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Abstract

The detection of blood doping represents a current major issue in sports and an

ongoing challenge for antidoping research. Initially focusing on direct detection

methods to identify a banned substance or its metabolites, the antidoping effort has

been progressively complemented by indirect approaches. The longitudinal and indi-

vidual monitoring of specific biomarkers aims to identify nonphysiological variations

that may be related to doping practices. From this perspective, the identification of

markers sensitive to erythropoiesis alteration is key in the screening of blood doping.

The current Athlete Biological Passport implemented since 2009 is composed of

14 variables (including two primary markers, i.e., hemoglobin concentration and OFF

score) for the hematological module to be used for indirect detection of blood dop-

ing. Nevertheless, research has continually proposed and investigated new markers

sensitive to an alteration of the erythropoietic cascade and specific to blood doping.

If multiple early markers have been identified (at the transcriptomic level) or devel-

oped directly in a diagnostics' kit (at a proteomic level), other target variables at the

end of the erythropoietic process (linked with the red blood cell functions) may

strengthen the hematological module in the future. Therefore, this review aims to

provide a global systematic overview of the biomarkers considered to date in the

indirect investigation of blood doping.
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1 | INTRODUCTION

Blood doping is principally targeted to artificially increase the convec-

tive transport of oxygen throughout the body,1 as a direct means to

rapidly improve aerobic performance. Blood transfusions and recom-

binant human erythropoietin (rhEPO) misuse are the prohibited prac-

tices historically identified in endurance sports.2 Additional blood-

related practices were subsequently diverted from their medical pur-

poses, such as hypoxia-inducible factor stabilizers, hemoglobin

substitutes such as hemoglobin-based oxygen carriers and perfluoro-

carbon emulsions (i.e., synthetic blood),3,4 or synthetic allosteric modi-

fier of hemoglobin such as Efaproxiral.5 Despite ongoing debates

about the effect of specific practices on performance enhancement

(e.g., microdoses),6 the benefits of blood doping in athletes through an

improved oxygen-carrying capacity provided by the artificial increase

of red cell mass have been underlined in recent research.7,8

By targeting specific xenobiotics in athletes' fluids, direct detec-

tion methods have historically been used in antidoping for more than
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50 years.2 Banned by the International Olympic Committee following

the 1984 Olympic Games despite no available detection method,9

homologous blood transfusions (involving blood exchange between

two compatible individuals) are currently detectable by flow

cytometry.10 Despite a potential risk of false negatives due to a

similar panel of surface antigens (although further reduced with the

inclusion of additional minor blood group antigens), this method

provides a detection up to 50 days post-transfusion of donor blood

cells in the receiver.11 Providing greater accuracy, an expansion of the

antigen panel and a better selection of red blood cell (RBC)

gating area has been suggested to decrease the number of false

negative results.12 However, no method has been implemented to

date for the direct detection of autologous blood transfusions (ABT)

(where the individual stores his own blood to have it later rein-

fused).13 Moreover, although a robust electrophoresis technique is

currently applied to discriminate rhEPO from endogenous EPO,14 the

required time for analysis and costs besides the growing similarity

between electric charges of EPO isoforms only guarantee the

evaluation of a limited number of samples.15 Nevertheless, the overall

increase in financial and time costs due to further analyses for

indirect detection may be significant for antidoping laboratories and

needs to be considered when evaluating the implementation of

additional markers.

To cope with these limitations, indirect approaches were gradu-

ally adopted to complement the traditional direct detection strat-

egy.16,17 Erythropoiesis is a dynamic and tightly regulated mechanism

of RBC production,18 and understanding its pathways with the role of

oxygen sensing was a paramount advance outlined recently with a

Nobel prize.19 From a laboratory perspective, it may provide a pre-

cious platform for biomarker detection related to blood doping. Over-

all, indirect detection of blood doping shall involve sensitive and

specific biomarkers with the ability to discriminate an upregulation or

downregulation of the erythropoietic function due to doping from

physiological variability.20 Initially applied using a “no-start” rule based

on a cut-off level of hematocrit (Hct)21 or hemoglobin concentration

([Hb]),22 indirect detection later evolved through the introduction of

the Athlete Biological Passport (ABP) by using individual, longitudinal,

and adaptative monitoring of altered hematological variables.23 Since

then, the antidoping research aimed to identify new valid biomarkers

for longitudinal monitoring to improve the indirect detection

approach.24 This review, therefore, aimed to provide a global system-

atic overview of the biomarkers investigated to date for the indirect

screening of blood doping and shed light on novel perspectives to fur-

ther deter blood doping practices.

A systematic search for peer-reviewed publications was

performed in November 2022 using PubMed and Web of Science

databases following PRISMA Statement guidelines25 (Figure 1).

The following inclusion criteria were applied to the abstracts:

English language, original article, human subjects, sports doping-

related, and targeting indirect detection. Finally, based on full texts,

articles seeking to test the stability of existing biomarkers, define

reference ranges, or develop new direct detection methods were

removed to determine the final selection of articles (n = 63) to be

included in this review.

F IGURE 1 “PRISMA” flow diagram
(Moher et al., 2009).
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2 | DISCUSSION

This literature review highlights a wide range of biomarkers investi-

gated for the indirect detection of blood doping presented with a

chronologic perspective in the physiological cascade of erythropoiesis.

