− 1))(1−m+ n)︸ ︷︷ ︸
→ 0 when n→∞


∣∣∣∣∣∣∣∣
m=

√
1+n

n+
√

1+n

=
2
√

1 + n

1 +
√

1 + n
, (J15)

and therefore,
2
√

1 + n

1 +
√

1 + n
σ2
op < σ2

st (J16)

is a sufficient condition for convergence stability for fixed n. In addition, since eq.(J15) is upper-bounded

by two, 2σ2
op < σ2

st is a sufficient condition for convergence stability for any n.

J.2 Soft selection

Analysis under assumptions (i) to (iii): Similarly to the hard selection case, we first make assump-

tions from (i) to (iii) listed at the beginning of Section J.1. Under these assumptions, eq.(62) simplifies

to

ρ(1) ∝
∑
s

πsnspsms

ds,soft

dfs
dz1

fs

{
1− r(0)2,R(s)

}
, (J17a)

where the proportionality constant is (∑
s∈S

πs
nspsms

(1− γ)ds,soft

)−1
. (J17b)

Remember that in eq.(J17), fs, its derivative, and r
(0)
2,R(s) depend on the resident strategy y, whereas

ds,soft is independent of y (see eqs.(47) and (63)). A singular strategy y∗ is the one at which ρ(1) vanishes.

The disruptive selection coefficient at the singular point y∗ is calculated through eqs.(I13), (I16) and

(I17) under the assumption that fs depends only on its bearer’s trait value, so most of the derivatives
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of fs that appear in ρ(2) are null. In particular, from eq.(I13), we have

ρ(2w) = Z1,soft + Z2,soft + Z3,soft + Z4,soft, where

Z1,soft =
1

2

∑
s

(1− γ)v(0)(s)q(0)(s)×

{ d2fs
dz21

fs
− 1

ns

d2fs
dz21

fs
− 2

ns

(
dfs
dz1

fs

)2

+
2

n2s

(
dfs
dz1

fs

)2}

Z2,soft =
1

2

∑
s

(1− γ)v(0)(s)q(0)(s) · (ns − 1)r
(0)
2 (s)×

{
− 1

ns

d2fs
dz21

fs
+

2

n2s

(
dfs
dz1

fs

)2}

Z3,soft =
1

2

∑
s

(1− γ)v(0)(s)q(0)(s) · 2(ns − 1)r
(0)
2 (s)×

{
− 1

ns

(
dfs
dz1

fs

)2

+
2

n2s

(
dfs
dz1

fs

)2}

Z4,soft =
1

2

∑
s

(1− γ)v(0)(s)q(0)(s) · (ns − 1)(ns − 2)r
(0)
3 (s)×

{
2

n2s

(
dfs
dz1

fs

)2}
.

(J18)

Second, eq.(I16) becomes

ρ(2q) =
∑
s

(1− γ)v(0)(s)q(0)(s)
1− ds,soft
ds,soft

{
1− 1 + (ns − 1)r

(0)
2 (s)

ns

}2( dfs
dz1

fs

)2

. (J19)

Third, eq.(I17) becomes

ρ(2r) =
∑
s

(1− γ)v(0)(s)q(0)(s) · (ns − 1)r
(1)
2 (s)×

{
− 1

ns

(
dfs
dz1

fs

)}
. (J20)

Relatedness values are calculated respectively in the following way; r
(0)
2 (s) is from eq.(51) (where all

ds,hard are replaced by ds,soft; see Section 4.3.2 in the main text), r
(0)
3 (s) is from eq.(42) (with wpr

1,s|s =

1− ds,soft; see eq.(I2)), and finally r
(1)
2 (s) is from eq.(I18) combined with r

(0)
2 (s) and r

(0)
3 (s) that are just

derived. The results are

r
(0)
2 (s) =

1− ds,soft
1 + ds,soft(ns − 1)

,

r
(0)
3 (s) =

2(1− ds,soft)2

{2 + ds,soft(ns − 2)}{1 + ds,soft(ns − 1)}
,

r
(1)
2 (s) =

ds,soft(1− ds,soft)ns(ns − 1)

{2 + ds,soft(ns − 2)}{1 + ds,soft(ns − 1)}2

(
dfs
dz1

fs

)
.

(J21)

By using eqs.(J18)–(J21) and eq.(I3), and after doing some algebra, we arrive at the expression eq.(64)

in the main text.

With two additional assumptions: Similarly to the hard selection case, we here add two more

assumptions; (iv) group size ns, the probability to migrate ms, and survival of migrating individuals ps

are identical across habitats (ns = n, ms = m, and ps = p for all s), and (v) fecundity in groups in

habitat s is explicitly given by eq.(53) in the main text.
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With these assumptions, from eqs.(47) and (63) we see that

ds,soft =
pm

(1−m) + pm
(J22)

does not depend on s, and hence we write it as dsoft from now on. An immediate consequence is that

X1,s,soft and X2,s,soft in eqs.(64b) and (64c) are independent of s, and we will write them as

X1,soft =
1

2

dsoft(n− 1)

1 + dsoft(n− 1)
(J23a)

X2,soft =
dsoft(n− 1){dsoft(1− dsoft)(n− 1)(n− 2)− 2dsoft(n− 1) + (n− 2)}

{2 + dsoft(n− 2)}{1 + dsoft(n− 1)}2
. (J23b)

For selection gradient, by using eqs.(50), (53) and (J21), we calculate eq.(J17) as

ρ(1) = (1− γ)
dsoft(n− 1)

1 + dsoft(n− 1)

∑
s

πs
yop,s − y
σ2
st

, (J24)

and therefore, the singular strategy is simply given by

y∗ =
∑
s

πsyop,s. (J25)

For convergence stability, we take the derivative of eq.(J24) with respect to y and obtain

c(y∗) =
dρ(1)(y)

dy

∣∣∣∣
y=y∗

= (1− γ)
dsoft(n− 1)

1 + dsoft(n− 1)

(
− 1

σ2
st

)
< 0, (J26)

which shows that a singular strategy is always convergence stable. This parallels the results of Svardal

et al. (2015).

For disruptive selection coefficient at the singular strategy, y∗, a direct calculation of eq.(53) in

eq.(64a) leads to

ρ(2) ∝
∑
s

πs

{
X1,soft

(yop,s − y∗)2 − σ2
st

σ4
st

+X2,soft
(yop,s − y∗)2

σ4
st

}
∝
∑
s

πs
{

(X1,soft +X2,soft)(yop,s − y∗)2 −X1,softσ
2
st

}
,

(J27)

and the condition for ρ(2) > 0 becomes

X1,soft +X2,soft

X1,soft

∑
s

πs(yop,s − y∗)2︸ ︷︷ ︸
=σ2

op (from eq.(57))

> σ2
st. (J28)

No mortality in dispersal: Now we further assume that (vi) no mortality in dispersal, p = 1.

Substituting p = 1 in eq.(J22) gives us dsoft = m. Putting this into eq.(J23), calculating condition (J28)

with those X1,soft and X2,soft, and rearranging terms yield condition (66) in the main text.
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