Regulating RBC production, erythropoiesis is hence the key metabolic

pathway. Involved at an early stage of the biological process, the tran-

scriptomic markers will be a key stage of the erythropoietic chain

impacted by doping practices (Table 1). Following the -omics stages,

the metabolism of specific proteins will subsequently be altered

(Table 2), to underpin the importance of various markers related to

iron metabolism (Table 3), before multiple metabolites are finally influ-

enced (Table 4). After 2 weeks of maturation in which the hematopoi-

etic stem cells will follow different stages of division and

differentiation, the young RBC will subsequently result in more com-

monly investigated hematological variables (Table 5). Finally, some

(physical and/or mechanical) properties will be impacted in hemato-

logical cells during their life span (Table 6), before being removed from

the bloodstream by the macrophages after approximately 100–

120 days. The successive phases investigated have been summarized

in Figure 2.

3 | TRANSCRIPTOMIC ANALYSES

The -omics strategies aim to identify and characterize the structure

and function of a biological system by analyzing target molecules.89

Initially used in a medical setting to investigate specific issues at a cel-

lular level, this approach was later suggested in an antidoping context

with transcriptomic, proteomic, or metabolomic investigations for inno-

vative biomarkers discovery.90 Based on a homeostatic principle, this

approach aims to explore unique biological dynamics and molecular

signatures associated with doping practices.91

Regrouping post-transcriptional regulations,90 the transcriptome

is sensitive to environmental fluctuations. Therefore, providing a pow-

erful representation of cellular activity,13 transcriptomic biomarkers

TABLE 1 Transcriptomic biomarkers of blood doping.

Transcriptomics (n = 13)

Nb Title Doping Subjects Matrices

Method of

analysis Main biomarker Protocols

1 Loria et al. [26] rhEPO 21 Blood PCR ALAS2 rhEPO 40 IU/kg 8� over 20 days during the

first phase and 8� 13 IU/kg over 12 days

during the second phase

2 Salamin et al.

[27]

ABT 15 Blood PCR ALAS2 + CA1

+ SLC4A1 genes

ABT 500 mL

3 Salamin et al.

[28]

ABT 7 Blood PCR ALAS2 + CA1

+ SLC4A1 genes

ABT 500 mL

4 Wang et al. [29] rhEPO 39 Blood PCR BCL2L1 + CSDA rhEPO 20–40 IU/kg twice a week for

7 weeks

5 Varlet-Marie

et al. [30]

rhEPO 10 Blood PCR HBB + FTL + OAZ

genes

rhEPO 50 IU/kg 3� a week for 4 weeks and

20 IU/kg 3� a week for 2 weeks

6 Varlet-Marie

et al. [31]

rhEPO 14 Blood SAGE and

PCR

Multiple genes rhEPO 0.72 μg/kg every week for 4 weeks

7 Durussel et al.

[32]

rhEPO 38 Blood PCR Transcriptional

biomarkers

rhEPO 50 IU/kg every second day for

4 weeks

8 Pottgiesser

et al. [33]

rhEPO 6 Blood PCR Transcriptional

biomarkers

ABT one or two units of packed red cells

9 Leuenberger

et al. [34]

rhEPO 6 Blood PCR microRNA rhEPO 200 μg single dose

10 Leuenberger

et al. [35]

ABT 20 Blood PCR microRNA ABT 500 mL

11 Haberberger

et al. [36]

ABT 12 Blood PCR microRNA Erythrocyte concentrates storage

12 Gasparello et al.

[37]

ABT 24 Blood PCR microRNA ABT 450 mL

13 Mussack et al.

[38]

ABT 30 Blood PCR microRNA ABT 500 mL

Abbreviations: ABT, autologous blood transfusions; ALAS2, 50-aminolevulinate synthase 2; BCL2L1, BCL2-like 1 protein; CA1, carbonic anhydrase; CSDA,

gene name so no complete name; FTL, ferritin-light chain; HBB, hemoglobin-β; OAZ, ornithine decarboxylase antizyme; PCR, polymerase chain reaction;

rhEPO, recombinant human erythropoietin; SAGE, serial analysis of gene expression; SLC4A1, solute carrier family 4 member 1.
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could be of interest for the detection of artificial stimulation of eryth-

ropoiesis as initial biological indicators or subsequently affected by

negative feedback due to doping practices. As a pioneering approach,

erythroid gene markers were investigated after rhEPO injection.30

Using real-time-polymerase chain reaction quantification, results

showed an increased expression of several transcriptomes, mainly

related to the ornithine decarboxylase antizyme gene due to its func-

tion in erythroid differentiation. These results were later supported by

considering a larger number of genes susceptible to being impacted

by erythropoiesis-stimulating agents (ESA)31 and ABT.33 This field was

further investigated through an untargeted approach, highlighting the

alteration of 34 transcripts related to RBC functional properties.32,92

Finally, a set of 15 relevant genes impacted during both ON and OFF

phases up to 4 weeks after microdoses have been suggested,29 among

which BCL2-like 1 protein and CSDA demonstrated a sensitivity

(i.e., true positive rate or type II errors) and specificity (i.e., true nega-

tive rate or type I errors) of 93%, respectively. Involved in the erythro-

cyte membrane structure and RBC interactome networks,

respectively, a combination of RBC metabolism biomarkers seems

therefore particularly promising. Subsequently, reticulocyte-related

mRNAs expression for 50-aminolevulinate synthase 2 (ALAS2), car-

bonic anhydrase (CA), and solute carrier family 4 member 1 were iden-

tified as promising candidates following a 500-mL blood reinfusion

due to their involvement in heme synthesis (ALAS2) and oxygen trans-

port (CA and solute carrier family 4 member 1).27,28 The reliability of

these three candidate genes for the detection of rhEPO has been later

confirmed,26,93 supporting the interest in biomarkers related to imma-

ture RBC metabolism to detect multiple forms of blood doping with-

out being significantly affected by iron injection.94 Moreover, the

possibility to quantify ALAS2 levels in dried blood spots,95 an increas-

ingly used matrix in antidoping for individual sample collection in ath-

letes, makes it a promising candidate protein to be further

investigated.96,97

Using a similar transcriptomic approach, circulating microRNAs

(miRNAs) were also investigated as potential antidoping biomarkers.

Small noncoding RNA involved in gene regulation, miRNA regulates a

wide diversity of biological pathways through the suppression of

mRNAs.35 From this perspective, circulating miRNAs were investigated

to detect ESA abuse in plasma samples34 where a large increase in

miR-144 was notably observed after third-generation rhEPO (“Contin-
uous erythropoietin receptor activator”) injection. Detectable up to

27 days after continuous erythropoietin receptor activator intake sam-

ples,34 these results demonstrated the considerable potential of this

specific class of transcriptomic markers.98 Despite still limited knowl-

edge, the impact of exercise training on the expression profile of circu-

lating miRNAs has recently been highlighted,99 demonstrating

distinctive adaptive responses depending on the type of training.100 In

addition, exposure to altitude hypoxic environments also is associated

with multiple RBC-related miRNA profiles alteration.101 Therefore, a

thorough understanding of the biomarkers' variability among athletes

is crucial to determine the specificity of these variables.

An alteration of multiple circulating miRNA was observed follow-

ing long-term blood storage.36 Based on these findings, a set of

28 miRNA was successfully created for blood transfusion screening.

Furthermore, additional miRNAs have been identified for being upre-

gulated following blood reinfusion, including markers related to the

erythropoiesis37 or bound to lung and liver tissues.102 Highly stable

and less impacted by environmental factors compared with classical

hematological variables (i.e., [Hb]),35 these results highlighted the sen-

sitivity of miRNA biomarkers for the detection of blood

manipulation.34,98,103

Nevertheless, a recent study comparing the effectiveness of

miRNA to ABP biomarkers in the monitoring of ABT tempered the

absolute effectiveness of the transcriptomic approach.38 Indeed,

despite an interesting response of miRNA markers following blood

transfusion, the detection window did not appear to be significantly

TABLE 2 Proteomic biomarkers of blood doping.

Proteomic (n = 6)

Nb Title Doping Subjects Matrices
Method of
analysis Main biomarker Protocols

14 Cox et al. [39] rhEPO 20 Blood MS CD71 + FECH + Band3 rhEPO 40 IU/kg 8� over 3 weeks

+ 900 IU 6� over 2 weeks

15 Marrocco

et al. [40]

ABT 4 Blood Electrophoresis Peroxiredoxin 2 Erythrocyte concentrates storage

16 Nikolovski

et al. [41]

ABT 2 Blood LC–MS Red blood cell

membrane proteome

Whole blood storage

17 Al-Thani et al.

[42]

ABT 6 Blood LC–MS Red blood cell

membrane proteome

Whole blood storage

18 Cox et al. [43] ABT 26 Blood LC–MS Reticulocytes

proteomes

ABT 475 mL

19 Chang et al.

[44]

rhEPO 20 Blood Flow

cytometry

Red blood cell surface

markers

rhEPO 1500 IU daily for 4 weeks

Abbreviations: ABT, autologous blood transfusion; FECH, ferrochelatase; LC–MS, liquid chromatography–mass spectrometry; MS, mass spectrometry;

rhEPO, recombinant human erythropoietin.
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longer in comparison with traditional markers. Therefore, if the het-

erogeneity in individual responses seems to be the major limitation

when using a single marker,37 a combination of multiple markers in a

mathematical model completed with existing variables would certainly

be the most promising approach.102

4 | PROTEOMIC ANALYSES

The following step in the genetic signaling cascade is represented by

the proteome including all proteins translated and synthesized in the

organism.90 In an antidoping perspective, it is for example known that

blood storage (i.e., for later reinfusion) impacts RBC membrane pro-

teins.104 A proteomic analysis, therefore, provides a great opportunity

to identify markers reflecting the storage period of blood transfu-

sion.13 Multiple proteins located in the RBC transmembrane and cyto-

skeleton were indeed significantly altered after blood storage.41

Likewise, markers associated with oxidative stress40 and neocytolysis44

were further suggested as indicators of ABT.

More recently, 14 proteins involved in RBC energy metabolism

and membrane vesiculation confirmed the potential of membrane pro-

teins in the development of new biomarkers, although the in vivo

TABLE 3 Ironomics biomarkers of blood doping.

Ironomics (n = 15)

Nb Title Doping Subjects Matrices
Method of
analysis Main biomarker Protocols

20 Gareau et al.

[45]

rhEPO 24 Blood EIA Soluble transferrin receptor rhEPO 50 to 100 U/kg once or

twice a week

21 Berglund et al.

[46]

ABT 12 Blood Blood cell

differential

analysis

Hemoglobin

+ erytrhopoietin

ABT 450 mL

22 Robach et al.

[47]

rhEPO 39 Blood EIA and MS Erythroferrone and hepcidin rhEPO 20 IU/kg or 50 IU/kg 6

times every second day

23 Ramirez

Cuevas

et al. [48]

rhEPO/

ABT

18 Blood ELISA Erythroferrone rhEPO 5000 IU on Days 1, 3, and 5

or ABT 450 mL

24 Magnani et al.

[49]

rhEPO 18 Blood RT-PCR Ferritin + soluble transferrin

receptor

rhEPO 30 IU/kg at 4-day intervals

from Days 0 to 10 or 200 IU/kg

at 4-day intervals from Days 0 to

28

25 Christensen

et al. [50]

rhEPO 36 Blood LC–MS Haptoglobin rhEPO 40 μg 1� per week for

3 weeks, followed by 20 μg for

7 weeks (10 weeks)

26 Christensen

et al. [51]

rhEPO 8 Blood MS Haptoglobin + transferrin

+ hemopexin + albumin

rhEPO 5000 IU every second day

for 16 days

27 Leuenberger

et al. [52]

rhEPO 109 Blood LC–MS Hepcidin rhEPO 5000 IU on Days 1, 3, and 5

28 Leuenberger

et al. [53]

ABT 37 Blood LC–MS Hepcidin ABT 500 mL

29 Andersen

et al. [54]

ABT 48 Blood ELISA Hepcidin + erythroferrone ABT 450 mL and reinfusion of

130 mL of packed red blood cells

30 Lainé et al.

[55]

rhEPO 14 Blood ELISA Hepcidin + iron rhEPO single dose 50 IU/kg

31 Leuenberger

et al. [56]

ABT 20 Blood Colorimetry Iron ABT 500 mL

32 Audran et al.

[57]

rhEPO 9 Blood IRMA Soluble transferrin receptor rhEPO 50 IU/kg every day for

26 days

33 Birkeland

et al. [58]

rhEPO 20 Blood IRMA Soluble transferrin receptor rhEPO 5000 IU every 3 days for

30 days

34 Nissen-Lie

et al. [59]

rhEPO 8 Urine IEF Soluble transferrin receptor rhEPO 5000 IU 3� a week for

30 days

Abbreviations: ABT, autologous blood transfusion; EIA, enzyme immunoassay; ELISA, enzyme-linked immunosorbent assay; IEF, isoelectric focusing; IRMA,

immunoradiometric assay; LC–MS, liquid chromatography–mass spectrometry; MS, mass spectrometry; rhEPO, recombinant human erythropoietin; RT-

PCR, real-time polymerase chain reaction.
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clearance kinetics remains to be evaluated.42 Thus, the principal issue

through this strategy is related to the small proportion of reinfused

blood compared with the total blood volume. A unit of reinfused

blood does not represent more than 5% of the recipient's blood

volume for instance105 with a nonnegligible part of RBC removed

from the bloodstream in the first 24 h (5–10%),104 hence shortening

the detection window and reducing the sensitivity. In addition, imma-

ture reticulocyte proteins showed a greater response to rhEPO admin-

istration compared with the current ABP biomarkers: With a level

below 75% of the baseline during 4 weeks following rhEPO injection

when monitored as a ratio (below 75% of baseline), CD71 and ferro-

chelatase thus seem particularly promising and need further investiga-

tion.39 In addition, using a validated liquid chromatography–mass

spectrometry quantification method in dried blood spots,106 cell-

specific membrane proteins (CD71 and Band3) were altered up to

20 days post-transfusion.43 Providing a specificity of �70%,43 these

results are of significant interest for early erythropoietin stimulation

screening.

5 | IRON METABOLISM

Erythropoiesis and iron metabolism are two interdependent processes

that continuously influence all stages of the hematopoietic system.107

Principal iron consumer in humans, the erythropoietic activity will

decrease the hepcidin transcription through erythroferrone (ERFE)

suppression.108 This will result in a stimulation of iron absorption and

delivery during erythropoiesis stress, essential to the subsequent pro-

duction of new RBC. Consequently, because of the direct dependence

of iron metabolism on the erythropoietic process,109 longitudinal

monitoring of specific iron-related biomarkers could offer a relevant

way to better target doping practices.

Most of the iron in the human body is incorporated in circulating

erythrocytes as the heme compound of hemoglobin. Iron is found in

the ferrous (Fe2+) state in hemoglobin molecules and therefore plays

a vital role in the mere existence of RBC.107 Rapidly considered for

blood doping detection,45,110 iron levels seem to largely increase

within hours after blood reinfusion.56 Therefore, quantifiable in ethy-

lenediaminetetraacetic acid (EDTA) samples,56 iron levels can be easily

measured by using the same blood sample and are frequently used as

additional information to the routine biomarkers in case of suspicious

cases. However, iron injections may have a major impact on the indi-

vidual iron level. Therefore, because iron supplementation is fre-

quently recommended for endurance athletes111 or during altitude

training camp,112 this remains a major limitation to ferritin implemen-

tation for longitudinal monitoring. In addition, a higher prevalence of

hemochromatosis, a hereditary disease affecting the iron metabolism,

has been observed in professional endurance athletes.113,114 Due to

the homeostatic iron regulator gene mutation, these genetic charac-

teristics could therefore influence the iron longitudinal monitoring of

the concerned athletes.

Known as a useful indicator of iron stores,53 circulating ferritin

decreased after blood withdrawal,48,53 and tends to increase after

reinfusion46 but with lower amplitude.53 In addition, the decrease

in serum ferritin seems to be progressive with rhEPO treatment47

although not always observed with microdoses.49 However, simi-

larly to iron, circulating ferritin can be significantly affected by

repeated iron injections48 and accentuated day-to-day variability

TABLE 4 Metabolomic biomarkers of blood doping.

Metabolomic (n = 8)

Nb Title Doping Subjects Matrices
Method of
analysis Main biomarker Protocols

35 Appolonova et al.

[60]

rhEPO 2 Urine LC–MS ADMA + DDAH + NOS rhEPO 2000 IU daily for

10 days

36 Bejder et al. [61] ABT 12 Urine LC–MS DEHP + (iso)caproic acid

glucuronide

ABT 900 mL

37 Monfort et al. [62] ABT 226 Urine LC–MS DEHP metabolites ABT 500 mL

38 Al-Nesf et al. [63] ABT 66 Blood LC–MS Serum metabolites ABT 450 mL

39 Varlet-Marie et al.

[64]

ABT 34 Blood GC–MS DEHP ABT 450 mL

40 Monfort et al. [65] BT 221 Urine LC–MS DEHP metabolites Blood transfusion for medical

reasons

41 Leuenberger et al.

[66]

ABT 15 Urine LC–MS DEHP metabolites ABT 500 mL

42 Solymos et al. [67] ABT 578 Urine LC–MS DEHP metabolites Blood transfusion for medical

reasons

Abbreviations: ABT, autologous blood transfusion; ADMA, asymmetrical dimethylarginine; BT, blood transfusion; DDAH, dimethyl-arginine

dimethylaminohydrolase; DEHP, di(2-ethlyhexyl) phthalate; GC–MS, gas chromatography–mass spectrometry; LC–MS, liquid chromatography–mass

spectrometry; NOS, nitric oxide synthase; rhEPO, recombinant human erythropoietin.
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has been observed in female athletes compared with the popula-

tion standards.115 Furthermore, as a positive acute phase protein

(i.e., proteins increasing in response to inflammation), serum ferritin

concentration may be modulated in various conditions without

changes in iron storage.116 Therefore, in addition to mild infections 117

exercise-induced inflammation-like reactions may impact ferritin

levels,118 increasing the longitudinal variability in an athletic

population.

Key parameter in iron metabolism, the soluble transferrin recep-

tor (sTfr) is a protein in charge of the transferrin-bound iron absorp-

tion119 First observed with hemodialyzed patients45 increased sTfr

level following rhEPO injection was later registered in athletes49,57–59

despite the observed disparity between ethnicity120 and presumed

shorter detection window than rhEPO effects on endurance perfor-

mance.58 Thus, in combination with other markers (e.g., Hct), sTfr has

been considered in the first generation of blood biomarkers to detect

rhEPO abuse in athletes.69,76 In contrast to ferritin, sTfr levels are not

affected by inflammatory reactions and physical exercise.116 How-

ever, a gradual increase of sTfr level is usually observed during alti-

tude training,121 although the kinetics seem to be at some point

different from the EPO level.122

Involved in the early stage of the iron metabolism system, ERFE is

also known to play an important role in the erythropoietic process.123

Dependent on EPO release from the kidney, ERFE level is conse-

quently increased in the erythroblasts of the bone marrow.124 There-

fore, ERFE tends to increase after various types of ESA injections48

including microdoses,47 despite a large interindividual variability.52

Regarding blood manipulation, an increase in ERFE is generally

observed during the blood withdrawal phase,54 followed by a

decrease during the reinfusion phase. However, the known impact of

TABLE 5 Biomarkers of blood doping related to the hematological variables.

Hematological variables (n = 14)

Nb Title Doping Subjects Matrices Method of analysis Main biomarker
Protocols (dose + frequency
+ duration)

43 Pottgiesser

et al. [68]

ABT 21 Blood CO rebreathing Hemoglobin mass Multiple (3�) ABT 500 mL

44 Parisotto

et al. [69]

rhEPO 73 Blood Flow cytometry Hematological variables

+ soluble transferrin receptor

rhEPO 50 IU/kg 3� per week

for 25 days

45 Bejder

et al. [70]

rhEPO 16 Blood Flow cytometry Reticulocyte percentage rhEPO 65 IU/kg every second

day for 14 days + 390 IU/kg

on three consecutive days

46 Lamberti

et al. [71]

ABT 24 Blood LC–MS Glycated hemoglobin-HbA1c/

HbPI + hematological

variables

ABT 450 mL

47 Casoni

et al. [72]

rhEPO 20 Blood Flow cytometry Hematological variables rhEPO 30 IU/kg every day for

30 to 45 days

48 Parisotto

et al. [73]

rhEPO 202 Blood Flow cytometry Hematological variables rhEPO 300 IU/kg on Days 1, 4,

7, and 10 + 600 IU/kg on

Days 1 and 10

49 Mørkeberg

et al. [74]

ABT 44 Blood Flow cytometry Hematological variables

+ hemoglobin mass

Multiple (1–3�) ABT 450 mL

50 Mørkeberg

et al. [75]

ABT 16 Blood Flow cytometry Hematological variables

+ RBCHb:RetHb ratio

ABT 450 mL

51 Parisotto

et al. [76]

rhEPO 27 Blood Flow cytometry Hematological variables

+ soluble transferrin receptor

rhEPO 50 IU/kg 3� per week

for 25 days

52 Gore et al.

[77]

rhEPO 57 Blood Flow cytometry Hematological variables

+ soluble transferrin receptor

rhEPO 3� per week for

8 weeks: the first 3 weeks at a

dosage of 50 IU/kg and the

next 5 weeks at 20 IU/kg

53 Damsgaard

et al. [78]

ABT 10 Blood Flow cytometry Hematological variables

+ soluble transferrin receptor

ABT 20% of the subjects' blood

volume

54 Pottgiesser

et al. [79]

ABT 10 Blood CO rebreathing Hemoglobin mass ABT one or two unit of packed

red cells

55 Jeppesen

et al. [80]

rhEPO 39 Blood Flow cytometry Immature reticulocytes rhEPO 20 IU/kg every second

day for 3 weeks

56 Berglund

et al. [81]

ABT 12 Blood Hemoglobinometer Hematological variables ABT 1350 mL

Abbreviations: ABT, autologous blood transfusion; LC–MS, liquid chromatography–mass spectrometry; rhEPO, recombinant human erythropoietin.
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multiple confounding factors such as altitude exposure47,125 or physi-

cal exercise126 on ERFE basal level mainly limits the relevance of this

marker for antidoping purposes. In addition, the reliability and stan-

dardization of analytical measurement remain a major issue with

ERFE, especially with high endogenous levels127

By inhibiting the ferroportin in charge of iron transport, hepcidin

is another central regulator of iron metabolism.109 If hepcidin tends

to decrease after multiple rhEPO administrations,47,52 an early

increase in serum concentration has been noticed after a single

intravenous injection,55 and the opposite relationship was observed

during ABT scenario until 1 day after blood reinfusion53 due to a

suppression of hepcidin during increased erythropoietic activity

periods. Because of the interindividual variations,53 a longitudinal

follow-up complementing the ABP seems to be the most relevant

approach.52 In addition, hepcidin was shown not to be impacted by

altitude training125 and would yield a relevant discriminative power

in an antidoping context with athletes prone to use hypoxic expo-

sures. Finally, other interesting serum proteomic isoforms were

investigated for ESAs screening,50,51 such as haptoglobin, serotrans-

ferrin, transferrin, or hemopexin isoforms, and would deserve further

investigation.

The investigation of multiple markers from iron metabolism dem-

onstrated a high potential of the iron metabolism in the development

of new biomarkers, both for ABT screening 13 and rhEPO abuse.128

The robustness of current analytical methods for markers such as hep-

cidin by liquid chromatography-high resolution mass spectrometry129

makes them biomarkers serious candidates for longitudinal monitoring

allowing a more robust interpretation of abnormal hematological vari-

ations.52 Based on these findings, a recent study tested hepcidin and

ERFE as additional markers of the ABP following low-volume ABT.54

The ability to detect true positives following blood reinfusion was

improved by 83%. In addition, the confirmed correlation between

hepcidin, ferritin, and ERFE52 supports the potential interest of a

multiple marker combination similar to the current OFF score. How-

ever, the nonspecificity of these iron-related markers to blood doping

practices must be carefully considered. Consequently, the examina-

tion of these additional markers should therefore be conducted with a

holistic approach considering other biomarkers.

6 | METABOLOMIC ANALYSES

Final stage in the -omics cascade, a metabolomic approach seems to

offer particularly promising perspectives for complementary

biomarkers of doping abuse.130 Metabolomics analysis seeks to

identify a set of specific metabolites by using targeted approaches

or a wide range of metabolites through untargeted metabolomics

protocols in biological samples.131 A targeted metabolomic approach

was initially applied in the context of rhEPO abuse.60 Thereafter,

investigations were mainly related to identify ABT after exogenous

blood storage.65 Providing a longer shelf life for blood bags

intended for reinfusion, di-(2-ethylhexyl)phthalate (DEHP) is a plasti-

cizer commonly applied during blood storage to preserve the flexi-

bility of the plastic bag.132 Therefore, an initial study investigated

the presence of DEHP metabolites using liquid chromatography–

tandem mass spectrometry in patients' urine receiving a blood trans-

fusion, observing detection windows up to 48 h post-reinfusion65

and demonstrating good longitudinal stability.133 By using a vali-

dated ultraperformance liquid chromatography–tandem mass spec-

trometry quantification method,67,134 these results were later

confirmed in healthy moderately trained individuals,62 even with

bags claimed to be plasticizer-free,66 where 5cx-MEPP and 2cx-

MMHP emerged as the most interesting markers because of their

extended half-life.13 In addition, DEHP was also detected in blood

samples using gas chromatography–mass spectrometry, although the

very short detection window limits its interest.64 However, the

TABLE 6 Biomarkers of blood doping related to the red blood cell properties.

Red blood cells properties (n = 7)

Nb Title Doping Subjects Matrices Method of analysis Main biomarker Protocols

57 Robinson

et al. [82]

rhEPO 475 Blood Photometry Erythrocyte aspartate

aminotransferase activity

rhEPO 2000–18,000 IU

per week

58 Voss et al.

[83]

ABT 6 Blood Flow cytometry Red blood cell extracellular vesicles ABT 450 mL

59 Voss et al.

[84]

ABT 8 Blood Flow cytometry Red blood cell microparticles Whole blood storage

60 Bizjak et al.

[85]

ABT 6 Blood Ektacytometry

+ viscometry

Red blood cells rheology ABT 500 mL

61 Grau et al.

[86]

ABT 8 Blood Ektacytometry

+ viscometry

Red blood cells rheology ABT 500 mL

62 Donati et al.

[87]

ABT n.a. Blood Flow cytometry Red blood cells size + density Whole blood storage

63 Harrison et al.

[88]

ABT 4 Blood Electrophoresis Red blood cells size + distribution Whole blood storage

Abbreviations: ABT, autologous blood transfusion; rhEPO, recombinant human erythropoietin.
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contamination risk should not be excluded, and various sources of

external intake mainly related to contaminated foods135 or medical

procedures involving plastic materials experience136 have been

observed, justifying the caution observed by sports authorities when

evaluating DEHP results.66

Presently, explorative metabolomics protocols seem to be the

most promising approach to identify indirect markers of doping

abuse.137 Nevertheless, untargeted metabolomics-based strategies

were only suggested very recently in the lack of prior spectral data-

bases and compound libraries for the identification of targeted marker

candidates. Focusing on urine samples, a first study suggested several

metabolites from plasticizers as the most relevant markers after blood

reinfusion.61 On the other hand, a second investigation reported

11 serum and 8 urinary metabolites altered at different time points

after blood donation and up to 7 days post-reinfusion.63 Although plas-

ticizer markers tend to be rapidly eliminated, nine other serum and

urine metabolites showed a detection window beyond 7 days, making

their monitoring particularly promising for ABT screening. Therefore,

based on these promising results, metabolomics will definitely be the

field of forthcoming research in the near future,137 although external

influences can be sources of disturbances during a longitudinal

follow-up (e.g., intense exercise or nutritional supplements).138,139

7 | HEMATOLOGICAL VARIABLES

Conclusively, hematological variables represented a direct snapshot of

an athlete's hematological status and erythropoietic processes. It

F IGURE 2 Investigated biomarkers of blood doping.
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obviously supports the use of full blood counts as robust variables

sensitive to blood doping and with known (and explainable) con-

founders.140 The influence of blood transfusions and rhEPO on hema-

tological values and exercise performance has been identified for a

long time58,141,142 with widespread use of transfusions as ergogenic

aids before their prohibition. A range of hematological biomarkers of

altered erythropoiesis was first proposed for the detection of ABT in

cross-country skiers.81 Analyzed by flow cytometry, [Hb] and Hct

were mainly identified as sensitive markers of ESA intake with a

significant increase after rhEPO treatment.69,72,76,77,143 Following

blood transfusion, a drop is usually observed after blood withdrawal,

followed by an opposite kinetic after reinfusion.74,75,78 Because

antidoping controls were originally limited to competition day,

hematological markers had the central benefit of being immediately

analyzed, making it possible to test the athletes before the race.144 In

contrast, any abnormal variation in these markers would require longi-

tudinal monitoring to track atypical changes. In combination with

other markers sensitive to altered erythropoiesis, this thinking histori-

cally then led to the development and implementation of the ABP in

the late 2000s.21

Commonly used as a marker of the erythropoiesis status,145 retic-

ulocytes have been deeply investigated for antidoping purposes.

Increasing during rhEPO supplementation phase, the reticulocytes

percentage (Ret%) is usually downregulated upon rhEPO cessa-

tion.72,73,77 Currently implemented as a secondary marker in the ABP,

a study supported the relevance of using the Ret% as a standalone

variable with a twofold higher sensitivity during rhEPO supplementa-

tion.70 In addition, despite the reported impact of altitude training in

elite athletes on the immature reticulocyte fraction level,146 recent

results demonstrated the sensibility of immature reticulocyte fraction

in the detection of low doses of rhEPO at sea level and altitude.80

Therefore, despite an expected increase in false positives profile

caused by external confounders, these outcomes highlight the great

interest of Ret% parameters in future biomarkers development. More-

over, a dose-dependent increase of the mean corpuscular volume fol-

lowing rhEPO treatment in both mice and humans was reported.147

By regulating the number and speed of cell divisions as well as the

duration of terminal differentiation through the signaling of the eryth-

ropoietin receptor,147 mean corpuscular volume, as a biomarker of the

ABP and included in the calculation of the Abnormal Blood Profile

Score,148 could be promising as an individual marker also because it

appears to be reasonably stable during altitude training.149 Finally,

RBCHb/RetHb ratio75 and hemoglobin types (glycated hemoglobin-

HbA1c and HbPI)71 seem to be promising parameters to detect ABT

reinfusion by suggesting alternative erythrocyte parameters and

require complementary examinations.

By combining multiple variables, applications of statistical classifi-

cation techniques were subsequently investigated to increase the

specificity of single markers.150,151 For instance, the Abnormal Blood

Profile Score or the ON/OFF scores have been specially designed to

identify the early days and cessation phases of rhEPO intake.77

Included in the ABP, the 14 current variables of the hematological

module remain the only biomarkers actually used for the indirect

detection of blood doping.152 However, although numerous studies

confirmed the sensitivity of the ABP to multiple blood doping

protocols,153–155 the hematological module of the ABP has shown its

limitation to identify rhEPO microdoses156 and direct detection

opportunities remain possible.14 In addition, consistently adjusted by

the body, plasma volume (PV) plays a key role in the variability of

many markers of the ABP,157 especially on [Hb] and the resulting OFF

score. Consequently, multiple confounding factors (e.g., prolonged

physical exercise) have demonstrated a significant effect on ABP vari-

ables mainly due to their effect on PV,158 making the interpretation of

individual profiles particularly challenging.140 In this context, a multi-

parametric approach using protein blood biomarkers has been sug-

gested to remove the influence of PV on the ABP,159,160 namely,

transferrin, creatinine, calcium, platelets, low-density lipoproteins,

albumin, and total proteins. Applied to endurance athletes' pro-

files161,162 and more recently in active women taking oral contracep-

tion,163 this approach may definitely strengthen the interpretation of

the ABP by providing the correction of concentration-based variables.

To cope with these limitations, total hemoglobin mass (Hbmass)

was investigated, showing a high sensitivity following various transfu-

sion protocols.164,165 Measured by the CO-rebreathing method,79 the

natural stability of Hbmass is an essential asset for longitudinal moni-

toring,68 in particular when this marker is combined in multiple

ratios.74 Furthermore, an accurate assessment of PV is provided using

the same CO-rebreathing technique. Therefore, the absolute mea-

surement of PV could be of particular interest in the evaluation of the

ABP variables measured in concentration (e.g., [Hb]), thereby empha-

sizing the impact of potential confounding factors. However, due to

additional influences such as altitude training or periods of reduced

training, the stability seems to be lower in elite athletes.166 In addi-

tion, the necessary collaboration of the athlete,167 as well as the toxic

nature of the carbon monoxide currently used during the measure-

ment protocol,105 remains a major limitation to its implementation in

the routine antidoping field.

8 | RBCs PROPERTIES

Finally, other forms of biomarkers were investigated by targeting the

mechanical properties of RBC. Among the morphological characteris-

tics, a difference in the relative size distribution of RBC between fresh

and stored blood was identified by using capillary electrophoresis.88

Following the same approach, several potential biomarkers such as

erythrocytes size, density, and microparticles have shown interest in

the screening of ABT by using flow cytometry in stored blood sam-

ples.87 Besides, the aspartate aminotransferase activity has been sug-

gested to estimate the RBC rejuvenation triggered by rhEPO

intakes.82 However, chronic hypoxia exposure showed a very similar

pattern, thereby limiting the interest of this enzyme as a blood doping

marker.

Induced by an alteration of multiple membrane proteins, RBC-

microparticles (MP) release is a well-known consequence of prolonged

blood storage.168 By using a simple storage procedure (whole blood

58 KRUMM ET AL.
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storage at 4�C), findings revealed a large RBC-MP increase after

14 days of blood storage.84 However, subsequent results showed an

important interindividual clearance variability after reinfusion,83 sug-

gesting a longitudinal approach of RBC-MP as potential additional evi-

dence during ABP interpretation. Defining nanometric-size

extracellular vesicles released by cells, exosomes play a role in multi-

ple physiological and pathological mechanisms.169 Also known to be

released by RBCs during blood storage,170 exosomes could therefore

be highly relevant markers for the screening of blood transfusion.

Nevertheless, the impact of disease conditions and other environmen-

tal stressors on these extracellular vesicles171 needs to be attentively

considered.

In addition, RBC rheological parameters were monitored after

blood reinfusion to understand the in vivo impact of RBC cryopreser-

vation (storage at �80�C): Despite no significant influences with low

volumes (�4% of total blood volume),85 results highlighted a shift in

the age distribution of RBC subpopulations as well as a deformability

alteration after a reinfusion representing 7.7% of the total blood vol-

ume.86 Nevertheless, the clearance of these markers once the blood is

reinjected has not always been investigated.40,42,84,87 Crucial in an

antidoping context, further studies are needed to determine the

detection window of such markers and thus evaluate their suitability

for ABT detection.

Therefore, going from the beginning to the end of erythropoiesis

metabolism, current studies have investigated different steps of RBC

production. The hematological variables are the most investigated

markers so far. Nevertheless, if several markers such as reticulocyte-

related mRNA (e.g., ALAS) or storage metabolites (e.g., DEHP) are

emerging as robust markers, these new biomarkers are still in the

investigation phase. Therefore, more research seems to be required

before considering these markers as complements to the current vari-

ables of the ABP. Finally, alternative models to estimate early erythro-

poietic stimulation for clinical purposes172 provide a glimpse of future

innovative advances applicable to an antidoping context and ulti-

mately improve the fight against doping.

9 | CONCLUSION

Multiple approaches are being investigated for the confirmation of

new biomarkers relevant to the detection of blood doping. Because

it enhances endurance performance through an improved convec-

tive oxygen transport, stimulation of the erythropoiesis was

primarily targeted. However, due to hormonal negative feedback

occurring after altered erythropoietic homeostasis, a drop in RBC

production can similarly be used as an indication of possible doping

practices.

In addition to the hematological variables currently used by ABP,

the application of -omics strategies for antidoping purposes seems to

be particularly promising in the identification of new markers related

to rhEPO or ABT protocols.91 Providing a complementary source of

information,173 a multi-biomarker combination approach using algo-

rithms equivalent to the OFF score currently used by the ABP may be

the most powerful approach to increase the detection window.13 If

the transcriptomic approach seems to be the most studied to date,

other -omics approaches are currently undergoing promising research

for the detection of blood doping. In addition, alternative approaches

related to the RBC properties have been investigated and particularly

for the screening of ABT. Focusing on hemorheological parameters or

membrane lesions after various storage procedures, results confirmed

the interest in RBC morphological characteristics for longitudinal or

confirmation procedures and should be further investigated with rein-

fusion protocols.

Nevertheless, the complexity of the genetic material and the high

interindividual variability remain crucial questions that need to be

investigated.90 In conclusion, this review highlights multiple confound-

ing factors that could impact these newly suggested biomarkers.

Therefore, like the current ABP variables, these new biomarkers

would require extensive examinations to determine the influence of

common intrinsic and extrinsic factors before considering their imple-

mentation in the field.27 Furthermore, the large interindividual vari-

ability reported by several results indicates that an individual

approach as currently apply with the ABP is the necessary approach

to distinctly target doping practices. Consequently, the future of indi-

rect detection will probably require the implementation of comple-

mentary variables to the existing model, providing higher sensitivity

and specificity related to blood doping.
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